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STRONGLY CONVERGENT ITERATIVE SCHEMES
FOR A SEQUENCE OF NONLINEAR MAPPINGS

YASUNORI KIMURA, KAZUHIDE NAKAJO, AND WATARU TAKAHASHI

Abstract. We deal with a sequence of nonlinear mappings satisfying certain
conditions and generate a strongly convergent iterative sequence to a common
fixed point of these mappings. To prove our main theorem, we use a technique
of set convergence. This result can be applied for various types of mappings and
therefore it includes many known results.

1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖·‖, N the
set of all positive integers, and {Tn} a sequence of mappings of H into itself with⋂∞

n=1 F (Tn) 6= ∅, where F (Tn) is the set of all fixed points of Tn for n ∈ N.
Approximating common fixed points of mappings {Tn} has been studied by many

researchers under various settings. One of the most important methods is so called
the hybrid method introduced by Haugazeau [5] as follows: Let {xn} be a sequence
generated by 




x1 = x ∈ H,

yn = Tnxn,

Cn = {z ∈ H : 〈xn − yn, yn − z〉 ≥ 0},
Qn = {z ∈ H : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qnx

for each n ∈ N, where PCn∩Qn is the metric projection onto Cn ∩ Qn. Haugazeau
proved a strong convergence theorem when Tn = PC(n mod m)+1

for every n ∈ N,
where PCi is the metric projection onto a nonempty closed convex subset Ci of H
for each i = 1, 2, . . . , m and

⋂m
i=1 Ci 6= ∅. Bauschke and Combettes [1] extended the

result of [5] (see also [10]) and Nakajo, Shimoji and Takahashi [12] generalized the
result of [1, 10] to a uniformly convex and smooth Banach space.

Recently, Nakajo and Takahashi [11] proved the unified convergence theorems for
an improved hybrid method in a real Hilbert space. On the other hand, Kimura and
Takahashi [7] proved convergence theorems for an improved hybrid method, which
is a generalization of the result proved by Takahashi, Takeuchi, and Kubota [19].

Motivated by these results, we extend the results of [11] to a strictly convex,
smooth, and reflexive Banach space with the Kadec-Klee property using the method
of [7] and get the result for convex feasibility problem under weaker conditions than
[12].
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2. Preliminaries and lemmas

Throughout this paper, E is a real Banach space with norm ‖·‖. We write xn → x
to indicate that a sequence {xn} converges strongly to x.

The normalized duality mapping of E is denoted by J , that is,

Jx = {x∗ ∈ E∗ : ‖x‖2 = 〈x, x∗〉 = ‖x∗‖2}
for x ∈ E. If E is strictly convex, smooth, and reflexive Banach space, then J is a
single-valued one-to-one mapping onto E∗.

A set-valued operator A of E into E∗ is said to be monotone if 〈x− y, x∗ − y∗〉 ≥ 0
for every x, y ∈ E and x∗, y∗ ∈ E∗ such that x∗ ∈ Ax and y∗ ∈ Ay. A monotone
operator A is said to be maximal monotone if the graph of A is not properly con-
tained in the graph of any other monotone operator. It is known that a monotone
operator A is maximal if and only if for (u, u∗) ∈ E × E∗, 〈x− u, x∗ − u∗〉 ≥ 0 for
every (x, x∗) ∈ E×E∗ with x∗ ∈ Ax implies u∗ ∈ Au. We know the following result
[3]: Let E be a strictly convex, smooth and reflexive Banach space and let A be a
monotone operator of E into E∗. Then, A is maximal if and only if R(J +rA) = E∗
for all r > 0, where R(J + rA) is the range of J + rA. By this result, it is also
known that if E is a strictly convex, smooth and reflexive Banach space and A is
a maximal monotone operator of E into E∗, then, for any x ∈ E and r > 0, there
exists a unique element xr ∈ D(A) such that

J(xr − x) + rAxr 3 0,

where D(A) is the domain of A. We define a mapping Jr of E into itself by Jrx = xr

for every x ∈ E and r > 0 and such Jr is called the resolvent of A; see [18] for
more details. We have the following result for the resolvents of maximal monotone
operators, which was essentially proved in [15].

