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By using the function g, a portfolio w is represented on mean-standard deviation

diagram, then we consider maximization problem of quasiconcave utility function u

on R2. Quasiconcave maximization problem is equivalent to quasiconvex minimiza-

tion problem, and various researchers have investigated quasiconvex optimization,

see [1, 2, 3, 6, 10, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24] and references therein. In

particular, the authors study minimization problems whose objective functions are

evenly quasiconvex in [19, 24]. We show optimality conditions and duality results

by three types of evenly quasiconvex functions.

Based on the above previous research, we study quasiconcave utility maximization

for portfolio optimization in this paper. We introduce portfolio optimization as

quasiconcave utility maximization problem. We investigate solutions of the problem

in terms of evenly quasiconcavity of the utility function u. In addition, we show a

numerical example as an application.

The remainder of the present paper is organized as follows. In Section 2, we intro-

duce some preliminaries and previous results. In Section 3, we study quasiconcave

utility maximization for portfolio optimization. In Section 4, we show a numerical

example.

2. Preliminaries

Let Rn denote the n-dimensional Euclidean space. The inner product of two

vectors v and x in Rn is denoted by ⟨v, x⟩. We define the following families of open

half spaces:

H = {lev(v,<, α) : v ∈ Rn, α ∈ R},
H+ = {lev(v,<, α) : v ∈ Rn, α > 0},
H0 = {lev(v,<, 0) : v ∈ Rn},
H− = {lev(v,<, α) : v ∈ Rn, α < 0},

where lev(v,<, α) = {x ∈ Rn : ⟨v, x⟩ < α}. A subset A of Rn is said to be evenly

(H-evenly, O-evenly, and R-evenly) convex if it is the intersection of a subfamily

of H (H+, H0, H−, respectively). We define the whole space and the empty set is

evenly (H-evenly, O-evenly, and R-evenly, respectively) convex by convention. In

[18], we show the following statements:

• if t > 0, lev(v,<, t) and lev(v,≤, t) are H-evenly convex,

• lev(v,<, 0) is O-evenly convex and lev(v,≤, 0) is H-evenly convex,

• if t < 0, lev(v,<, t) and lev(v,≤, t) are R-evenly convex.

Let f be a function from Rn to R = [−∞,∞]. A function f is said to be

quasiconvex if for each x, y ∈ Rn and α ∈ [0, 1],

f((1− α)x+ αy) ≤ max{f(x), f(y)}.

Define the level sets of f with respect to a binary relation ⋄ on R as

lev(f, ⋄, α) = {x ∈ Rn : f(x) ⋄ α}
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for each α ∈ R. It is well known that f is quasiconvex if and only if lev(f,≤, α) is

convex for all α ∈ R. A function f is said to be evenly (H-evenly, O-evenly, and

R-evenly) quasiconvex if lev(f,≤, α) is evenly (H-evenly, O-evenly, and R-evenly,

respectively) convex for all α ∈ R. We need the following statements for evenly

quasiconvex functions, see [19, 24]:

• f is H-evenly quasiconvex if and only if f is evenly quasiconvex and 0 ∈ Rn

is a global minimizer of f in Rn,

• if f is O-evenly quasiconvex, then for each x ∈ Rn and t > 0, f(x) = f(tx),

• if f is R-evenly quasiconvex, then for each x ∈ Rn and t ≥ 1, f(x) ≥ f(tx).

A function f is said to be quasiconcave if −f is quasiconvex. Evenly, H-evenly,

O-evenly, and R-evenly quasiconcavity of functions are defined by the same way.

Various results for evenly convex sets and evenly quasiconvex functions have been

investigated, see [2, 10, 3, 5, 16, 17, 18, 19, 20, 22, 24] and references therein.

Suppose that there are n assets with random rates of return {r1, r2, . . . , rn}, r̄i
denotes the expected value of ri, and σij is the covariance of the rate of return of

the asset i with j. We denote Ω as the covariance matrix:

Ω =


σ11 σ12 · · · σ1n
σ21 σ22 · · · σ2n
...

...
. . .

...

