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STRONGLY CONVERGENT ITERATIVE SCHEMES
FOR A SEQUENCE OF NONLINEAR MAPPINGS

YASUNORI KIMURA, KAZUHIDE NAKAJO, AND WATARU TAKAHASHI

ABSTRACT. We deal with a sequence of nonlinear mappings satisfying certain
conditions and generate a strongly convergent iterative sequence to a common
fixed point of these mappings. To prove our main theorem, we use a technique
of set convergence. This result can be applied for various types of mappings and
therefore it includes many known results.

1. INTRODUCTION

Let H be a real Hilbert space with inner product (-,-) and norm ||-||, N the
set of all positive integers, and {T,,} a sequence of mappings of H into itself with
Mooy F(T,,) # 0, where F(T5,) is the set of all fixed points of T}, for n € N.

Approximating common fixed points of mappings {7}, } has been studied by many
researchers under various settings. One of the most important methods is so called
the hybrid method introduced by Haugazeau [5] as follows: Let {x,} be a sequence
generated by
r1 =z € H,

Yn = Tnxna
Cn:{ZGH:<xn_ynayn_Z> 20}7
Qn={z€ H:(xy— 22—z, >0},

Tnt1 = Pe,ng,.T

for each n € N, where Pc,nq, is the metric projection onto (), N @Q,. Haugazeau
proved a strong convergence theorem when T, = Pe, mod mys1 for every n € N,
where P, is the metric projection onto a nonempty closed convex subset C; of H
for each i = 1,2,...,m and (", C; # 0. Bauschke and Combettes [1] extended the
result of [5] (see also [10]) and Nakajo, Shimoji and Takahashi [12] generalized the
result of [1, 10] to a uniformly convex and smooth Banach space.

Recently, Nakajo and Takahashi [11] proved the unified convergence theorems for
an improved hybrid method in a real Hilbert space. On the other hand, Kimura and
Takahashi [7] proved convergence theorems for an improved hybrid method, which
is a generalization of the result proved by Takahashi, Takeuchi, and Kubota [19].

Motivated by these results, we extend the results of [11] to a strictly convex,
smooth, and reflexive Banach space with the Kadec-Klee property using the method
of [7] and get the result for convex feasibility problem under weaker conditions than
[12].
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2. PRELIMINARIES AND LEMMAS

Throughout this paper, E is a real Banach space with norm ||-||. We write x,, — x
to indicate that a sequence {z,} converges strongly to z.
The normalized duality mapping of E is denoted by J, that is,

Jo={a" € B*: || = (&, 2") = [|2*]*}

for x € E. If F is strictly convex, smooth, and reflexive Banach space, then J is a
single-valued one-to-one mapping onto E*.

A set-valued operator A of F into E* is said to be monotone if (x — y, x* — y*) > 0
for every z,y € E and x*,y* € E* such that 2* € Ax and y* € Ay. A monotone
operator A is said to be maximal monotone if the graph of A is not properly con-
tained in the graph of any other monotone operator. It is known that a monotone
operator A is maximal if and only if for (u,u*) € E x E*, (v — u,z* —u*) > 0 for
every (z,z*) € E'x E* with * € Ax implies u* € Au. We know the following result
[3]: Let E be a strictly convex, smooth and reflexive Banach space and let A be a
monotone operator of E into E*. Then, A is maximal if and only if R(J+rA) = E*
for all » > 0, where R(J 4 rA) is the range of J + rA. By this result, it is also
known that if E is a strictly convex, smooth and reflexive Banach space and A is
a maximal monotone operator of F into E*, then, for any x € E and r > 0, there
exists a unique element z, € D(A) such that

J(x, —x) +rAz, 30,

where D(A) is the domain of A. We define a mapping J, of E into itself by J,z = x,
for every x € E and r > 0 and such J, is called the resolvent of A; see [18] for
more details. We have the following result for the resolvents of maximal monotone
operators, which was essentially proved in [15].

Lemma 2.1. Let E be a strictly convex, smooth, and reflexive Banach space and
let A be a mazimal monotone operator of E into E* such that A=10 # 0. Let {r,}
be a positive real sequence with inf,, r, > 0 and let {J,., } be a sequence of resolvents
of A. Let {z,} be a sequence in E and z € E such that z, — z and J,, z, — 2.
Then, z € A~10.