Lemma 2.1. Let E be a strictly convex, smooth, and reflexive Banach space and
let A be a maximal monotone operator of E into E∗ such that A−10 6= ∅. Let {rn}
be a positive real sequence with infn rn > 0 and let {Jrn} be a sequence of resolvents
of A. Let {zn} be a sequence in E and z ∈ E such that zn → z and Jrnzn → z.
Then, z ∈ A−10.

For the sake of completeness, we give the proof.

Proof. Let (u, u∗) ∈ E × E∗ with u∗ ∈ Au. Since (1/rn)J(zn − Jrnzn) ∈ AJrnzn

and A is monotone, we have
〈

Jrnzn − u,
1
rn

J(zn − Jrnzn)− u∗
〉
≥ 0,

which implies
〈z − u,−u∗〉 ≥ 0

for each (u, u∗) ∈ E×E∗ with u∗ ∈ Au. As A is a maximal monotone operator, we
obtain z ∈ A−10. ¤

Let C be a nonempty closed convex subset of a strictly convex and reflexive
Banach space E. Then, for arbitrarily fixed x ∈ E, a function C 3 y 7→ ‖x− y‖ ∈ R
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has a unique minimizer yx ∈ C. Using such a point, we define the metric projection
PC : E → C by PCx = yx for every x ∈ E.

For a nonempty closed convex subset C of E, we define the indicator function iC
of C as follows:

iC(x) =

{
0, (x ∈ C)
∞. (x /∈ C)

Since iC : E → (−∞, ∞] is proper lower semicontinuous and convex, we may define
the subdifferential ∂iC of iC by

∂iC(x) = {x∗ ∈ E∗ : iC(y) ≥ iC(x) + 〈y − x, x∗〉 for all y ∈ E}
for x ∈ E. Then, by [14] we have ∂iC is a maximal monotone operator of E into
E∗. Further we have the following result.

Lemma 2.2. Let C be a nonempty closed convex subset of a strictly convex, smooth,
and reflexive Banach space E. Then, (∂iC)−10 = C and Jrx = PCx for every r > 0
and x ∈ E, where Jr is the resolvent of ∂iC .

Proof. From the definitions of the indicator function and its subdifferential, we have

∂iC(x) =

{
NC(x), (x ∈ C)
∅, (x /∈ C)

where NC(x) = {x∗ ∈ E∗ : 〈y − x, x∗〉 ≤ 0 for all y ∈ C}. Thus (∂iC)−10 = C.
Next, let r > 0 and x, y ∈ E. We may easily get that y = Jrx if and only if y ∈ C
and 〈y − z, J(x− y)〉 ≥ 0 for all z ∈ C. Hence we have Jrx = PCx for every r > 0
and x ∈ E; see [17, p. 196]. ¤

Let {Cn} be a sequence of nonempty closed convex subsets of a reflexive Banach
space E. We define a subset s-Lin Cn of E as follows: x ∈ s-Lin Cn if and only if
there exists {xn} ⊂ E such that {xn} converges strongly to x and that xn ∈ Cn

for all n ∈ N. Similarly, a subset w-Lsn Cn of E is defined by the following: y ∈
w-Lsn Cn if and only if there exist a subsequence {Cni} of {Cn} and a sequence
{yi} ⊂ E such that {yi} converges weakly to y and that yi ∈ Cni for all i ∈ N. If
C0 ⊂ E satisfies that C0 = s-Lin Cn = w-Lsn Cn, it is said that {Cn} converges to
C0 in the sense of Mosco [9] and we write C0 = M-limn Cn. For more details, see
[2].

Tsukada [20] proved the following theorem for the metric projection in a Banach
space.

Theorem 2.3 (Tsukada [20]). Let E be a reflexive and strictly convex Banach space
and {Cn} a sequence of nonempty closed convex subsets of E. If C0 = M-limn Cn

exists and nonempty, then, for each x ∈ E, PCnx converges weakly to PC0x. More-
over, if E has the Kadec-Klee property, the convergence is in the strong topology.

