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APPROXIMATION OF A NONLINEAR STOCHASTIC
FRACTIONAL VOLTERRA INTEGRO-DIFFERENTIAL
EQUATION WITH MEASURES OF QUALITY AND CERTAINTY

AZAM AHADI, REZA SAADATI, AND DONAL O’REGAN*

ABSTRACT. In this paper, we introduce novel control functions incorporating
measures of quality and certainty, which lay the foundation for analyzing the
stability of stochastic fractional Volterra integro-differential equations. We uti-
lize the Hyers-Ulam and Hyers-Ulam-Rassias stability methodologies to investi-
gate the stability properties of such equations, providing theoretical insights and
potential applications in various fields of mathematics and engineering.

1. INTRODUCTION

Fractional calculus extends the concepts of differentiation and integration to
non-integer orders, allowing for a richer mathematical framework that can model
complex phenomena more accurately than classical methods. The application of
fractional derivatives and integrals has gained traction across diverse disciplines,
including engineering, physics, biology, mathematics, and medicine. For instance,
in engineering, fractional differential equations can describe systems with memory
and hereditary properties, while in biology, they can model processes like diffusion
and population dynamics.

Stochastic fractional differential equations (SFDEs) introduce uncertainty into
these models, incorporating randomness that is often observed in real-world systems.
Such equations are particularly relevant in fields like finance, where asset prices
exhibit stochastic behavior, and in ecology, where species populations are influenced
by random environmental factors.

Research into the stability of solutions for implicit SFDEs is crucial for under-
standing their behavior under various conditions. The stability of these solutions
often determines the reliability of the models in predicting real-world phenomena.
Key studies in this area, such as those referenced in [10, 6, 4, 9], provide valuable in-
sights into the theoretical underpinnings of SFDEs and contribute to their practical
applicability in modeling complex systems.

Overall, the intersection of fractional calculus, stochastic processes, and differen-
tial equations represents a vibrant area of research that continues to evolve, pre-
senting both challenges and opportunities for mathematicians and scientists alike.
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In the paper, we explore the stability of solutions for a stochastic fractional
nonlinear Volterra integro-differential equation (VIDE) defined as follows:

HDEY 1(0,5) = F(oy5, m(0,9)) + [ klo,5,9, (0, <))dd,
(1.1)
I, (0, 0) = o,

with ¢ € [0,7]. The main components of this equation include operators f and
k. Both are defined as continuous random operators (CRO). Specifically, f(o,¢, 1)
and k(p,s,v, 1) depend on the variables o, ¢, ¥, and the unknown function .
The CROs imply some level of randomness, and they are continuous in all their
arguments, defined over appropriate spaces such as T x [0,7] x R and T x [0,T] x
R x R, respectively. Also the equation includes the Stochastic Fractional Derivative
H Da’fw. This denotes the fractional derivative of the function u, parameterized
by ¢, k, and possibly influenced by a weight function ¥. The fractional order of
differentiation introduces memory effects into the equation. Finally the equation
includes the Riemann-Liouville Stochastic Fractional Integral Ié;v. This operator
provides a fractional integral of the function y, and o is an initial condition specified
at ¢t = 0. The parameter ~ is within the range 0 < 4 < 1, aligning with the
characteristic behavior of fractional integrals.

2. PRELIMINARIES

Here, we define =1 = [0,T], where T' > 0, 23 = (0,00), 23 = (0,1], 4 = [0, o]
and =5 = [0, 1] (note that Z2 = (0, 1) refers to the interior of Zs).
Now we let

&1
E:dlag ESZ :diag[€1,-~7€n], fla"'véne 55
&n

We define diag[éy,...,&] as less than or equal to diag|fi,...,f,] denoted
diagl&y, ..., & = diag[fy, ..., f,] if and only if & < f; for all indices i =1,...,n.

Definition 2.1 ([1]). A function ® : E x & — E is referred to as a generalized
continuous t-norm (GCTN) if it satisfies the following conditions: {®1 =, {®f =
fe&E®(fde)=(E@f)®e for all e,f,£ € E with 1 = diag([1, ..., 1]. Additionaly,
ife <fand £ <h then e ® ¢ < f® h. Furthermore, for sequences {f,} and {&,} in
= converging to points f and £ in Z, we have lim, (f, ® §,) = { ® &.