For the sake of completeness, we give the proof.

Proof. Let (u, u*) € E x E* with u* € Au. Since (1/r,)J(zn — Jp,2n) € Ady, 2n
and A is monotone, we have

1
<Jrnzn —u,—J(zn — Iy, 2n) — u*> >0,
Tn
which implies

<Z—’LL, _U*> Z 0

for each (u, u*) € F x E* with v* € Au. As A is a maximal monotone operator, we
obtain z € A~10. O

Let C' be a nonempty closed convex subset of a strictly convex and reflexive
Banach space E. Then, for arbitrarily fixed z € F, a function C' 3 y — ||z —y|]| € R
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has a unique minimizer y, € C. Using such a point, we define the metric projection
Po: E— C by Pox =y, for every x € E.
For a nonempty closed convex subset C of E, we define the indicator function i¢c

of C as follows:
io(z) = 0, (ze0)
¢ . (z¢C)

Since i¢ : E — (—00, 00| is proper lower semicontinuous and convex, we may define
the subdifferential 0ic of ic by

Jic(x) ={a* € E* ric(y) > ic(x) + (y —x,2") forally € E}

for z € E. Then, by [14] we have dic is a maximal monotone operator of E into
E*. Further we have the following result.

Lemma 2.2. Let C be a nonempty closed convex subset of a strictly convex, smooth,
and reflezive Banach space E. Then, (0ic)™10 = C and J,x = Pcx for everyr > 0
and r € E, where J, is the resolvent of Dic.

Proof. From the definitions of the indicator function and its subdifferential, we have

. ) Ne(z), (ze0)
Bic(w) = {w, (e ¢ C)

where No(z) = {2* € E* : (y —x,2*) < 0for all y € C}. Thus (di¢)~10 = C.
Next, let » > 0 and z,y € E. We may easily get that y = J,.x if and only if y € C
and (y — z,J(x —y)) > 0 for all z € C. Hence we have J,x = Pox for every r > 0
and z € Fj; see [17, p. 196]. d

Let {C,} be a sequence of nonempty closed convex subsets of a reflexive Banach
space E. We define a subset s-Li,, C}, of E as follows: x € s-Li, C, if and only if
there exists {x,} C E such that {z,,} converges strongly to = and that z,, € Cy,
for all n € N. Similarly, a subset w-Ls, C,, of E is defined by the following: y €
w-Ls,, Cp, if and only if there exist a subsequence {Cy,} of {C),} and a sequence
{yi} C E such that {y;} converges weakly to y and that y; € C),, for all « € N. If
Cy C FE satisfies that Cy = s-Li,, C), = w-Ls,, C,,, it is said that {C),} converges to
Cy in the sense of Mosco [9] and we write Cy = M-lim,, C),. For more details, see
[2].

Tsukada [20] proved the following theorem for the metric projection in a Banach
space.

Theorem 2.3 (Tsukada [20]). Let E be a reflexive and strictly convex Banach space
and {Cp} a sequence of nonempty closed convexr subsets of E. If Cy = M-lim,, C),
exists and nonempty, then, for each x € E, Pc,x converges weakly to Pc,x. More-
over, if E has the Kadec-Klee property, the convergence is in the strong topology.

3. MAIN RESULTS

Let C' be a nonempty closed convex subset of a smooth Banach space E. Let
{T..} be a countable family of mappings of C into itself with F' = (\>", F(T,) # 0,
which satisfies the following condition:
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(I) There exists {a,} C (—0o0,0) such that
(z = 2,J(Tnx — 2)) < ap ||z — Tnz|”

for every n € N, x € C, and z € F(T,).

There are various examples that the countable family {7}, } satisfying this con-
dition. For Hilbert spaces, see [10] and references therein. We also give another
example of mappings in Example 4.2 in the next section. For Banach spaces, the
resolvents of maximal monotone operators and metric projections for closed convex
subsets of E have this property under some appropriate conditions for the underly-
ing space E; see the next section.

