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SET-VALUED OPTIMIZATION BY USING TOTAL ORDER
RELATION BETWEEN VECTORS

MASAMICHI KON

ABSTRACT. In the present paper, we define a pseudo-order relation between sets
by using a total order relation between vectors, and consider a set-valued opti-
mization problem with respect to the pseudo-order. Two types of vector-valued
optimization problems are derived from the set-valued problem by using two
types of vectorization of sets. Then, we investigate relationships between opti-
mal solutions of the vector-valued problems and non-dominated solutions of the
set-valued problem.

1. PRELIMINARIES

For a,b € R, we set [a,b] ={x e R:a <z <b} and Ja,b[={x € R:a < z < b}.
Throughout the paper, let K C R™ be a total ordering cone. That is, we define <p
as

:BSKy(}:e}fy—aseK

for each x,y € R", then <p is a total order on R". We write also y > a when
x <g y. We define

yS_Ka:(g:c—ye—K
for each @,y € R", where —K = {—z: z € K}. Then, it follows that
(1.1) r<gycy-zrzcKer—yc-Kesy< g

It is known that K can be represented as

n
(1.2) K=|{J{r eR": (rj,r) =0(j <i),(r;,7) > 0}| U{0}

i=1
for some ordered orthogonal base {r1,72,...,7,} C R"; [2], where (-,-) is a canon-
ical inner product on R™. The ordered base {7y, r3,...,7,} is distinguished from

its permutations {r;,r;,...,ri} with (i,7,...,k) # (1, 2,...,n).
Now, we recall the definition of lexicographic order.

Definition 1.1. The order relation <j., on R" defined as
T <jez Y (}:e)f x =y or x; < y; for the first different ith coordinate

of x and y
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for each © = (x1,22,...,2n), Yy = (Y1,Y2, ..., yn) € R™ is called lexicographic order
on R™.
The lexicographic order is a total order. If we choose r; = (1,0,...,0), ro =

(0,1,0,...,0),...,7, = (0,...,0,1) € R™ in (1.2), then the total ordering cone K
defines the lexicographic order.

The total order <g is the lexicographic order on R" with the orthogonal base
{r1,72,...,7,}; [2, Theorem 3|. That is, for x,y € R", let

T=ar1+agry+ -t aptn, Y=0biri+bra+ -+ bpry,
and let
a=(aj,as,...,an), b=(b1,ba,...,by),
then we have

(1.3) Tz <gy<sa<pgb.

Definition 1.2. Let S C R”, and let x € S.
(i) The point @ is said to be the minimum point of S with respect to <y if
x <k y for any y € S. The minimum point of S with respect to < is
denoted by min S or min(.S; K) if exists. Similarly, the minimum point of S
with respect to <_f is defined. Whenever we omit K, minS = min(S; K).
(ii) The point x is said to be the mazimum point of S with respect to <p if
y <g x for any y € S. The maximum point of S with respect to < is
denoted by max S or max(S; K) if exists. Similarly, the maximum point of S
with respect to <_j is defined. Whenever we omit K, max S = max(S; K).

Let S € R™ Then, min(S; K) exists if and only if max(S; —K) exists, and
max(S; K) exists if and only if min(S; —K) exists. From (1.1), if min(S; K) and
max(S; K) exist, then if follows that

(1.4) min(S; K) = max(S; —K), max(S;K) = min(S;—K).
2. ORDERINGS AND VECTORIZATION OF SETS
Let C(R™) be the set of all nonempty compact subsets of R™. For A, B € C(R")
and A € R, we define
A+B={x+y:xcAyeB}, M={x:xzecA}l

We define pseudo-orders (reflexive and transitive) jﬁ(, <%, =<k on C(R") as

A<t BYEBcA+K,

A<t BYACcB-K,
def

A<k BEBCA+K ACB-Ke A<% B A<\ B

for each A, B € C(R"). Similarly, <* .-, <%, and <_ are defined. Then, it follows
that

(2.1) A<4 BosACB-KeB=<' A
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for A, B € C(R™). It also follows that
A=<% B or B=% A,
A=% B or B<=%A,
and
(2.2) A =% B & min(4; K) <x min(B; K)

for A, B € C(R™); [3, Lemma 4.6 and Corollary 4.8]. (2.2) in which K is replace by
—K holds. For A, B € C(R"), since

A=Y B & B='p A (from (2.1))
< min(B;—K) <_g min(4; —K) (from (2.2))
< max(B; K) <_g max(A4;K) (from (1.4))
< max(A4; K) <g max(B;K) (from (1.1)),

we have
(2.3) A =g B < min(A; K) <g min(B; K), max(A; K) <x max(B; K).