3. Main results

Let C be a nonempty closed convex subset of a smooth Banach space E. Let
{Tn} be a countable family of mappings of C into itself with F =

⋂∞
n=1 F (Tn) 6= ∅,

which satisfies the following condition:
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(I) There exists {an} ⊂ (−∞, 0) such that

〈x− z, J(Tnx− x)〉 ≤ an ‖x− Tnx‖2

for every n ∈ N, x ∈ C, and z ∈ F (Tn).

There are various examples that the countable family {Tn} satisfying this con-
dition. For Hilbert spaces, see [10] and references therein. We also give another
example of mappings in Example 4.2 in the next section. For Banach spaces, the
resolvents of maximal monotone operators and metric projections for closed convex
subsets of E have this property under some appropriate conditions for the underly-
ing space E; see the next section.

We know that, if {Tn} satisfies the condtion (I), then F =
⋂∞

n=1 F (Tn) is closed
and convex. Indeed, let n ∈ N and let {zm} ⊂ F (Tn) such that zm → z. We have

〈z − zm, J(Tnz − z)〉 ≤ an ‖z − Tnz‖2

for all m ∈ N, which implies

an ‖z − Tnz‖2 ≥ 0.

Since an < 0, we obtain z ∈ F (Tn). Thus F (Tn) is closed. Next, let z1, z2 ∈ F (Tn),
0 ≤ α ≤ 1 and x = αz1 + (1− α)z2. We get

〈x− z1, J(Tnx− x)〉 ≤ an ‖x− Tnx‖2 and 〈x− z2, J(Tnx− x)〉 ≤ an ‖x− Tnx‖2 ,

which implies

0 = 〈x− x, J(Tnx− x)〉
= α 〈x− z1, J(Tnx− x)〉+ (1− α) 〈x− z2, J(Tnx− x)〉
≤ an ‖x− Tnx‖2 .

Hence we obtain x ∈ F (Tn) and therefore F (Tn) is convex.
Let us define a sequence {xn} as follows:

(1)





x1 = x ∈ C,

C1 = C,

yn = Tnxn,

Cn+1 = {z ∈ Cn : 〈xn − z, J(yn − xn)〉 ≤ an ‖xn − yn‖2},
xn+1 = PCn+1x

for each n ∈ N, where PCn+1 is the metric projection onto Cn+1. Now, using the
method of [13, Theorem 3.1], we obtain the following by Theorem 2.3.

Theorem 3.1. Let {Tn} be a countable family of mappings of a nonempty closed
convex subset C of a smooth Banach space E into itself such that F =

⋂∞
n=1 F (Tn) 6=

∅ and suppose that {Tn} satisfies the condition (I). Let {xn} and {Cn} be defined
by (1). Then, the following hold:

(i) F ⊂ Cn+1 ⊂ Cn for all n ∈ N and a sequence {xn} generated by (1) is well
defined;
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(ii) assume that for every sequence {zn} in C and z ∈ C, zn → z and Tnzn → z
imply z ∈ F . If E is strictly convex and reflexive, E has the Kadec-Klee
property, and supn∈N an < 0, then {xn} converges strongly to PF x, where
PF is the metric projection onto F ;

(iii) assume that for every bounded sequence {zn} in C, limn→∞ ‖zn+1 − zn‖ = 0
and limn→∞ ‖zn − Tnzn‖ = 0 imply ωw(zn) ⊂ F , where ωw(zn) is the set of
all weak cluster points of {zn}. If E is strictly convex and reflexive, E has
the Kadec-Klee property, and supn∈N an < 0, then {xn} converges strongly
to PF x.

Proof. Let us prove (i). It is obvious that Cn is closed and convex for all n ∈ N.
By mathematical induction, we have F ⊂ Cn+1 ⊂ Cn for every n ∈ N from the
condition (I) and {xn} is well defined.

Let us show (ii). It is obvious from the definition of s-Lin Cn that
∞⋂

n=1

Cn ⊂ s-Li
n

Cn.

