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SINGULAR PDE’S GEOMETRY
AND BOUNDARY VALUE PROBLEMS

RAVI P. AGARWAL AND AGOSTINO PRÁSTARO

Abstract. Local and global existence theorems for boundary value problems
in singular PDE’s are considered. In particular, surgery techniques and integral
bordism groups are utilized, following previous works by A.Prástaro on PDE’s,
in order to build global solutions crossing also singular points and to study their
stability properties.

1. Introduction

The geometric theory of PDE’s generally works in some regularity conditions
where general theorems can be built in order to obtain local and global solutions
existence theorems. However, the great complexity of natural and mathematical
phenomena, requires also to handle “singular PDE’s”. The aim of this paper is
just to give a geometric characterization of such mathematical objects and to find
general existence theorem of local and global solutions passing through singular
points of PDE’s. The characterization of singularities can be obtained by means
of algebraic-geometric techniques and algebraic topological differential techniques.
These induce effects on the integral structure of PDE’s, described by means of their
Cartan distributions, and formal prolongations properties. There the symbol of a
PDE plays a fundamental role. Singular points in PDE’s are sources of interesting
phenomena, thus we can say that they instead to disturb the integral structure, they
constitute a more richness and contribute to more versatile behaviours in PDE’s
solutions.

On the other hand singularities are also origins of unstabilities. In some sense we
could say that singular points in PDE’s are like doors that open new possibilities
to solutions passing through them.

The main results of this paper are the following. Theorem 3.10 that relates sin-
gular integral bordism groups of PDE’s to global solutions passing through singular
points of PDE’s. Theorem 4.2 that characterizes singular ODE’s singular solutions
and their stability. Theorem 4.4 that completes Theorem 4.2 on the same subject
emphasizing the role played by singular points to conserve the smoothness or to
create bifurcation in solutions of singular ODE’s.

Some examples of singular PDE’s and ODE’s are considered in some details in
order to show how our general theory works. In particular, for singular ODE’s
are considered also some examples just studied by R.P.Agarwal and D.O’Regan in
the framework of the functional analysis [1, 3]. We show how by using only our
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geometric framework one can obtain local and global existence theorems also for
singular boundary value problems.

2. Singular PDE’s and local solutions existence theorems

In this section we resume some fundamental definitions and results on the ge-
ometry of PDE’s in the category of commutative manifolds, emphasizing some our
recent results on the algebraic geometry and topology of PDE’s, that allowed us to
characterize singular PDE’s [2, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33].1

Let W be a smooth manifold of dimension m + n. For any n-dimensional sub-
manifold N ⊂ W we denote by [N ]ka the k-jet of N at the point a ∈ N , i.e., the
set of n-dimensional submanifolds of W that have in a a contact of order k. Set
Jk

n(W ) ≡
⋃

a∈W Jk
n(W )a, Jk

n(W )a ≡ {[N ]ka|a ∈ W}. We call Jk
n(W ) the space of

all k-jets of submanifolds of dimension n of W . Jk
n(W ) has the following natural

structures of differential fiber bundles: πk,k−1 : Jk
n(W ) → Jk−1

n (W ), with affine fiber
Jk

n(W )q̄, where q̄ ≡ [N ]k−1
a ∈ Jk−1

n (W ), a ≡ πk,0(q̄), with associated vector space
Sk(T ∗

a N) ⊗ νa, νa ≡ TaW/TaN. For any n-dimensional submanifold N ⊂ W one
has the canonical embedding jk : N → Jk

n(W ), given by jk : a 7→ jk(a) ≡ [N ]ka. We
call jk(N) ≡ N (k) the k-prolongation of N . In the following we shall also assume
that there is a fiber bundle structure on W , π : W → M , where dim M = n. Then
there exists a canonical submanifold Jk(W ) of Jk

n(W ) that is called the k-jet space
for sections of π. Jk(W ) is diffeomorphic to the k-jet-derivative space of sections of
π, JDk(W ), and has the same dimension of Jk

n(W ) [12, 20]. Then, for any section
s : M → W one has the following commutative diagram:

(2.1) JDk(W ) ∼
Jk(W ) Â Ä // Jk

n(W )

πk

²²
M

Dks

OO

M

jks

OO

M

OO

where Dks is the k-derivative of s and jk(s) is the k-jet-derivative of s. If
s(M)(k) ⊂ Jk

n(W ) is the k-prolongation of s(M) ⊂ W , then one has jk(s)(M) ∼=
s(M)(k) ∼= s(M) ∼= M . Of course there are also n-dimensional submanifolds N ⊂ W
that are not representable as image of sections of π. As a consequence, in these cases,
N (k) ∼= N is not representable in the form jk(s)(M) for some section s of π. The
condition that N is image of some (local) section s of π is equivalent to the following
local condition: s∗η ≡ s∗dx1 ∧ · · ·∧dxn ̸= 0, where (xα, yj)1≤α≤n,1≤j≤m, are fibered
coordinates on W , with yj vertical coordinates. In other words N ⊂ W is locally
representable by equations yj = yj(x1, . . . , xn). This is equivalent to say that N is
transversal to the fibers of π or that the tangent space TN identifies an horizontal
distribution with respect to the vertical one vTW |N of the fiber bundle structure

1For general informations on the geometric theory of PDE’s see, e.g.,[4, 5, 6, 7, 8, 9, 10, 12,
13, 14, 38, 39, 40]. For basic informations on differential topology and algebraic topology see e.g.,
[4, 9, 11, 15, 16, 17, 18, 35, 36, 37, 38, 39, 40, 41, 42].
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π : W → M . Conversely, a completely integrable n-dimensional horizontal distri-
bution on W determines a foliation of W by means of n-dimensional submanifolds
that can be represented by images of sections of π.

Definition 2.1. A partial differential relation (PDR) of order k on the fibre bundle
π : W → M , defined in the category of manifolds, M, is a subset Ek ⊂ JDk(W ) of
the jet-derivative space JDk(W ) over M .

A partial differential equation (PDE) of order k on the fibre bundle π : W → M ,
defined in the category of manifolds, M, is a submanifold Ek ⊂ JDk(W ) of the
jet-derivative space JDk(W ) over M .

A PDE Ek is regular if the r-prolongations (Ek)+r≡ Ek+r≡ JDr(Ek)∩JDk+r(W )
are subbundles of πk+r,k+r−1 : JDk+r(W ) → JDk+r−1(W ), ∀r ≥ 0. Further-
more, we say that Ek is formally integrable if Ek is regular and if the mappings
Ek+r+1 → Ek+r, ∀r ≥ 0, and πk,0 : Ek → W are surjective.

Remark 2.2. In the following we shall consider PDEs on a fiber bundle π : W → M ,
where M is a manifold of dimension n and W is a manifold of dimension m + n.

Definition 2.3. The symbol gk+r of Ek+r is a family of R-modules over Ek char-
acterized by means of the following short exact sequence of R-modules:

0 → π∗
k+rgk+r,k → vTEk+r → π∗

k+r,k+r−1vTEk+r−1.

Proposition 2.4. If Ek is a formally integrable PDE, then we can complete above
exact sequence with the following:

0 → π∗
k+r,kgk+r → vTEk+r → π∗

k+r,k+r−1vTEk+r−1 → 0,

which means that Ek+r is an affine bundle over Ek+r−1 with associated vector bundle
π∗

k+r−1,kgk+r → Ek+r−1.

Proposition 2.5. The symbol (gk)q, q ∈ Ek, of a PDE Ek ⊂ JDk(W ) is a R-
submodule of HomR(Sk

0 (TpM); vTq̄W ), p = πk(q) ∈ M , q̄ = πk,0(q) ∈ W .

Theorem 2.6 (δ-complex). One has the following complex of R-modules over Ek

(δ-complex):

(2.2) 0 → gm
δ→HomR(TM ; gm−1)

δ→HomR(Λ2
0M ; gm−2)

δ→
. . .

δ→HomR(Λm−k
0 M ; gk)

δ→ δ(HomR(Λm−k
0 ; gk)) → 0

Proof. See [7]. ¤

Definition 2.7. We call Spencer cohomology of Êk the homology of such complex.
We denote by {Hm−j,j

q }q∈Ek
the homology at Hom(Λj

0M ; gm−j)q. We say that Ek

is r-acyclic if Hm,j
q = 0, m ≥ k, 0 ≤ j ≤ r, ∀q ∈ Ek. We say that Ek is involutive

if Hm,j
q = 0, m ≥ k, j ≥ 0. We say that Ek is δ-regular if there exists an integer

κ0 ≥ κ, such that gκ0 is involutive or 2-acyclic.

The following two theorems are fundamental in order to characterize the integra-
bility of PDEs. (For their proofs see [7].)

Theorem 2.8 (δ-Poincaré lemma for PDEs). Let Ek ⊂ JDk(W ) be a regular
PDE.Then Ek is a δ-regular PDE.
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Theorem 2.9 (Criterion of formal integrability for PDEs). Let Ek ⊂ JDk(W ) be
a regular, (δ-regular), PDE. Then if gk+r+1 is a bundle of R-modules over Ek, and
Ek+r+1 → Ek+r is surjective for 0 ≤ r ≤ h, for suitable h, then Ek is a formally
integrable PDE.

Definition 2.10. An initial condition for PDE Ek ⊂ JDk(W ) is a point q ∈ Ek.
A solution of Ek passing for the initial condition q is a manifold, N ⊂ Ek such that
q ∈ N , dimN = n, and such that N can be represented in a neighboroud of any of its
points q′ ∈ N , except for a nonwhere dense subset Σ(N) ⊂ N of dimension ≤ n−1,
as image of the k-derivative Dks of some Ck-section s of π : W → M . We call Σ(N)
the set of singular points (of Thom-Boardman type) of N . If Σ(N) ̸= ∅ we say that
N is a regular solution of Ek ⊂ JD̂k(W ). We shall also consider singular solutions
of Ek, manifolds of dimension n, N ⊂ Ek, that can be obtained as projections of
ones of the previous type, but contained in some s-prolongation Ek+s, s > 0.

Definition 2.11. The Cartan distribution of JDk(W ), is the distribution Ek(W ) ⊂
TJDk(W ), spanned by tangent spaces to graphs of k-derivatives of sections of
the bundle π : W → M . The Cartan distribution of Jk

n(W ) is the distribution
Ek

n(W ) ⊂ TJk
n(W ), spanned by the tangent spaces to k-prolongation of manifolds,

of dimension n, contained in W .
We call integral plane at the point q ∈ Jk

n(W ) the linear subspace in TqJ
k
n(W ) of

the form, TqN
(k), for some Ck manifold N ⊂ W , of dimension n, passing for a ∈ W ,

with a = πk,0(q). Any point q ∈ Jk
n(W ) identifies a unique regular integral plane Lq

at q′ ≡ πk,k−1(q) ∈ Jk−1
n (W ): Lq ⊂ Tq′J

k−1
n (W ). Set: Ik(W ) ≡

⋃
u∈Jk

n(W ) Ik(W )u,
Ik(W )u ≡ Grassmannian of integral planes at q. An integral plane at a point
u ∈ Jk

n(W ) is defined to be a n-dimensional space, subspace of (Ek
n)u, tangent to

some integral manifold of the Cartan distribution Ek
n ⊂ TJk

n(W )). Let I(Ek+s)
be the fiber bundle of Grassmannian n-dimensional integral planes of the Cartan
distribution Ek+s

n on Ek+s being Ek ⊂ Jk
n(W ) a PDE. If Ek+s = Jk+s

n (W ) one has
I(Jk+s

n (W )) = Ik+s(W ).

Remark 2.12. (A) An integral manifold on Jk
n(W ) is an integral manifold of its

Cartan distribution Ek
n on Jk

n(W ). In particular: (i) Maximal integral manifolds of
J∞

n (W ) are of dimension n and are regular ones (without singular points). (ii) Max-
imal integral manifolds, V ⊂ Jk

n(W ), are divided into types, (typeV ). (For details
see, e.g., [12, 19].) If dim V > dimV ′ ⇒ typeV < typeV ′. (iii) The zero type
integral manifolds coincide with the fibers of projections πk,k−1. (iv) Maximal
integral manifolds of type n are of dimension n. They have the representation
Z \ Σ(Z) =

⋃
i Vi, as said before, where the regular components Vi are the kth

prolongations of n-dimensional submanifolds of W . We call such integral mani-
folds solutions of Jk

n(W ) and the corresponding set is denoted by Sol(Jk
n(W )). If

the set of singular points is empty, we call such solutions regular solutions and the
corresponding set is denoted by Sol(Jk

n(W )).
(B)(Exceptional cases). (α)(n = m = 1). Integral manifolds are one-dimensional

and glued from pieces of type zero or type 1. A piece of type 0 is an open subset
of the fibre π−1

k,k−1(q̄), q̄ ∈ Jk−1
n (W ); A piece of type 1 is an open subset of regular
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integral manifold (of dimension). (β)(k = m = 1). In this case J1
n(W ) becomes a

classic contact manifold [20].

Definition 2.13. Let Ek ⊂ JDk(W ) be a PDE. For a p-dimensional integral man-
ifold V of Ek, 0 ≤ p ≤ n, with boundary ∂V , (or eventually with ∂V = ∅), we
mean an element V ∈ Cp(Ek+h), h ≥ 0, such that TV ⊂ Ek+h. Here Cp(Ek+h)
denotes the vector space of p-chains in Ek+h. So, if V =

∑
i a

iui, ai ∈ R, one has
∂V =

∑
i(−1)iai∂iu.

Definition 2.14. We call PDR (resp. PDE) for n-dimensional manifolds, contained
into W , a subset, (resp. submanifold), Ek ⊂ Jk

n(W ).
We say that the PDE Ek ⊂ Jk

n(W ) is completely integrable if for any point q ∈ Ek

passes a manifold V of dimension n, that is the k-prolongation of a n-dimensional
manifold X ⊂ W : V = X(k).

Definition 2.15. By using the natural embedding JDk(W ) ⊂ Jk
n(W ), we can

consider PDR’s, (resp. PDE’s), Ek ⊂ JDk(W ) like PDEs Ek ⊂ Jk
n(W ), hence

we can consider solutions of Ek as n-dimensional manifolds V ⊂ Ek such that V
can be representable in the neighborhood of any of its points q′ ∈ V , except for a
nonwhere dense subset Σ(V ) ⊂ V , of dimension ≤ n− 1, as N (k), where N (k) is the
k-prolongation of a n-dimensional manifold N ⊂ W . In the case that Σ(V ) = ∅,
we say that V is a regular solution of Ek ⊂ Jk

n(W ). Of course, solutions V of Ek ⊂
Jk

n(W ), even if regular ones, are not, in general diffeomorphic to their projections
πk(V ) ⊂ M , hence are not representable by means of sections of π : W → M . We
shall also consider solutions of Ek ⊂ Jk

n(W ), manifolds of dimension n, V ⊂ Ek,
that can be obtained as projections of ones of the previous type, but contained in
some s-prolongation Ek+s ⊂ Jk+s

n (W ), s > 0.

Theorem 2.16. Let Ek ⊂ JDk(W ) be a PDE such that the following conditions
are satisfied: (i) Ek is regular; (ii) The symbol gk+r+1 of Ek+r+1 is a bundle of
R-modules over Ek, r ≥ 0; (iii) Ek+r+1 → Ek+r is surjective with 0 ≤ r ≤ l, for
suitable l. Then, Ek, is formally integrable.

Furthermore, if Ek ⊂ JDk(W ) is a formally integrable PDE in the category of
manifolds of class Cω

w, then the PDE Ek ⊂ Jk
n(W ) is completely integrable.

Proof. See [7]. ¤

Theorem 2.17 (Cauchy problem for PDE’s). Let Ek ⊂ Jk
n(W ) be a formally inte-

grable and completely integrable PDE. Let N ⊂ Ek be a regular integral manifold of
dimension n− 1. Let us assume that the symbols gk and gk+1 are not trivial. Then
there exists a solution V ⊂ Ek, such that N ⊂ V . In particular, if there exists a
symmetry vector field ζ of Ek, transverse to N , that is a characteristic vector field
for a sub-equation Ẽk ⊂ Ek, then there exists a solution V ⊂ Ẽk, passing through
N , having ζ as characteristic vector field.

Proof. Since N is a (n − 1)-dimensional regular integral manifold of Ek ⊂ Jk
n(W ),

then there exists a n-dimensional submanifold Y ⊂ W such that X ≡ πk,0(N) ⊂ Y

and N = X(k). In general Y (k) ⊂ Jk
n(W ), but Y (k) ̸⊂ Ek, even if Y (k)∩Ek = N . Let

us consider the first prolongation Ek+1 ⊂ Jk+1
n (W ) of Ek. Taking into account that
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Ek is formally integrable and completely integrable, we can use the fact that Ek+1

is a strong retract of Jk+1
n (W ), and that gk+1 ̸= 0, to deform Y (k+1) ⊂ Jk+1

n (W ) in
Ek+1, obtaining a solution Ỹ of Ek+1. Then πk+1,k(Ỹ ) ≡ V ⊂ Ek is a solution of
Ek, passing for N , since N (1) = X(k+1) ⊂ Y (k+1), and πk+1,k(N (k)) = N . (See also
[25].)