We know that, if {7} satisfies the condtion (I), then F' = (2, F(T5,) is closed
and convex. Indeed, let n € N and let {z,,} C F(T),) such that z, — z. We have

(2= 2, J(Tpz — 2)) < an ||z — Tnz|?
for all m € N, which implies
an ||z = Tpz||* > 0.
Since a,, < 0, we obtain z € F(T},). Thus F(T,,) is closed. Next, let z1, 20 € F(T3,),
0<a<landz=az + (1 —a)z. We get
(2 — 21, J(Tpx — 2)) < ap ||z — Tha||* and (z — 20, J(Thz — x)) < an ||z — Tpz|?,
which implies
0= (r—uxz,J(Thr —x))

=a(r—z2,J(Thr—x)+ (1 —a)(x— 2, J(Thr —1x))

< ay ||z — Thz|?.
Hence we obtain x € F(T,,) and therefore F(T},) is convex.

Let us define a sequence {z,} as follows:

r1 =z € C,

C=C,

(1) Yn = Thn,

Crii={2€Ch: (xn—2, J(Yn — n)) < an||Tn — yn||2}a

L xn—i—l - Cn+1m

for each n € N, where Pg,,, is the metric projection onto Cp,11. Now, using the

method of [13, Theorem 3.1], we obtain the following by Theorem 2.3.

Theorem 3.1. Let {T,,} be a countable family of mappings of a nonempty closed
convex subset C' of a smooth Banach space E into itself such that F = (2 F(T,,) #
0 and suppose that {T,} satisfies the condition (I). Let {x,,} and {Cy,} be defined
by (1). Then, the following hold:

(i) F C Cpy1 C Gy, for alln € N and a sequence {xy,} generated by (1) is well
defined;
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(ii) assume that for every sequence {zn} in C and z € C, z, — z and Tz, — 2
mmply z € F. If E is strictly conver and reflexive, E has the Kadec-Klee
property, and sup,eyan < 0, then {z,} converges strongly to Ppx, where
Pr is the metric projection onto F';

(iii) assume that for every bounded sequence {z,} in C, limy_o0 ||2n41 — 20| =0
and limy, o ||2n, — Thzn|| = 0 imply wy(z,) C F, where wy(zy,) is the set of
all weak cluster points of {z,}. If E is strictly convex and reflexive, E has
the Kadec-Klee property, and sup,eyan < 0, then {x,} converges strongly
to Ppx.

Proof. Let us prove (i). It is obvious that C), is closed and convex for all n € N.
By mathematical induction, we have F' C C,11 C C, for every n € N from the
condition (I) and {z,} is well defined.

Let us show (ii). It is obvious from the definition of s-Li,, C), that

[e.e]

() CuC sLiCy

n=1
Let z € w-Ls,, C,. Then, there exists a sequence {z;} such that z; € Cy, for alli € N
and {z;} converges weakly to z, where {Cy,} is a subsequence of {C,}. Suppose
that z ¢ (),—; Cn. Then, there exists ng € N such that z ¢ Cy,. On the other
hand, z,, € C,, C Cy, for every n; > ng, hence z € C),,. This is a contradiction.
Hence

[ee]
w-LsC,, C ﬂ Ch.
n
n=1

Therefore, s-Li, Cy, = w-Ls, C,, = (),—; Cn, that is,

oo
M-lim Gy, = (1) .
n=1
By Theorem 2.3, we have
(2) zn = Po,x — P> ¢, 2.

Since wp11 = Pe,,,
From (2), we have

x, it follows that ||x,4+1 — | < ||z — Ppz|| for every n € N.

(3) lim |z, — zp41]] = 0.
n—oo
Let a = sup,, an, < 0. Since xp4+1 € Cp41, we have
= [|zn = Zpgall lzn — ynll < (20 — 2ns1, T (Yn — zn))
< ap flzn — yn”2 <allz, — ynHQa
which implies 0 < —a ||z, — yn|| < ||2n — Tny1|| for every n € N. By (3), we have
(4) lim ||z, —yn| = 0.
n—oo
From (2), (4), and the assumption, we obtain Pnx ¢, = € F, which implies

Pre  ¢,v = Prx.
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Thus we have z,, — Prz. Hence the proof of (ii) is complete. The assertion (iii) is
easily obtained from (ii). O

4. STRONG CONVERGENCE THEOREMS

By Theorem 3.1, we may get the following result, an improved version of the
theorem shown in [11] without putting error terms. Using this theorem, we have
various results; see [10, 11] for details.