σn1 σn2 · · · σnn

 ,

and µ = (r̄1, . . . , r̄n)
T is the vector of the expected rate of returns. For each portfolio

w ∈ S = {x ∈ Rn |
∑n

i=1 xi = 1}, the expected rate of return of w is

r̄w = ⟨µ,w⟩ =
n∑

i=1

wir̄i,

and the variance of the rate of return of w is

σ2
w = wTΩw =

n∑
i,j=1

wiwjσij .

In [8, 9], Markowitz introduces the following mean-variance model portfolio op-

timization problem:

(Pr̄)
Minimize wTΩw,

subject to w ∈ S and ⟨µ,w⟩ = r̄.

Let g be the following function from S to R2:

g(w) = (σw, r̄w).

By using the function g, a portfolio w is represented on mean-standard deviation

diagram. The following set is called feasible region of the problem:

X = {g(w) ∈ R2 | w ∈ S}.
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The left boundary of X is called the minimum-variance set. In other words, let

val(Pr̄) be the optimal value of (Pr̄), then

M = {(σ, r̄) ∈ X | σ = val(Pr̄)}

is the minimum-variance set. We denote the minimum-variance portfolio as x̄ ∈ S,

that is,

g(x̄) = (σx̄, r̄x̄) ∈ M, and σ2
x̄ = min

w∈S
wTΩw.

In mean-variance model,

(I) investors maximize the expected rate of return,

(II) investors minimize the variance of the rate of return.

Hence, only the upper part of M will be of interest to investors. The following set

F , which is the upper part of M , is called the efficient frontier of X:

F = {(σ, r̄) ∈ M | r̄ ≥ r̄x̄ = ⟨µ, x̄⟩}

If Ω has the inverse matrix Ω−1, then M is expressed in the following equation:

M =

{
(σ, r̄) ∈ R2 | σ2 =

Cr̄2 − 2Ar̄ +B

D

}
,

where 1 = (1, . . . , 1)T ∈ Rn, A = µTΩ−11, B = µTΩ−1µ > 0, C = 1TΩ−11 > 0,

and D = BC−A2 > 0. Hence, we can characterize F by a differentiable, monotone

increasing concave function f on [σx̄,∞) as follows:

F = {(σ, r̄) ∈ M | r̄ = f(σ)}.

By the concavity of f , there exists ȳ ∈ S such that

g(ȳ) = (σȳ, r̄ȳ) ∈ F, and
r̄ȳ
σȳ

= max
w∈S

r̄w
σw

.

For more details, see [7, 11, 15].

The following theorem is called the two-fund theorem, which has operational

importance for investors:

Theorem 2.1. [7] Let x, y ∈ g−1(M) = {w ∈ S | g(w) ∈ M}, and (σ, r̄) ∈ M .

Then there exists α ∈ R such that (σ, r̄) = g((1− α)x+ αy).

Especially,

M = {g((1− α)x̄+ αȳ) ∈ X | α ∈ R}.
since x̄, ȳ ∈ g−1(F ) = {w ∈ S | g(w) ∈ F} ⊂ g−1(M).

We can check easily that

F = {g((1− α)x̄+ αȳ) ∈ X | α ≥ 0}.

By Theorem 2.1, all investors need only invest in linear combination of the minimum-

variance portfolio x̄ and the maximum-price of risk, r̄
σ , portfolio ȳ. However, the

weight α depends on investors’ risk aversion and utility.
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3. Main results

Let u be a utility function on R2, Ω ∈ Rn×n be the covariance matrix, and

µ ∈ Rn be the vector of the expected rate of returns. Assume that Ω has the

inverse matrix Ω−1, and g(x̄) > (0, 0). In this section, we consider the following

utility maximization problem:

(Pu)
Maximize U(w) = u ◦ g(w),
subject to w ∈ S = {x ∈ Rn | ⟨x,1⟩ = 1}.

First of all, we introduce a notion of quasiconcavity which consistents with

Markowitz’s criteria:

definition 3.1. Let K = {(x1, x2) ∈ R2 | x1 ≤ 0, x2 ≥ 0}. A function u : R2 → R
is called M -quasiconcave if

(i) u is quasiconcave,

(ii) for each α ∈ R, lev(u,≥, α) +K ⊂ lev(u,≥, α).