Finally, if there exists a symmetry vector field ζ of Ek, that is transverse to N and
characteristic for a sub-equation Ẽk ⊂ Ek, then V̂ ≡

⋃
λ∈]−ϵ,ϵ[ φλ(N), with ∂φ = ζ,

is a solution of Ẽk, hence a solution of Ek too, having just ζ as characteristic vector
field. ¤

Definition 2.18 (Algebraic formulation of PDE’s). Let Ak be the sheaf of germs
of differentiable functions JDk(W ) → R. It is a sheaf of rings, but also a sheaf of
R-modules. A subsheaf of ideals Bk of Ak that is also a subsheaf of R-modules is
a PDE of order k on the fiber bundle π : W → M . A regular solution of Bk is a
section s : M → W such that f ◦ Dks = 0,∀f ∈ Bk. The set of integral points of
Bk (i.e., the zeros of Bk on JDk(W ) is denoted by J(Bk). The first prolongation
(Bk)+1 of Bk is defined as the system of order k + 1 on W → M , defined by
the f ◦ πk,k−1 and f (1), where f (1) on Dk+1s(p) is defined by f (1)(Dk+1s(p)) =
(∂xα.(f ◦ Dks(p))). In local coordinates (xα, yj , yj

α) the formal derivative f (1) is
given by f (1)(xα, yj , yj

α) = (∂xα.f) +
∑

[β]≤k yj
βα(∂yβ

j .f). The system Bk is said to
be involutive at an integral point q ∈ JDk(W ) if the following two conditions are
satisfied: (i) Bk is a regular local equation for the zeros of Bk at q (i.e., there are
local sections F1, ..., Ft ∈ Γ(U, Bk) of Bk on an open neighbourhood U of q, such
that the integral points of Bk in U are precisely the points q′ for which Fj(q′) = 0
and dF1 ∧ · · · ∧ dFt(q) ̸= 0, that is F1, · · · , Ft are linearly independent at q; and
(ii) there is a neighbourhood U of q such that π−1

k+1,k(U)
⋂

J((Bk)+1) is a fibered
manifold over U

⋂
J(Bk) (with projection πk+1,k). For a system Bk generated

by linearly independent Pfaffian forms θ1, · · · , θk (i.e., a Pfaffian system) this is
equivalent to the involutiveness defined for distributions.

Theorem 2.19 ([13]). Let Bk be a system defined on JDk(W ), and suppose that
Bk is involutive at q ∈ J(Bk). Then, there is a neighbourhood U of q satisfying the
following. If q̃ ∈ J((Bk)+s) and πk+s,k(q̃) is in U , then there is a regular solution
s of Bk defined on a neighbourhood p = πk+s,−1(q̃) of M such that Dk+ss(p) = q̃.

Theorem 2.20 (Cartan-Kuraniski prolongation theorem [23,25]). Suppose that
there exists a sequence of integral points q(s) of (Bk)+s, s = 0, 1, · · · , projecting
onto each other, πk+s,k+s−1(q(s)) = q(s−1), such that: (a) (Bk)+s is a regular lo-
cal equation for J((Bk)+s) at q(s); and (b) there is a neighborhood U (s) of q(s)

in J((Bk)+s) such that its projection under πk+s,k+s−1 contains a neighborhood of
q(s−1) in J((Bk)+(s−1)) and such that πk+s,k+s−1 : U (s) → πk+s,k+s−1(U (s)) is a
fibered manifold. Then, (Bk)+s is involutive at q(s) for s large enough.

Let us consider, now, a relation between the algebraic localization of modules
and the geometry of PDE’s. This algebraic characterization of PDE’s is principally
useful to describe singularities in PDE’s given by means of polynomial functions.
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In this section we will start by considering commutative rings. (The proofs are
almost omitted since the material is standard. For more details, see also, e.g., [24]
and works quoted there.)

A zero-divisor in a ring A is an element a ∈ A such that there exists b ∈ A,
b ̸= 0, such that ab = 0. An element a ∈ A is nilpotent if an = 0, for some n > 0.
(A nilpotent element is a zero-divisor (unless A = 0), but not conversely.)2 The
identity element 1 ∈ A is defined by a1 = 1a = a, for all a ∈ A. A unit in A is an
element a ∈ A that divides 1, i.e., ∃b ∈ A such that ab = 1. Then b is called the
inverse of a and denoted by a−1. (a−1 is uniquely determined by a.) An integral
domain is a ring with non-zero-divisors ̸= 0. The set of units forms a multiplicative,
abelian group in A, that we denote by G(A). For any subset S ⊂ A, the smallest
ideal a ⊂ A containing S is called the ideal generated by S and denoted by 〈S〉.
Any ideal p = 〈a〉, a ∈A, is called a principal ideal. A ring is called principal ideal
ring if every ideal is principal. In particular we denote a+ b = 〈{a+ b}a∈a,b∈b〉, and
ab = 〈{ab}a∈a,b∈b〉. If S ⊂ A is a subset and a ⊂ A is an ideal, then the quotient
a
S ≡ {a ∈ A|aS ⊂ a} is an ideal of A. If S ⊂ A is a multiplicatively closed subset of
A, we call a maximal ideal with respect to S, a maximal member m ⊂ A among the
set of ideals do not meet S. In particular, if S = {1}, then m is called a maximal
ideal of A. An ideal m ⊂ A is maximal iff A/m is a field. An ideal p ⊂ A is prime
if p ̸= 〈1〉 and xy ∈ p implies x ∈ p or y ∈ p. p is prime iff A/p is any integral
domain. A maximal ideal m of A is prime. If a is any ideal of A, the radical of a is
the following ideal

√
a ≡ r(a) ≡ {x ∈ A | xn ∈ a for some n > 0} ≡ rad(a).

An ideal a such that a =
√

a is called radical-ideal (or perfect). One has the following
properties: (i)

√
{0} is the ideal consisting of all nilpotent elements of A and is

denoted also by nil(A):
√

{0} = nil(A). If {0} is a radical ideal, or equivalently,
when nil(A) = {0}, A is said to be reduced. (ii) r(a) ⊇ a; (iii) r(r(a)) = r(a); (iv)
r(ab) = r(a∩b) = r(a)∩r(b); (v) r(a) = 〈1〉 ⇔ a = 〈1〉; (vi) r(a+b) = r(r(a)+r(b));
(vii) If p is prime, r(pn) = p for all n > 0;(viii) One has that r(a) is the intersection
of all prime ideals containing a; (ix) If a is a radical-ideal, A/a is reduced, and in
particular A/nil(A) is reduced. (x) The radical nil(A) of a commutative ring A
is the intersection of all prime ideals of A. In particular nil(A) ⊂ rad(A), where
rad(A) is the radical of A defined by:

rad(A) =
⋂

m = maximal ideals of A

m.

rad(A) is an ideal of A. One has: a ∈ rad(A) iff for all x ∈ A, one has that 1 − xa
has a left inverse. An ideal q ⊂ A is primary if q ̸= A and if xy ∈ q implies x ∈ q or
yn ∈ q for some n > 0. One has the following properties: (i) q is primary iff A/q ̸= 0
and every zero-divisor in A/q is nilpotent; (ii) Every prime ideal is primary; (iii) Let
q be a primary ideal in a ring A. Then r(q) is the smallest prime ideal containing
q. If p = r(q) then q is said to be p−primary.

2A ring A, such that the set of its nilpotent elements is reduced to {0}, is called a reduced ring.
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Definition 2.21. The prime spectrum of a ring A is the set Spec(A) of all prime
ideals of A.

Proposition 2.22 ([24]). Let A be a ring and let p ∈ Spec(A). Then one has the
following properties:

(i) If a1, · · · , ar are ideals of A and a1 · · · ar ⊂ p, then ai ⊂ p for one i ∈
{1, · · · , r}.

(ii) If a1, · · · , ar are deals of A and a1 ∩ · · · ∩ ar ⊆ p, then ai ⊂ p for one
i ∈ {1, · · · , r}. In particular if the equality holds, then ai = p.

Definition 2.23 (Localization). Let S ⊂ A be a multiplicatively closed subset of
A with 1 ∈ S. Let S−1A ≡ A×S/ ∼, where ∼ is the following equivalence relation:
(a, s) ∼ (a′, s′) ⇔ as′ − a′s = 0. We denote by a

s the equivalence class of (a, s) and
call S−1A the set of fractions of A by S. In particular, if p ⊂ A is a prime ideal we
call Ap ≡ S−1A, S ≡ A − p, the localization of A at p. If a ∈ A and S = {an}n≥0,
then one writes Aa ≡ S−1A.

Let M be a A-module. Set S−1M ≡ M × S/ ∼, where ∼ is the following
equivalence relation: (p, s) ∼ (p′, s′) ⇔ ∃t ∈ S : t(sp′ − s′p) = 0. We denote by p

s

the equivalence class of (p, s) and call S−1M the set of fractions of M by S. This
is a S−1A-module.

In particular, if p ⊂ A is a prime ideal and S ≡ A−p, then Mp ≡ S−1M is called
the localization of M at p.

Theorem 2.24 (Localization properties). 1) One has the following properties:
(i) S−1 is an exact functor;
(ii) S−1(M ⊕ P ) = (S−1M) ⊕ (S−1P ); In particular (M ⊕ P )p = Mp ⊕ Pp, for

any p ∈ Spec(A);
(iii) S−1(M + P ) = (S−1M) + (S−1P ); In particular (M + P )p = Mp + Pp, for

any p ∈ Spec(A);
(iv) S−1(M ∩ P ) = (S−1M) ∩ (S−1P ); In particular (M ∩ P )p = Mp ∩ Pp, for

any p ∈ Spec(A);
(v) S−1(M/N) ∼= (S−1M)/(S−1N), (as (S−1A)-module); In particular

(M/N)p
∼= Mp/Np, for any p ∈ Spec(A);

(vi) S−1A ⊗A M ∼= S−1M , for any p ∈ Spec(A); In particular Ap ⊗A M ∼= Mp,
for any p ∈ Spec(A);

(vii) S−1A is a flat A-module; In particular Ap is a flat A-module, for any p ∈
Spec(A);

(viii) S−1M ⊗S−1A S−1N ∼= S−1(M ⊗A N); In particular Mp⊗S−1A Np
∼= (M ⊗A

N)p, with S ≡ A \ p and, for any p ∈ Spec(A).
2) If S is the set of non-zero-divisors of A, one denotes S−1A ≡ Q(A) and calls

it the full ring of fractions of A. In that case, A can be considered as a subring of
Q(A). One has the following exact sequence: 0 → tS(M) → M → S−1M , where
the map M → S−1M is x 7→ x

1 and tS(M) ≡ {x ∈ M |sz = 0, for some s ∈ S} is
called the S-torsion submodule of M .3

3A module is called torsion-free if it has no torsion element, i.e., tS(M) = 0. For example the
Z-module Q/Z is torsion free.
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When A is an integral domain and S = A \ {0} then K ≡ Q(A) is a field called
the field of fractions of A. If S = Sa, then S−1A = A[ 1a ].

One has the following local properties:

(i) M = 0 iff Mp = 0 for all prime ideals p ⊂ A;
(ii) M = 0 iff Mm = 0 for all maximal ideals m ⊂ A:
(iii) φ : M → N injective iff πp : Mp → Np is so, for each prime ideal p ⊂ A;
(iv) φ : M → N injective iff πm : Mm → Nm is so, for each maximal ideal

m ⊂ A;
(v) M flat iff Mp is so, for each prime ideal p ⊂ A;
(vi) M flat iff Mm is so, for each maximal ideal m ⊂ A;
(vii) A sequence M → N → F of A-modules and homomorphisms is exact iff

the corresponding localized sequences: Mm → Nm → Fm is exact, for all
maximal ideals m ⊂ A.

(viii) A short exact sequence 0 → M → N → F → 0 of A-modules and homo-
morphisms, where M is finitely presentable splits iff the the corresponding
localized exact sequences: 0 → Mm → Nm → Fm → 0 splits for all maximal
ideals m ⊂ A.

(ix) If M is a finitely presentable A-module and N ⊂ M is a finitely generable
submodule, then N is a direct summand of M iff Nm is a direct summand
of Mm, for any maximal ideals m ⊂ A.

(x) If A is an integral domain, and M is an A-module, then M is torsion-free
iff Mm is torsion-free for any maximal ideal m of A.

(xi) If M is a finitely generated module over a Noetherian integral domain A,
then M is reflexive, i.e., M ∼= HomA(HomA(M ; A);A), iff Mm is reflexive
for any maximal ideal m of A.

(xii) If M is a torsion-free module over an integral domain A and S = A \ {0},
then we have an exact sequence 0 → Mm → S−1N , for any maximal ideal
m of A and N =

⋂
m Mm.

3) If φ : A → A/a is the canonical homomorphism, it follows that r(a) =
φ−1(nil(A)A/a).

A ring with a unique maximal ideal m is called a local ring. Ap is a local ring,
where p is a prime ideal of A.

Theorem 2.25 (Topological structure of Spec(A)). 1) One has a natural structure
of topological space (Zariski topology) on Spec(A). The open sets in this topology are
the sets V (E) ≡ {p ⊃ E|E ⊂ A, p prime ideals}. With respect to such a topology,
Spec(A) is a quasi-compact space, that is every open covering of Spec(A) has a finite
subcovering. If the ring A is Noetherian, Spec(A) is a Noetherian space. (The
converse of this is false.)

2) Spec

(∏
1≤i≤n Ai

)
∼=

.⋃
1≤i≤n

Spec(Ai).

3) Let a be an ideal of A. The ideals of A/a are in correspondence one-to-one
with the ideals of A that contain a, hence Spec(A/a) ∼= V (a), where V (a) is the set
of prime ideals of A that contain a. This is just a closed subspace of Spec(A).

4) Spec is a contravariant functor from the category of rings and
ring-homomorphisms to the category of topological spaces and continuous maps. In
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particular, if φ : A′ → A is surjective, then Spec(φ) : Spec(A) → Spec(A′) is a closed
embedding, i.e., a homeomorophism of Spec(A) onto a closed subset of Spec(A′).
Furthermore, if φ is injective, then Spec(φ) is dominant, i.e., Spec(φ)(Spec(A)) is
dense in Spec(A′).

5) Let a ∈ A. Then Spec(Aa) = {x ∈ Spec(A)|a ̸∈ x}. Let φ : A → Aa

be the canonical homomorphism associated to an element a ∈ A. Then the cor-
responding mapping Spec(φ) is a homeomorphism of Spec(Aa) onto the open set:
D(a) ≡ Spec(A) − V (a) ≡ {x ∈ Spec(A)|a(x) ̸= 0} ≡ support of a. Here a(x) de-
notes the class of a mod x in A/x. Thus a(x) = 0 iff a ∈ x. (D(a) is an open
set.)

In the following table we report some distinguished objects associated to the
points of a prime spectrum of a ring. (For the definition of affine variety see [24]
and Definition 2.32.)

Table 1. Objects associated to x ∈ Spec(A)

local ring at x: Ax ≡ S−1A, S ≡ A \ x

Ax ≡ S−1A, S ≡ A \ x: residue field of Ax

κ(x) ≡ Ax/mx, mx ⊂ Ax maximal ideal. (⋆)
value of a ∈ A at x, a(x) ∈ A/x ⊆ κ(x), A → A/x, (a(x) = 0 ⇔ a ∈ x). (⋆⋆)
tangent space at x, TxSpec(A) ≡ Homκ(x)(mx/m2

x; κ(x)). (⋆ ⋆ ⋆)
(⋆) One has the exact sequence: 0 → x → A → κ(x)
(⋆⋆) If A ⊂ κ[X], X ≡ affine variety, x ∈ X determines a maximal ideal of A

κ(x) = κ, a(x) ≡ value of the function a at x.
(⋆ ⋆ ⋆) mx/m2

x is a κ(x)-vector space.
If Ax is a Noetherian ring (e.g. if A is Noetherian) then mx/m2

x is finite dimensional.

Definition 2.26. The support of a A-module M is defined by the following:

suppA(M) ≡ {p ∈ Spec(A) : Mp ̸= 0} ⊆ Spec(A).

Theorem 2.27 (Properties of support of A-module). 1) M ̸= 0 ⇔ suppA(M) ̸= ∅.
2) V (a) = suppA(A/a), where V (a) is the set of prime ideals containing a.
3) If 0 → M ′ → M → M ′′ → 0 is an exact sequence, then suppA(M) =

suppA(M ′) ∪ suppA(M ′′). If M =
∑

i Mi ⇒ suppA(M) =
⋃

i suppA(Mi).
4) If M is finitely generated A-module, it follows that

suppA(M) = V (annA(M))

and therefore is a closed subset of Spec(A). If M and N are finitely generated, then
suppA(M ⊗A N) = suppA(M) ∩ suppA(N). If M is finitely generated and a is
an ideal of A, then suppA(M/aM) = V (a + annA(M)). If f : A → B is a ring
homomorphism and M is a finitely generated A-module, then suppA(B ⊗A M) =
f∗−1(suppA(M)), where f∗ : Spec(B) → Spec(A) is the map induced by f .

5) Let A ≡
⊕

0≤n≤∞ An be a Noetherian graded ring. Then A0 is a Noetherian
ring and A = A0[x1, · · · , xs], with |xj | > 0,4 i.e., A is a finitely generated A0-
algebra.

4Here |xj | = n iff xj ∈ An.
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Theorem 2.28 (Hilbert-Serre). 1) Let C be a class of A-modules and λ : C → Z.

