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136 MASAMICHI KON

for each x = (x1, x2, . . . , xn),y = (y1, y2, . . . , yn) ∈ Rn is called lexicographic order

on Rn.

The lexicographic order is a total order. If we choose r1 = (1, 0, . . . , 0), r2 =

(0, 1, 0, . . . , 0), . . . , rn = (0, . . . , 0, 1) ∈ Rn in (1.2), then the total ordering cone K

defines the lexicographic order.

The total order ≤K is the lexicographic order on Rn with the orthogonal base

{r1, r2, . . . , rn}; [2, Theorem 3]. That is, for x,y ∈ Rn, let

x = a1r1 + a2r2 + · · ·+ anrn, y = b1r1 + b2r2 + · · ·+ bnrn,

and let

a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn),

then we have

(1.3) x ≤K y ⇔ a ≤lex b.

Definition 1.2. Let S ⊂ Rn, and let x ∈ S.

(i) The point x is said to be the minimum point of S with respect to ≤K if

x ≤K y for any y ∈ S. The minimum point of S with respect to ≤K is

denoted by minS or min(S;K) if exists. Similarly, the minimum point of S

with respect to ≤−K is defined. Whenever we omit K, minS = min(S;K).

(ii) The point x is said to be the maximum point of S with respect to ≤K if

y ≤K x for any y ∈ S. The maximum point of S with respect to ≤K is

denoted by maxS or max(S;K) if exists. Similarly, the maximum point of S

with respect to ≤−K is defined. Whenever we omit K, maxS = max(S;K).

Let S ⊂ Rn. Then, min(S;K) exists if and only if max(S;−K) exists, and

max(S;K) exists if and only if min(S;−K) exists. From (1.1), if min(S;K) and

max(S;K) exist, then if follows that

(1.4) min(S;K) = max(S;−K), max(S;K) = min(S;−K).

2. Orderings and vectorization of sets

Let C(Rn) be the set of all nonempty compact subsets of Rn. For A,B ∈ C(Rn)

and λ ∈ R, we define

A+B = {x+ y : x ∈ A,y ∈ B}, λA = {λx : x ∈ A}.

We define pseudo-orders (reflexive and transitive) ⪯ℓ
K ,⪯u

K ,⪯K on C(Rn) as

A ⪯ℓ
K B

def⇔ B ⊂ A+K,

A ⪯u
K B

def⇔ A ⊂ B −K,

A ⪯K B
def⇔ B ⊂ A+K,A ⊂ B −K ⇔ A ⪯ℓ

K B,A ⪯u
K B

for each A,B ∈ C(Rn). Similarly, ⪯ℓ
−K ,⪯u

−K , and ⪯−K are defined. Then, it follows

that

(2.1) A ⪯u
K B ⇔ A ⊂ B −K ⇔ B ⪯ℓ

−K A
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for A,B ∈ C(Rn). It also follows that

A ⪯ℓ
K B or B ⪯ℓ

K A,

A ⪯u
K B or B ⪯u

K A,

and

(2.2) A ⪯ℓ
K B ⇔ min(A;K) ≤K min(B;K)

for A,B ∈ C(Rn); [3, Lemma 4.6 and Corollary 4.8]. (2.2) in which K is replace by

−K holds. For A,B ∈ C(Rn), since

A ⪯u
K B ⇔ B ⪯ℓ

−K A (from (2.1))

⇔ min(B;−K) ≤−K min(A;−K) (from (2.2))

⇔ max(B;K) ≤−K max(A;K) (from (1.4))

⇔ max(A;K) ≤K max(B;K) (from (1.1)),

we have

(2.3) A ⪯K B ⇔ min(A;K) ≤K min(B;K),max(A;K) ≤K max(B;K).

In the present paper, we investigate a minimization problem with respect to ⪯K .

In [3], a minimization problem with respect to ⪯ℓ
K is considered.

Definition 2.1. Let S ⊂ C(Rn), and let A ∈ S. Then, A is said to be a non-

dominated element of S if B ∈ S and B ⪯K A imply A ⪯K B.