The minimum t-norm, denoted by ®; : E X E — &, is defined as follows:
@@ p = diaglmn, ... o] @y diaglp, ... pu) = diaglmin{w1, pr}, ., min{wn, pu}].

In this paper, we define the generalized Z-number space. For more information,
we refer the reader to [1].
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Definition 2.2 ([1]). Consider a linear space S and two triples: (S,X,®), a fuzzy
normed space, a£1d (S, pr,®), a randgm normed space, and we define a matrix
valued function Z : S x E9 — B as Z(7,&) = diag[R(7, &), pr(£), R(7,&) ® pu-(8)],
which is called a generalized Z— number (GZ—N), provided that the following
conditions hold for all 7,8 € S, £, > 0 and « # 0:

71: Z(1,€) = diag[1,1,1] if and only if 7 = 0;

72: Z(on’,f) = Z(T, |§|),

o
Z3: Z(1+ 0.6+ 0) = Z(1,€) & Z(8,0).

Let (S, Z) denote a GZ—N normed space. A sequence {&,} C S is said to converge
to & € S in the GZ—N normed space (5, Z), if for any € € Z¢ and 7 € Sy, there
exists a positive integer N, € =g such that Z(&n — 6,7) = diag(l —e,1 —€,1 —¢)
for all n > N ,. Similarly, {{,} is GZ—N Cauchy in (S, Z) if, for any € € =¢
and 7 € Zy, there exists a positive integer N, € Zy such that 2(& — &y T) >
diag(l —€,1 — €,1 — €) whenever n,m > N.,. A GZ—N normed space in which
every Cauchy sequence converges is called a generalized Z-number Banach space
(denoted by GZ—NB space).

An example of a generalized Z-number norm is

(e jel, - el
2(¢r) = dias{ ewt-2h ot o ).

for all 7 € 25 and & is a member of a normed linear space (W, ||.|).

Consider the probability space (T,Z3,&) and let (U, By) and (S, Bg) be Borel
measurable spaces, where U and S are GZ—NB spaces. If for every £ in U and
B € Bg, the set {0 : F(0,§) € B} € 25, wecall F: T xU — S a random
operator. A random operator F : T x U — S is considered linear if for each
for each &1,& € U and a,b € R, we have F(p,a&; + b&s) = aF(0,&1) + bF(0,&2)
almost everywhere. It is called bounded if there exists a real-valued random variable
M (o) € =5 such that

Z(Fe.6) - Floe Mo ) = Z(6 - o).

almost everywhere for each £1,& in U, 7 € =9 and p € T.

Theorem 2.3 ([2, 3]). Let (U, p) be a complete metric space with values in the set
Zqg and let A : U — U be a strictly contractive function with Lipschitz constant
t < 1. Then for a given element & € U, one of the following two scenarios must
occur:

1. The distance p (A"ﬁ,A”“f) diverges to infinity for all n € N.
2. There exists an integer ng € N such that:
(i) The distance p(A", A"HLE), remains finite for all n > ng;
(ii) The sequence {A™¢} converges to the fized point ¢* of A;
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(iii) Inthe setV ={C € U | p(A™¢&,() < oo}, the fized point (* is the unique
fixed point of A;
(iv) For every ¢ € V, the inequality (1 —¢)p (¢,C*) < p(¢, AC) holds.

Definition 2.4 ([7]). In this paper, we consider the gamma function

I(z) = / e " s,
0
where z € C, Re(z) > 0.

Consider ¢ € EO5, the integrable random operator f on =5 and the nondecreasing
random operator ¥ € CY(Y x Z5) where ¥'(g,5) # 0, for every ¢ € Z5. The
right-sided ¥-Hilfer stochastic fractional derivative, is given by [8, 5]

L,k K(1—1);¥ 1 d 1—k)(1—0);¥
(2.1) HDOJr f(g,g):IOJ(r ) <W’(g,g)d_g>zé+ o= f(o,¢).

Definition 2.5. Consider the continuously differentiable random operator u(p, <)
and let (s, 7) represent a matrix generalized Z-number set that satisfies the fol-

lowing condition:

Z (HDE’iMu(@,c) — f(o,<,1(0:5)) —/0 k(eyc,&u(gs))dﬁ,T) = <p<<77>,

for each ¢ € 5, 7 € E9 and p € Y. If there exists a solution puo(p,s) of the VIDE
(1.1), along with a fixed constant C > 0, such that

Z(M(Q, ) — po(0:5), T) =@ (c, é) ,

forall¢ € 25, 7 € E9 and p € T, where C is independent of u(o,<) and po(o, <), then
we say that the system described by (1.1) exhibits Hyers-Ulam-Rassias stability.