Let z ∈ w-Lsn Cn. Then, there exists a sequence {zi} such that zi ∈ Cni for all i ∈ N
and {zi} converges weakly to z, where {Cni} is a subsequence of {Cn}. Suppose
that z /∈ ⋂∞

n=1 Cn. Then, there exists n0 ∈ N such that z /∈ Cn0 . On the other
hand, zni ∈ Cni ⊂ Cn0 for every ni ≥ n0, hence z ∈ Cn0 . This is a contradiction.
Hence

w-Ls
n

Cn ⊂
∞⋂

n=1

Cn.

Therefore, s-Lin Cn = w-Lsn Cn =
⋂∞

n=1 Cn, that is,

M-lim
n

Cn =
∞⋂

n=1

Cn.

By Theorem 2.3, we have

(2) xn = PCnx → PT∞
n=1 Cn

x.

Since xn+1 = PCn+1x, it follows that ‖xn+1 − x‖ ≤ ‖x− PF x‖ for every n ∈ N.
From (2), we have

(3) lim
n→∞ ‖xn − xn+1‖ = 0.

Let a = supn an < 0. Since xn+1 ∈ Cn+1, we have

−‖xn − xn+1‖ ‖xn − yn‖ ≤ 〈xn − xn+1, J(yn − xn)〉
≤ an ‖xn − yn‖2 ≤ a ‖xn − yn‖2 ,

which implies 0 ≤ −a ‖xn − yn‖ ≤ ‖xn − xn+1‖ for every n ∈ N. By (3), we have

(4) lim
n→∞ ‖xn − yn‖ = 0.

From (2), (4), and the assumption, we obtain PT∞
n=1 Cn

x ∈ F , which implies

PT∞
n=1 Cn

x = PF x.
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Thus we have xn → PF x. Hence the proof of (ii) is complete. The assertion (iii) is
easily obtained from (ii). ¤

4. Strong convergence theorems

By Theorem 3.1, we may get the following result, an improved version of the
theorem shown in [11] without putting error terms. Using this theorem, we have
various results; see [10, 11] for details.

Theorem 4.1. Let C be a nonempty closed convex subset of a real Hilbert space H
and {Tn} a countable family of mappings of C into itself with F =

⋂∞
n=1 F (Tn) 6=

∅ which satisfies the following condition: There exists {bn} ⊂ (−1,∞) such that
‖Tnx− z‖2 ≤ ‖x− z‖2 − bn ‖(I − Tn)x‖2 for every n ∈ N, x ∈ C and z ∈ F (Tn).
Let {xn} be a sequence generated by

(5)





x1 = x ∈ C,

C1 = C,

yn = Tnxn,

Cn+1 = {z ∈ Cn : ‖yn − z‖2 ≤ ‖xn − z‖2 − bn ‖xn − yn‖2},
xn+1 = PCn+1x

for each n ∈ N, where PCn+1 is the metric projection onto Cn+1 and {bn} satisfies
infn bn > −1. Then, the following hold:

(i) F ⊂ Cn+1 for all n ∈ N and a sequence {xn} is well defined;
(ii) assume that for every sequence {zn} in C and z ∈ C, zn → z and Tnzn → z

imply z ∈ F . Then, {xn} converges strongly to z0 = PF x.

Proof. For every n ∈ N, x ∈ C and z ∈ F (Tn), we have

‖x− z‖2 − bn ‖x− Tnx‖2 − ‖Tnx− z‖2

= ‖x− z‖2 − bn ‖x− Tnx‖2 − ‖Tnx− x‖2 − 2 〈Tnx− x, x− z〉 − ‖x− z‖2

= 2
(
−1 + bn

2
‖x− Tnx‖2 − 〈Tnx− x, x− z〉

)
.

Thus, putting an = −(1+ bn)/2 for all n ∈ N, we get that ‖Tnx− z‖2 ≤ ‖x− z‖2−
bn ‖x− Tnx‖2 if and only if 〈Tnx− x, x− z〉 ≤ an ‖x− Tnx‖2. Hence the condition
(I) is satisfied. By Theorem 3.1 (i) and (ii), {xn} is well defined and converges
strongly to z0. ¤

The following example gives a sequence of mappings which satisfies the condi-
tions assumed in the theorem above. Several results for similar types of mappings
appeared in [8] and [21].