The function λ is additive if, for each short exact sequence 0 → M ′ f→M
g→M ′′ → 0

in C, we have λ(M) = λ(M ′) + λ(M ′′). Let 0 → M0 → M1 → · · · → Mn → 0 be
an exact sequence of A-modules in which all the modules Mi and the kernels of all
the homomorphisms belong to C. Then for any additive function λ on C we have∑

0≤i≤n λ(Mi) = 0. We call Hilbert polynomial P (M, t) =
∑

0≤n≤∞ λ(Mn)tn ∈
Z[[t]], where λ is an additive Z-valued function. P (M, t) is a rational function in
t of the form P (M, t) = f(t)

Q

1≤i≤s(1−t|xi|)
, where f(t) ∈ Z[t], and s is the number of

generators of A over A0.
2) We denote by d(M) the order of the pole of P (M, t) at t = 1. It provides a

measure of the ”size” of M (relatively to λ). In particular d(A) is defined. If each
|xi| = 1, then for all sufficiently large n, λ(Mn) is a polynomial in n (with rational
coefficients) of degree d − 1. (We adopt the convention that the degree of the zero
polynomial is −1; also the binomial coefficient

(
n
−1

)
= 0 for n ≥ 0, and n = 1 for

n = −1.) This polynomial is called Hilbert polynomial of M (with respect to λ).

Example 2.29. If x ∈ Aκ is not a zero-divisor of M , then d(M/xM) = d(M) − 1.
If A0 is an Artinian ring (in particular, a field), A = A0[x1, · · · , xs], then An is

a free A0-module generated by the monomials xm1
1 · · ·xms

s , with
∑

i mi = n; there
are

(
s−n−1

s−1

)
of these, hence P (A, t) = (1 − t)−s.

Definition 2.30. We define dimension of the Supp(M) the degree of the Hilbert
polynomial. We define Krull dimension of a ring A the sup of lengths of (n + 1)-
chains of prime ideals p0 ⊂ p1 ⊂ · · · ⊂ pn of length n:

dimA = sup
n
{p0 ⊂ p1 ⊂ · · · ⊂ pn}.

Theorem 2.31 (Dimension properties). One has the following properties.
1) dim A = supp∈Spec(A) dim(Ap).5

2) dim A ≥ 0, +∞.
3) A field has dimension 0; the ring Z has dimension 1.
4) A ring A is Artin iff A is Noetherian and dimA = 0.
5) Let A be a Noetherian local ring, m its maximal ideal. Then, exactly one of

the following two statements is true: (i) mn ̸= mn+1 for all n; (ii) mn = 0 for some
n, in which case A is an Artinian local ring.

6) dimA = d(A) = δ(A), where δ(A) is the least number of generators of an
m-primary ideal of A, Noetherian local ring.

7) Let M be an A-module. Then

dimA(M) = dim(A/annA(M)) = supp∈suppA(M){dim(A/p)}.

Definition 2.32. 1) Let κ be a field of characteristic zero, that is a field containing
the field Q of rational numbers as s subfield, and set A = κ[χ] ≡ κ[χ1, · · · , χn]
the ring of polynomials in the indeterminates χi with coefficients in κ. For r given
polynomials P1, · · · , Pr ∈ κ[χ], we define algebraic set X determined by the ideal
a ≡ 〈P1, · · · , Pr〉 of κ[χ] the following one:

5For a Noetherian ring A one has dim(Ap) < +∞, but can be also dim(A) = +∞.
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X ≡

x = (x1, · · · , xn)

 xi, 1 ≤ i ≤ n, belong to an extension of κ

(for example its algebraic closure)
such that Pj(x) = 0, 1 ≤ j ≤ r.


2) We define irreducible algebraic set (or variety) the set X of points in κ̄n,

where κ̄ is an algebraic closure of κ, which are zeros of solutions of a prime ideal
p ∈ Spec(κ[χ]). We shall write X = Z(p) and we shall introduce the field K ≡
κ(X) ≡ Q(κ[χ]/p) as the quotient field of the integral domain A ≡ κ[X] ≡ κ[χ]/p
of polynomial functions on X. (We have the inclusions κ ⊆ A ⊆ K.)6 We call
A ≡ κ[X] the coordinates ring of X. K ≡ κ(X) is called the field of rational
functions on X. A ring B is integral over a ring A if each element of B is integral
over A, that is to say if each element of B is a root of a unitary polynomial with
coefficients in A.7 If A ⊂ B are two rings, the integral closure of A in B is the
subring of B consisting of all elements of B that are integral over A.

3) Let us consider a field extension K/κ.8 Elements a1, · · · , an ∈ K are said
to be algebraically independent over κ in K if one cannot find a polynomial P ∈
κ[χ1, · · · , χn] such that P (a1, · · · , an) = 0. Otherwise we say that a1, · · · , an ∈ K
are algebraic over κ. An extension K/κ is called an algebraic (field) extension if
every element a ∈ K is algebraic over κ, i.e., we can find a polynomial P ∈ κ[χ],
such that P (a) = 0.

Theorem 2.33 (Existence of primitive element theorem). Every finitely gener-
ated algebraic extension is generated by a single element. More precisely, if L =
K(η1, · · · , ηm) ≡ Q(K[η1, · · · , ηm]), then we can find c1, · · · , cm ∈ K such that
L = K(ζ) ≡ Q(K[ζ]), with ζ = c1η

1 + · · · + cmηm. An extension L/K is called
regular if K is algebraically closed in L, that is no element of L is algebraic over
K.

Definition 2.34. Let us consider the following extensions of fields: κ ⊂ K ⊂ L. If
L/κ is regular, then K ⊗κ L is an integral domain. A maximal subset of K which
is algebraically independent over κ is called a transcendence basis of K/κ. The
number of elements of a transcendence basis is uniquely defined and only depends
on the extension K/κ. This numebr is called the transcendence degree of K/κ and
denoted by trd(K/κ). If A is an integral domain containing a field κ, we shall define
trd(A(κ)) = trd(K/κ) with K = Q(A). Since K = κ(A), transcendence basis exist
that are subsets of A and any such transcendence basis will be called a transcendence
basis of A/κ. If K/κ is a finitely generated extension, say K = κ(a1, · · · , an) we may
find a transcendence basis among the ai, say a1, · · · , ar and κ(a1, · · · , ar), called a
purely transcendental extension of κ-module K, is a finite algebraic extension of
κ(a1, · · · , ar).

6We may consider A as a vector space over κ and K as a vector space over A or over κ. If we
put |A/κ| = dimκ A, |K/A| = dimA K, |K/κ| = dimκ K, then we get |K/κ| = |K/A|.|A/κ|.

7A unitary polynomial is a polynomial where the coefficient of the term of highest degree is
equal to 1.

8For simplicity we shall denote by K/κ an extension of fields 0 → κ → K → K/κ → 0.
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Theorem 2.35 (Noether normalization lemma). If A = κ[a1, · · · , an] is a finitely
integral domain with trd(A/κ) = r, then there exist r algebraically independent
linear combinations b1, · · · , br of the ai such that A is integral over B = κ[b1, · · · , br]
and K = Q(A) is algebraic over κ(b1, · · · , br). If κ is an infinite field and P ∈
κ[χ1, · · · , χn] is a non-zero polynomial, then we can find elements α1, · · · , αn ∈ κ
such that P (α1, · · · , αn) ̸= 0 in an infinite number of fashions.

Definition 2.36. If X is a variety defined over the ground field κ we define the
dimension of X to be the integer dimκ(X) = trd(κ(X)/κ). If X is an affine va-
riety, that is to say X = Z(p) with p ∈ Spec(κ[χ1, · · · , χn]), then we define the
codimension of X by the integer codim(X) = n − dim(X) ≡ n − d(X). Let X be
an algebraic set defined as the zero of an ideal a, that is X = Z(a). Let us consider
the decomposition of the ideal I(X) = rad(a) into prime ideals. Then, we define
dimension of algebraic set (or of the ideal) to be the maximum of the dimensions
of its irreducible components.

Example 2.37. An irreducible plane curve is a variety of dimension 1.
A hypersurface is an algebraic set which is defined by principal ideal in

κ[χ1, · · · , χn] and all its irreducible components are of codimension 1. Conversely,
any algebraic set whose components all have codimension 1 is a hypersurface and
its defining ideal is principal.

If a polynomial P does not vanish identically on a variety X, then the irreducible
components of the intersection of X with the hypersurface defined by P all have
dimension equal to dim(X) − 1.

Theorem 2.38 (Hilbert theorem of zeros). A polynomial P ∈ κ[χ] vanishes on all
the zeros of P1, · · · , Pr ∈ κ[χ] iff P ∈ rad〈P1, · · · , Pr〉.

The polynomials P1, · · · , Pr ∈ κ[χ] have no-common zero iff

〈P1, · · · , Pr〉 = A ≡ κ[χ1, · · · , χn].

Theorem 2.39. 1) Let us denote by X = Z(a) the algebraic set deteremined by a
and by I(X) ⊂ A the ideal of all polynomials vanishing on X. One has: I(Z(a)) =
rad(a). One has the following properties:

(i) X ⊂ Y ⇒ I(X) ⊃ I(Y ).
(ii) a ⊂ b ⇒ Z(a) ⊃ Z(b).
(iii) I(X ∪ Y ) = I(X) ∩ I(Y ).
(iv) Z(a + b) = Z(a) ∩ Z(b).
(v) Z(a) = ∅ ⇒ a = A.
(vi) Let X and Y be algebraic sets defined over κ with I(X) = a ⊂ κ[u1, · · · , ur]

and I(Y ) = b ⊂ κ[v1, · · · , vs]. Then one has κ[X × Y ] ∼= κ[X] ⊗κ κ[Y ],
where κ[X] ≡ κ[u]/a, κ[Y ] ≡ κ[v]/b and κ[X × Y ] = κ[u, v]/(a, b).

(vii) The ring κ[X] = κ[χ]/a is reduced, that is does not contain any nilpotent
element. Such a ring is called the ring of rational fractions on X. a is
an intersection of prime ideals according to the decomposition theorem, say
a =

⋂
i pi, then X =

⋃
i Xi, with each Xi = Z(pi) a variety and κ[X]

is contained in a direct sum of integral domains Ai ≡ κ[X]/pi: κ[X] ⊂⊕
i Ai. κ(X) is contained in a direct sum of fields Ki ≡ Q(κ[χ]/pi): κ(X) ⊂⊕
i Ki. Each field Ki is a finitely-generated extension of κ and so has a
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finite transcendence degree over κ, i.e., the maximum number of algebraically
independent elements. Each variety Xi coincides with the set of maximal
ideals of Ai. Then, the local dimension of Xi at p ∈ Xi is dim(Ai)mi, where
mi is the maximal ideal corresponding to p. The local dimension of X at
p ∈

⋂
j Xj is dimp X = supj{dim(Aj)mj}.

2) If A is an integral algebra of finite type on a field κ, then for any maximal
ideal m ⊂ A, one has dimAm = trd(Q(A)/κ).

3) If A is a Noetherian local ring with dimA = d, the minimal number of gener-
ators of the maximal ideal m is always ≥ d. We say that A is regular if the equality
holds. A Noetherian ring A is called regular if Am is regular for any maximal ideal
m of A.

Example 2.40. The ring of polynomials A[χ] and formal series A[[χ]] are regular.

Theorem 2.41 (Syzygies theorem of Hilbert-Serre). The A-modules M of finite
type, with A regular, are characterized by the fact to admit a projective resolution:
0 → Ld → Ld−1 → · · · → L1 → M → 0. A regular local ring is integral and
integrally closed.

Theorem 2.42. 1) Let X and Y be two varieties defined over the field κ. One has:
codimκ(X ∩ T ) ≤ codimκ(X) + codimκ(Y ).

2) Let A be a Noetherian ring then one has: dimA[x1, · · · , xn] = n + dimA.

Definition 2.43. Let Y be any variety. Y is nonsingular at a point p ∈ Y if the
local ring Ap ≡ κ[Y ]p is a regular local ring. Y is nonsingular if it is nonsingular at
every point. Y is regular if it is not nonsingular.

Proposition 2.44. If A is a Noetherian local ring with maximal ideal m and residue
field κ, then dimκ m/m2 ≥ dimA. If A is regular one has dimκ m/m2 = dimA.

Let Y be a variety. Then the set, Sing(Y ), of singular points of Y , is a proper
closed subset of Y .

(Topologies on a ring). Let (An) be a filtration of a commutative ring A. Then
(An) defines a topology on A compatible with the structure of ring, where (An) is a
fundamental system of neighbourhoods of 0 ∈ A. Set A∞ =

⋂
n An. Then A/A∞ is a

metrizable topological ring and its completion Â is called the (separated) completion
of A. The adherence in Â of An/A∞ forms a fundamental system of neighborhoods
of 0. Then Â = lim

←
A/An.

Example 2.45 (a-adic topology). Let a ⊂ A be an ideal of A and let us consider
the filtration (An ≡ an) of A. Then the corresponding topology is called a-adic.

Furthermore, let us assume that
⋂

n an = {0} and that a is of finite type. Then,
one has an = (a)n = anÂ, where a is the adherence of a with respect to the a-adic
topology.

In particular, if A = R[χ1, · · · , χn] and a ≡ 〈χ1, · · · .χn〉, then one has Â =
R[[χ1, · · · , χn]], the ring of formal poweseries in n indeterminates on R, that is∑

α cαχα, χα ≡ χα1
1 · · ·χαn

n , cα ∈ R, α ≡ (α1, · · · , αn) ∈ Nn, converging in the
topology of Â. If R is integer, then so is Â = R[[χ1, · · · , χn]].
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Theorem 2.46. Let A be a Noetherian local ring with maximal ideal m, and let Â
be its completion with respect to the m-adic topology. Then one has the following
properties. (i) Â is a local Noetherian ring with maximal ideal m̂ = mÂ, and there
is a natural injective homomorphism A → Â. The residue field of Â is canonically
isomorphic to that of A. Furthermore, Â is a flat A-module such that for any
p ∈ Spec(A), one has p = A ∩ p′, for some p′ ∈ Spec(Â), (that is the A-module Â

is fidelly flat). (ii) If M is a finitely generated A-module, its completion M̂ with
respect to its m-adic topology is isomorphic to M ⊗A Â. (iii) dimA = dim Â. (iv)
A is regular iff Â is regular. (Furthermore, if A is regular any localized ring Ap is
also regular.)

(Cohen structure theorem). If A is a complete regular local ring of dimension n
containing some field, then A ∼= κ[[x1, · · · , xn]], the ring of formal power series over
the residue field κ of A.

(Elimination theorem). We say two points p ∈ X and q ∈ Y are analytically
isomorphic if there is an isomorphism Â(X)p

∼= Â(Y )q as κ-algebras. Here A(X) ≡
κ[X] and A(Y ) ≡ κ[Y ].

Let f1, · · · , fr be homogeneous polynomials in x0, · · · , xn having indeterminates
coefficients aij. Then there is a set g1, · · · , gt of polynomials in the aij, with integer
coefficients, which are homogeneous in the coefficients of each fi separately, with the
following property: for any field κ, and for any set of spacial values of the aij ∈ κ,
a necessary any sufficient condition for the fi to have a common zero different from
(0, 0, · · · , 0) is that the aij are a common zero of the polynomials gj.

Example 2.47 (Examples of singular points). In the following table are reported
some examples of singular points of curves and surfaces.

Table 2. Examples of singular points

Name Equation
Singular points of curves in κ2 (charκ ̸= 2).

node x4 + y4 − x2 = 0
triple point x6 + y6 − xy = 0
cusp x4 + y4 − x3 + y2 = 0
tacnode x4 + y4 − x2y − xy2 = 0
Singular points of surfaces in κ3 (charκ ̸= 2)

conical double point z2 − xy2 = 0
double line z2 − x2 − y2 = 0
pinch point z3 + y3 + xy = 0

Let Y ⊆ κ2 be a curve defined by the equation f(x, y) = 0. Let p = (a, b) be a
point of κ2. Make a linear change of coordinates so that p becomes the point (0, 0).
Then, write f as a sum f = f0 + · · · + fd, where fi is a homogeneous polynomial
of degree i in x and y. Then, we define multiplicity of p on Y , denoted µp(Y ), the
least r such that fr ̸= 0. (Note that p ∈ Y iff µp(Y ) > 0.) The linear factors of
fr are called the tangent directions at p. Then one has the following: µp(Y ) = 1
iff p is a nonsingular point of Y . If Y,Z ⊂ κ2 are two distinct curves, given by
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equations f = 0 and g = 0, respectively, and if p ∈ Y ∩Z, we define the intersection
multiplicity, (Y.Z)p, of Y and Z at p to be the length of Ap-module Ap/〈f, g〉. Then
one has the following: (a) (Y.Z)p is finite and (Y.Z)p ≥ µp(Y ).µp(Z); (b) If p ∈ Y
for almost all lines L trough p (i.e., all but a finite number) (L.Y )p = µp(Y ).

The fields, the ring Z, the complete Noetherian local rings, are called excellent
rings.

Let A be an excellent ring. Then the permanence properties hold: (i) Any local-
ized ring S−1A is an excellent ring. (ii) Any A-algebre of finite type is an excellent
ring.

Furthermore, one has the following propositions: (iii) A is a reduced ring iff Â is
so. (iv) A is integral and integrally closed iff Â is so. (v) If A is integral, its integral
closure A′ is a finite A-algebra.

Proposition 2.48 (Derivations and localization). [24]. Let A be a ring containing
a field κ. Let S ⊂ A be a subset of A. Then δ ∈ Derκ(A,M) induces a unique
derivation δ ∈ Derκ(S−1A; S−1M). More precisely δ(a

s ) = sδa−aδs
s2 . In particular,

δ induces a unique derivation δ ∈ Derκ(Ap;Mp), ∀p ∈ Spec(A). There are the
following isomorphisms:

S−1A
⊗
A

Ω1(A) ∼= Ω1(S−1A), S−1A
⊗
A

DerK(A,M) ∼= DerK(S−1A; S−1M).