We define two types of vectorization V2(A) and Vλ(A) for each A ∈ C(Rn) as

(2.4) V2(A) = (minA,maxA) ∈ Rn × Rn,

(2.5) Vλ(A) = λminA+ (1− λ)maxA ∈ Rn

where λ ∈ [0, 1]. Throughout the rest of the paper, we set

C = K ×K.

Then, C is a partial ordering cone in R2n = Rn × Rn. That is, we define ≤C as

(2.6)

(x,y) ≤C (z,w)
def⇔ (z,w)− (x,y) ∈ C

⇔ (z − x,w − y) ∈ K ×K

⇔ z − x ∈ K,w − y ∈ K

⇔ x ≤K z,y ≤K w

for each (x,y), (z,w) ∈ Rn × Rn, then ≤C is a partial order on R2n = Rn ×Rn.

Definition 2.2. A total order ≤adm on R2n = Rn ×Rn defined by a total ordering

cone is said to be an admissible order if (x,y), (z,w) ∈ Rn×Rn and (x,y) ≤C (z,w)

imply (x,y) ≤adm (z,w).
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Definition 2.2 is a natural extension of an admissible order for intervals or on R2

in [1, 4, 5]. Let K ⊂ R2n be a total ordering cone, and we define a total order ≤K

on R2n as

(x,y) ≤K (z,w)
def⇔ (z,w)− (x,y) ∈ K

for each (x,y), (z,w) ∈ Rn × Rn. Then, ≤K is an admissible order if and only if

C ⊂ K. See section 4 for construction of K such that ≤K is an admissible order.

Let A,B ∈ C(Rn), and let λ ∈ [0, 1]. Since

A ⪯K B ⇔ min(A;K) ≤K min(B;K),max(A;K) ≤K max(B;K)

⇒ λmin(A;K) + (1− λ)max(A;K)

≤K λmin(B;K) + (1− λ)max(B;K)

from (2.3), we have

(2.7) A ⪯K B ⇔ V2(A) ≤C V2(B) ⇒ Vλ(A) ≤K Vλ(B)

from (2.4), (2.5), and (2.6).

We present an example such that Vλ(A) ≤K Vλ(B) but not V2(A) ≤C V2(B) in

(2.7).

Example 2.3. In R2, let ≤K be the lexicographic order ≤lex. We set A = {0} ×
[−1, 1] ∈ C(R2), B = {0} × [−2, 2] ∈ C(R2), and λ = 1

2 . Then, it follows that

min(A;K) = (0,−1), max(A;K) = (0, 1), min(B;K) = (0,−2), max(B;K) =

(0, 2), and that Vλ(A) = 1
2(0,−1) +

(
1− 1

2

)
(0, 1) = (0, 0), Vλ(B) = 1

2(0,−2) +(
1− 1

2

)
(0, 2) = (0, 0). Thus, we have Vλ(A) = Vλ(B). On the other hand, it

follows that min(B;K) ≤K min(A;K), min(B;K) ̸= min(A;K), max(A;K) ≤K

max(B;K), max(A;K) ̸= max(B;K), and that min(A;K) ̸≤K min(B;K),

max(A;K) ≤K max(B;K). Thus, we have V2(A) ̸≤C V2(B).

3. Set-valued optimization

Throughout this section, let X be a nonempty set, and let F : X → C(Rn) be

a set-valued mapping. Our main problem is the following set-valued optimization

problem (P) with respect to ⪯K :

(P)

∣∣∣∣ min F (x)

s.t. x ∈ X.

Definition 3.1. An element x ∈ X is said to be a non-dominated solution of the

problem (P) if F (x) is a non-dominated element of F (X) = {F (x) : x ∈ X}.

For the set-valued problem (P), we consider the following vector-valued optimiza-

tion problem (VP) with respect to ≤C :

(VP)

∣∣∣∣ min V2(F (x))

s.t. x ∈ X.
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Definition 3.2. An element x ∈ X is said to be a non-dominated solution of the

problem (VP) if

({V2(F (x))} − C) ∩ V2(F (X)) = {V2(F (x))}.

We also consider the following vector-valued optimization problem (VP) with

respect to ≤adm:

(VP)

∣∣∣∣ min V2(F (x))

s.t. x ∈ X.