If a utility function u isM -quasiconcave, then an investor maximizes the expected

rate of return, and minimizes the variance of the rate of return. A function u is

said to be M -evenly (MH-evenly, MO-evenly, and MR-evenly) quasiconcave if u

is M -quasiconcave and lev(u,≥, α) is evenly (H-evenly, O-evenly, and R-evenly,

respectively) convex for all α ∈ R.
In the following theorem, we show a characterization of F in terms of evenly

quasiconcave utility functions:

Theorem 3.2. Let f be a monotone increasing concave function on [σx̄,∞), F =

{(σ, r̄) ∈ M | r̄ = f(σ)}, α ≥ 0, and x = (1 − α)x̄ + αȳ ∈ g−1(F ). Then, the

following statements hold:

(i) there exists M -evenly quasiconcave utility function u such that x is a global

maximizer of (Pu),

(ii) if α < 1, then there exists MH-evenly quasiconcave utility function u such

that x is a global maximizer of (Pu),

(iii) there exists MO-evenly quasiconcave utility function u such that ȳ is a global

maximizer of (Pu),

(iv) if α > 1, there exists MR-evenly quasiconcave utility function u such that ȳ

is a global maximizer of (Pu).

Proof. Let α ≥ 0 and x = (1− α)x̄+ αȳ ∈ g−1(F ).

(i) The following function u is M -evenly quasiconcave:

u(σ, r̄) =
⟨
(σ, r̄), (−f ′(σx), 1)

⟩
.

Actually, u is linear and f ′(σx) > 0. Hence for each α ∈ R,

lev(u,≥, α) +K = lev(u,≥, α).

Since f is concave, for each (σ, r̄) ∈ X,

r̄ = f(σ) ≤ f(σx) + f ′(σx)(σ − σx)



128 I. SHIMADA AND S. SUZUKI

⇐⇒ u(σ, r̄) = −f ′(σx)σ + r̄ ≤ −f ′(σx)σx + r̄x = u(σx, r̄x).

This shows that (i) holds.

(ii) Assume that α < 1. Let u be the following function on R2:

u(σ, r̄) =

{
0 ⟨(σ, r̄), (−f ′(σx), 1)⟩ ≥ 0,

⟨(σ, r̄), (−f ′(σx), 1)⟩ ⟨(σ, r̄), (−f ′(σx), 1)⟩ < 0.

We show that u is MH-evenly quasiconcave. Actually, for each β ∈ R,

lev(u,≥, β) =

{
∅ β > 0,

{(s, t) ∈ R2 | ⟨(σ, r̄), (−f ′(σx), 1)⟩ ≥ β} β ≤ 0.

Hence, lev(u,≥, β) is H-evenly convex, and

lev(u,≥, α) +K = lev(u,≥, α)

since ∅+K = ∅.
Let Lȳ be the following function on R:

Lȳ(σ) = f(σȳ) + f ′(σȳ)(σ − σȳ)

Since ȳ is the maximum solution of r̄
σ , we can check that

0 = L(0) =
⟨
(σȳ, r̄ȳ), (−f ′(σȳ), 1)

⟩
.

In other words,

(0, 0), (σȳ, r̄ȳ) ∈ {(s, t) ∈ R2 |
⟨
(σ, r̄), (−f ′(σȳ), 1)

⟩
= 0}.

Since α < 1, r̄x
σx

<
r̄ȳ
σȳ
. Hence, we can show that

0 >
⟨
(σx, r̄x), (−f ′(σx), 1)

⟩
= u(σx, r̄x).

By the concavity of f , for each (σ, r̄) ∈ X,

r̄ = f(σ) ≤ f(σx) + f ′(σx)(σ − σx)

⇐⇒ −f ′(σx)σ + r̄ ≤ −f ′(σx)σx + r̄x = u(σx, r̄x) < 0.

This shows that u(σ, r̄) < 0 for each (σ, r̄) ∈ X, and (ii) holds.

(iii) Let u be the following extended real-valued function on R2:

u(σ, r̄) =


−∞ r̄ ≤ 0,
r̄

σ
σ > 0, r̄ > 0,

+∞ σ ≤ 0, r̄ > 0.