In particular, one has the following isomorphisms:

Ap

⊗
A

Ω1(A) ∼= Ω1(Ap), Ap

⊗
A

DerK(A,M) ∼= DerK(Ap; Mp),

for any p ∈ Spec(A).

Example 2.49. Let us consider a finitely generated integral domain A =
κ[χ1, · · · , χn] over a field κ, with quotient field K ≡ Q(A) and extension of finitely
elements y1, · · · , yr ∈ A such that A is integral over κ[y] = κ[y1, · · · , yr], that is
each element a ∈ A satisfies a polynomial equation of the form

P (a) ≡ ad + c1a
d−1 + · · · + cd = 0,

where ci ∈ κ[y]. In that case K is an algebraic extension of κ(y), that is each
element of K satisfies a polynomial equation with coefficients in κ(y) = Q(κ[y]) and
(y1, · · · , yr) is called a trascendence basis of the extension K/κ of degree r. Then
we have that there exists 0 ̸= c ∈ κ[y] ⊆ A such that Ω(A) is a free Ac-module with
basis {dyi} and Derκ(Ac) is a free Ac-module with basis {∂yi}.

Proposition 2.50. [24] Let κ ⊂ K ⊂ L be a chain of extensions of fields. We have
the following short exact sequence of vector spaces over L:

0 → L
⊗
K

Ω1(K)κ → Ω1(L)κ → Ω1(L)K → 0.

Here we denote Ω1(A)κ ≡ Ω1(A), (resp. Ω1(A)K ≡ Ω1(A)) to emphasize that
we are talking about κ-derivations, (resp. K-derivations). If L/K is any algebraic
extension, we have of course Ω(L)K = 0 because any derivation of K can be extended
uniquely to L and we get the following isomorphism: L

⊗
K Ω(K)κ

∼= Ω(L)κ.
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Definition 2.51. A differential ring is a ring A with a finite number n of commu-
tating derivations d1, · · · , dn, didj − djdi = 0, ∀i, j = 1, · · · , n. A differential ideal
is an ideal a ⊂ A which is stable by each di, i = 1, · · · , n.

A differential ring (A, {dj}1≤j≤n) identifies a subring (subring of constants): C ≡
cst(A) ≡ {a ∈ A|dja = 0, ∀j = 1, · · · , n} ⊂ A. We may extend each di to a
derivation of Q(A), still denoted by di and such that di(a/r) = (rdia−adir)/r2, for
any 0 ̸= r, a ∈ A.

Example 2.52. If K is a differential field with derivations ∂1, · · · , ∂µ and yk,
k = 1, · · · ,m, are indeterminates over K, we set yk

0 = yk. Then the polynomial ring
K[y]d = K[yk

µ, k = 1, · · · , m, µ = µ1 · · ·µs, |µ| ≥ 0], can be endowed with a struc-
ture of differential ring by defining the formal derivations di ≡ ∂i + yk

µ+1i∂yµ
k . Of

course K[y]d is not a Noetherian ring. We write K[yq]d = K[yk
µ|k = 1, · · · ,m; 0 ≤

|µ| ≤ q] and one has K(yq)d = Q(K[yq]d). We set also K(y)d = Q(K[y]d).

Definition 2.53. A differential subring A of a differential ring B is a subring which
is stable under the derivations of B. Similarly we can define a differential extension
L/K of differential fields, and such an extension is said to be finitely generated if
one can find elements η1, · · · , ηm ∈ L such that L = K(η1, · · · , ηm). Then the
evaluation epimorphism is defined by K[y]d → K[η]d ⊂ L, yk 7→ ηk. Its kernel is a
prime differential ideal.

Proposition 2.54. [24] Let 〈S〉d denote the differential ideal generated by the subset
S ⊂ A, where A is a differential ring. If A is a differential ring and a, b ∈ A, then
one has the following:

(i) a|µ|+1dµb ∈ 〈dν(ab)||ν| ≤ |µ|〉.
(ii) (dia)2r−1 ∈ 〈ar〉d.
(iii) If a is a radical differential ideal of the differential ring A and S is any

subset of A, then a : S ≡ {a ∈ A|aS ⊂ a} is again a radical differential ideal
of A.

(iv) If a is a differential ideal of a differential ring A, then rad(a) is a differential
ideal too.

(v) One has the following inclusion: a rad〈S〉d ⊂ rad〈aS〉d, ∀a ∈ A, and for all
subset S ⊂ A.

(vi) If S and T are two subsets of a differential ring A, then

rad〈S〉d.rad〈T 〉d ⊂ rad〈ST 〉d = rad〈S〉d ∩ rad〈T 〉d.

(vii) If S is any subset of a differential ring A, then we have:

rad〈S, a1, · · · , ar〉d = rad〈S, a1〉d ∩ · · · ∩ rad〈S, ar〉d.

Definition 2.55. A differential vector space is a vector space V over a differential
field (K, ∂i)1≤i≤n such that are defined n homomorphisms di, i = 1, · · · , n, of the
additive group V such that: di(av) = (∂ia)v + a(div), ∀a ∈ K, ∀v ∈ V . Then we
say that K is a differential field of definition.

Proposition 2.56. [24] Let V be a differential vector space over a differential field
K, with derivations di, i = 1, · · · , n, and let {ej}j∈I be a basis of V . Then the field
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of definition κ of a differential subspace W ⊂ V is a differential subfield of K if it
contains the field of definition of each d1ei, · · · , dnei with respect to {ei}.

Definition 2.57. A family η = (η1, · · · , ηm) of elements in a differential extension
of the differential field K is said to be differentially algebraically independent (or
a family of differential indeterminates) over K, if the kernel of the evaluation epi-
morphism K[y]d → K[η]d is zero. Otherwise the family is said to be differentially
algebraically dependent (or differentially algebraic) over K.

Proposition 2.58. If K/κ and L/κ are two given differential extensions with re-
spective derivations dK and dL, there always exists a differential free composite field
of K and L over κ.

Proof. The ring K
⊗

κ L has a natural differential structure given by d(a ⊗ b) =
(dKa) ⊗ b + a ⊗ (dLb), as dK |κ = dL|κ = ∂. On the other hand there is a finite
number of prime ideals pi ⊂ K

⊗
κ L such that

⋂
i pi = 0 and pi + pj = 〈1〉, ∀i ̸= j.

Now we have the following lemma.

Lemma 2.59. If a1, · · · , pr are ideals of a differential ring A such that ai +aj = A,
∀i ̸= j, and a1 ∩ · · · ∩ ar is a differential ideal of A, then each ai is a differential
ideal too.

Therefore we can conclude that each pi is a differential ideal, hence the proposition
is proved. ¤

Lemma 2.60. A family η is differentially algebraic over K iff a differential poly-
nomial P ∈ p exists such that (∂yP .P ) ̸∈ p, where yP is the highest power of yp

appearing in P . SP ≡ (∂yP .P ) is called the separout of P . (The initial of P is the
coefficient of the highest power of yP appearing in P and it is denoted by IP . More
precisely one has P = IP (yP )r + terms of lower degree.)

Proposition 2.61 ([24]). If S is any subset of a differential ring A and r ≥ 0 is
any integer, we call r-prolongation of S, the ideal

(S)+r = 〈dνa|a ∈ S, 0 ≤ |ν| ≤ r〉 ⊂ A.

One has the following properties: (i) (S)+(r+s) = ((S)+s)+r. (ii) (S)+∞ = 〈S〉d.
(iii) Let a be a differential ideal of the differential ring K[y]d. We set aq =

a ∩K[yq]d, a0 = a ∩K[y]d, a∞ = a. We call the r-prolongation of aq, the following
ideal:

(aq)+r = 〈dνP |P ∈ aq, 0 ≤ |ν| ≤ r〉 ⊂ K[yq+r]d.

One has:

(aq)+r ⊆ aq+r, (aq)+∞ ⊆ a, (aq)+r ∩ K[yq]d = aq, ∀q, r ≥ 0.

With algebraic sets it is better to consider radical ideals. Hence if r ⊂ K[y]d
is a radical differential ideal, then rq is a radical ideal of K[yq]d, for all q ≥ 0.
Then if Eq = Z(rq) is the algebraic set defined over K by rq = I(Eq), we call
r-prolongation of Eq the following algebraic set: (Eq)+r = Z((rq)+r). In general
one has (rq)+r ⊆ rq+r, hence rad((rq)+r) ⊆ rq+r. Therefore, in general one has:
Eq+r ⊆ (Eq)+r.
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Proposition 2.62 ([24]). Let p ⊂ K[y]d be a prime differential ideal. Then we
can identify each field Lq = Q(K[yq]d/pq) with a non-differential subfield of L =
Q(K[y]d/p) and we have: K ⊆ L0 ⊆ · · · ⊆ L∞ = L. Then there are vector spaces
Rq over Lq or L defined by the following linear system:

(∂yµ
k .Pτ )(η)vk

µ = 0, {1 ≤ τ ≤ t, 1 ≤ k ≤ m, |µ| = q} ,

where η is a generic solution of p and P1, · · · , Pt are generating pq. Such result does
not depend on the generating polynomials. We can also define the vector space gq

(symbol) over Lq or L, by means of the linear system:

(∂yµ
k .Pτ )(η)vk

µ = 0, {1 ≤ τ ≤ t, 1 ≤ k ≤ m, 0 ≤ |µ| ≤ q} .

For the prolongations (gq)+r one has, in general, gq+r ⊆ (gq)+r, ∀q, r ≥ 0.

Definition 2.63. We say that Rq or gq is generic over Eq, if one can find a certain
number of maximum rank determinants Dα that cannot be all zero at a generic
solution of p.

Proposition 2.64. Rq or gq is generic if we may find polynomials Aα, Bτ ∈ K[yq]d
such that: ∑

α

AαDα +
∑

τ

BτPτ = 1.

Furthermore, Rq or gq are projective modules over the ring K[yq]d/pq ⊂ K[y]d/p.

Proof. It follows directly from the Hilbert theorem of zeros. ¤

Theorem 2.65 (Primality criterion [24]). Let pq ⊂ K[yq]d and pq+1 ⊂ K[yq+1]d be
prime ideals such that pq+1 = (pq)+1 and pq+1 ∩ K[yq]d = pq. If the symbol gq of
the variety Rq defined by pq is 2-acyclic and its first prolongation gq+1 is generic
over Eq, then p = (pq)+∞ is a prime differential ideal with p ∩ K[yq+r]d = (pq)+r,
for all r ≥ 0.

Let rq ⊂ K[yq]d and rq+1 ⊂ K[yq+1]d be radical ideals such that rq+1 = (r)+1

and rq+1 ∩ K[yq]d = rq. If the symbol gq of the algebraic set Eq defined by rq is
2-acyclic and its first prolongation gq+1 is generic over Eq, then r = (rq)+∞ is a
radical differential ideal with r ∩ K[yq+r]d = (rq)+r, for all r ≥ 0.

Theorem 2.66 (Differential basis). If r is a differential ideal of K[y]d, then r =
rad((rq)+∞) for q sufficiently large.

Proof. In fact one has the following lemma.

Lemma 2.67. If p is a prime ideal of K[y]d, then for q sufficiently large, there is
a polynomial P ∈ K[yq]d such that P ̸∈ pq and Ppq+r ⊂ rad((pq)+r) ⊂ pq+r, for all
r ≥ 0.

After above lemma the proof follows directly. ¤

Every radical differential ideal of K[y] can be expressed in a unique way as the
non-redundant intersection of a finite number of prime differential ideals. The
smallest field of definition κ of a prime differential ideal p ⊂ K[y] is a finitely
generated differential extension of Q.
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Example 2.68. With n = 2, m = 2, q = 1. Let us consider the differential
polynomial P = y1

1y
2
2 − y2

1y
1
2 − 1. We obtain for the symbol g1: y1

1v
2
2 + y2

2v
1
1 −

y1
2v

2
1 − y2

1v
1
2 = 0. Setting vk

i = yk
l wl

i we obtain (y1
1y

2
2 − y2

1y
1
2)(w

2
2 + w1

1) = 0 and thus
w2

2 + w1
1 = 0 on E1. Hence g1 is generic. One can also set P1 = y1

2, P2 = y2
1 and we

get the relation: y2
2P1 − y1

2P2 − P ≡ 1. A similar result should hold for E1. g1 is
involutive and the differential ideal generted by P in Q〈y1, y2〉 is therefore a prime
ideal.

Definition 2.69. A differentially algebraic extension L over of a differential field K
is a differential extension over K where every element of L is differentially algebraic
over K.

The differential transcendence degree of a differential extension L/K is the num-
ber of elements of a maximal subset S of elements of L that are differentially tran-
scendental over K and such that L becomes differentially algebraic over K(S). We
shall denote such number by trdd(L/K).

Theorem 2.70 ([24]). One has the following formula:

dim(pq+r) = dim(pq−1) +
∑

1≤i≤n

(r + i)!
r!i!

αi
q, ∀r ≥ 0,

where αi
q is the character of the corresponding system of PDE’s. The character αi

q

of a q-order PDE Eq ⊂ JDq(W ), π : W → M , dimM = n, with symbol gq, is the
integer αi

q ≡ dim(g(i−1)
q )p − dim(g(i)

q )p, p ∈ Eq, where (g(i)
q )p ≡ {ζ ∈ (gq)p|ζ(v1) =

· · · = ζ(vi) = 0}, where (v1, · · · , vn) is the natural basis in Tπk(p)M .
The character αn

q and the smallest non-zero character only depend on the differen-
tial extension L/K and not on the generators. In particular, one has: trdd(L/K) =
αn

q .
If ζ is differentially algebraic over K(η)d and η is differentially algebraic over K,

then ζ is differentially algebraic over K.
If L/K is a differential extension and ξ, η ∈ L are both differentially algebraic

over K, then ξ + η, ξη, ξ/η, (η ̸= 0), and diξ are differentially algebraic over K.

Definition 2.71. If L/K is a differential extension, the set of elements of L that
are algebraic over K is an intermediate field K0, called the algebraic closure of K
in L. Furthermore, the set of elements of L that are differentially algebraic over K
is an intermediate differential field K ′, called the differential algebraic closure of K
in L. (K ′ is differentially algebraic closed in L.)

If K is a differential field with derivations ∂1, · · · , ∂n, we say that the derivative
operators {∂µ}|µ|≥0 are algebraically independent over K if there does not exist a
differential indeterminate z over K and a nontrivial differential polynomial in K[z]d
vanishing on any element of K.

Proposition 2.72 ([24]). The derivative operators {∂µ}|µ|≥0 are algebraically in-
dependent over K iff one of the following equivalent propositions are verified:

(i) The derivative operators {∂µ}|µ|≥0 are linearly independent over K.
(ii) The derivatives ∂1, · · · , ∂n are linearly independent over K. (In such a case

we simply say that ∂1, · · · , ∂n are independent over K.)
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Theorem 2.73 (Differentially primitive element [24]). If K is a differential field
with independent derivations, then every finitely generated differentially algebraic
extension of K can be generated by a simple element.

If L/K is a finitely generated differentially algebraic extension with derivations
d1, · · · , dn, then L/K can be considered as a finitely generated extension with deriva-
tions d′1, · · · , d′n−1 such that d′j = ci

jdi for certain ci
j ∈ C = cst(K).

If L/K is a finitely generated differential extension, then one has the following
propositions: (i) Any intermediate differential field between K and L is also finitely
generated over K. (ii) If C = cst(K), D = cst(L), then D/C is a finitely generated
extension. (iii) If K0 is the algebraic closure of K in L, then K0 is a finitely
generated extension of K and |K0/K| < ∞. (iv) If K ′ is the differential algebraic
closure of K in L, then K ′/K is a finitely generated differential extension.

If ζ is differentially algebraic over K(η)d but η is not differentially algebraic over
K(ζ)d, then ζ is differentially algebraic over K.

If K ⊂ L ⊂ M are differential fields and S is a differential transcendence basis
of L/K while T is a differential transcendence basis of M(L), then S ∩ T = ∅ and
S ∪ T is a differential transcendence basis of M/K. Furthermore

trdd(M/K) = trdd(M/L) + trdd(L/K).

Let (A, {dj}1≤j≤n be a differential ring such that A is an integral domain with
field quotients K = Q(A), then cst(A) is integrally closed in A while cst(K) is
algebraically closed in K. In general one has cst(A) ⊆ cst(K).

Let M and N be filtered modules over the filtered ring A. This means that there
are increasing filtrations, · · · ⊂ Mq−1 ⊂ Mq ⊂ · · · ⊂ M and · · · ⊂ Nq−1 ⊂ Nq ⊂
· · · ⊂ M , such that ArMq ⊆ Mq+r and ArNq ⊆ Nq+r respectively, for all q, r ≥ 0.
To such filtered modules we can associate graded modules gr(M) ≡ G =

⊕
0≤q≤∞ Gq

and gr(N) ≡ H =
⊕

0≤q≤∞ Hq respectively, such that Gq ≡ Mq/Mq−1 and Hq ≡
Nq/Nq−1.9 Then any morphism f : M → N , compatible with above filtrations,
that is f(Mq) ⊂ Nq, induces by restriction morphisms fq : Mq → Nq that pass to
quotient inducing morphisms grq(f) : Gq → Hq, hence a morphism gr(f) : G → H,
such that the following diagram

0 // Mq−1

fq−1

²²

// Mq

fq

²²

// Gq

grq(f)

²²

// 0

0 // Nq−1 // Nq // Hq // 0

is commutative with exact horizontal lines. In general f(M) ∩ Nq ̸= fq(Mq), for
all q ≥ 0.