In the present paper, we investigate a minimization problem with respect to <.
In [3], a minimization problem with respect to jﬁ( is considered.

Definition 2.1. Let S € C(R"), and let A € S. Then, A is said to be a non-
dominated element of S if B € S and B <g A imply A <k B.

We define two types of vectorization Vo(A) and V) (A) for each A € C(R") as
(2.4) V2(A) = (min A, max A) € R" x R",
(2.5) Va(A) =AminA+ (1 —A)max A e R"
where A € [0, 1]. Throughout the rest of the paper, we set

C=Kx K.

Then, C is a partial ordering cone in R?” = R" x R”. That is, we define <¢ as

(x,y) <c (z,w) (%:)ef (z,w) — (xz,y) € C
(2.6) & (z—zy2w—y) e KxK

S z—rxeKw—-yekK
< TKZ,YSKw

for each (z,y), (z,w) € R® x R", then <( is a partial order on R?" = R" xR".

Definition 2.2. A total order <,4,, on R?® = R" x R” defined by a total ordering
cone is said to be an admissible orderif (x,y), (z,w) € R"xR" and (x,y) <¢ (z,w)
imply (2, y) <aim (2, w).
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Definition 2.2 is a natural extension of an admissible order for intervals or on R?
n [1, 4, 5]. Let K C R?" be a total ordering cone, and we define a total order <%
on R?" as

(#,y) < (z,w) S (z,w) — (z,y) € K

for each (x,y),(z,w) € R™ x R”. Then, <4 is an admissible order if and only if
C c K. See section 4 for construction of K such that <% is an admissible order.
Let A, B € C(R™), and let A € [0,1]. Since

A= B < min(4;K) <g min(B; K), max(A; K) <x max(B; K)
= Amin(4; K) + (1 — \) max(4; K)
<k Amin(B; K) + (1 — \) max(B; K)

from (2.3), we have
(2.7) A2k B & Va(A) <o Va(B) = VA(A) <k VA(B)

from (2.4), (2.5), and (2.6).
We present an example such that V) (A) <x Vi(B) but not V2(A) <¢ V2(B) in
(2.7).

Example 2.3. In R?, let <y be the lexicographic order <j.,. We set A = {0} x
[-1,1] € C(R?), B = {0} x [-2,2] € C(R?), and A = }. Then, it follows that
min(4; K) = (0,—1), m (A K) = (0,1), min(B; K) = (0,-2), max(B; K) =
(0,2), and that Vy(A) = 3(0,-1) + (1= 3) (0,1) = (0,0), Va(B) = £(0,-2) +
(1-3)(0,2) = (0,0). Thus, we have V\(A) = V)(B). On the other hand, it
follows that min(B; K) <g min(A; K), min(B; K) # min(A4; K), max(A4; K) <g
max(B; K), max(A; K) # max(B;K), and that min(4;K) £x min(B;K),
max(A; K) <g max(B; K). Thus, we have V5(A) £¢ Va(B).

3. SET-VALUED OPTIMIZATION

Throughout this section, let X be a nonempty set, and let F' : X — C(R") be
a set-valued mapping. Our main problem is the following set-valued optimization
problem (P) with respect to <k:

®) o rex

Definition 3.1. An element T € X is sald to be a non-dominated solution of the
problem (P) if F(Z) is a non-dominated element of F(X) = {F(z): z € X}.

For the set-valued problem (P), we consider the following vector-valued optimiza-
tion problem (VP) with respect to <¢:

min  Vo(F(x))

(VP) st. xeX.
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Definition 3.2. An element T € X is said to be a non-dominated solution of the
problem (VP) if

{Va(F ()} = C) NVa(F(X)) = {Va(F(Z))}-

We also consider the following vector-valued optimization problem (VP) with
respect to <ggm:
- min  Va(F(x))
VP
(VP) s.t. zelX.
The difference between the vector-valued problems (VP) and (VP) is only their
orders of vectors. The problem (VP) is a minimization problem with respect to the
partial order <¢, and the problem (VP) is a minimization problem with respect
to the total order <,4,. In this section, let K be a total ordering cone for the
admissible order <,4,, and we use < instead of <,4,,. Since <4 is an admissible
order, we have C C K. Therefore, if 2* € X an optimal solution of the problem
(VP), then z* is a non-dominated solution of the problem (VP); [2, Lemma 4].
Moreover, we consider the following vector-valued optimization problem (VP})
with respect to <g:
min V) (F(z))

(VP2) st. rzeX
where A € [0, 1].