Example 4.2. Let C be a nonempty closed convex subset of a real Hilbert space
H and T a quasipseudocontractive and Lipschitz mapping of C into itself with the
Lipschitz constant L > 0 such that F (T ) 6= ∅, where T is called quasipseudocontrac-
tive [4] if ‖Tx− z‖2 ≤ ‖x− z‖2 + ‖(I − T )x‖2 holds for every x ∈ C and z ∈ F (T ).
Let Tnx = αnT (βnTx + (1 − βn)x) + (1 − αn)x for all n ∈ N and x ∈ C, where
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0 < α ≤ αn ≤ 1 and βαn ≤ βn < 1/(
√

1 + L2 + 1) for some α ∈ (0, 1) and β > 0 for
every n ∈ N. Then, we have

‖Tnx− z‖2 ≤ ‖x− z‖2 + αnβn(L2β2
n + 2βn − 1) ‖x− Tx‖2

+ αn(αn − βn) ‖x− T (βnTx + (1− βn)x)‖2

≤ ‖x− z‖2 + αnβn(L2β2
n + 2βn − 1) ‖x− Tx‖2

+
αn − βn

αn
‖x− Tnx‖2

≤ ‖x− z‖2 + (1− β) ‖(I − Tn)x‖2

for each n ∈ N, x ∈ C, and z ∈ F (T ) since 0 < αn ≤ 1 and βαn ≤ βn <

1/(
√

1 + L2 + 1); see [6]. We also have F (T ) = F (Tn) for all n ∈ N. Indeed, it is
trivial that F (T ) ⊂ F (Tn) for all n ∈ N. Let z ∈ F (T ) and u ∈ F (Tn) for some
n ∈ N. We get

‖z − u‖2 = ‖z − Tnu‖2

≤ ‖u− z‖2 + αnβn(L2β2
n + 2βn − 1) ‖u− Tu‖2

+ (1− β) ‖(I − Tn)u‖2

which implies
αnβn(L2β2

n + 2βn − 1) ‖u− Tu‖2 ≥ 0.

Since αnβn(L2β2
n +2βn− 1) < 0, we have u = Tu, that is, F (Tn) ⊂ F (T ). Let {zn}

be a sequence in C such that zn → z and Tnzn → z. We obtain

lim
n→∞ ‖zn − T (βnTzn + (1− βn)zn)‖ = 0

by using 0 < α ≤ αn and ‖zn − Tnzn‖ = αn ‖zn − T (βnTzn + (1− βn)zn)‖. Fur-
ther, we have

‖zn − Tzn‖ ≤ ‖zn − T (βnTzn + (1− βn)zn)‖+ ‖T (βnTzn + (1− βn)zn)− Tzn‖
≤ ‖zn − T (βnTzn + (1− βn)zn)‖+ Lβn ‖zn − Tzn‖

which implies

(1− βnL) ‖zn − Tzn‖ ≤ ‖zn − T (βnTzn + (1− βn)zn)‖ .

Since βn < 1/(
√

1 + L2 + 1) < 1/L, we get ‖zn − Tzn‖ → 0 and hence Tzn → z.
Since T is Lipschitz continuous, it follows that z ∈ F (T ) =

⋂∞
n=1 F (Tn). Therefore

{Tn} satisfies Theorem 4.1 (ii).

Using (iii) instead of (ii) in Theorem 3.1, we obtain the following.

Corollary 4.3 (Nakajo-Takahashi [11]). Let C be a nonempty closed convex subset
of a real Hilbert space H and {Tn} a countable family of mappings of C into itself
with F =

⋂∞
n=1 F (Tn) 6= ∅ which satisfies the following condition: There exists

{bn} ⊂ (−1,∞) such that ‖Tnx− z‖2 ≤ ‖x− z‖2−bn ‖(I − Tn)x‖2 for every n ∈ N,
x ∈ C and z ∈ F (Tn). Let {xn} and {Cn} be defined by (5) with {bn} satisfying
infn bn > −1. Then, the following hold:

(i) F ⊂ Cn+1 for all n ∈ N and a sequence {xn} is well defined;
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(ii) assume that for every bounded sequence {zn} in C, limn→∞ ‖zn+1 − zn‖ = 0
and limn→∞ ‖zn − Tnzn‖ = 0 imply ωw(zn) ⊂ F . Then, {xn} converges
strongly to z0 = PF x.