Theorem 4.1. Let C be a nonempty closed convex subset of a real Hilbert space H
and {T,,} a countable family of mappings of C into itself with F = (72, F(Ty,) #
0 which satisfies the following condition: There exists {b,} C (—1,00) such that
[Tz — z||* < ||& — 2||> = by | (I = Tp)z||* for every n € N, z € C and z € F(T},).
Let {x,} be a sequence generated by

xy =z € C,
0L =0,
(5) Yn = Tnﬂjna

Cr1 = {2 € O+ llyn — 2° < llwn — 201" = bu |z — yall*},

Tn+1 = Cn+1x

for each n € N, where Pc,_, , is the metric projection onto Cni1 and {b,} satisfies
inf, b, > —1. Then, the following hold:

(i) F C Cpy1 for alln € N and a sequence {x,} is well defined;
(ii) assume that for every sequence {z,} in C and z € C, z, — z and Tz, — =
imply z € F. Then, {x,} converges strongly to zo = Przx.

Proof. For every n € N, z € C and z € F(T,,), we have
lz — 2|1* = bn ll& = Tnll* — | Tz — |

= |l — 2|* = bn llz — Tnzll” — | Toz — @||* = 2(Tne — 2,2 — 2) — ||z — 2|*

1+
:2<— —;n”I—Tnx||2—<Tnl‘—$,ﬂZ—Z>>.

Thus, putting a, = —(1+b,)/2 for all n € N, we get that ||Tpz — z||> < ||z — 2||* —
b ||z — Th||* if and only if (T,z — 2,2 — 2) < a, ||z — Thz|*. Hence the condition
(I) is satisfied. By Theorem 3.1 (i) and (ii), {z,} is well defined and converges
strongly to zp. O

The following example gives a sequence of mappings which satisfies the condi-
tions assumed in the theorem above. Several results for similar types of mappings
appeared in [8] and [21].

Example 4.2. Let C be a nonempty closed convex subset of a real Hilbert space
H and T a quasipseudocontractive and Lipschitz mapping of C into itself with the
Lipschitz constant L > 0 such that F(T') # (), where T is called quasipseudocontrac-
tive [4] if || Tz — 2||* < ||z — 2||* + ||(I — T)z||* holds for every z € C and z € F(T).
Let Thx = ap,T(BnTx + (1 — Bp)x) + (1 — ay)x for all n € N and = € C, where
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0<a<a,<1land Ba, <, <1/(V1+ L?>+1) for some a € (0,1) and 3 > 0 for
every n € N. Then, we have

| Tnz — 2|” < |2 — 2|1 + anBu(L2B2 + 28, — 1) | — Tz|?
+ an(am = Bn) |z = T(BuTz + (1 — By)a)|?
< & = 2| + anBn(L26% + 26, — 1) ||z — Tz
i an — Bn |l — T2
(07

n
< o=zl + (1= B) | = Tp)z||?
for each n € N, x € C, and z € F(T) since 0 < o, < 1 and fa, < §, <
1/(V1+ L? + 1); see [6]. We also have F(T) = F(T},) for all n € N. Indeed, it is
trivial that F(T) C F(T,) for all n € N. Let z € F(T) and u € F(T,) for some
n € N. We get
o~ ulf = |2 ~ Toull?
< Jlu—2)* + onBu(L?BE + 28, — 1) lu — Tul?
+ (1= B I - Tyul?
which implies
(LB + 26, — 1) u — Tul* > 0.
Since a, B, (L2B2 + 23, — 1) < 0, we have u = T, that is, F(T,,) C F(T). Let {2,,}
be a sequence in C such that z, — z and T},z, — z. We obtain

i zn = T(BaT 20 + (1= Br)zn)l| =0

by using 0 < a < a, and ||z, — Thznl| = an ||zn — T(GnTzn + (1 — Br)zn)||- Fur-
ther, we have
l2n = Tznll < llzn = T(BnT2n + (1 = Bp)zn) || + 1 T(BnTzn + (1 — Bn)zn) — Tzl
< Hzn —T(BnTzn+ (1 - 571)271)” + Ly Hzn - TZnH
which implies
(1 - BnL) HZTL - TZnH < ||zn - T(ﬁnTZn + (1 - ﬁn)zn)H .

Since 3, < 1/(V1+L?+1) < 1/L, we get ||z, — Tz,|| — 0 and hence Tz, — z.
Since T is Lipschitz continuous, it follows that z € F(T') = (,_; F(T5). Therefore
{T,} satisfies Theorem 4.1 (ii).