Theorem 3.3. If z* € X is a non-dominated solution of the vector-valued problem
(VP), then z* is a non-dominated solution of the set-valued problem (P).

Proof. Let * € X be a non-dominated solution of the problem (VP). Then, it
follows that

x); K) <g max(F(z*); K) (from (2.3))

; K),max(F(z*); K)) (from (2.6))
= W (F(z)) <¢ Va(F(z*)) (from (2.4))
= Vao(F(z*)) — Va(F(z)) € C  (from (2.6))

A
Q

E.

=

3
8

~

= dc e Cs.t. Va(F(x¥)) — Va(F(z)) =¢
= Va(F(z)) = Vo(F(27)) — ¢
€ ({a(F(2"))} = C) N Va(F (X)) = {Va(F(2"))}
(since z* is a non-nondominated solution of the problem (VP))
= Va(F(z)) = Va(F(27))
= (min(F(z*); K), max(F(z*); K))
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= (min(F(z); K),max(F(z); K)) (from (2.4))
= (min(F(a"); K), max(F("); K))
<c (min(P(x); K), max(F(z); K))
= min(F(z"); K) <g min(F(z); K),
max(F(z*); K) <g max(F(z); K) (from (2.6))
= F(z*) <k F(x) (from (2.3)).
Therefore, 2* is a non-dominated solution of the problem (P). O

Corollary 3.4. If z* € X is an optimal solution of the vector-valued problem (VP),
then x* is a non-dominated solution of the set-valued problem (P).

Theorem 3.5. For any X\ € ]0,1[, if 2* € X is an optimal solution of the vector-
valued problem (VP) ), then x* is a non-dominated solution of the set-valued problem

(P).
Proof. Fix any A € |0, 1[, and let * € X. Suppose that z* is not a non-dominated
solution of the problem (P). We show that z* is not an optimal solution of the
problem (VP,). Since z* is not a non-dominated solution of the problem (P), it
follows that
Jr € X s.t. F(x) X F(z"), F(z") Ak F(x).
Since F(x) <x F(2*) and F(z*) Ak F(z), it follows that
min(F(z); K) <g min(F(z*); K), max(F(z); K) <g max(F(z*); K)
and
min(F(z*); K) €x min(F(x); K) or max(F(z"); K) €x max(F(x); K)
from (2.3). Thus, we have
min(F(z); K) <g min(F(z*); K), min(F(z); K) # min(F(z*); K)
or
max(F(z); K) <g max(F(z*); K), max(F(z); K) # max(F(z*); K).
In the sense of (1.3), the total order <y on R™ is the lexicographic order <., on
R™ with the orthogonal base {r1,r2,...,7,}. We set
min(F(z); K) = air1 + asra + -+ - + apty,
min(F(z*); K) = ajr1 +a3ra + -+ + ap,ry,
max(F(z); K) = bir1 +barg + -+ - + b1y,
max(F(z*); K) = bjry + b3ra + -+ - + b7
Then, it follows that
Amin(F(z); K) + (1 — A\) max(F(z); K)
= ()\al + (1 — /\)bl)rl + ()\ag + (1 — )\)bg)'l‘z +
+ (Aan + (1 = X)by) s,
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Amin(F(z*); K) + (1 — \) max(F(z*); K)
= (Aa] + (1 = \)by)r1 + (Aag + (1 — A)b3)re +
4 (Aay + (1= A)by)ry,.
If min(F(z); K) <k min(F(2*); K) and min(F(z); K) # min(F(z*); K), then it
follows that

Fimin € {1,2,...,n} s.t. aj = aj(j < imin); Gy, < a5

If max(F(x); K) <g max(F(z*); K) and max(F(z); K) # max(F(z*); K), then it
follows that

Fimax € {1,2,...,n} s.t. bj = bj(] < Imax)s Dipay < OF

Tmax "

(i) Suppose that
min(F(z); K) <g min(F(z*); K), max(F(z); K) <g max(F(z*); K),
min(F(z*); K) £x min(F(x); K), max(F(z*); K) £x max(F(z); K).
We set
iO = Hlil’l{imin, imax}-
Then, it follows that
aj =aj, by =b;, Vj <o,

* * g% ok *
ai, < agz,bi, < by or ai, <ag,bj, = b; ora;, =a;,bj, <bj,

and we have
Aaj+ (1 —N)bj = )\a;f +(1- /\)b}‘, Vj <o,
A, + (1 = N)b;, < )\a;‘O +(1- )\)b;*o.