3. MAIN RESULTS

In this study, we adopt the following definition for fog f(é).diag(g(f,T), h(§, 1),
k(€,7))dE

/0< f(€).diag <g(£, ), h(E, 7)., k(E, T)>d£
—diag( [ 5@ 9t n1ae. [ o) ne s, [ s mac ).

Consider the following assumption:

(HO). Let M,Lg,Ly > 0 be fixed constants such that M (Lg+ Lg) € =s.
Furthermore, let the CROs f: T xE5 xR - Rand k: T xZ5 xZ5 xR — (R, Z,@)
satisfy the following condition: For all ¢ € 25, p1,u2 € R, 7 € 23 and p € T, we
have:

(3.1) Z<f(g,<, p1) — f(g,auz)ﬁ) =27 (Ml ~ M2 L%) ’
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for all ¢,v € E5, p1, 02 € R, 7 € Z9 and p € T, and we also have:

= = T
(32) Z<k(ga §7Q97:U‘1) - k(g,g,ﬁ,p@)n’) = Z (:ul - M2, L_k:> 5

Theorem 3.1. Assume that hypothesis (HO) holds, and consider the nondecreasing
random operator W € C(T x Z5), where ¥'(0,5) # 0. Also, let p be a continuously
differentiable random operator mapping from T X Z5 to R, satisfying:

(33) Z (HDB’fWM(Qa S) = flo,s mle,s)) — /ng(g, s, 9, (o, ﬂ))%f) > s0<<m>,

forall¢,¥ € 25, p e R, 7 € Z9 and p € Y, where the matrix (p((,T) 1s defined as

() = diag (ot 7). vls. ), ot m) @ vt

representing a generalized Z-number matrix and

(3.4) Zl(ﬁ /Og W' (0,6)(¥(0,5) — W (0,€)) " o(&,7)de, T) =0 (c, %) :

Then a a unique CRO pg : Y x =5 — R exists, such that
(¥ (0:5) —¥(0,0)) "
3.5 Holo;s) = o
(35) ol I0)
+I5Y fo.<, olo,5))
LW ¢
+ Iy, [/ k(g,g,ﬁ,uo(g,ﬂ))dﬂ],
0

with the condition Ié;ww,u(g, 0)=0,0<:<1,0<Kk<1 and

(3.6) Z<M(Q, <) — ho(o, <),T> = o (c, = M](\Z n Lk)> ,

forall¢c eZ5, T€ =9, 0€ T,

Proof. For o, 8 € U, let

. = T
6 plas) =int{CeziiZ(aleq) - 8eor) e (s G) ).
for each ¢ € Z5, 7 € 5 and p € T, where
U={a:T x=Z5 = Ris CRO}.
Let A : U — U be defined by

(3.8) Aa(orq) = F(@9) ;(LT;S& )t

+ 757 fos,a(0,9))

gt
+Ié’f[/0 k(o,s,9,a(e,0))dd|,
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forala € 25, e =5 and p€ Y.

We begin by demonstrating that A is strictly contractive on U. Let C,g € Z4
represent a fixed constant such that p(a, 5) < Cyp for all o, 8 € U. From (3.7), it
follows that

=~ T

(3.9) Z(O&(@ s) = Ble,), T) s (9 c—a[) ;

for each ¢ € Z5, 7 € Z9 and p € Y. Also from (3.1), (3.2), (3.4), (3.8) and (3.9), we
obtain

(3.10)
Z (Aa(o,<) — AB(0,<), 7)

B Z<F(1L) /g ' (0,€)(¥(o,<) — ![’(Q,f))b_12<f(97§a a(0,8)) — fo,& B(0,€))

0

+ /(fk:(g, ¢, 9, a(0,9)) — k(o,5,9, B(o, ﬂ))dz?,T) df,T)
-7 (ﬁ [ #0oweo - veor [2 (06 0(0,6)) — £(0.6,8(0,6)),7)
®u 2 /OE k(o,5, 0, a(0,9)) — k(o,<, 9, Ao, &))dﬁ,7> }d&, r>
[ 70 owes - w012 (a6 - e Iff)
@ Z [ alo,€) — B(0,€), Lik> }df, r)
=2 (5 [ V@000 - 10,917 (ale) - bl m) de.7)
(v /)