The difference between the vector-valued problems (VP) and (VP) is only their

orders of vectors. The problem (VP) is a minimization problem with respect to the

partial order ≤C , and the problem (VP) is a minimization problem with respect

to the total order ≤adm. In this section, let K be a total ordering cone for the

admissible order ≤adm, and we use ≤K instead of ≤adm. Since ≤K is an admissible

order, we have C ⊂ K. Therefore, if x∗ ∈ X an optimal solution of the problem

(VP), then x∗ is a non-dominated solution of the problem (VP); [2, Lemma 4].

Moreover, we consider the following vector-valued optimization problem (VPλ)

with respect to ≤K :

(VPλ)

∣∣∣∣ min Vλ(F (x))

s.t. x ∈ X

where λ ∈ [0, 1].

Theorem 3.3. If x∗ ∈ X is a non-dominated solution of the vector-valued problem

(VP), then x∗ is a non-dominated solution of the set-valued problem (P).

Proof. Let x∗ ∈ X be a non-dominated solution of the problem (VP). Then, it

follows that

x ∈ X,F (x) ⪯K F (x∗)

⇒ min(F (x);K) ≤K min(F (x∗);K),

max(F (x);K) ≤K max(F (x∗);K) (from (2.3))

⇒ (min(F (x);K),max(F (x);K))

≤C (min(F (x∗);K),max(F (x∗);K)) (from (2.6))

⇒ V2(F (x)) ≤C V2(F (x∗)) (from (2.4))

⇒ V2(F (x∗))− V2(F (x)) ∈ C (from (2.6))

⇒ ∃c ∈ C s.t. V2(F (x∗))− V2(F (x)) = c

⇒ V2(F (x)) = V2(F (x∗))− c

∈ ({V2(F (x∗))} − C) ∩ V2(F (X)) = {V2(F (x∗))}
(since x∗ is a non-nondominated solution of the problem (VP))

⇒ V2(F (x)) = V2(F (x∗))

⇒ (min(F (x∗);K),max(F (x∗);K))
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= (min(F (x);K),max(F (x);K)) (from (2.4))

⇒ (min(F (x∗);K),max(F (x∗);K))

≤C (min(F (x);K),max(F (x);K))

⇒ min(F (x∗);K) ≤K min(F (x);K),

max(F (x∗);K) ≤K max(F (x);K) (from (2.6))

⇒ F (x∗) ⪯K F (x) (from (2.3)).

Therefore, x∗ is a non-dominated solution of the problem (P). □

Corollary 3.4. If x∗ ∈ X is an optimal solution of the vector-valued problem (VP),

then x∗ is a non-dominated solution of the set-valued problem (P).

Theorem 3.5. For any λ ∈ ]0, 1[, if x∗ ∈ X is an optimal solution of the vector-

valued problem (VPλ), then x∗ is a non-dominated solution of the set-valued problem

(P).

Proof. Fix any λ ∈ ]0, 1[, and let x∗ ∈ X. Suppose that x∗ is not a non-dominated

solution of the problem (P). We show that x∗ is not an optimal solution of the

problem (VPλ). Since x∗ is not a non-dominated solution of the problem (P), it

follows that

∃x ∈ X s.t. F (x) ⪯K F (x∗), F (x∗) ̸⪯K F (x).

Since F (x) ⪯K F (x∗) and F (x∗) ̸⪯K F (x), it follows that

min(F (x);K) ≤K min(F (x∗);K), max(F (x);K) ≤K max(F (x∗);K)

and

min(F (x∗);K) ̸≤K min(F (x);K) or max(F (x∗);K) ̸≤K max(F (x);K)

from (2.3). Thus, we have

min(F (x);K) ≤K min(F (x∗);K), min(F (x);K) ̸= min(F (x∗);K)

or

max(F (x);K) ≤K max(F (x∗);K), max(F (x);K) ̸= max(F (x∗);K).

In the sense of (1.3), the total order ≤K on Rn is the lexicographic order ≤lex on

Rn with the orthogonal base {r1, r2, . . . , rn}. We set

min(F (x);K) = a1r1 + a2r2 + · · ·+ anrn,

min(F (x∗);K) = a∗1r1 + a∗2r2 + · · ·+ a∗nrn,

max(F (x);K) = b1r1 + b2r2 + · · ·+ bnrn,

max(F (x∗);K) = b∗1r1 + b∗2r2 + · · ·+ b∗nrn.