Definition 2.74. A strict morphism f : M → N between filtered modules is a
compatible morphism such that the following equivalent propositions are verified:
(i) f(M) ∩ Nq = fq(Mq), for all q ≥ 0. (ii) The following short exact sequences are
exact 0 → coker(fq) → coker(if), for all q ≥ 0.

9Note that G and H are modules over the graded ring gr(A).
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Proposition 2.75. [24] 1) For filtered modules and strict compatible morphisms
hold the following propositions:

(i) A short sequence

0 → M ′ f−−−→M
g−−−→M ′′ → 0

is exact iff the associated sequence

0 → gr(M ′)
gr(f)−−−→ gr(M)

gr(g)−−−→ gr(M ′′) → 0

is exact.
(ii) Let M ′ f−−−→M

g−−−→M ′′ be an exact sequence then the associated sequence

gr(M ′)
gr(f)−−−→ gr(M)

gr(g)−−−→ gr(M ′′) is exact too.

(iii) If the sequence gr(M ′)
gr(f)−−−→ gr(M)

gr(g)−−−→ gr(M ′′) is exact (without assuming
that f and g are strict), and M =

⋃
q∈Z Mq with Mq = 0 for q ≪ 0, then f and g

are strict and the filtered sequence M ′ f−−−→M
g−−−→M ′′ is exact.

If the sequence of filtered modules M ′ f−−−→M
g−−−→M ′′ is exact does not imply

that sequences M ′
q

fq−−−→Mq
gq−−−→M ′′

q are exact for all q ≥ 0.
Let

M ′ f−−−→M
g−−−→M ′′

be an exact sequence of Noetherian filtered modules and compatible morphisms. If
the associated sequence

G′
q

grq(f)−−−→Gq
grq(g)−−−→M ′′

q

are exact for sufficiently large q, then the sequence

M ′
q

fq−−−→Mq
gq−−−→M ′′

q

are exact for sufficiently large q.
2) Let M be a filtered module over a filtered ring A. One has the following

propositions: (i) M is finitely generated iff gr(M) is finitely generated over gr(A).
This is equivalent to say that there exist homogeneous elements x̄1, · · · , x̄r ∈ G, with
x̄i ∈ Gqi being the canonical projection of xi ∈ Mqi such that any element of Gq

may be written as finite sum
∑

1≤i≤r āix̄i where āi ∈ grq−qi(A).
M is Noetherian iff gr(M) is Noetherian.
3) If A is a Noetherian filtered ring, the following three conditions are equivalent:

(i) M is a finitely generated A-module.
(ii) G is a finitely generated gr(A)-module.
(iii) There exist q0 such that A1Mq = Mq+1 for any q ≥ q0.

Theorem 2.76. Let (A, {∂j}1≤j≤n) be a differential ring. The set D(A) of differ-
ential operators over (A, {∂j}1≤j≤n) is a non-commutative filtered ring and a filtered
bimodule over A.

Proof. If y is a differential indeterminate over A, we may introduce the formal
derivatives d1, · · · , dn which are such that didj − djdi = 0, ∀i, j = 1, · · · , n, and
are defined by: di(ay) = (∂ia)y + a(diy). We shall write diy = yi, diyµ = yµ+1i,
where µ is the multi-index µ = (µ1, · · · , µn) with length |µ| = µ1 + · · · + µn. If
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y = (y1, · · · , ym), we set dµ = (d1)µ1 · · · (dn)µn and dµyk = yk
µ. Any differential

operator of order q over A can be written in the form P =
∑

0≤µ≤q aµdµ, aµ ∈ A.
Set ord(P ) = q. Then, we can write D(A) ∼= A[d1, · · · , dn] ≡ A[d] the ring of partial
differential operators over A with derivatives d1, · · · , dn. The addition rule is clear.
The multiplication rule comes from the Leibniz formula:{

∂ν(ab) =
∑

λ+µ=ν
ν!

λ!µ!(∂λa)(∂µb)
dν(ay) =

∑
λ+µ=ν

ν!
λ!µ!(∂λa)dµy

}
⇒ dνa =

∑
λ+µ=ν

ν!
λ!µ!

(∂λa)dµ.

Here we have put µ! = µ1! · · ·µn!. With these rules D(A) becomes a non-
commutative ring and a bimodule over A. In fact, the previous formula defines
the right action of A on D(A). The left action of A on D(A) is simply the multipli-
cation on the left by A, that is aP = a(

∑
0≤µ≤q aµdµ) =

∑
0≤µ≤q aaµdµ. Now, the

filtration of D(A) is naturally induced by filtration of spaces of differential operators.
More precisely Dq(A) = {P ∈ D(A)|ord(P ) ≤ q}, where ord(P ) = sup{|µ||aµ ̸= 0}.
We set D−1(A) = 0 and D0(A) = A. Then, Dq(A) ⊂ Dq+1(A), D(A) =

⋃
q≥0 Dq(A)

and Dq(A)Dp(A) ⊆ Dp+q(A). ¤
Definition 2.77. If χ1, · · · , χn, are indeterminates over A, we define the prinipal
symbol of P ∈ D(A), with respect to χ, by setting: σχ(P ) =

∑
|µ|=ord(P ) aµχµ.

If f, g ∈ A[χ], we define the Poisson bracket:

{f, g} =
∑

1≤i≤n

(∂χi.f)(∂i.g) − (∂χi.g)(∂i.f) ∈ A[χ],

where ∂i.f is the polynomial obtained by applying ∂i to the coefficients of the
polynomial f .

Proposition 2.78. For any P,Q ∈ D(A) with ord(P ) = p, ord(Q) = q, we
have: σχ(PQ) = σχ(P )σχ(Q); ord([P,Q]) ≤ p + q − 1, with [P,Q] = PQ − QP ;
{σχ(P ), σχ(Q)} ̸= 0 ⇒ ord([P,Q]) = p + q − 1 and σχ([P,Q]) = {σχ(P ), σχ(Q)}.

Dq(A) identifies a representable functor Dq on the category of modules. More
precisely, for any A-module E one has the following A-module

Dq(E) = HomA(Iq(E);A),

where Iq(E) ≡ Iq(A)
⊗

A E and Iq(A) ≡ HomA(Dq(A);A). One has the isomor-
phism: Dq(E) ∼= HomA(Iq(A);E∗), where E∗ ≡ HomA(E; A).

If E is finitely generated and projective or free one has the isomorphism Dq(E) ∼=
Dq(A)

⊗
A E∗.

D(A) identifies a functor from the category of modules to the category of filtered
modules. More precisely, for any A-module E one has: D(E) =

⋃
q≥0 Dq(E).

If E is finitely generated projective module over A, one has the isomorphism:
D(E) ∼= D(A)

⊗
A E∗.

D(A) identifies a representable functor of two variables, controvariant in the first
and covariant in the second. More precisely one has; Dq(E; F ) = HomA(Iq(E);F ).

Proof. Let Iq(A) ≡ HomA(Dq(A); A) ≡ Dq(A)∗. One has the isomorphism
Dq(A) ∼= HomA(Iq(A);A) ≡ Iq(A)∗. Then, if E is a module over A, setting
Iq(E) = mathcalIq(A)

⊗
A E, we get on Iq(E) a left-module structure over A. If
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{ek} is a set of generators for E, typical terms of Iq(E) are ξk
µ ⊗ ek, 0 ≤ |µ| ≤ q,

ξk
µ ∈ A. One has also the q-jet operator: jq : E → Iq(E), jq(ξkek) = (∂µξk) ⊗ ek,

0 ≤ |µ| ≤ q. One has the isomorphism:

Dq(E) ≡ HomA(Iq(E);A) ∼= HomA(Iq(A);E∗).

If E is finitely genertaed and projective or free one has the following isomor-
phisms:

HomA(Iq(A);E∗) ∼= HomA(Iq(A);A)
⊗
A

E∗ ∼= Iq(A)∗
⊗
A

E∗ ∼= Dq(A)
⊗

E∗.

It is enough to consider that to the inclusions Dq(A) ⊂ Dq+1(A) there correspond
the projection Iq+1(A) → Iq(A). Then by taking the inductive limit on the filtra-
tion of D(A) we get D(A) = lim

←
Iq(A)∗ ≡ I∞(A)∗ and the corresponding projective

limit gives I∞(A) = lim
→

Iq(A). So D(E) =
⋃

q≥0 Dq(E).
This follows directly from the above points.
Furthermore,

D(E,F ) = F
⊗
A

D(A)
⊗
A

E∗ ∼= F
⊗
A

D(E)(2.3)

∼= F
⊗
A

HomA(I∞(E);A) ∼= HomA(I∞(E);F ).

The ring A can be considered a left-module over D(A): D(A)×A → A, (P, a) 7→
P (a). Then one has the isomorphisms: HomD(A)(D(A); A) ∼= A; A ∼= D(A)/I(A),
D(A) ∼= A

⊕
I(A), where I(A) ≡ {P ∈ D(A)|P (1) = 0}. HomD(A)(A; A) =

C = cst(A). T (A) ≡ D1(A)/A ∼= {P ∈ D1(A)|P (1) = 0} ⊂ DerC(A); D1(A) ∼=
A

⊕
T (A).

The left action of D(A) on A coincides with the evaluation of the differential
operators, i.e., (P, a) 7→ P (a). This induces the isomorphism (i). I(A) is a left ideal
of D(A) generated by d1, · · · , dn. This induces the isomorphism (ii). By means of
the inclusions A = D0(A) ⊂ D(A), we can identify A with a subring of D(A), hence
any D(A)-module can be considered also as a A-module, just by forgetting about
the differential structure. Then, one has HomD(A)(A;A) = cst(A) ≡ C. Further-
more, for the A-module D1(A)/D0(A) = D1(A)/A one has the natural short exact
sequence: 0 → D1(A)/A → DerC(A), as any element δ ∈ D1(A)/A is of the form
δ = a1d1 + · · ·+ andn, hence can be identified with a vector δ = a1∂1 + · · ·+ an∂n ∈
DerC(A). Therefore, T (A) ≡ D1(A)/A is a free module over A. Furthermore, as
T (A) can be considered also an element of D1(A), we get isomorphism (iv).

If A is an integral domain then D(A) is also an integral domain.
Identifying T (A) ⊂ D(A) as a submodule, the commutator in D(A) restricts to

T (A) to produce the standard bracket for vector fields.
We have the following short exact sequences:

0 → SqT
∗(A) → Iq(A) → Iq−1(A) → 0 0 → Dq−1(A) → Dq(A) → SqT (A) → 0

where T ∗(A) ≡ HomA(T (A);A).
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For the graded module gr(D(A)) associated with the filtered module D(A), i.e.,
grq(D(A)) = Dq(A)/Dq−1(A), we have: grq(D(A)) ∼= SqT (A). Furthermore, intro-
ducing indeterminates χ1, · · · , χn over A, we get: gr(D(A)) ∼= A[χ1, · · · , χn].

If A is a Noetherian ring, then D(A) is also a Noetherian ring.
The module D(E) can be considered also a left-module over D(A): D(A) ×

D(E) → D(E), (P,Q)(e) = P (Q(e)). In particular, if E is a finitely generated
projective module over A, one has the isomorphism HomD(A)(D(E);A) ∼= E. One
has a canonical C-linear map (adjoint involution):

ad ∈ HomC(D(A);D(A)), ad(P ) = ad(aµdm) = (−1)|µ|dµaµ.

One has the following properties: (i) ad2 = idD(A); (ii) ad|D0=A = idA; (iii) ad(di) =
−di; (iv) ad(PQ) = ad(Q).ad(P ); If P ∈ D(A) is a differential operator of order q
and Q ∈ D(E) is a differential operator of order r, (PQ) ∈ D(E) is a differential
operator of order q + r, such that for any e ∈ E one has P (Q(e)).

In fact, under our hypotheses one has:

HomD(A)(D(E);A) ∼= HomD(A)(D(A)
⊗
A

E∗; A) ∼= HomA(E∗; A) ∼= E∗∗ ∼= E. ¤

Theorem 2.79 (Localization in noncommutative ring). Let A be a noncommutative
ring and let S be a multiplicative set in A, that is 1 ∈ S and S is closed under
multiplication. Let us assume that the following two conditions are satisfied: (i)
Sa ∩ As ̸= 0, ∀a ∈ A, s ∈ S. (Left Ore set condition). (ii) If s ∈ S and a ∈ A are
such that as = 0, then there is t ∈ S such that ta = 0. Then there exists a ring S−1A
(left ring fractions or left localization of A with respect to S) and a homomorphism
θ = θS : A → S−1A, with the following properties: (iii) θ(s) is invertible in S−1A;
(iv) Each element of S−1A or fraction has the form θ(s)θ(a) for some s ∈ S and
a ∈ A; (v) ker(θ) = {a ∈ A|∃s ∈ S, sa = 0}. More precisely S−1A = S × A/ ∼,
where ∼ is the following equivalence relation: (s, a) ∼ (t, b) ⇔ ∃u, v ∈ A such
that us = vt ∈ S, ua = vb. We will denote the equivalence class of (s, a) by
s−1a ∈ S−1A.10 For symmetry we have a similar theorem for right ring fractions
or right localization of A with respect to S. If A is Noetherian and S ⊂ A is simply
a left Ore set in A, then the existence of S−1A is assured.11

Proof. We shall use the following lemmas.

Lemma 2.80. If there exists a left localization of A with respect to S, that is a
homomorphism θS = θ : A → S−1A such that the above conditions (iii), (iv), (v)
are satisfied, then also conditions (i) and (ii) must be satisfied.

Lemma 2.81. If S is a left Ore set in a ring A, then one has the following proper-
ties: (a) If s, t ∈ S then As∩At∩S ̸= 0; (b) Two fractions θ(s)−1θ(a) and θ(t)−1θ(b),
a, b ∈ A, can be reduced to the same common denominator θ(us) = θ(vt), where
u, v ∈ A such that us = vt ∈ S.

10Let us emphasize that for a non-commutative ring A we cannot write a
s

as it does not distin-

guish between s−1a and as−1.
11Compare with a recent result on the noncommutative localization introduced by A.Ranicki

[34]
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Now, in order to conclude the proof it is enough to prove that the above equiv-
alence relation is well defined in S × A. This can be down just by using above
lemmas. The other proof can be conduced for similarity.

furthermore, to end it is enough to prove that from the fact that A is Noetherian,
the assumption that S satisfies the left Ore condition (i) implies also condition
(ii). Now let s ∈ and a ∈ A such that as = 0. Let us denote yet by ann the
left annihilator in A. Then one has ann(sn) ⊆ ann(sn+1), ∀n ∈ N. As A is
Noetherian, we have ann(sn) = ann(sn+1) for n ≫ 0. From the left Ore condition
we may find t ∈ S, b ∈ A such that ta = bsn and we get bsn+1 = tas = 0. Hence,
b ∈ ann(sn+1) = ann(sn). Therefore ta = 0. ¤
Theorem 2.82 (Localization of module over noncommutative ring). Let M be a left
module over the noncommutative ring A and let S ⊂ A be a set in A that satisfies
conditions (i) and (ii) in Theorem 3.124(1). Then there exists a left module S−1M
over S−1A (left module of fractions or left localization of M with respect to S) and
a homomorphism θS = θ : M → S−1M with the following properties:

(iii) Each element of S−1M has the form s−1θ(x) for s ∈ S, x ∈ M ;
(iv) ker(θS) = tS(M) ≡ {x ∈ M |∃s, sx = 0} ≡ S-torsion submodule of M .

More precisely S−1M = S × M/ ∼, where ∼ is the following equivalence relation:
(s, x) ∼ (t, y) ⇔ ∃u, v ∈ A such that us = vt ∈ S, ux = vy. For symmetry we have
a similar theorem for right module fractions or right localization of M with respect
to S. One has the following isomorphism of modules over S−1A:

(S−1A)
⊗
A

M ∼= S−1M.

Proof. The proof can be conduced for similarity with one of the previous Theo-
rem 3.124(1). Let us simply emphasize, here, that tS(M) is just a sub-module of
M . For symmetry with respect to the point. This isomorphism is induced by the
multiplication map S−1A × M → S−1M . ¤
Proposition 2.83 (Internal operations). Let A be a differential ring with n deriva-
tions {∂i}1≤i≤n. A vector ζ ∈ T (A) can be written ζ = ζi∂i, ζi ∈ A, and a
r-form α ∈ ΛrT ∗(A), T ∗(A) ≡ HomA(T (A);A) can be written in the form α =∑

1≤i1<···<ir≤n αi1,··· ,irδ
i1 ∧ · · · ∧ δir ≡ αIδ

I , where αi1,··· ,ir , αI ∈ A and I ≡ (i1 <

· · · < ir) is a multi-index and δI ≡ δi1 ∧ · · · ∧ δir .12 One has the following
distinguished properties: (1) (Exterior differential). d : ΛrT ∗(A) → Λr+1T ∗(A),
dα = (∂iaI)δi ∧ δI , aI .(∂iaI) ∈ A. One has the following property:

d(α ∧ β) = (dα) ∧ β + (−1)rα ∧ dβ, α ∈ ΛrT ∗(A), β ∈ ΛsT ∗(A).

(2) (Interior multiplication by a vector ξ ∈ T (A)). ξ⌋ : Λr+1T ∗(A) → ΛrT ∗(A),
ξ⌋α = (ξiαii1···ir)δ

i1 ∧ · · · ∧ δir . One has the following properties: (i) (ξ⌋d + dξ⌋)a =
ξ⌋da = ξ(a) = ξi(∂ia) ∈ A, a ∈ A. (ii) ξ⌋d + dξ⌋d = d(ξ⌋)d + dξ⌋, (as d2 = 0). (iii)
ξ⌋(α ∧ β) = (ξ⌋α) ∧ β + (−1)rα ∧ (ξ⌋β), α ∈ ΛrT ∗(A), β ∈ ΛsT ∗(A).