V00 e~ ¥ e (¢ g ) 47)

and we conclude
-

Aa, AB) < ;

for all ¢ € =5 and 7 € Z5. Hence, we deduce:

for any o, 8 € U, where 0 < M (Ly + L) < 1.
From (3.8), we can identify a constant C € =y, such that

Z<Aﬂo(@, s) — Bole, <)aT>
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= (@(0,5) —¥(0,0)) !
- Z( I'(v)

3
+Igi”[ / f(g,g—,ﬂ,ﬁo@,ﬂ»dﬂ} ﬁo@,c),f)

- T
a4 %C )

for any gy € U, for all ¢ € =5, 7 € Z9 and ¢ € Y. The boundedness of

F(0.&, Bo(0,6)), K(o,s,9,B0(0,0)) and Bo(e,¢),

together with (3.7), guarantees that p(ASy, fy) < co. From Theorem 2.3, we can
find a CRO po : T x Z5 — R such that A"puy — po in (U, p) and Apg = po.

Since 5 and po are bounded on Z5 for each 8 € U and mincez, ¢(s,7) > 0, we
obtain a fixed constant C,z € =4 such that:

o+ I(L)jl_;f(ga S, /80(97 C))

T

Z(ﬁo(@&) - ﬁ(m)ﬁ) e <<a Cﬁ) ;

for any ¢ € Z5, 7 € 29 and ¢ € Y. Thus p(fo, 8) < oo for all 5 € U.

Therefore, we have U = {5 € U : p(Bo, 8) < co}. Additionally, Theorem 2.3 and
(3.5), imply the uniqueness of fy.

Using (3.3) and [8, Theorem 5], we obtain

> (Z(0,5) —¥(0,0))"!
Z(M(@vg) - F(’Y) g
¢
—I¢7 flos, ulo,s)) — Iy [/0 k(o,s,9, u(o, 19))d19} ,T>

- % /0 (0,6 (W (0.<) — W(0,6)) (6, 7).

Then, from (3.4) and (3.8), we obtain

Z(u(g,c) — AM(QS)ﬂ')

1 c _
m o | @O0~ we. ) e g
I'() Jo
-
=e(e31)
for any ¢ € 25, 7 € 5 and p € T, and it follows that
(3.11) p(p, Ap) < M.

where, by applying Theorem 2.3 and (3.11), we infer that
1 M
) < A ) < 9
Pk po) < 1_M<Lf+Lk)p( o ) < =MLy + Le)
which leads to the conclusion in (3.6). O
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Theorem 3.2. Let ¢,k € EO5. Consider the nondecreasing random operator ¥ &€

CH(Y x E5) with W’(g, §) #0 forallc € Z5. Let Ly, Ly, € o be fized constants such
Ly+L

that L) S Lot the CROs £: T x5 xR — R and k - TxZ5 x5 xR - R

T(i+1)
satisfy the conditions in (3.1) and (3.2), respectively. Let £ € Z5, and consider the

continuously differentiable random operator p: Y x =5 — R such that

~ . < .
AZ(HD3F%4@<>—11@<44@<»—1A kwﬁiﬁwdaﬁnd&T)?=m@g<&5£>,

and Z((W(Qvg) — (o, 0))L,T> = 2(97),

forall¢, 9 € 25, p € R, 7 € 5 and p € Y. Under these conditions, we can find a
unique CRO po : T x Z5 — R satisfying (3.5) and

(3.12) Z(u(g,c) - uo(07<)77>

| (@ (0,T) — ¥(0,0))'e
*WW(Nuﬁwww@ﬂ 7 (0,0)[T (Ly + Li)]’
(U(0,T) —¥(0,0))e
T+ 1) — (#(0,T) — (0, 0)[T (L + Ly)]’
) L
)

(V(e,T) —¥(0,0))'e >
0+ 1)~ @(o.T) — We.0)' [T (Ly + L)
forallceZs, ueR, T€=Z and p e Y.
Proof. Let U = {a: T x Z5 — R is CRO}. Consider the Z4-valued metric on U
defined by
(3.13)