By the definition, ȳ is a global maximizer of U = u ◦ g on S. We show that u is

MO-evenly quasiconcave. Actually, for each β ∈ R,

lev(u,≥, β) =

{
{(σ, r̄) ∈ R2 | r̄ > 0} β ≤ 0,

{(σ, r̄) ∈ Rn | r̄ > 0, r̄ ≥ βσ} β > 0.

Hence, lev(u,≥, β) is O-evenly convex, and

lev(u,≥, α) +K = lev(u,≥, α).
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This shows that (iii) holds.

(iv) Assume that α > 1. Let u be the following function on R2:

u(σ, r̄) =

{
⟨(σ, r̄), (−f ′(σx), 1)⟩ ⟨(σ, r̄), (−f ′(σx), 1)⟩ > 0,

0 ⟨(σ, r̄), (−f ′(σx), 1)⟩ ≤ 0.

We show that u is MR-evenly quasiconcave. Actually, for each β ∈ R,

lev(u,≥, β) =

{
{(s, t) ∈ R2 | ⟨(σ, r̄), (−f ′(σx), 1)⟩ ≥ β} β > 0,

R2 β ≤ 0.

Hence, lev(u,≥, β) is R-evenly convex, and

lev(u,≥, α) +K = lev(u,≥, α).

Since α > 1, we can show that

0 <
⟨
(σx, r̄x), (−f ′(σx), 1)

⟩
= u(σx, r̄x).

By the concavity of f , for each (σ, r̄) ∈ X,

r̄ = f(σ) ≤ f(σx) + f ′(σx)(σ − σx)

⇐⇒ −f ′(σx)σ + r̄ ≤ −f ′(σx)σx + r̄x = u(σx, r̄x).

This shows that (iv) holds. □

By Theorem 3.2, each efficient portfolio x ∈ g−1(F ) is characterized by M -evenly

quasiconcave utility function u. In contrast, we show a characterization of solutions

of quasiconcave utility maximization problems as follows.

Theorem 3.3. Let u be an M -quasiconcave utility function. Assume that x0 is a

solution of (Pu). Then, the following statements hold:

(1) if u is MH-evenly quasiconcave, then there exists α ∈ [0, 1] such that (1 −
α)x̄+ αȳ is a solution of (Pu),

(2) if u is MO-evenly quasiconcave, then ȳ is a solution of (Pu),

(3) if u is MR-evenly quasiconcave, then there exists α ≥ 1 such that (1−α)x̄+

αȳ is a solution of (Pu).

Proof. Since u is M -quasiconcave and x0 is a solution of (Pu), x0 ∈ g−1(F ). By

Theorem 2.1, there exists α0 ≥ 0 such that x0 = (1− α0)x̄+ α0ȳ.

(i) Assume that u is MH-evenly quasiconcave and α0 > 1. Since u is H-evenly

quasiconcave,

u(λg(x0)) = u((1− λ)(0, 0) + λg(x0))

≥ min{u(0, 0), u(g(x0))}
= u(g(x0))

for each λ ∈ [0, 1]. Let

λ0 =
σȳ
σx0

,
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then we show that

λ0 ∈ (0, 1), λ0g(x0) = (σȳ, λ0r̄x0), and λ0r̄x0 < r̄ȳ.

Since 0 < σx̄ < σȳ and α0 > 1, σȳ < σx0 , that is, λ0 ∈ (0, 1). By the definition of ȳ,

r̄x0

σx0

<
r̄ȳ
σȳ

⇐⇒ λ0r̄x0 =
σȳ
σx0

r̄x0 < r̄ȳ.

Since u is M -quasiconcave,

u(g(ȳ)) ≥ u(λ0g(x0)) ≥ u(g(x0)).

This shows that ȳ = (1− 1)x̄+ 1ȳ is a solution of (Pu).

(ii) Assume that u is MO-evenly quasiconcave and α0 ̸= 1. Since u is O-evenly

quasiconcave,

u(λg(x0)) = u(g(x0))

for each λ > 0. Let

λ0 =
σȳ
σx0

,

then we show that

λ0 > 0, λ0g(x0) = (σȳ, λ0r̄x0), and λ0r̄x0 < r̄ȳ.

Since 0 < σx̄ < σȳ and α0 ≥ 0, σx̄ ≤ σx0 , that is, λ0 > 0. By the definition of ȳ,

r̄x0

σx0

<
r̄ȳ
σȳ

⇐⇒ λ0r̄x0 =
σȳ
σx0

r̄x0 < r̄ȳ.