Then, it follows that

λmin(F (x);K) + (1− λ)max(F (x);K)

= (λa1 + (1− λ)b1)r1 + (λa2 + (1− λ)b2)r2 +

· · ·+ (λan + (1− λ)bn)rn,
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λmin(F (x∗);K) + (1− λ)max(F (x∗);K)

= (λa∗1 + (1− λ)b∗1)r1 + (λa∗2 + (1− λ)b∗2)r2 +

· · ·+ (λa∗n + (1− λ)b∗n)rn.

If min(F (x);K) ≤K min(F (x∗);K) and min(F (x);K) ̸= min(F (x∗);K), then it

follows that

∃imin ∈ {1, 2, . . . , n} s.t. aj = a∗j (j < imin), aimin < a∗imin
.

If max(F (x);K) ≤K max(F (x∗);K) and max(F (x);K) ̸= max(F (x∗);K), then it

follows that

∃imax ∈ {1, 2, . . . , n} s.t. bj = b∗j (j < imax), bimax < b∗imax
.

(i) Suppose that

min(F (x);K) ≤K min(F (x∗);K), max(F (x);K) ≤K max(F (x∗);K),

min(F (x∗);K) ̸≤K min(F (x);K), max(F (x∗);K) ̸≤K max(F (x);K).

We set

i0 = min{imin, imax}.
Then, it follows that

aj = a∗j , bj = b∗j , ∀j < i0,

ai0 < a∗i0 , bi0 < b∗i0 or ai0 < a∗i0 , bi0 = b∗i0 or ai0 = a∗i0 , bi0 < b∗i0 ,

and we have

λaj + (1− λ)bj = λa∗j + (1− λ)b∗j , ∀j < i0,

λai0 + (1− λ)bi0 < λa∗i0 + (1− λ)b∗i0 .

(ii) Suppose that

min(F (x);K) ≤K min(F (x∗);K), max(F (x);K) ≤K max(F (x∗);K),

min(F (x∗);K) ̸≤K min(F (x);K), max(F (x∗);K) ≤K max(F (x);K).

It follows that

aj = a∗j , bj = b∗j , ∀j < imin,

aimin < a∗imin
, bimin = b∗imin

,

and we have

λaj + (1− λ)bj = λa∗j + (1− λ)b∗j , ∀j < imin,

λaimin + (1− λ)bimin < λa∗imin
+ (1− λ)b∗imin

.

(iii) Suppose that

min(F (x);K) ≤K min(F (x∗);K), max(F (x);K) ≤K max(F (x∗);K),

min(F (x∗);K) ≤K min(F (x);K), max(F (x∗);K) ̸≤K max(F (x);K).

It follows that

aj = a∗j , bj = b∗j , ∀j < imax,

aimax = a∗imax
, bimax < b∗imax

,
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and we have

λaj + (1− λ)bj = λa∗j + (1− λ)b∗j , ∀j < imax,

λaimax + (1− λ)bimax < λa∗imax
+ (1− λ)b∗imax

.

From (i), (ii), and (iii), we have

Vλ(F (x)) = λmin(F (x);K) + (1− λ)max(F (x);K)

≤K λmin(F (x∗);K) + (1− λ)max(F (x∗);K)

= Vλ(F (x∗)),

Vλ(F (x)) = λmin(F (x);K) + (1− λ)max(F (x);K)

̸= λmin(F (x∗);K) + (1− λ)max(F (x∗);K)

= Vλ(F (x∗)).

Therefore, x∗ is not an optimal solution of the problem (VPλ). □

4. Example of construction of K for admissible order

In this section, we consider the orthogonal base

{(r1,0), (0, r1), (r2,0), (0, r2), . . . , (rn,0), (0, rn)} ⊂ Rn × Rn.

We set

(r′j , s
′
j) =

{
(rk,0) if j = 2k − 1, k ∈ {1, 2, . . . , n},
(0, rk) if j = 2k, k ∈ {1, 2, . . . , n}

and define a total ordering cone K in R2n = Rn × Rn as follows:

K =

[
2n⋃
i=1

{(r, s) ∈ Rn × Rn : ⟨(r′j , r′j), (r, s)⟩ = 0(j < i),

⟨(r′i, r′i), (r, s)⟩ > 0}

]
∪ {(0,0)}.

