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infinite depth of water by considering several effects were performed by different

authors such as Stiassnie [12], Hogan [4], Dhar and Das [3].

It is to be noted that the gravity-capillary waves (CGW), which in general are

generated due to wind flow and form a shear current in the topmost water layer.

Brantenberg and Brevik [1] have used a cubic-order Stokes expansion for CGW

travelling on an opposing current and later on, Hsu et al. [5] have elaborated

that works and obtained the third-order solution of CGW travelling on finite depth

water surface in the presence of constant vorticity. Hur [6] investigated the sideband

instability for CGW including the effect of vorticity. Hsu et al. [7] have also derived

a third-order NLSE for CGW in the presence of constant vorticity. They have

reported that the combined effect of vorticity and capillarity is to enhance the

growth rate of instability (GRI) influenced by surface tension when vorticity is

negative.

In the present paper we have presented the stability analysis of a uniform wave-

train travelling at the interface of two fluids of infinite depths including the effect of

wind flow using fourth-order NLEE derived by Majumder and Dhar [11]. The paper

is organized as follows: the framework for the problem is formulated in section 1,

the fourth-order NLEE is given in section 2, section 3 deals with stability analysis

and some important results, and finally conclusion is given in section 4.

2. NLEE for interfacial waves

We begin with the following fourth-order NLEE, which has been derived by Ma-

jumder and Dhar [11] in the case of air flowing over water. This paper was to obtain

the influence of wind blowing over water on Benjamin-Feir instability (BFI)
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where ξ = x1 − cgt1, η = y1, τ = ϵt1, the coefficients δi, Λi, (i = 1, 2, 3, 4) are given

in Appendix and H is the Hilbert transform operator defined by
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Herein, the group velocity cg of the carrier wave given by

cg =
2γv(σ − v) + (1− γ) + 3κ

2[σ + γ(σ − v)]
,

where v denotes the uniform velocity of wind flowing parallel to x axis, γ is the

density ratio of air to water and κ = Tk2

ρg is non-dimensional surface tension co-

efficient. The carrier frequencies of two modes of wave propagation are σ± =

{γv ±
√

1− γ2 − γv2 + (1 + γ)κ}/(1 + γ).
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For linear stability |v| ≤
√
{1− γ2 + (1 + γ)κ}/γ, so our analysis will

continue to be valid if the wind velocity v is less than critical velocity, vc =√
{1− γ2 + (1 + γ)κ}/γ. For air-water interface γ = 0.00129 and for κ = 0 this

critical value becomes 27.8423.

If we set κ = 0, then the evolution equation (2.1) reduces to an equation equiva-

lent to equation (34) of Dhar and Das [3].

3. Stability analysis for finite amplitude wavrtrain

The solution of equation (2.1) is given by

(3.1) α =
η0
2
exp

(
−iΛ1

8
η20τ

)
,

where η0 is called the wave steepness.

Now we consider the perturbation in the uniform solution given by

(3.2) α =
η0
2
(1 + η

′
) exp

[
i

(
θ
′ − Λ1

8
η20τ

)]
,

in which η
′
, θ

′
are small real perturbations of amplitude and phase respectively and

their time dependence is of the form exp(−iΩ
′
τ).

Inserting (3.2) in (2.1) and linearizing we get two equations for η
′
and θ

′
. Next

taking the Fourier transform of two linear equations with respect to ξ, η, we get

the following two algebraic equations (3.4) and (3.5) for the two quantities η′ and

θ′ , which are the Fourier transforms of η
′
and θ

′
respectively, given by
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where S1 = Ω− cgλ+ 1
2(δ3λ

3 + δ4λµ
2), S2 =

1
2(δ1λ

2 − δ2µ
2), and Ω = Ω

′
+ cgλ.

From equations (3.4) and (3.5) we obtain the nonlinear dispersion relation as

follows
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Solving for S1, we have
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From this relation we obtain the following expression for perturbed frequency

(3.8)
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For instability we have
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The first two terms in both the first and also in the second factors in (3.9)

come from the third-order dispersive terms which are second and third terms of the

left side of (2.1). In the second factor of (3.9) the third and fourth terms come

respectively from the third-order and the fourth-order nonlinear terms, which are

respectively the first and fourth terms of the right side of (2.1). Also, the last term

in (3.9) comes from the fourth-order nonlinear term, which is the third term of the

right side of (2.1). Here, we observe that the higher-order dispersive terms of (2.1)

do not contribute to the stability character, whereas the higher-order nonlinear term

involving Hilbert’s transform influence significantly the stability character.