) - B 4 T T T
p(a,ﬁ)—lnf{C€~4-Z<a(g,<) B(@@)J) >dmg<r+c’r+c’r+c>}’

for each ¢ € Z5, 7 € E9 and p € Y. In [5] the authors established the completeness
of the metric space (U, p).
Let A : U — U be defined by

(3.14) Aa(o,¢) = (¥ (o,5) ;(’Wyg& 0))7710

+Z5 f (0,5, a(0,5))

T
+ I [/0 k(o,s,9,a(o, 19))d19] :

forall¢e =5 and pe Y.
Let o, 8 € U and assume a fixed constant C,3 € =4 such that p(a, 8) < Cgup,
and

~ T T T
1 Z - >F d ) 9 Y
(3.15) (a(@, <) B(Q,C)a7> iag <T+Ca5 "+ Cup T+Cag>
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for every ¢ € Z5, 7 € Z9 and p € Y. Now we will show

T (Lf + Lk)
o) < (i ) e

To see this note from (3.1), (3.2), (3.14) and (3.15) that

Z(8ale.0) - 43007

- 2(% / 0 (0.6)((o.5) — wg,s))“Z(f(g,f, o(0,6)) — F(0:6. B(0.€))
13
—i—/o k(o,¢,9,a(0,9)) — k(@,§,19,6(@,’[9))6119,7’)(15,7’)
- Z(% [ 7eowes v {Z (o6 a(0,€)) — Flo.&, Bl0.€)).7)
. 3
o 7 ( [ k(o.5.0.0(0.9)) - k(ovs.0, Bl D)o, ) }da, )
N / 1|7~ _ T
[ veowe vy |z (oo - e £ )
o 2 (alo,€) — B(o, ), Li,) }dé, T>

o | Ve —ree) 1z <a<9, §) — B0 €), L7> d“>

< §+ Lg
- (i [ e owes ~ vy <(Li7$ff)> d“)
(

v (REHEELS)

T

7 Z | (¥(e,s) = ¥(e,0))", <M>
P(+1)(7+Cap)

= T

S
’ T(Lf+Lk) ’
T(e+1)(7+Cap)
for each ¢ € Z5, 7 € Z2 and p € Y. Thus, we conclude:

T(Lf —I—Lk)
p(Aa, AB) < <r(b+1)(7+caﬂ)> pla, B),

for each o, 8 € U and o € T. Let 8y € U. We can identify a constant C € =y such
that the following holds:

Z(Afale.) ~ ol 9.7 )
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= (W(o,5) —¥(,0) !
a Z( T'(v)

3
+Igf[/0 k(g,g,ﬂ,ﬁo(gﬁ))dﬁ} 50(9@”)

o +Iéf.f(g7 S, BO(Q? §))

o di T T T
7 aag T+C' 7+C'74+C)’

forall¢ e =5 and p € Y.
The boundedness of the functions

F(0,&,Bo(0,9)), k(o,5,9,Bo(0,9)), and Bo(o,5),

along with (3.13), ensures that p(ASo, fo) < 0.

By applying Theorem 2.3, we can construct a CRO pg : T x =5 — R, where
A"y — po in (U, p) and Apg = po, ensuring that ug satisfies (3.5). Using a method
analogous to that in Theorem 3.1, we conclude that the set {8 € U : p(5o, ) <
oo} = U. Additionally Theorem 2.3 and (3.5) guarantee the uniqueness of yyg.

Next, applying (3.3) along with [8, Theorem 5|, we obtain

(¥(0,5) —¥(0,0))7!
L'(v)

T g
— 1! [/0 k(0,s,9, po(o, ﬂ))dﬁ] 7

= diag (8,5,6),

for all ¢ € =5 and p € T, which implies that

(JI(Q’ T) — Sp(g, 0))L
I(t+1)

Using Theorem 2.3 and equation (3.7), we deduce:

Z(u(g,c) -

g — I(L]ff(gv Sy MU(Qa C))

TT(e+1) )
(¥ (o, T) — ¥(0,0))"

p(p, Ap) <€

Z <u(@,<) — to(0,5),

(D +1) — (P(0.T) — (0,0))'[Ly + %MD)

(¥ (o, T) —¥(0,0))"
= diag <€,€,€>,

which gives (3.12) for all ¢ € Z5. O
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