The following theorem shows that the total order ≤K on R2n = Rn × Rn is an

admissible order.

Theorem 4.1. C ⊂ K.

Proof. Let (r, s) ∈ C = K × K, where K is represented as (1.2). If r = 0 and

s = 0, then (r, s) ∈ K.

Suppose that r ̸= 0 and s = 0. Since r ̸= 0 and s = 0, it follows that

∃ir ∈ {1, 2, . . . , n} s.t. ⟨rj , r⟩ = 0(j < ir), ⟨rir , r⟩ > 0,

⟨rj , s⟩ = 0, ∀j ∈ {1, 2, . . . , n}.
It follows that

⟨(r′j , s′j), (r, s)⟩ = ⟨r′j , r⟩+ ⟨s′j , s⟩ = 0 + 0 = 0,
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for j < 2ir − 1, and that

⟨(r′2ir−1, s
′
2ir−1), (r, s)⟩ = ⟨r′2ir−1, r⟩+ ⟨s′2ir−1, s⟩

= ⟨r′2ir−1, r⟩+ 0

= ⟨r′2ir−1, r⟩
> 0.

Therefore, we have (r, s) ∈ K.

Similarly, if r = 0 and s ̸= 0, then we have (r, s) ∈ K.

Suppose that r ̸= 0 and s ̸= 0. Since r ̸= 0 and s ̸= 0, it follows that

∃ir ∈ {1, 2, . . . , n} s.t. ⟨rj , r⟩ = 0(j < ir), ⟨rir , r⟩ > 0,

∃is ∈ {1, 2, . . . , n} s.t. ⟨rj , s⟩ = 0(j < is), ⟨ris , s⟩ > 0.

We set

i0 = min{ir, is}.

If i0 = ir and ir ≤ is, then

⟨(r′j , s′j), (r, s)⟩ = ⟨r′j , r⟩+ ⟨s′j , s⟩ = 0 + 0 = 0

for j < 2i0 − 1, and then

⟨(r′2i0−1, s
′
2i0−1), (r, s)⟩ = ⟨r′2i0−1, r⟩+ ⟨s′2i0−1, s⟩

= ⟨r′2i0−1, r⟩+ 0

= ⟨r′2i0−1, r⟩
> 0.

If i0 = is and is < ir, then

⟨(r′j , s′j), (r, s)⟩ = ⟨r′j , r⟩+ ⟨s′j , s⟩ = 0 + 0 = 0

for j < 2i0, and then

⟨(r′2i0 , s
′
2i0), (r, s)⟩ = ⟨r′2i0 , r⟩+ ⟨s′2i0 , s⟩

= 0 + ⟨s′2i0 , s⟩
= ⟨s′2i0 , s⟩
> 0.

Therefore, we have (r, s) ∈ K. □

For the last of this section, if we consider the orthogonal base

{(0, r1), (r1,0), (0, r2), (r2,0), . . . , (0, rn), (rn,0)} ⊂ Rn × Rn

and set

(r′j , s
′
j) =

{
(0, rk) if j = 2k − 1, k ∈ {1, 2, . . . , n},
(rk,0) if j = 2k, k ∈ {1, 2, . . . , n}
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and define a total ordering cone K in R2n = Rn × Rn as

K =

[
2n⋃
i=1

{(r, s) ∈ Rn × Rn : ⟨(r′j , r′j), (r, s)⟩ = 0(j < i),

⟨(r′i, r′i), (r, s)⟩ > 0}

]
∪ {(0,0)},

then Theorem 4.1 also holds.

5. Conclusion

In the present paper, we defined a pseudo-order relation between sets by using

a total order relation between vectors, and considered a set-valued optimization

problem with respect to the pseudo-order. Two types of vector-valued optimization

problems were derived from the set-valued problem by using two types of vectoriza-

tion of sets. Then, we showed that any optimal solution of the derived vector-valued

problems is a non-dominated solution of the original set-valued problem.
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