Using (iii) instead of (ii) in Theorem 3.1, we obtain the following.

Corollary 4.3 (Nakajo-Takahashi [11]). Let C be a nonempty closed convex subset
of a real Hilbert space H and {T,} a countable family of mappings of C into itself
with F = (.2, F(T,) # 0 which satisfies the following condition: There exists
{bp} C (—1,00) such that |Tpx — z||* < ||z — 2||* = bn ||(I — Tp)z||* for everyn € N,
x € C and z € F(T,,). Let {z,} and {Cy} be defined by (5) with {b,} satisfying
inf,, b, > —1. Then, the following hold:

(i) F C Cpyq for alln € N and a sequence {xy} is well defined;
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(ii) assume that for every bounded sequence {z,} in C, lim, o ||2n+1 — 20| = 0
and limy, .o ||2n, — Tnzn| = 0 imply wy(zn) C F. Then, {z,} converges
strongly to zg = Ppx.

Motivated by the idea of [1, p. 256], we have the following result for a family of
maximal monotone operators, which we prove by using Lemma 2.1 and Theorem 3.1.

Theorem 4.4. Let E be a strictly conver, smooth, and reflexive Banach space
having the Kadec-Klee property. Let I be a countable set and let {A;}icr be a family
of mazimal monotone operators of E into E* such that F' = (\;c; Ai_IO # 0. Let
{zn} be a sequence generated by

(x1 =z € F,
Ci=F,
Ain
Yn = Jrn( )$n,
Cn+1 = {Z S Cn : (yn -z, '](xn - yn)> > 0}7
Tny1 = Po, T

for each n € N, where {r,} C (0,00), i is an index mapping i : N — I, and Jﬁf(") 18
the resolvent of Aj). Suppose that, for each i € I, there exists a subsequence {nk}
of N such that i(ny) =i for all k € N and that infy r,, > 0. Then, {z,} converges
strongly to Prx.

Proof. Let T,, = J;?f(") for every n € N. We have T), : E' — D(A;(,)) and F(T,,) =
Ai_(i)o foralln € N. Let n € N, z € E and z € F(T},). Since (1/r,)J(z — Tyx) €
Ajmy Tz and Ay, is monotone, we get (T,,x — z, J(x — Tyx)) > 0, that is,

(x — 2, J (T — z)) < — || — Thz|?.

So, the condition (I) is satisfied with a,, = —1 for all n € N. Let {z,} be a sequence
in E and z € F such that z, — z and T,,z,, — 2. Fix ¢ € I. By assumption, there
exists a subsequence {i(ny)} of {i(n)} such that i(ny) =i for all k € N. Tt follows
that

Zn

_ 74
. — 2 and T, 2z, = Jrnk Zny, — 2.

By Lemma 2.1, we get z € A;IO and hence z € F. From Theorem 3.1 (ii), we
obtain the desired result. O
We have the following by Theorem 4.4; see [13, 16].

Theorem 4.5. Let E be a strictly convex, smooth, and reflerive Banach space
having the Kadec-Klee property and A a mazximal monotone operator of E into E*
such that A='0 # (). Let {x,} be a sequence generated by

X1 :$€E7
Cy = E,
yn:JTnxna

Cn+1 = {Z €Cp: <yn -z, J(xn - yn)> > 0}7
Tny1 = Po, T
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for each n € N, where {r,} C (0,00) such that limsup,,r, > 0, and J,, is the
resolvent of A. Then, {x,} converges strongly to Py-1yx.

We also have the following result for a convex feasibility problem by Lemma 2.2
and Theorem 4.4.

Theorem 4.6. Let E be a strictly conver, smooth, and reflexive Banach space
having the Kadec-Klee property. Let I be a countable index set and let D; be a
nonempty closed convex subset of E for every i € I such that D = (\;c; D; # 0. Let
{zn} be a sequence generated by

r1=x€F,

C, =E,

Yn = P, Tn,

Cpnt1=1{2€Cy : (yn — 2z, J (X, — yn)) > 0},
Tn+1 = Po, ., x

\

for each n € N, where an index mapping i : N — I satisfies that for every i € I,
there are infinitely many k € N such that i(k) = i. Then, {x,} converges strongly
to Ppx.
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