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QUASICONCAVE UTILITY MAXIMIZATION FOR PORTFOLIO
OPTIMIZATION

ITSUKI SHIMADA AND SATOSHI SUZUKI

ABSTRACT. In this paper, we study quasiconcave utility maximization for port-
folio optimization. We introduce portfolio optimization as quasiconcave utility
maximization problem. We investigate solutions of the problem in terms of evenly
quasiconcavity of the utility function. In addition, we show a numerical example
as an application.

1. INTRODUCTION

Stocks are a typical example of risky assets, and it is uncertain what kind of
returns they will generate in the future. Hence, returns are usually modeled as
random variables. There are various methods for modeling investor behavior. The
most important one is the following proposed by Markowitz [8, 9]:

(I) investors maximize the expected rate of return,
(IT) investors minimize the variance of the rate of return.

In general, investors who want to higher returns will take on higher risks. There is
a trade-off between return and risk, then we usually consider the following mean-
variance model portfolio optimization problem:

n
Minimize E WiW;j055,

t,j=1
n n
subject to g w;F; = 7, and g w; = 1.
=1 i=1

where w; is the weight of asset i in a portfolio, o;; is the covariance of the return of
the asset 7 with j, and 7; is the expected rate of return of 7. In the problem, we fix
the mean value at 7, and find the portfolio of minimum variance. There are various
fruitful results on the mean-variance model, see [4, 7, 8, 9, 11, 23].
On the other hand, we study the following utility maximization problem:
Maximize U(w) = uo g(w),
subject to  g(w) = (0w, Tw),

n n n
2 _ e 7 — o J—
O = g WiW;0Gf, Ty = g w;T;, and E w; = 1.
i=1 i=1

ij=1
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By using the function g, a portfolio w is represented on mean-standard deviation
diagram, then we consider maximization problem of quasiconcave utility function u
on R2. Quasiconcave maximization problem is equivalent to quasiconvex minimiza-
tion problem, and various researchers have investigated quasiconvex optimization,
see [1, 2, 3, 6, 10, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24] and references therein. In
particular, the authors study minimization problems whose objective functions are
evenly quasiconvex in [19, 24]. We show optimality conditions and duality results
by three types of evenly quasiconvex functions.

Based on the above previous research, we study quasiconcave utility maximization
for portfolio optimization in this paper. We introduce portfolio optimization as
quasiconcave utility maximization problem. We investigate solutions of the problem
in terms of evenly quasiconcavity of the utility function u. In addition, we show a
numerical example as an application.

The remainder of the present paper is organized as follows. In Section 2, we intro-
duce some preliminaries and previous results. In Section 3, we study quasiconcave
utility maximization for portfolio optimization. In Section 4, we show a numerical
example.

2. PRELIMINARIES

Let R™ denote the n-dimensional Euclidean space. The inner product of two
vectors v and x in R" is denoted by (v, x). We define the following families of open
half spaces:

H = {lev(v,<,a):veR" acR},
HT = {lev(v,<,a):v€R" a> 0},
H° = {lev(v,<,0):v € R"},
H™ = {lev(v,<,a):v € R" a < 0},
where lev(v, <,a) = {x € R" : (v,x2) < a}. A subset A of R" is said to be evenly
(H-evenly, O-evenly, and R-evenly) convex if it is the intersection of a subfamily
of H (H*, H, H, respectively). We define the whole space and the empty set is

evenly (H-evenly, O-evenly, and R-evenly, respectively) convex by convention. In
[18], we show the following statements:

e if t >0, lev(v, <,t) and lev(v, <,t) are H-evenly convex,
e lev(v, <,0) is O-evenly convex and lev(v, <,0) is H-evenly convex,
e if t <0, lev(v, <,t) and lev(v, <,t) are R-evenly convex.

Let f be a function from R" to R = [—o00,00]. A function f is said to be
quasiconvex if for each z, y € R" and « € [0, 1],

(1 =)z + ay) < max{f(z), f(y)}.

Define the level sets of f with respect to a binary relation ¢ on R as

lev(f,o,a) ={x € R": f(z)oa}
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for each o € R. Tt is well known that f is quasiconvex if and only if lev(f, <, «) is
convex for all a € R. A function f is said to be evenly (H-evenly, O-evenly, and
R-evenly) quasiconvex if lev(f, <,«) is evenly (H-evenly, O-evenly, and R-evenly,
respectively) convex for all & € R. We need the following statements for evenly
quasiconvex functions, see [19, 24]:

e fis H-evenly quasiconvex if and only if f is evenly quasiconvex and 0 € R™
is a global minimizer of f in R",

e if f is O-evenly quasiconvex, then for each x € R™ and t > 0, f(z) = f(tx),

e if f is R-evenly quasiconvex, then for each x € R™ and t > 1, f(z) > f(tx).