Since u is M -quasiconcave,

u(g(ȳ)) ≥ u(λ0g(x0)) = u(g(x0)).

This shows that ȳ is a solution of (Pu).

(iii) Assume that u is MR-evenly quasiconcave and α0 < 1. Since u is R-evenly

quasiconcave,

u(λg(x0)) ≥ u(g(x0))

for each λ ≥ 1. Let

λ0 =
σȳ
σx0

,

then we show that

λ0 > 1, λ0g(x0) = (σȳ, λ0r̄x0), and λ0r̄x0 < r̄ȳ.

Since 0 < σx̄ < σȳ and α0 < 1, σȳ > σx0 ≥ σx̄, that is, λ0 > 1. By the definition of

ȳ,
r̄x0

σx0

<
r̄ȳ
σȳ

⇐⇒ λ0r̄x0 =
σȳ
σx0

r̄x0 < r̄ȳ.

Since u is M -quasiconcave,

u(g(ȳ)) ≥ u(λ0g(x0)) ≥ u(g(x0)).

This shows that ȳ = (1− 1)x̄+ 1ȳ is a solution of (Pu). □
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By Theorem 3.3, solutions of quasiconcave utility maximization problems are

characterized by the weight α between x̄ and ȳ. These two portfolio play an impor-

tant role in quasiconcave utility maximization for portfolio optimization.

4. Numerical example

In this section, we show a numerical example as an application of our main

results. As mentioned above, if the covariance matrix has the inverse matrix, then

the minimum-variance set M is expressed in the equation

M =

{
(σ, r̄) ∈ R2 | σ2 =

Cr̄2 − 2Ar̄ +B

D

}
,

where 1 = (1, . . . , 1)T ∈ Rn, A = µTΩ−11, B = µTΩ−1µ, C = 1TΩ−11, and

D = BC −A2 > 0. Let f be the following function:

f(σ) =
A

C
+

√
D(Cσ2 − 1)

C
.

Then, f is a differentiable, monotone increasing concave function f on [σx̄,∞),

F = {(σ, r̄) ∈ M | r̄ = f(σ)},

and

f ′(σ) =
σ
√

D(Cσ2 − 1)

Cσ2 − 1
.

We obtain historical stock price data for the NASDAQ 100 stocks from January

1, 2023 to December 31, 2024 from Stooq (https://stooq.com/). By the price data,

we can estimate the vector of the expected rate of returns µ, and the covariance

matrix Ω over 20 trading days. In this case, Ω has the inverse matrix, hence the

efficient frontier F is characterized by f . We can calculate them as follows:

A = 203.2333119, B = 25.825576, C = 16868.12872, D = 394325.3612,

f(σ) =
203.2333119

16868.12872
+

√
394325.3612(16868.12872σ2 − 1)

16868.12872
,

f ′(σ) =
σ
√

394325.3612(16868.12872σ2 − 1)

16868.12872σ2 − 1
,

g(x̄) = (σx̄, r̄x̄) = (0.007699578, 0.012),

g(ȳ) = (0.024990717, 0.127),
r̄ȳ
σȳ

= 5.081886962.

We show a graph of F as follows:
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r̄

σx̄

ȳ

By Theorem 2.1, all investors need only invest in linear combination of the

minimum-variance portfolio x̄ and the maximum-price of risk portfolio ȳ. How-

ever, the weight depends on the investor’s utility function. By Theorem 3.2, each

efficient portfolio x = (1− α)x̄+ αȳ ∈ g−1(F ) is characterized by M -evenly quasi-

concave utility function u. Conversely, by Theorem 3.3, solutions of quasiconcave

utility maximization problems are characterized by the weight α between x̄ and

ȳ. If α < 1, then u can be considered MH-evenly quasiconcave. By the above

numerical example, such a investor is risk-averse. If α > 1, then u can be consid-

ered MR-evenly quasiconcave, and the investor seems to be risk-loving. If α = 0,

then the investor is only interested in the price of risk. These two portfolio x̄, ȳ is

essential in quasiconcave utility maximization for portfolio optimization.
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