(3) (Lie derivative with respect to a vector ξ ∈ T (A)). Lξ : ΛrT ∗(A) → ΛrT ∗(A),
Lξα = ξi⌋(α) + d(ξ⌋α), α ∈ ΛrT ∗(A). One has the following property: [Lξ,Lζ ] =
L[ξ,ζ], ∀ξ, ζ ∈ T (A).

12For example if A = Q[χ1, · · · , χn], one has ∂i = ∂xi, δi = dxi, i = 1, · · · , n.
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Let A be Noetherian integral domain. Then D(A) is also a Noetherian integral
domain and if S ⊂ D(A) is a left Ore domain in D(A), then one has the following
isomorphisms: S−1D(A) ∼= D(A)S−1.

(Adjoint operation). The adjoint operation identifies a functor from the category
of left D(A)-modules to the category of right D(A)-modules. More precisely m.P =
ad(P )m, for any m ∈ M , where M is a A-module, and P ∈ D(A). One has
m.PQ = ad(PQ)m = ad(Q)ad(P )m = (m.P ).Q. ad(ad(P )) = P .

ΛnT ∗(A) has a right module structure over D(A), if A is a differential ring with
derivatives {∂i}1≤i≤n.

Proof. If α = aδ1 ∧ · · · ∧ δn, a ∈ A, one has α.P = ad(P )(a)δ1 ∧ · · · ∧ δn. An
alternative proof can be given also by taking into account that D(A) is generated
by D1(A) = A

⊕
T (A). Then, any P can be considered as linear combinations of

iterated operators of first order. Such operators can be written as linear combina-
tions of term of the form a+ ξ, with a ∈ A, ξ ∈ T (A). Then, it is enough define the
right action α.(a + ξ) = α.a + α.ξ. The action α.a is defined by α(ζ)a, ∀ζ ∈ T (A).
Furthermore, one has: α.ξ = −Lξα. ¤

Proposition 2.84 ([24]). If M and N are left D(A)-modules, then HomA(M ; N)
and M

⊗
A N become left D(A)-modules. If M is a left D(A)-module and N is a

right D(A)-module, then M
⊗

A N and HomA(M ; N) become right D(A)-modules.
If M and N are right D(A)-modules, HomA(M ; N) becomes a left D(A)-modules. If
M is a left D(A)-module and N is a right D(A)-module, then one has the following
properties: (i) Mr ≡ ΛnT ∗(A)

⊗
A M is a right D(A)-module, called the converted

right D(A)-module of M . (ii) Nl ≡ HomA(ΛnT ∗(A);N) ∼= ΛnT (A)
⊗

A N is a
left D(A)-module, called the converted left D(A)-module of N . Above conversions
identify corresponding functors that are inverse to each other.

Definition 2.85. A linear differential system of order q, on the A-module E, is a
submodule over A, Eq ⊂ Iq(E) of the A-module Iq(E). We say that Eq ⊂ Iq(E) is
a normal differential system if F ≡ Iq(E)/Eq and Eq are free or projective modules
over A. We call r-prolongation of Eq, Eq+r ≡ Ir(Eq) ∩ Iq+r(E). We say that Eq is
regular if Eq+r, r ≥ 0, is a normal differential system of order q + r. We say that
Eq is formally integrable if it is regular and Eq+r+1 → Eq+r → 0 are short exact
sequences for all r ≥ 0.

Theorem 2.86 ([24]). Let Eq ⊂ Iq(E) be a differential system of order q. The
following properties hold:

(i) The following sequences are exact:

(a) 0 → Eq → Iq(E) → F → 0
(b) 0 → F ∗ → Dq(A)

⊗
A E∗ → E∗

q

(c) 0 → Eq+r → Iq+r(E) → Ir(F ) → Qr → 0
(d) 0 → Q∗

r → Dr(F ) → Dq+r(E)

Furthermore, the exact sequence D(F ) → D(E) → M → 0, defines M equipped
with the quotient filtration Mq ⊂ · · · ⊂ Mq+r ⊂ · · · ⊂ M . In general the induced
sequences Dr(F ) → Dq+r(E) → Mq+r → 0 are not necessarily exact.
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(ii) If Eq is normal then the exact sequence (a) splits and the exact sequence (b)
can be completed obtaining the following one:

(bb) 0 → F ∗ → Dq(A)
⊗
A

E∗ → E∗
q → 0.

(iii) If Eq+r is a regular system, then the sequence (c) splits and (d) can be
completed giving the following exact sequence:

(dd) 0 → Q∗
r → Dr(F ) → Dq+r(E) → E∗

q+r → 0.

(iv) If the morphism D(F ) → D(E) is strict the sequences

Dr(F ) → Dq+r(E) → Mq+r → 0

are exact. In this case we have the exact sequences: 0 → E∗
q+r → M , 0 → E∗

q+r →
E∗

q+r+1, Eq+r+1 → Eq+r → 0, for all r ≥ 0, where Eq is regular. Therefore, in such
a case Eq is formally integrable.

(v) If Eq ⊂ Iq(E) is a formally integrable linear differential system, one has

Eq+r ⊆ (Eq)+r ⇔ DrMq ⊆ Mq+r, ∀q, r ≥ 0.

More precisely one has: Eq+r = (Eq)+r for r ≥ 0 and Eq ⊆ (Ep)+(q−p), for all
p ≤ q. One has the filtration of M = E∗

∞ ⇔ E∞ = M∗ by means of Mq = E∗
q ⇔

Eq = M∗
q . The corresponding gradiation is gr(M) ≡ G, with g∗q = Gq ⇔ gq = G∗

q.
gq is the symbol of Eq. One has gq ⊆ (gp)+(q−p), for all p ≤ q, and gq+r = (gq)+r,
for all r ≥ 0.

Definition 2.87. A solution of a q-order linear differential system Eq ⊂ Iq(E),
is an element e ∈ E such that jq(e) ∈ Eq. The set of solutions is a submodule
Sol(Eq) ≡ Θ ⊂ E, over A.

Theorem 2.88. Given a formally integrable q-order linear differential system Eq ⊂
Iq(E), one has the following isomorphism:

Θ ∼= Ext0D(A)(M ; A) ∼= HomD(A)(M ; A).

Proof. As E and F are projective modules of finite rank over A, we obtain the exact
sequence of filtered left D(A)-modules:

(2.4) D(F ) → D(E) → 0.

If N is another left D(A)-module, any sequence D(F ) → D(E) → N induces a
morphism M → N of left D(A)-modules. We can define a solution of M in N such
a morphism M → N . We denote the set of such solutions by SolN (M). Let us
apply the controvariant functor HomD(A)(−; N) to the sequence (2.4), and taking
into account the following isomorphisms:

(2.5)
{

HomD(A)(D(E);N) ∼= HomD(A)(D(A)
⊗

A E∗; N) ∼= HomA(E∗; N)
∼= E∗∗ ⊗

A N ∼= E
⊗

A N

we get the following exact sequence:

0 → HomD(A)(M ; N) → E
⊗
A

N → F
⊗
A

N.
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So we get thet SolN (M) ∼= HomD(A)(M ; N) ∼= Ext0D(A)(M ; N). In the case that
N = A we get that Θ ∼= Ext0D(A)(M ; A). ¤

Theorem 2.89 (Algebraic criterion for formal integrability [24]). Let Zq = Z(pq) be
the variety defined by means of ideal pq ⊂ K[yq]d such that the following conditions
are verified:

(i) (pq)+1 = pq+1 ⊂ K[yq+1]d is also a prime ideal.
(ii) pq+1 ∩ K[yq]d = pq.
(iii) gq+1 is generic over Eq.
(iv) gq is 2-acyclic.

Then (pq)+∞ = p ⊂ K[y]d is a prime differential ideal, where p is the differential
ideal generated by a finite number of differential polynomials P1, · · · , Pt, defining
Eq, and Eq is formally integrable. If one of these conditions is not satisfied we get
that p is not a prime ideal, hence we have a factorization of p. In other words the
PDE is not formally integrable.

Proof. It follows from above propositions. ¤

Example 2.90 (D’Alembert equation). Let us consider the d’Alembert equation
(d′A) ⊂ JD2(W ), defined by means the following differential polynomial F ≡ uxyu−
uxuy, over JD2(W ), where π : W ≡ R3 → M ≡ R2, (x, y, u) 7→ (x, y). The ideal
〈F 〉 is not prime in R[u, ux, uy, uxy]. One irreducible component p1 is generated by
(ux, uy), while the other is described by the system in solved form: (d′A)′ uxy =
uxuy

u , with the localization u ̸= 0, that is formally integrable. The intersection of
these two components is described by the system

(2.6) (A)
⋂

(B) = (C) ⊂ JD2(W ) : {ux = 0, uy = 0, uxy = 0}.

Let us see under which condition a solution of the formally integrable component
(B) ⊂ JD2(W ) : {uxy = uxuy

u }, can pass for such intersection, say (A)
⋂

(B) =
(C) ⊂ JD2(W ). For example, let us consider the following solution u(x, y) =
(β

2 y2 + αy + 1)h(x), where α, β ∈ R and h(x) is an arbitrary function on one real
variable [24]. Then let us require that such a solution pass for (C) ⊂ JD2(W ). We
get that this condition requires h = γ ∈ R, α = β = 0. Therefore, we get that
u = u(x, y) is also a solution of (C) iff u = γ ∈ R, i.e., a constant function on R2.
Since π2(C) = R2 = M , it follows that we can also find nontrivial solutions of (B)
that pass for some point (x0, y0) ∈ R2 = M for (C). For example

(2.7) u(x, y) = (bex − bx)(
β

2
y2 + 1), b, β ̸= 0,

is of the type above considered. This gives, for (x0, y0) = (0, 0), u(0, 0) = b ̸= 0.
Thus the two solutions u(x, y) = b and the one given in (2.7) are both solutions of
(B), having a contact of second order in p = (0, 0) ∈ M , but the first, i.e., u(x, y) = b
is a solution of (A) also, and meets the solution (2.7) just in the intersection (C).

Example 2.91 (Some singular PDE’s). In Table 3 we report some singular PDE’s
having singularities of the type just reported in Table 2.
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Table 3. Examples of singular PDE’s

Name Singular PDE

PDE with node and triple point (u1
x)4+(u2

y)4−(u1
x)2=0

E1⊂JD(E) (u2
x)6+(u1

y)6−u2
xu1

y=0

PDE with cusp and tacnode (u1
x)4+(u2

y)4−(u1
x)3+(u2

y)2=0

Ē1⊂JD(E) (u2
x)4+(u1

y)4−(u2
x)2(u1

y)−(u2
x)(u1

y)2=0

PDE with conical double point, double line and pinch point (u1)2−(u1
x)(u2

y)2=0

Ẽ1⊂JD(F ) (u2)2−(u2
x)2−(u1

y)2=0

(u3)3+(u3
y)3+(u2

x)(u3
y)=0

π:E≡R4→R2, (x,y,u1,u2) 7→(x,y). π̄:F≡R5→R2, (x,y,u1,u2,u3) 7→(x,y).

3. Surgery, integral bordism groups and
global solutions existence theorems

In order to characterize the global properties of solutions of PDE’s we shall char-
acterize the integral bordism groups of PDE’s. Here we shall report on some results
given by A.Prástaro in [14, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32].

Let V ⊂ Jk
n(W ) be an integral manifold, dimV = p, p ≤ n − 1. We denote

by Σ(V ) ⊂ V the set of all singular points of the mapping πk,0 : V → W , and
Σl(V ) ≡

{
q ∈ V |dim(ker(πk,0|V )∗,q) = l

}
⊂ Σ(V ). Set L0,q ≡ ker(πk,0|V )∗,q ⊂ TqV .

Then, one has L0,q ⊂ Sk(Ξq)
⊗

νa for some subspace Ξq ⊂ L∗
q . We will consider only

the minimal subspace Ξq with the above property. An integral manifold V ⊂ Jk
n(W )

will be called admissible if the following properties hold:
(i) Σ(V ) ⊂ V has no open subsets and has no frozen singularities, i.e., for any

q ∈ Σ(V ), L0,q is a degenerate subspace in Sk(Ξq)
⊗

νa, with respect to the exterior
2-form Ω(q)(λ) ∈ C∞(Λ2(Ek

n(W )∗q)). Recall that

kerΩ(q)(λ) =
{
θ ∈ Sk(T ∗

a N) ⊗ νa|δθ ∈ T ∗
a N ⊗ gλ

}
=̃g

(1)
λ

where gλ is a symbol space of tensor λ ∈ Sk−1(TaN)⊗ ν∗
a : gλ ≡

{
γ ∈ Sk−1(T ∗

a N)⊗
νa | 〈λ, γ〉 = 0

}
. (ii) There is a vector bundle e : H → V such that the fibers Hq ⊃ Ξq

for any point q ∈ V , satisfy the following conditions: Ξq ⊂ Hq ⊂ L∗
q , dimHq ≤ l.

(iii) The family L0 : q 7→ L0,q over Σ(V ) can be prolonged to some subbundle
L0 ⊂ H

⊗
ν. (iv) If V is a compact closed integral manifold of dimension p,

0 ≤ p ≤ n − 1, for V passes at least one integral manifold of dimension (p + 1)
that satisfies above conditions (i), (ii), (iii). More precisely, we shall assume that
an integral manifold V of dimension p ≤ n − 1, is admissible if its set of singular
points Σ(V ) can be solved by means of integral deformations. Furthermore, we say
that V is integral admissible with respect to a PDE Ek, if V is admissible in the
above sense, is contained into Ek, and the (p + 1)−dimensional integral manifold
mentioned in the above point (iv) is also contained into Ek. Let Ek ⊂ Jk

n(W ), k ≥ 0,
be a k-order PDE, dimW = n+m. If fi : Pi → Ek, i = 1, 2, are C∞ mappings that
represent p-dimensional integral admissible manifolds Ni ⊂ Ek respectively, then
N1 ∼Ek

N2 ⇔ ∃ a C∞ mapping f : R → Ek such that R is a (p + 1)-dimensional
smooth manifold with ∂R = P1

.⋃
P2, f |Pi = fi, i = 1, 2, and the following condition
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is verified: (i) f(R) ≡ V ⊂ Ek is a (p+1)-dimensional piecewise admissible integral
manifold of Ek. Then we say that N1 and N2 are Ek-bordant. We call ΩEk

p , the
integral p-bordism group of Ek. Note that if N = ∂V is nonorientable, V cannot be
simply connected. In fact, a compact nonorientable p-manifold without boundary
cannot be embedded in a simply connected (p + 1)-manifold [26]. The empty set
∅ will be regarded as a p-dimensional compact closed admissible integral manifold
for all p ≥ 0. ∼Ek

is an equivalence relation. We write ΩEk
p for the set of all Ek-

bordism classes [N ]Ek
of compact closed p-dimensional admissible integral manifolds

of Ek, 0 ≤ p ≤ n − 1. The operation of taking disjoint union
.⋃

defines a sum +
on ΩEk

p such that ΩEk
p becomes an abelian group. The class [∅]Ek

defines the zero
element. For k = 0 we set ΩE0

p = Ωp(E0), where E0 ⊂ J0
n(W ) ≡ W, and Ωp(E0) is

the p-bordism group of E0. We shall denote by Ωp, p ∈ N, the p-bordism groups of
unoriented smooth compact p-dimensional manifolds.

For any couple (Jk
n(W ), Ek), where Ek ⊂ Jk

n(W ) is a PDE, we will denote by
Ωp(Ek), p ∈ {0, . . . , n − 1}, the corresponding relative integral p-bordism groups,
and we call them the quantum p-bordism groups of Ek.

The existence of admissible p-dimensional manifolds is obtained solving Cauchy
problems of order p ∈ {0, · · · , n− 1}, i.e., finding n-dimensional admissible integral
manifolds (solutions) of a PDE Ek ⊂ Jk

n(W ), that contains some fixed integral
manifolds of dimension p < n. We call low dimension Cauchy problems, Cauchy
problems of dimension 0 ≤ p ≤ n − 2. We simply say Cauchy problems, Cauchy
problems of dimension p = n − 1.

In a satisfactory theory of PDE’s it is necessary to consider in a systematic way
also weak solutions, i.e., solutions V , where the set Σ(V ) of singular points of V ,
contains also discontinuity points, q, q′ ∈ V , with πk,0(q) = πk,0(q′) = a ∈ W , or
πk(q) = πk(q′) = p ∈ M . We denote such a set by Σ(V )S ⊂ Σ(V ), and, in such cases
we shall talk more precisely of singular boundary of V , like (∂V )S = ∂V \ Σ(V )S .
However for abuse of notation we shall denote (∂V )S , (resp. Σ(V )S), simply by
(∂V ), (resp. Σ(V )), also if no confusion can arise. Solutions with such singular
points are of great importance and must be included in a geometric theory of PDE’s
too.

Let ΩEk
n−1, (resp. ΩEk

n−1,s, resp. ΩEk
n−1,w), be the integral bordism group for (n−1)-

dimensional smooth admissible regular integral manifolds contained in Ek, borded
by smooth regular integral manifold-solutions,13 (resp. piecewise-smooth or singular
solutions, resp. singular-weak solutions), of Ek.