A function f is said to be quasiconcave if —f is quasiconvex. Evenly, H-evenly,
O-evenly, and R-evenly quasiconcavity of functions are defined by the same way.
Various results for evenly convex sets and evenly quasiconvex functions have been
investigated, see [2, 10, 3, 5, 16, 17, 18, 19, 20, 22, 24] and references therein.

Suppose that there are n assets with random rates of return {ry,re,...,m}, 7
denotes the expected value of r;, and o;; is the covariance of the rate of return of
the asset ¢ with j. We denote 2 as the covariance matrix:

011 012+ Oln
021 022 -+ O2p
Q=1 . . R
Onl On2 - Onn
and j = (71,...,7,)7 is the vector of the expected rate of returns. For each portfolio

weS={zxeR"|Y " x =1}, the expected rate of return of w is
n
Tw = (U, w) = szﬂ,
i=1
and the variance of the rate of return of w is

n
(73} = wTQw = Z W;W;045.
ij=1
In [8, 9], Markowitz introduces the following mean-variance model portfolio op-
timization problem:
Minimize w”Quw,
(Pr) . _ =
subject to w € S and (p,w) =r.

Let g be the following function from S to R?:

g(w) = (ow, Tw).

By using the function g, a portfolio w is represented on mean-standard deviation
diagram. The following set is called feasible region of the problem:

X ={g(w) eR*|we S}.
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The left boundary of X is called the minimum-variance set. In other words, let
val(Pr) be the optimal value of (P;), then

M ={(o,7) € X | 0 = val(Pr)}
is the minimum-variance set. We denote the minimum-variance portfolio as = € S,

that is,

g(%) = (0z,7z) € M, and 02 = min w’ Qu.
wesS

In mean-variance model,

(I) investors maximize the expected rate of return,
(IT) investors minimize the variance of the rate of return.

Hence, only the upper part of M will be of interest to investors. The following set
F', which is the upper part of M, is called the efficient frontier of X:
F= {(0-777) eM | r>Tz = <N7f>}
If © has the inverse matrix 1, then M is expressed in the following equation:
Cr? —2Ar + B
M:{(U,F)€R2|U2: r D7”+ },

where 1 = (1,..., )T e R*", A = puTQ7 11, B=pTQ 'y >0 C =1T0"11 > 0,
and D = BC — A% > 0. Hence, we can characterize F by a differentiable, monotone
increasing concave function f on [0z, 00) as follows:

F={(o,F) e M |7 = f(0)}.

By the concavity of f, there exists ¥ € S such that

75 G
y) = (05,75) € F, and £ = —
9(y) = (og,7y) and = = max .
For more details, see [7, 11, 15].
The following theorem is called the two-fund theorem, which has operational

importance for investors:

Theorem 2.1. [7] Let z, y € g '(M) = {w € S | g(w) € M}, and (0,7) € M.
Then there exists a € R such that (o,7) = g((1 — a)x + ay).
Especially,

M={g(1-a)z+ay) € X | aecR}
since T, y € g Y(F) ={w € S| g(w) € F} C g~} (M).
We can check easily that
F = {g((1- )z +ag) € X |a>0}.

By Theorem 2.1, all investors need only invest in linear combination of the minimum-

variance portfolio Z and the maximum-price of risk, =, portfolio . However, the
weight o depends on investors’ risk aversion and utility.
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3. MAIN RESULTS

Let u be a utility function on R?, Q € R™ ™ be the covariance matrix, and
u € R™ be the vector of the expected rate of returns. Assume that ) has the
inverse matrix 27!, and g(z) > (0,0). In this section, we consider the following
utility maximization problem:

Maximize U(w) = uo g(w),

P,
(Pu) subject to we S ={zeR"|(z,1)=1}.
First of all, we introduce a notion of quasiconcavity which consistents with
Markowitz’s criteria:

definition 3.1. Let K = {(x1,72) € R? | 11 < 0,29 > 0}. A function u : R? - R
is called M-quasiconcave if

(i) u is quasiconcave,

(i) for each @ € R, lev(u, >, ) + K C lev(u, >, a).

If a utility function u is M-quasiconcave, then an investor maximizes the expected
rate of return, and minimizes the variance of the rate of return. A function u is
said to be M-evenly (M H-evenly, M O-evenly, and M R-evenly) quasiconcave if u
is M-quasiconcave and lev(u, >, «) is evenly (H-evenly, O-evenly, and R-evenly,
respectively) convex for all o € R.