(ii) Suppose that

min(F(x); K) <g min(F(z*); K), max(F(z); K) <x max(F(z*); K),

min(F(z*); K) £x min(F(x); K), max(F(z*); K) <g max(F(z); K).
It follows that

aj = CL;, bj = b;f, Vj < Z-mina
a“l'min < a’;(min7 bimin = b;(min’
and we have
)\CL]' + (1 _ )\)bj = )\a;f + (1 - )\)b;, VJ < tmin,

Tmin Tmin *

(iii) Suppose that
min(F(z); K) <g min(F(z*); K), max(F(z); K) <g max(F(z*); K),
min(F(z*); K) <x min(F(x); K), max(F(z"); K) £x max(F(z); K).
It follows that

*

CLj = (IJ, bj - b;k, \V/,] < imax’
b <b

*

almax  Yimax? Yimax imax ’
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and we have
Aaj+ (1 =X)bj = /\a; +(1- )\)b;f, Vi < imax,
Ao+ (1= N)bi., < )\afmx +(1- )\)b;‘max

From (i), (ii), and (iii), we have
W(F(z)) = Amin(F(z);K)+ (1 —\) max(F(x); K)
<g Amin(F(z*); K)+ (1 — A\) max(F(z*); K)
= W),
V\(F(z)) = Amin(F(z); K)+ (1 — \) max(F(x); K)
# Amin(F(z"); K) + (1 — X\) max(F (z"); K)
= W(F(zY)).

Therefore, z* is not an optimal solution of the problem (VP)). O

4. EXAMPLE OF CONSTRUCTION OF K FOR ADMISSIBLE ORDER
In this section, we consider the orthogonal base
{(r1,0),(0,71), (r2,0),(0,72),...,(r,,0),(0,7,)} CR" x R™.

We set
(. 8) = (rg,0) if j=2k—1,ke{1,2,...,n},
3273 (0,7) if j=2kke{l,2,...,n}

and define a total ordering cone K in R?" = R" x R" as follows:

2n
K = [U{(r,s) cR" xR": ((r],r]) (r,s)) =0(j < i),
i=1

((ri,h), (r,8)) > 0} U{(0,0)}.
The following theorem shows that the total order <z on R? = R™ x R” is an
admissible order.
Theorem 4.1. C C K.

Proof. Let (r,s) € C = K x K, where K is represented as (1.2). If » = 0 and
s =0, then (r,s) € K.
Suppose that r # 0 and s = 0. Since r # 0 and s = 0, it follows that

Ji, € {1,2,...,n} st. (rj,r) =005 < i), (r;,7r) >0,
(rj,s) =0, Vje{l,2,...,n}.
It follows that
<(TJ’S]) (T78)> <'I"],7'>+<S],S>—0+0:0,
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for j < 24, — 1, and that

((TIZZ'T—hs/Qz'T—l)’(Tvs» = <T'

> 0.

Therefore, we have (r,s) € K.
Similarly, if 7 = 0 and s # 0, then we have (r,s) € K.
Suppose that r # 0 and s # 0. Since r # 0 and s # 0, it follows that

Fi, € {1,2,...,n} st. (rj,r) =0(j < i), (ri,r) >0,

Jis € {1,2,...,n} s.t. (rj,s) =0(j < i), (ri,,s) > 0.
We set
io = min{i,, is}.
If ig = 4, and i, < g4, then
((rQ,s;), (r,s)) = (r;,r) + <s;~, s)=04+0=0

for j < 29 — 1, and then

((7'/22‘0—173/21‘0—1)»(7“73» = (ry

If ig = is and i5 < iy, then
(1, 85), (7, 8)) = (r),7) + (s}, 8) =0+ 0 =

for j < 2ig, and then

(193> 8%i0), (1,8)) = (1, m) + (8h;,, 8)

Therefore, we have (r,s) € K.

For the last of this section, if we consider the orthogonal base
{(0,71),(r1,0),(0,72),(7r2,0),...,(0,7y,), (r,,0)} C R" x R"

and set
(r,s) = (0,7) ifj=2k—1,ke{1,2,...,n},
P77 (g, 0) if =2k ke {1,2,...,n}

143
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and define a total ordering cone K in R?® = R” x R" as

2n
K = U{(r,s)eRan”: (P, 7)), (r,8)) = 0(j < i),
i=1

((risrh), (ry8)) >0} U{(0,0)},
then Theorem 4.1 also holds.

5. CONCLUSION

In the present paper, we defined a pseudo-order relation between sets by using
a total order relation between vectors, and considered a set-valued optimization
problem with respect to the pseudo-order. Two types of vector-valued optimization
problems were derived from the set-valued problem by using two types of vectoriza-
tion of sets. Then, we showed that any optimal solution of the derived vector-valued
problems is a non-dominated solution of the original set-valued problem.
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