Theorem 3.1 ([25]). Let us assume that Ek is formally integrable and completely
integrable, and such that dimEk ≥ 2n + 1. Then, one has the following canon-
ical isomorphisms: ΩEk

n−1,w
∼= ⊕r+s=n−1Hr(W ; Z2) ⊗Z2 Ωs

∼= ΩEk
n−1/KEk

n−1,w
∼=

ΩEk
n−1,s/KEk

n−1,s,w. Furthermore, if Ek ⊂ Jk
n(W ), has non zero symbols: gk+s ̸= 0,

s ≥ 0, (this excludes that can be k = ∞), then KEk
n−1,s,w = 0, hence ΩEk

n−1,s
∼= ΩEk

n−1,w.

Here we want relate the concept of conservation laws with the existence of smooth
solutions bording Cauchy manifolds in PDE’s, and with the integral bordism groups.

13This means that N1 ∈ [N2] ∈ Ω
Ek
n−1, iff N

(∞)
1 ∈ [N

(∞)
2 ] ∈ ΩE∞

n−1. (See refs.[26] for notations.)
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Definition 3.2 ([25]). We define (differential) conservation law of a PDE Ek ⊂
Jk

n(W ), any differential (n − 1)-form β belonging to the following quotient space:

Cons(Ek) ≡ Ωn−1(E∞) ∩ d−1CΩn(E∞)
CΩn−1(E∞)

⊕
dΩn−2(E∞)

,

where Ωq(E∞), q = 0, 1, 2, . . . , is the space of differential q-forms on E∞ , CΩq(E∞)
is the space of all Cartan q-forms on E∞, q = 1, 2, . . . , and CΩo(E∞) ≡ 0,
CΩq(E∞) ≡ Ωq(E∞), for q > n, Ω−1(E∞) = 0.14 Thus a conservation law is a
(n − 1)-form on E∞ non trivially closed on the (singular) solutions of Ek.

Theorem 3.3 ([25]). There exists a canonical representation of the space of differ-
ential conservation laws of Ek in H(E∞) ≡ RΩE∞

n−1.

Definition 3.4 ([25]). We call full p-Hopf algebra,(or space of the full p-conservation
laws), of Ek ⊂ Jk

n(W ) the following Hopf algebra: Hp(Ek) ≡ RΩ
Ek
p .15 In particular

for p = n − 1 we write H(Ek) ≡ Hn−1(Ek) and we call full Hopf algebra of Ek,
H(E∞) ≡ Hn−1(E∞). If 〈E0,n−1〉 ∼= H(E∞) ≡ RΩE∞

n−1 , we say that Ek is wholly
Hopf-bording.

Theorem 3.5 ([25]). If ΩE∞
n−1 is trivial then Ek is wholly Hopf-bording. Further-

more, in such a case E0,n−1 = 0.

In order to distinguish between integral manifolds V representing singular so-
lutions, where Σ(V ) has no discontinuities, and integral manifolds where Σ(V )
contains discontinuities, we shall consider “conservation laws” valued on integral
manifolds N representing the integral bordism classes [N ]Ek

∈ ΩEk
p .

Definition 3.6 ([23, 24, 25]). Set: I(Ek)p ≡ Ωp(Ek)∩d−1(CΩp+1(Ek))
dΩp−1(Ek)⊕{CΩp(Ek)∩d−1(CΩp+1(Ek)))} .

Then we define integral characteristic numbers of N , with [N ]Ek
∈ ΩEk

p , the numbers

i[N ] ≡ 〈[N ]Ek
, [α]〉, ∀[α] ∈ I(Ek)p.

Theorem 3.7. [22, 23] Let Ek ⊆ Jk
n(W ) be a PDE. Let us consider admissible p-

dimensional, p ∈ {0, 1, · · · , n− 1}, integral manifolds that are orientable. Let N1 ∈
[N2]Ek

∈ ΩEk
p , then there exists a (p + 1)-dimensional integral manifold V ⊂ Ek,

such that ∂V = N1

.⋃
N2, where V is without discontinuities iff the integral numbers

of N1 and N2 coincide.

Remark 3.8. Integral bordism groups allow us to identify a large class of PDE’s,
(extended crystal PDE’s), where their integral bordism groups are extensions of
crystallographic subgroups. There we can identify obstructions to existence of global
smooth solutions with some suitable charactersic classes. (For more details see
[29, 30, 31, 32, 33].)

14CΩq(E∞) ≡ {β ∈ Ωq(E∞)|β(ζ1, · · · , ζq)(p) = 0, ζi(p) ∈ (E∞
n )p, ∀p ∈ E∞}.

15H(E∞) has a natural structure of Hopf algebra if ΩE∞
n−1 is a finite group, otherwise it is an

extension of an Hopf subalgebra. (See [22, 23].)
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Figure 1. d’Alembert singular solutions (a) e (b).

Definition 3.9. Let Ek ⊂ Jk
n(W ) be a singular PDE, that splits in irreducible

components Ai, i.e., Ek =
⋃

i Ai. Then, we say that Ek admits an algebraic singular
solution V ⊂ Ek, if V

⋂
Ar ≡ Vr is a solution (in the usual sense) in Ar for at least

two different components Ar, say Ai, Aj , i ̸= j, such that Ai
⋂

Aj ̸= ∅.
Let N1, N2 ⊂ Ek ⊂ Jk

n(W ) be two (n − 1)-dimensional admissible integral man-
ifolds. We say that N1 algebraic integral bords with N2, if N1 and N2 belong to
two different irreducible components, say N1 ⊂ Ai, N2 ⊂ Aj , i ̸= j, such that there
exists an algebraic singular solution V ⊂ Ek such that ∂V = N1

.⋃
N2.

In the singular integral bordism group ΩEk
n−1,s of a singular PDE Ek ⊂ Jk

n(W ),
we call algebraic class a class [N ] ∈ ΩEk

n−1,s, with N ⊂ Aj , such that there exists a
(n − 1)-dimensional admissible integral manifolds X ⊂ Ai ⊂ Ek, algebraic integral
bording with N , i.e., there exists an algebraic singular solution V ⊂ Ek, with
∂V = N

.⋃
X.

Theorem 3.10. (Singular integral bordism group of singular PDE.) Let Ek ⊂
Jk

n(W ) be a singular PDE, that splits in irreducible components Ai, i.e., Ek =
⋃

i Ai.
Then a smooth solution V ⊂ Ek is the one that belongs to some of its irreducible
components Ai. If Ai

⋂
Aj ̸= ∅, then V is an algebraic singular solution belonging

to both Ai and Aj iff Vij ≡ (Vi ≡ Ai
⋂

V )
⋂

(Vj ≡ Aj
⋂

V ) ̸= ∅. In such a case we
say that V bifurcates along Vij ⊂ V .16

Proof. It is a direct consequence of above results and definitions. ¤

Example 3.11 (d’Alembert equation singular PDE and global algebraic singular
solution). Let us consider again the singular d’Alembert equation (Example 2.90).
If N1 ⊂ (A) and N2 ⊂ (B), it follows that N1

.⋃
N2 = ∂V , where V = V1

⋃
Z V2,

where Z is reduced to the point p = (0, 0), in (A)
⋂

(B) = (C) and V1 is the disk

16Note that the bifurcation does not necessarily imply that the tangent planes in the points of
Vij ⊂ V to the components Vi and Vj , should be different. See, e.g. Fig.1(a).
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D2, identified with the solution u(x, y) = b ∈ (C), with boundary N1, and V2 is
identified with the solution in (B) passing for p and bording N2. So V is an algebraic
singular solution of (d′A), obtained by surgering V1 with V2 at p. (See Fig.1(a).)

In this way the algebraic singular integral bordism allows to generalize integral
bordism to all the components of (d′A) and not only to the solved form (B). With
this respect we can state that Ω(d′A)

1,s = 0, by considering (d′A) as a singular PDE.

Note that Ω(A)
1,s

∼= Ω(B)
1,s = 0. Another algebraic singular solution of (d′A) can be

obtained by cutting, with the solution u = b′ ̸= b, the above solution V2 of (B). In
this way one obtains circular sector V ′

1 on the plane u = b′, with boundary N ′
1

.⋃
Z ′.

Then the new algebraic singular solution is V ′ = V ′
1

⋃
Z′ V ′

2 , where V ′
2 has boundary

Z ′ ⋃ N2. (See Fig.1(b).)
Finally note that u(x, y) = b ∈ R is a smooth solution of the singular PDE (d′A),

belonging to both components (A) and (B) since it belongs also to (A)
⋂

(B). In
the above examples of algebraic singular solutions one has that the bifurcation set
is reduced to a point in Fig.1(a) and to a circle in Fig.1(b).

4. Surgery and global solutions in singular
ordinary differential equations

Nonsingular ordinary differential equations (ODE’s) have some particularities,
with respect to PDE’s, one of most important is that for ODE’s the Cartan dis-
tribution is necessarily 1-dimensional and the symbol is trivial. Let us however
note that some important 1-dimensional dimensional characteristic distributions of
PDE’s can exist also for PDE’s. (See the following example. There, the characteris-
tic distribution is related to solutions of Cauchy problems.) In this section we shall
characterize singular ODE’s and to see how global solutions passing through sin-
gular points, can be obtained by surgering techniques. Furthermore, we shall show
that singular points in ODE’s are sources of unstabilities in the global solutions
passing through them.

Example 4.1. 1) (Cauchy problems and characteristic curves). Let us consider the
following PDE:

E1 ⊂ JD(W ), π : W ≡ Rn × R → Rn;
{

Pα(xβ , u)uα + Q(xβ , u) = 0
}

.

Its Cartan distribution E1 is generated by the following differential 1-forms:{
ω0 ≡ [(∂xγ .Pα)uα + (∂xγ .Q)]dxγ + [(∂u.Pα)uα + (∂u.Q)]du + Pαduα

ω1 ≡ du − uαdxα

}
.

Therefore the Cartan distribution E1 is generated by the following vector fields:

ζ = Xα(∂xα + uα∂u) + Zα∂uα, Xα, Zα ∈ C∞(JD(W ), R)

such that

ZαPα = −Xγ [(∂xγ .Pα)uα + (∂xγ .Q) + (∂u.Pα)uαuγ + (∂u.Q)uγ ].
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Therefore, dimE1 = 2n − 1. Its completely integrable sub-distribution (character-
istic distribution), is obtained by means of the following conditions:{

〈ζ, dω0〉 = Aω0 + Bω1

〈ζ, dω1〉 = Āω0 + B̄ω1

}
, A,B, Ā, B̄ ∈ C∞(JD(W ), R)

⇓{
Xα = ĀPα

−Zα = Ā[P β
α uβ + Qα + P β

u uβuα + Quuα]

}
.

Therefore the characteristic distribution Char(E1) ⊂ E1 is 1-dimensionale and
generated by the following vector:

ζ = P γ [∂xγ + uγ∂u] − [P β
x uβ + Qα + P β

u uβuα + Quuα]∂uα.

Therefore, if N ⊂ E1 is a (n − 1)-dimensional integral manifold, such that ζ(p) ̸∈
TpN, ∀p ∈ N , the flow generated by ζ produces an admissible integrale manifold
V ⊂ E1, of dimension n: V =

⋃
t φt(N), ζ = ∂φ. The corrisponding characteristic

distribution on W is generated by ζ = P γ [∂xγ + uγ∂u] and generates the solution
on W .

For example let us consider the following first order PDE E1 ⊂ JD(W ), {uxx+
uyy = 1}. The corresponding characteristic vector field is given by ζ = x∂x +
y∂y + ∂u− ux∂ux − uy∂uy. The characteristic curves satisfy the following ordinary
differential system:


ẋ = x
ẏ = y
u̇ = 1
u̇x = −ux

u̇y = −uy

 ⇒



dx
x = dt ⇒ x(t) = c1e

t

dy
y = dt ⇒ y(t) = c2e

t

du = dt ⇒ u(t) = t + u0

ux(t) = c3e
−t

uy(t) = c4e
−t


.

Therefore, by considering an admissible 1-dimensionale integral manifold y = y0,
defined by the following equations: F I(x, y0, u, ux, uy) = 0, 1 ≤ I ≤ 3, we get
that the generated 2-dimensional integral manifold is identified by the equations:
F I(xet, y0e

t, u + t, uxe−t, uye
−t) = 0, 1 ≤ I ≤ 3.

In singular ODE’s the Cartan distribution does not necessitate to be 1-dimensional
in the singular points. In fact one has the following theorem.

Theorem 4.2 (Integral characterization singular points in ODE’s). Let Ek ⊂
JDk(W ) be an ODE on the fiber bundle π : W → M , where dimW = m + 1
and dimM = 1. One has the following propositions.

(i) If Ek is a determined non-singular ODE, then its Cartan distribution Ek is
1-dimensional and its symbol (gk)q = 0, ∀q ∈ Ek. Furthermore, any smooth solution
V ⊂ Ek necessitates to be stable at finite times.17

(ii) If Ek is a singular ODE, then for its Cartan distribution (Ek)q, in a singular
point q ∈ Ek, can be verified the following situations:

17But does not necessitate to be asymptotically stable. Note that the average stability for
solutions of ODE’s coincides with the asymptotic stability.
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(a) (Full degeneration). The jacobian matrix (∂ξL.F i)(q) = 0, where F i = 0 are

the local equations encoding Ek and (ξL) ≡ (t,
(·α)
u j), 0 ≤ α ≤ k, are the coordinates

on JDk(W ).18 Then, (Ek)q = Ek(W )q, i.e., the Cartan distribution at q, coincides
with the Cartan distribution of JDk(W ) at the same point q. Furthermore, the
symbol (gk)q

∼= vTq̄W , i.e., the symbol of Ek at q, coincides with the symbol of the
trivial ODE JDk(W ) ⊆ JDk(W ). In such a case we say that the integral singular
dimension of q is m.

(b) The rank of (∂ξL.F i)(q) is m − s, m > 1, s < m. Then (Ek)q may be unde-
termined, whether some conditions are not satisfied, (integral singular consistence
conditions). When these conditions are satisfied, the dimension of (Ek)q is 1 + s.
We call s the integral singular dimension of such a singular point q. There the

symbol (gk)q has dimension s: dim(gk)q = s. If m = 1, (∂
(·k)
u .F )(q) = 0, then

dim(gk)q = 1 and dim(Ek)q ∈ {1, 2}. In such a case we say that q has integral
singular dimension s = 1.

Furthermore, in both cases (a) and (b), any smooth solution V ⊂ Ek passing
through a singular point does not necessitate to be functional stable, i.e. there can
occurr finite times unstabilities.19

Proof. (i) In this case we can assume that the local equations

F i(t, uj , u̇j , · · · ,
(·k)
u j) = 0, i = 1, . . . ,m, can be solved with respect

(·k)
u j . This im-

plies that Ai
j ≡ (∂

(·k)
u j .F

i) is a m×m matrix that in any point of Ek has determinant
different from zero. Then in such a case one has that Ek is a smooth submanifold
of JDk(W ) of dimension dimEk = dimJDk(W )−m = 1+m(1+k)−m = 1+mk.
Furthermore a Cartan vector field of Ek is a vector field ζ on JDk(W ) of the type

ζ = T (∂t +
∑

0≤α≤k−1

(·1+α)
u j∂

(·α)
u j) + Zj∂

(·k)
u j , where T and Zj , 1 ≤ j ≤ m, are

numerical functions on JDk(W ), such that ζ.F i = 0. So these functions must solve
the system:

(4.1)

Zj(∂
(·α)
u j .F

i) = −T [(∂t.F i) +
∑

0≤α≤k−1

(·1+α)
u j(∂

(·α)
u j .F

i)]

F i(t, uj , · · · ,
(·k)
u j) = 0

Under the condition that det(∂
(·k)
u j .F

i) = det(Ai
j) ̸= 0, one has the following unique

solution of the system (4.1):

(4.2)


Zj(q) = −Tbi(q)(A−1)j

i (q)

bi(q) = [(∂t.F i) +
∑

0≤α≤k−1

(·1+α)
u j(∂

(·α)
u j .F

i)]
q ∈ Ek.

18We adopt the notation that vertical coordinates in JDk(W ) are written in the form
(·α)
u j ,

with 0 ≤ α ≤ k, and we set
(·0)
u j = uj .

19In the case where (Ek)q is undertermined, there is no solution passing through the singular
point q ∈ Ek. However, if in the neighbourhood of q there exist solutions tending to such a point
q, we can, for continuity surgery such solutions.
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Thus the Cartan distribution of Ek is the 1-dimensional distribution generated by
the following vector field

(4.3) ζ = ∂t +
∑

0≤α≤k−1

(·1+α)
u j∂

(·α)
u j − bi(A−1)j

i∂
(·k)
u j .

The equation of the symbol can be written XiAj
i = 0. Since det(Aj

i ) ̸= 0, it follows
that the unique solution is Xi = 0, hence (gk)q = 0, for all q ∈ Ek. This has as a
consequence that any smooth solution of Ek is functionally stable, i.e., there cannot
occurr finite times unstabilities.

(ii) If, instead, there points q ∈ Ek, where det(Aj
i )(q) = 0, and the rank of (Aj

i )(q)
is m − s, then the linear equation (XiAj

i )(q) = 0 has there s linearly independent

solutions, say (
(1)

X, · · · ,
(s)

X). The same happens for the adjoint equation A∗(α) = 0.

Say (
(1)
α , · · · ,

(s)
α ). Then equation (4.1) has, in such points, solutions iff the following

consistence conditions are satisfied.

(4.4) 〈
(r)
α , b〉 =

∑
1≤j≤m

(r)
α jb

j = 0, 1 ≤ r ≤ s.