In the following theorem, we show a characterization of F' in terms of evenly
quasiconcave utility functions:

Theorem 3.2. Let f be a monotone increasing concave function on [oz,00), F =
{(o,F) e M | 7 = f(0)}, @« >0, and x = (1 — )T + ay € g~ (F). Then, the
following statements hold:
(i) there exists M -evenly quasiconcave utility function u such that x is a global
mazimizer of (P,),
(ii) if o < 1, then there exists M H-evenly quasiconcave utility function u such
that x is a global mazimizer of (P,),
(iii) there exists M O-evenly quasiconcave utility function u such that y is a global
mazimizer of (P,),
(iv) if a > 1, there exists M R-evenly quasiconcave utility function u such that g
is a global mazimizer of (P,).

Proof. Let « >0 and x = (1 — a)Z + ay € g~ }(F).
(i) The following function u is M-evenly quasiconcave:

u(o,7) = ((0,7), (= f'(02),1)) -
Actually, u is linear and f’(o,) > 0. Hence for each o € R,

lev(u, >, o) + K =lev(u, >, ).
Since f is concave, for each (o,7) € X,

7= f(0) < fo2) + ['(02)(0 — 0z)
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— wu(o,7)=—f(0x)0+7 < —fl(04)0p + Tr = u(0z,Tr).

This shows that (i) holds.
(ii) Assume that o < 1. Let u be the following function on R?:

uwym::{o {(0,7), (=f'(02), 1)) >0,
((0,7), (= f(02),1)) ((0,7),(=f"(02),1)) <O.
We show that u is M H-evenly quasiconcave. Actually, for each 5 € R,
0 B >0,
{(s,t) e R* [ ((0.7), (—f'(0x), 1)) = B} B <O.

Hence, lev(u, >, 8) is H-evenly convex, and

lev(u,>, ) = {

lev(u, >, )+ K =lev(u, >, a)

since O + K = 0.
Let Ly be the following function on R:

Lg(o) = f(og) + f'(0g)(0 — o3)
Since g is the maximum solution of g, we can check that
0= L(0) = {(03,75), (—f'(07),1)) -
In other words,
(070)1 (0-?]77733) € {(S,t) € RQ ‘ <(07 ’F)v (_f,(0§)7 1)> = 0}

Since a < 1, % < % Hence, we can show that

0> <(Jx,fx), (—f'(02), 1)> = u(0g,Tsz)-
By the concavity of f, for each (o,7) € X,

7= f(0) < floz) + f'(02)(0 — o)

— —flop)o+7 < —f(0z)0s + Ty = u(og,7z) <O0.

This shows that u(o,7) < 0 for each (o,7) € X, and (ii) holds.
(iii) Let u be the following extended real-valued function on R?:

—oo T <0,

u(o,7) = o>0,7>0,

Ql=

400 o <0,7>0.

By the definition, 7 is a global maximizer of U = wo g on S. We show that u is
M O-evenly quasiconcave. Actually, for each 5 € R,

lev(u, >, 8) = 4 (@ 7) ERF[7> 0} B0,
T {(o,7) R | 7> 0,7 > Bo} B> 0.

Hence, lev(u, >, ) is O-evenly convex, and

lev(u, >, a) + K =lev(u, >, a).
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This shows that (iii) holds.
(iv) Assume that o > 1. Let u be the following function on R:

. {<(0,F),(—f’(0m),1)> (0.7), (=f'(02), 1)) > 0,
0 ((0,7), (=f'(02),1)) < 0.
We show that u is M R-evenly quasiconcave. Actually, for each g € R,

{(s;) eR? [ {(0,7),(=f'(02),1)) > B} B >0,

lev(u, 2, 6) = {R2 B<0.

Hence, lev(u, >, ) is R-evenly convex, and
lev(u, >, o) + K =lev(u, >, ).
Since o > 1, we can show that

0< <(0-5L“7f96)’ (*f/(o-x)a 1)> = u(o-xﬂ:x)'
By the concavity of f, for each (o,7) € X,

7= f(0) < f(oz) + f'(02) (0 — 02)
< _f,(O':p)O'—FF < _f,(o-:r)o-m‘Ffm :U(O-x,fx)~
This shows that (iv) holds. -

By Theorem 3.2, each efficient portfolio 2 € g~!(F) is characterized by M-evenly
quasiconcave utility function u. In contrast, we show a characterization of solutions
of quasiconcave utility maximization problems as follows.

Theorem 3.3. Let u be an M -quasiconcave utility function. Assume that xg is a
solution of (P,). Then, the following statements hold:

(1) if w is M H-evenly quasiconcave, then there exists o € [0,1] such that (1 —
a)Z + ay is a solution of (P,),

(2) if u is MO-evenly quasiconcave, then § is a solution of (P,),

(3) if u is M R-evenly quasiconcave, then there exists o > 1 such that (1 —a)z +
ay is a solution of (P,).

Proof. Since u is M-quasiconcave and xq is a solution of (P,), zo € g '(F). By
Theorem 2.1, there exists ag > 0 such that o = (1 — )T + apy.