If condition (3.9) is fulfilled, the perturbed frequency Ω will be complex-valued

and the GRI represented by the imaginary part Ωi of Ω becomes
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For one-dimensional perturbation µ = 0, so that (3.9) and (3.10) take the forms
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Omitting fourth-order terms of (3.12) one can find
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The expression for maximum GRI is given by
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Figure 1. Plot of Gm versus η0 for γ = 0.00129 and different values

of v and κ ; : κ = 0, : κ = 0.035 ; (a) fourth-order result,

(b) third-order result.

which occurs for the wavenumber
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At marginal stability Ωi = 0, then the perturbed frequency takes the form
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The maximum GRI, Gm has been drawn in Fig. 1 as a function of wave steepness

η0 for several values of v and κ. It is seen that Gm obtained from fourth-order result

first increases with η0 and then decreases, while Gm computed from third-order

result increases steadily with η0. The most important finding is that the maximum

GRI decreases with the increase of wind velocity. Also the maximum GRI is found to

be appreciably much higher for wind velocity approaching its critical value. Further,

the maximum GRI first increases slightly up to certain value of wave steepness and

then it decreases due to the effect of capillarity.

The perturbed frequency Ωr at marginal stability and contour plots of frequency

separation of fastest growing sideband Ωrm have been plotted in Fig. 2 and Fig. 3

respectively against η0 for different values of v and κ. The effects of wind velocity

and surface tension are captured in both the figures.

Fig. 4 shows that the GRI, Ωi/η
2
0 as a function of λ/η0 for γ = 0.00129 and

different values of v and κ. It is shown that Ωi/η
2
0 increases with the increase of
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Figure 2. Curves of marginal stability versus η0 for γ = 0.00129

and different values of v and κ; \κ = 0\κ = 0.035.

Figure 3. Contour plots of frequency separation of fastest growing

sideband Ωrm(η0, v) for γ = 0.00129; (a) κ = 0, (b) κ = 0.035.

wind velocity up to certain critical value of λ/η0 and then it diminishes. Also GRI is

observed to be considerably higher for wind velocity approaching its critical value.

In Figs. 5 and 6 we have shown some contour plots of GRI, Ωi in perturbed

wavenumber plane (λµ- plane) for γ = 0.00129 and several values of v, κ and η0.

We have noticed some change in the shape and span of the contours along both

the axes. It is found that the instability region reduces with the increase of wind

velocity, whereas it increases with the increase of both η0 and κ.
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Figure 4. Plot of Ωi/η
2
0 against λ/η0 for γ = 0.00129 and different

values of v and κ; \κ = 0\κ = 0.035.
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Figure 5. Contour plots of Ωi(λ, µ) for γ = 0.00129, η0 = 0.1 and

different values of v and κ.

4. Conclusion

The fourth-order NLEE for deep water CGW including the effect of wind blowing

over water is used here to make the stability analysis of uniform wavetrain propa-

gating at the air-water interface. The purpose of the current study is to examine the

influence of wind on the BFI. Our analysis is valid if the wind velocity is less than

a critical velocity vc which depends on air-water density ratio and coefficient of sur-

face tension. The key results of the present instability analysis are: (1) Fourth-order

effect reduces the GRI. (2) The maximum GRI decreases with the increasing wind
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Figure 6. Same legend as in figure 5, but η0 = 0.2.

velocity. (3) The region of instability reduces with the increase of wind velocity,

whereas it increases with the increase of both the wave steepness and surface ten-

sion. (4) Effects of wind velocity and surface tension make changes on the contours

of frequency separation of fastest growing sideband. It is to be noted that the wind

velocity considerably modifies the sideband instability properties.

Appendix : The coefficients appearing in equation (2.1):

δ1 = −dcg
dk

, cg =

(
dσ

dk

)
k=1

, δ2 =
1− γ + 3κ

hσ
,

δ3 =
2i
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[
(1 + γ)cg
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− κ

]
, δ4 =

2i
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[
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+

1− γ − 3κ

2

]
,
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, Λ2 =
2
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[
β3 − β2cg +

2(1 + γ)cgβ1
hσ

− 6κ

]
,

Λ3 =
2

hσ

[
β4 +

(1 + γ)cgβ1
hσ

]
, Λ4 =

8

hσ
[σ2 + γ(σ − v)2],

where

β1 = 4

[
σ2 + γ(σ − v)2 +

{σ2 − γ(σ − v)2}2

1− γ − 2κ
+

3κ

4

]
,

β2 = 8

[
σ + γ(σ − v)

2
+

{σ − γ(σ − v)}{σ2 − γ(σ − v)2}
1− γ − 2κ

− {σ + γ(σ − v)}{σ2 − γ(σ − v)2}2

(1− γ − 2κ)2

]
,
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β3 = −2

[
σ2 + γ(σ − v)2 +

{4γv(σ − v) + (1− γ) + 12κ}{σ2 − γ(σ − v)2}2

(1− γ − 2κ)2

+ 2{σ2 + γ(σ − v)(σ − 2v)}+ {σ2 − γ(σ − v)2}{σ2 − γ(σ − v)(σ − 3v)}
1− γ − 2κ

+
2{σ2 − γ(σ − v)(σ − 2v)}{σ2 − γ(σ − v)2}

1− γ − 2κ

]
,

β4 = −2

[
σ2 + γ(σ − v)2 +

{σ2 − γ(σ − v)2}2

1− γ − 2κ

]
, hσ = 2[σ + γ(σ − v)].
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