In such a case equation (4.1) has an infinite number of solutions:

(4.5) Zj(q) =
∑

1≤r≤s

Cr

(r)

X
j(q) − T (q)W j(q)

where Cr ∈ R are arbitrary constants, and W (q) ∈ (A−1)(q)(b(q)), q ∈ Ek. This
means that the Cartan distribution of Ek, in the points q ∈ Ek, where det(Aj

i )(q) =
0, has dimension 1 + s. Since, in such points, one has that the linearly indipendent
solutions of the symbol equation (X iAj

i )(q) = 0 are just s, we get dim(gk)q = s,
when q is a singular point of Ek. Then, if V is a smooth solution passing through
such a point, it can exhibit a finite time unstability. Finally, in the case where
conditions (4.4) are not satisfied in the singular point q ∈ Ek, the system (4.1) has
not solutions, hence the Cartan distribution is not determined there. In order to
complete the proof of the theorem, let us assume that (∂ξL.F i)(q) = 0, i.e., case
(a). Then equation (4.1) is satisfied for any vector field ζ of Ek(W )q, hence (Ek)q =
Ek(W )q and dim(Ek)q = dimEk(W )q = m. Therefore, also in this case hold the
same considerations on the stability of solutions. The particular case m = 1 can
be similarly proved. (For a geometric theory of stability of PDE’s and solutions of
PDE’s see some recent works on this subject by A.Prástaro [28, 30, 31, 32, 33].) ¤

Definition 4.3. A singular ODE Ek ⊂ JDk(W ) is one that splits in irreducible
components Ek =

⋃
Ai, where each Ai is an ODE.

An algebraic singular solution of a singular ODE, is one that can be obtained by
surgering solutions of some components Ai, Aj ⊂ Ek, such that Ai

⋂
Aj ̸= ∅.

Theorem 4.4 (Smooth and bifurcating solutions in singular points of ODE’s).
An algebraic singular solution V of a singular ODE is a smooth solution iff the
Cartan distribution of Ek in the points where V ⊂ Ai

⋂
Aj ̸= ∅ admits a smooth

1-dimensional sub-distribution.
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If V is not smooth, then one says that the singularity points are bifurcation
points.20

An algebraic singular solution V = Vi
⋃

Vj, with Vi ⊂ Ai and Vj ⊂ Aj, of a
singular ODE Ek does not necessitate to conserve the stability behaviour when one
pass through a singular point.

Proof. In fact, if in the points V ⊂ Ai
⋂

Aj ̸= ∅ there exists a 1-dimensional
smooth subdistribution of the Cartan distribution, the corresponding integral curve
is smooth.

The existence of singular points in ODE’s implies that the symbol of the equation
there is not zero, in general. So do not necessitate to be functionally stable a solution
passing there. Furthermore, the different branches in a global solution passing
through a singular point, can have different asymptotic stability behaviours. Then,
if there exists a bifurcation point on V , then the asymptotic stability of V1 does not
necessitate coincide with the one of V2. ¤

Example 4.5 (Some singular ODE’s). In Table 4 we report some singular ODE’s
having singularities of the type just reported in Table 2.

Table 4. Examples of singular ODE’s

Name Singular ODE
ODE with node: E2 ⊂ JD2(E) ü4 + u̇4 − ü2 = 0
ODE with triple point: Ē2 ⊂ JD2(E) ü4 + u̇4 − üu̇ = 0
ODE with cusp: Ẽ2 ⊂ JD(E)2 ü4 + u̇4 − ü3 + u̇2 = 0
ODE with tacnode: Ê2 ⊂ JD(E)2 ü4 + u̇4 − ü2u̇ − üu̇2 = 0
ODE with conical double point: Ẽ2 ⊂ JD2(E) ü2 − u̇u2 = 0
ODE with double line: Ê2 ⊂ JD2(E) ü2 − u̇2 − u2 = 0
ODE with pinch point: E2 ⊂ JD2(E) ü3 + u3 + u̇u = 0

π : E ≡ R2 → R, (t, u) 7→ t.

For example, let us consider the first equation in Table 4. Let us consider the fiber
bundle π : E ≡ R2 → M ≡ R, (t, u) 7→ t. The corresponding fibered coordinates on
JD2(E) ∼= R4 are (t, u, u̇, ü). In the plane R2, (u̇, ü), we can identify an algebraic
curve Γ, with equation given just by the equation encoding E2, i.e., F ≡ ü4 + u̇4 −

20An ordinary smooth differential equation, (without singular points), cannot be web-chaotic
[2]. In fact, its Cartan distribution is 1-dimensional. Let us remark that even if a nonsingu-
lar ordinary differential equation cannot be web-chaotic, we can, in general, recognize for such
equations web-structures on the configuration sapce W , associated to their solutions. However,
these web-structures must not be confused with the web-chaotic concept. For example a first or-
der ordinary differential equation of the type E1 ⊂ JD(W ), F (t, u, u̇) = 0, over the fiber bundle
π : W ≡ R2 → R, (t, u) 7→ t, that admits the following solved forms u̇ = fi(t, u), i ∈ {1, · · · , s},
identifies on W ≡ R2, an s-web (of codimension 1), where each foliation is identied by means of
solutions of each equation u̇ = fi(t, u). In other words the solutions of F (t, u, u̇) = 0 identify on W
an s-web. A more concrete example is the well-known equation u̇3 + uu̇ − t = 0, (symmetric wave
front), identifies a 3-web on R2. However, this equation is not web-chaotic.
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ü2 = 0. Then we can represent E2 as the following trivial fiber bundle

(4.6) E2 =
⋃
a∈Γ

R2 ∼= Γ × R2.

In this trivial fiber bundle the fiber is the vector space R2 and the basis is the
algebraic curve Γ. Thus we can say that dim E2 = 3 and that the canonical surjective
mapping π2,0 : JD2(E) → E, remains surjective, when restricted to E2. In fact,
one has the natural surjection π2,0 : E2 → E ∼= R2, (a, t, u) 7→ (t, u). Note that the
point of singularity in E2 is just the fiber (E2)a=(0,0)

∼= R2. In fact, one has

(4.7) ((∂t.F ) (∂u.F ) (∂u̇.F ) (∂ü.F )) = (0 0 4u̇3 2ü2(2ü2 − 1)).

Therefore, with respect to Theorem 4.2 the singular points of this equation are of
the type full degeneration. In fact, (E2)q

∼= E2(E)q
∼= R2 that is the vector space

generated by the following two vectors {∂t, ∂ü}, i.e., the Cartan vector space of
JD2(E) at the points q = (t, u, 0, 0) ∈ E2 ⊂ JD2(E).

We can split E2 in the following way

(4.8) E2 = A1

⋃
(E2)a=(0,0)

⋃
A2

where Ai, i = 1, 2 are the regular parts of E2. So the singular part (E2)a=(0,0)

separates the regular parts. The Cartan distribution in the regular parts is the
1-dimensional distribution generated by the following vector field

(4.9) ζ = ∂t + u̇∂u + ü∂u̇ +
2u̇3

1 − 2ü2
∂ü.

Then one can see that lim(u̇,ü)→(0,0) ζ = ∂t. Therefore we can prolonge for continuity
a solution approaching the singular points with a time-like curve tangent to ∂t, that
belongs to the Cartan distribution at the singular points. Such an algebraic singular
solution is not functionally stable since dim(g2)q = 1, where q ∈ (E2)a=(0,0). This
is a bifurcation point.

Example 4.6 (Draining flow boundary value problem). Let us consider the follow-
ing ODE on the trivial vector fiber bundle π : E ≡ R2 → R, (t, u) 7→ t,

(4.10) E3 ⊂ JD3(E) ∼= R5 : {F ≡ u2 ...
u−1 = 0}.

Let us note that E3 is not properly a singular equation as usually one considers.
(See e.g.,[1, 3].) In fact the jacobian of the function F is given by the following 1×5
matrix

(4.11) (j(F )) = ((∂t.F ) (∂u.F ) (∂u̇.F ) (∂ü.F ) (∂
...
u .F )) = (0 2u

...
u 0 0 u2)

therefore it degenerates only in the points of JD3(E) with u = 0. But such points
do not properly belong to E3. In fact, E3 can be represented as the following trivial
unconnected fiber bundle

(4.12) E3 = (a)E3

.⋃
(b)E3 ≡ Γ(a) × R3

.⋃
Γ(b) × R3

where Γ(a) and Γ(b) are algebraic curves in the plane R2 of (u,
...
u), identified by the

equation F = 0, and R3 is the space of (t, u̇, ü). So E3 is a smooth submanifold
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of JD3(E). Furthermore, its Cartan distribution E3 ⊂ TE3 is the 1-dimensional
distribution generated by the following smooth vector field on E3:

(4.13) ζ = ∂t + u̇∂u + ü∂u̇ +
1
u2

∂ü − 2
u3

∂
...
u .

Therefore, for any initial condition, i.e., any q ∈ E3, there exists an unique smooth
solution passing for there, i.e., an unique integral curve on E3 tangent to ζ in q.
Boundary value problems with two end points conditions, admit smoooth solutions
if these points belong to the same connected component of E3 and to the same
flow line of ζ. In such a case one has an unique regular smooth solution, for such
boundary conditions. Whether we require, instead, that the solution can be a
weak solution, then the uniqueness is not more guaranteed and the two end points
conditions do not necessitate to belong to the same connected component of E3.
Another, typical boundary value problem with such an equation is the following.
(See [1, 3] and references quoted in the first above paper.)

(4.14)


u

...
u−1 = 0

u(0) = 1
u̇(0) = 0
limt→−∞ ü(t) = 0.

Since t, u̇ and ü do not explicitly appear in equation F = 0, one has that points like
(0, 1, 0, ü,

...
u) ∈ E3 are on E3 iff

...
u = 1. Thus the initial condition in (4.14) implies

that the initial points on E3 are the following ones q0 ≡ (0, 1, 0, ü, 1) ∈ E3. In such
points the Cartan vectors are the following ζ0 = ∂t+ü∂u̇+∂ü−2∂

...
u. Therefore, since

ü is arbitrary we get that there exists an infinity of solutions satisfying the infinity of
initial conditions contained in the boundary value problem (4.14). Furthermore, the
asymptotic condition limt→−∞ ü(t) = 0, in the boundary value problem (4.14) has
sense, since the points {(t, u, u̇, 0,

...
u) ∈ JD3(E)|u ...

u−1 = 0} are on E3. On the other
hand the Cartan vector field in the points that satisfy such asymptotic condition
is the following smooth vector field ζ−∞ = ∂t + u̇∂u + 1

u2 ∂ü − 2
u3 ∂

...
u. So we can

try to find solutions of the boundary value problem (4.14) such that ü = aebt, with
a, b ∈ R, b > 0. In fact for such a function one has that the asymptotic condition
limt→−∞ ü(t) = 0, in the boundary value problem (4.14) is satisfied. By direct
integration of this function we get u = a

b2
ebt + ct + d, c, d ∈ R. Let us determine

the constants by imposing to satisfy the initial conditions in the boundary value
problem (4.14). Then we get

(4.15) u =
1
b3

ebt − 1
b2

t + (1 − 1
b3

), b > 0.

So the solutions of the boundary value problem (4.14) is an open 1-dimensional
submanifold of Sol(E3) identified with R+.

Example 4.7 (Gas dynamic through a semi-infinite porous medium boundary value
problem). Let us consider the following ODE on the trivial vector bundle π : E ≡
R2 → R, (t, u) 7→ t,

(4.16) E2 ⊂ JD2(E) ∼= R4 : {F ≡ üu1/2 + 2tu̇ = 0}.
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Note that the jacobian of F , on E2 is given by the following 1 × 4 matrix

(4.17) j(F )|E2 = (2u̇ − t
u̇

u
2t u2).

Therefore, the unique singular point on E2 is q0 ≡ (0 0 0 0) ∈ E2. This is completely
degenerate. The other points q ∈ E2 are regular points and there the Cartan
distribution is 1-dimensional, generated by the following smooth vector field on
E2 \ {q0}:

(4.18) ζ = ∂t + u̇∂u − u̇

u1/2
2t∂u̇ − u̇

u1/2
(2 − u̇

u
t − 4t2

1
u1/2

)∂ü.

Thus for any regular point q ∈ E2 one has a unique solution of E2, i.e., an unique
smooth integral curve passing for q. The Cartan distribution at q0 coincides with
the Cartan vector space E2(E)q0 of JD2(E) at q0, i.e.,

(4.19) ζ(q0) = [T (∂t + u̇∂u + ü∂u̇) + Z∂ü]q=q0 = T∂t + Z∂ü, T, Z ∈ R.

Therefore E2(E)q0 is a 2-dimensional vector space. A regular smooth solution be-
longing to E2 \ {q0} can be eventually prolonged until to pass through q0, since
(E2)q0 = E2(E)q0 . However, such a prolonged solutions have in general finite times
unstability, since the symbol (g2)q0 of E2 at q0 is just the symbol of JD2(E) there,
i.e., (g2)q0

∼= vTq̄0E
∼= R, where q̄0 = π2,0(q0) ∈ E.

For such an equation a typically asymptotic boundary value problem is the fol-
lowing. (See, e.g. [1] and works quoted there.)

(4.20)


üu1/2 + 2tu̇ = 0
limt→0 u(t) = 1 − α, 0 < α ≤ 1
limt→∞ u(t) = 1

Let us assume 0 < α < 1 only. In such a case the point (0, u(0) = 1 − α, u̇, ü)
is on E2 iff ü = −2t u̇

u1/2 |t=0,u=1−α = 0. Therefore, the first condition in (4.20)
on E2 requires that the integral curve should start from a point (0, 1 − α, u̇, 0).
Therefore, the corresponding Cartan vectors are the following ones ζ→0 = ∂t +
u̇∂u− 2 u̇

(1−α)1/2 ∂ü. Furthermore, the condition limt→∞ u(t) = 1 can be satisfied by

looking that from equation F = 0 we get limt→∞ u(t)1/2 = limt→∞−2t u̇
ü . Therefore,

the above asymptotic condition is satisfied if limt→∞−2 u̇
ü = 1

t . So let us consider
the equation −2 u̇

ü = 1
t . Its integral gives u = c1

∫
e−t2dt + c2, c1, c2 ∈ R. This

means that the overdetermined system

(4.21) Ẽ2 ⊂ JD2(E) :
{

üu1/2 + 2tu̇ = 0
ü + 2tu̇ = 0

has the unique solution u = 1. Since Ẽ2 ⊂ E2, we can also say that u = 1 is a
solution of the original equation E2, and we call it the ∞-asymptotic solution of E2

and denote it with the symbol u(∞) ∈ Sol(E2). Thus we can obtain a solution of the
boundary value problem (4.20) by gluing any solution of the initial condition, in
such a way that u̇ > 0, with u(∞). This is possible since u̇ is arbitrary. Finally from
the equation F = 0 we get ü = −2t u̇

u1/2 < 0. This means that such solutions have
down-concavity. The solutions so built are every-where smooth except in the point
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where they solders with u(∞).21 By conclusion, the set of solutions of the boundary
value problem (4.20) is a smooth curve in Sol(E2), identified with R+.

Let us consider, now, the boundary value problem with α = 1, i.e., the initial con-
dition u(0) = 0. The difference with the previous one is that now the corresponding
initial point on E2, can be any point q̃0 = (0, 0, u̇, ü) ∈ E2. Note, that the singular
point q0 of E2 belongs to such a set of initial points q̃0. However, for the moment,
let us exclude it. Then, solutions u = u(t), starting from (0, 0) ∈ R2 = E, can have
any nonzero initial inclination and curvature. In order to satisfy the asymptotic
condition limt→∞ u(t) = 1 we can adopt the above surgery technique. Since we can
use, now, any initial values of u̇ and ü, we get that the set of solutions of such a
boundary value problems is a 2-dimensional submanifold of Sol(E2), identified with
R+ × (R \ {0}).

Finally, let assume that the initial condition should be just the singular point
q0 ∈ E2. Then, we shall consider that the Cartan vector field there belongs the the
2-dimensional vector space given in (4.19), i.e, generated by {∂t, ∂ü}. So we can
consider the integral curve of ξ = ∂t + a∂ü, starting from q0. This curve identifies
the function u = a

6 t3, that can be a solution of E2 iff a = 0. In fact, from (4.18)
we get limq→q0 ζ = ∂t. So a solution starting from the singular point q0 should be
necessarily u(t) = 0. We denote such solution u(0) ∈ Sol(E2). Then, we can choise
an (intermediate) initial condition q1 ≡ (t0, u(t0) = 0, u̇(t0) = 0, ü(t0) > 0) ∈ E2,
and consider the unique solution of E2 starting from q1. This solution will meet
u(∞) at some time t2. In this way we get a regular solution of E2, that satisfies
the boundary value problem, starts from the singular point q0 and it is everywhere
smooth, except in two pints where it is continuous only. So it is a singular solution.
The set of such solutions is a 2-dimensional submanifold of Sol(E2) identified with
R+ × R+ ≡ (R+)2. This proves that singular boundary value problems can admit
solutions of class C0 that are almost everywhere smooth curves in E.

It is important to underline that such solutions passing for the singular point
q0 ∈ E2 are not functionally stable, i.e., admits unstability at finite times, and
neither are asymptotic stable. In fact, let us consider the linear equation E2[u]
associated to E2 at one solution u = u(t) of above type considered.

(4.22) [2u]ν̈ + [4tu1/2]ν̇ + [ü]ν = 0

Then one can see that at the singular point q0 above equation is satisfied for any
function ν = ν(t). In particular we can consider the function ν(t) = 1/(ta − t), that
has just a singularity for t = ta > 0. Furthermore, we can consider also ν(t) = ebt,
b > 0, that gives asymptotic unstability.
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[22] A. Prástaro, Quantum and integral (co)bordism groups in partial differential equations, Acta

Appl. Math. 51(3) (1998), 243–302.
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