(i) Assume that u is M H-evenly quasiconcave and ag > 1. Since u is H-evenly
quasiconcave,

u(Ag(zo)) = u((1—A)(0,0)+ Ag(zo))
min{u(07 0)7 u(g(:co))}
u(g(xo))

A\

for each A € [0,1]. Let
9y
Ao = ’

Oz
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then we show that
Ao € (O, 1), )\og(.%'(]) = (O’g,)\o’ljxo), and )\O'Faco < Tg.
Since 0 < 0z < 0y and ag > 1, 05 < 04, that is, A9 € (0,1). By the definition of g,

Ty Ty _ oy _ _
< Y e NPy = LTy < Ty
Ozg Oy Oz

Since u is M-quasiconcave,

u(9(y)) = u(Aog(zo)) = u(g(xo))-

This shows that y = (1 — 1) + 1y is a solution of (P,).
(ii) Assume that u is M O-evenly quasiconcave and ag # 1. Since u is O-evenly
quasiconcave,

u(Ag(wo)) = u(g(wo))
for each A > 0. Let
9y
)\0 =

Oz
then we show that

Ao > 0, )\og(l'o) = (O’g,)\ofxo), and )\Ofxo < Ty.
Since 0 < 0z < o5 and o > 0, 0z < 04, that is, \g > 0. By the definition of 7,

T T _ Oy _ _
< Y = ATy = Ty < Ty
Oz oy Ozo

Since u is M-quasiconcave,

u(9(y)) = u(rog(zo)) = ulg(x0))-

This shows that g is a solution of (P,).
(iii) Assume that u is M R-evenly quasiconcave and ag < 1. Since u is R-evenly
quasiconcave,

u(Ag(wo)) > u(g(zo))
for each A > 1. Let
95
)\0 =

Oz
then we show that

Ao > 1, )\og(xo) = (O‘g,)\ofro), and )\o’ﬁpo < fg.

Since 0 < 0z < 0y and ag < 1, 05 > 04, > 0z, that is, \g > 1. By the definition of

Y, _ _
Too 19 ATy = ﬁfxo < Ty.
Oz 0y Oz

Since u is M-quasiconcave,

u(g(y)) = u(Aog(zo)) = ulg(xo))-
This shows that gy = (1 — 1) + 1y is a solution of (P,). O
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By Theorem 3.3, solutions of quasiconcave utility maximization problems are
characterized by the weight a between  and . These two portfolio play an impor-
tant role in quasiconcave utility maximization for portfolio optimization.

4. NUMERICAL EXAMPLE

In this section, we show a numerical example as an application of our main
results. As mentioned above, if the covariance matrix has the inverse matrix, then
the minimum-variance set M is expressed in the equation

2 _
M:{(U,T)GRQIUZZCT 2AT+B},

D

where 1 = (1,...,)T € R*, A = pTQ7 11, B = pTQ 7y, C = 17Q711, and
D = BC — A% > 0. Let f be the following function:

flo)= 4+ ”D(CCM.

Then, f is a differentiable, monotone increasing concave function f on [oz,0),
F={(o,r)e M |7 = f(0)},

and

(o) = oy/D(Co? —1)

N Co?2 -1

We obtain historical stock price data for the NASDAQ 100 stocks from January
1, 2023 to December 31, 2024 from Stooq (https://stooq.com/). By the price data,
we can estimate the vector of the expected rate of returns p, and the covariance
matrix 2 over 20 trading days. In this case, {2 has the inverse matrix, hence the
efficient frontier F is characterized by f. We can calculate them as follows:

A = 203.2333119, B = 25.825576,C = 16868.12872, D = 394325.3612,
203.2333119 \/394325.3612(16868.1287202 -1)

/o) = Tesesizs72 16868.12872 ’
Flo) = 0+/394325.3612(16868.1287202 — 1)
- 16868.1287202 — 1 ’
9(z) = (0z,75) = (0.007699578,0.012),
g(y) = (0.024990717,0.127),
"5 5.081886962.
Ty

We show a graph of F' as follows:
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By Theorem 2.1, all investors need only invest in linear combination of the
minimum-variance portfolio Z and the maximum-price of risk portfolio . How-
ever, the weight depends on the investor’s utility function. By Theorem 3.2, each
efficient portfolio = (1 — a)Z + agy € g~ (F) is characterized by M-evenly quasi-
concave utility function u. Conversely, by Theorem 3.3, solutions of quasiconcave
utility maximization problems are characterized by the weight o between z and
y. If @« < 1, then uw can be considered M H-evenly quasiconcave. By the above
numerical example, such a investor is risk-averse. If > 1, then u can be consid-
ered M R-evenly quasiconcave, and the investor seems to be risk-loving. If a = 0,
then the investor is only interested in the price of risk. These two portfolio Z, ¥ is
essential in quasiconcave utility maximization for portfolio optimization.
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