Motivated by the idea of [1, p. 256], we have the following result for a family of
maximal monotone operators, which we prove by using Lemma 2.1 and Theorem 3.1.

Theorem 4.4. Let E be a strictly convex, smooth, and reflexive Banach space
having the Kadec-Klee property. Let I be a countable set and let {Ai}i∈I be a family
of maximal monotone operators of E into E∗ such that F =

⋂
i∈I A−1

i 0 6= ∅. Let
{xn} be a sequence generated by





x1 = x ∈ E,

C1 = E,

yn = J
Ai(n)
rn xn,

Cn+1 = {z ∈ Cn : 〈yn − z, J(xn − yn)〉 ≥ 0},
xn+1 = PCn+1x

for each n ∈ N, where {rn} ⊂ (0,∞), i is an index mapping i : N→ I, and J
Ai(n)
rn is

the resolvent of Ai(n). Suppose that, for each i ∈ I, there exists a subsequence {nk}
of N such that i(nk) = i for all k ∈ N and that infk rnk

> 0. Then, {xn} converges
strongly to PF x.

Proof. Let Tn = J
Ai(n)
rn for every n ∈ N. We have Tn : E → D(Ai(n)) and F (Tn) =

A−1
i(n)0 for all n ∈ N. Let n ∈ N, x ∈ E and z ∈ F (Tn). Since (1/rn)J(x − Tnx) ∈

Ai(n)Tnx and Ai(n) is monotone, we get 〈Tnx− z, J(x− Tnx)〉 ≥ 0, that is,

〈x− z, J(Tnx− x)〉 ≤ −‖x− Tnx‖2 .

So, the condition (I) is satisfied with an = −1 for all n ∈ N. Let {zn} be a sequence
in E and z ∈ E such that zn → z and Tnzn → z. Fix i ∈ I. By assumption, there
exists a subsequence {i(nk)} of {i(n)} such that i(nk) = i for all k ∈ N. It follows
that

znk
→ z and Tnk

znk
= JAi

rnk
znk

→ z.

By Lemma 2.1, we get z ∈ A−1
i 0 and hence z ∈ F . From Theorem 3.1 (ii), we

obtain the desired result. ¤
We have the following by Theorem 4.4; see [13, 16].

Theorem 4.5. Let E be a strictly convex, smooth, and reflexive Banach space
having the Kadec-Klee property and A a maximal monotone operator of E into E∗
such that A−10 6= ∅. Let {xn} be a sequence generated by




x1 = x ∈ E,

C1 = E,

yn = Jrnxn ,

Cn+1 = {z ∈ Cn : 〈yn − z, J(xn − yn)〉 ≥ 0},
xn+1 = PCn+1x
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for each n ∈ N, where {rn} ⊂ (0,∞) such that lim supn rn > 0, and Jrn is the
resolvent of A. Then, {xn} converges strongly to PA−10x.

We also have the following result for a convex feasibility problem by Lemma 2.2
and Theorem 4.4.

Theorem 4.6. Let E be a strictly convex, smooth, and reflexive Banach space
having the Kadec-Klee property. Let I be a countable index set and let Di be a
nonempty closed convex subset of E for every i ∈ I such that D =

⋂
i∈I Di 6= ∅. Let

{xn} be a sequence generated by




x1 = x ∈ E,

C1 = E,

yn = PDi(n)
xn,

Cn+1 = {z ∈ Cn : 〈yn − z, J(xn − yn)〉 ≥ 0},
xn+1 = PCn+1x

for each n ∈ N, where an index mapping i : N → I satisfies that for every i ∈ I,
there are infinitely many k ∈ N such that i(k) = i. Then, {xn} converges strongly
to PDx.
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