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CONVEX ANALYSIS BASED SMOOTH APPROXIMATIONS OF
MAXIMUM FUNCTIONS AND SQUARED-DISTANCE

FUNCTIONS

KEWEI ZHANG

Abstract. We use the explicit formula of the quadratic upper compensated
convex transform of the maximum function fn(x1, . . . , xn) = max1≤i≤n xi to
study the properties of this C1,1-smooth approximation of the maximum func-
tion, and apply a generalized quadratic lower compensated convex transform to
the squared-distance function dist2(x, K) to a finite set K. The maximum-like
functions and squared-distance like functions are widely used in mathematical
programming and applied mathematics. These transforms provide explicit con-
vex C1,1-smooth approximations with quadratic growth for these functions. We
also use explicitly calculated examples of these approximations and their graphs
to illustrate the effects of our compensated convex transforms.

1. Introduction

In this paper we first study analytic and geometric properties of the C1,1 smooth
approximations for maximum-like convex functions f by their quadratic upper com-
pensated convex transform [45] (quadratic upper transform for short) defined by

(1) Cu
2,λ(f(x)) = λ|x|2 − C(λ|x|2 − f(x)),

where C(λ|x|2 − f(x)) is the convex envelope [31] of the function λ|x|2 − f(x). We
compare our method with the prox-function regularization method proposed by Y.
Nesterov [25]. Let

fn(x) = max
1≤i≤n

xi, x = (x1, . . . , xn) ∈ Rn

be the n-dimensional maximum function. It was established in [45] that the qua-
dratic upper transform Cu

2,λ(fn(x)) can be calculated explicitly as

(2) Cu
2,λ(fn(x)) = λ|x|2 − λ dist2

(
x, C

(
Kn

2λ

))
+

1
4λ

, x ∈ Rn, λ > 0,

where dist2 (x, C(Kn/(2λ)) is the Euclidean squared distance function to the scaled
canonical simplex C(Kn/(2λ)) defined by the convex hull of the finite set Kn/(2λ) =
{e1/(2λ), . . . , en/(2λ)} with {e1, . . . , en} the standard Euclidean basis of Rn. Let
〈x, y〉 be the standard Euclidean inner product of x, y ∈ Rn and |x| =

√
〈x, x〉 the

Euclidean norm of x. Sometimes we also use x · y to denote the same Euclidean
inner product. We observe that the maximum function fn can be written as fn(x) =
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max{〈x, y〉, y ∈ Kn}. If we let Jn = (−Kn) ∪ Kn, then the l∞ norm function
gn(x) = max1≤xi≤n |xi| can be defined alternatively as gn(x) = max{〈x, y〉, y ∈ Jn}.
The common feature in these two functions is that the sets Kn and Jn are both
contained in the unit sphere Sn−1 := {x ∈ Rn, |x| = 1}.

In [45], quadratic lower compensated convex transform was defined as

(3) C l
2,λ(f(x)) = C(f(x) + λ|x|2)− λ|x|2,

It was established in [45] that the quadratic lower transform C l
2,λ(dist2(x, K)) for

the squared distance function x → dist2(x, K) to a compact set K ⊂ Rn gives rise
to a C1,1-‘tight approximation’ as λ → +∞. This type of lower translations were
used before to squared-distance functions in the study of quasiconvex relaxations
and gradient Young measure in the vectorial calculus of variations [40, 41, 42, 43,
44]. However, to derive explicit C1,1-approximation formulae for squared-distance
functions to finite sets, we need to modify the quadratic lower transform so that this
can be achieved. We will discuss this after our study of the maximum-like functions
and their quadratic upper transforms.

Theorem 1.1. Let F (x) = max{〈x, y〉, y ∈ K} where K ⊂ Sn−1 ⊂ Rn is a given
compact set. Then the quadratic upper transform Cu

2,λ(F (x)) defined by (1) is given
by

(4) Cu
2,λ(F (x)) = λ|x|2 − λ dist2

(
x, C

(
K

2λ

))
+

1
4λ

, x ∈ Rn, λ > 0.

Furthermore, we have
(i) Uniform error estimate

(5) 0 ≤ Cu
2,λ(F (x))− F (x) ≤ 1

λ
, x ∈ Rn, λ > 0.

(ii) Smoothness and convexity
Cu

2,λ(F (x)) is convex and belongs to C1,1(Rn), and

(6) |DCu
2,λ(F (x))−DCu

2,λ(F (y))| ≤ 2λ|x− y|, |DCu
2,λ(F (x))| ≤ 1, x, y ∈ Rn.

(iii) Tightness of approximation
Let MK be the medial axis of K (to be defined later), then

Cu
2,λ(F (x)) = F (x) whenever x ∈ Rn \ C(K/(2λ)) and dist(x, MK) > 2/λ.

(iv) Volume estimate for finite sets
If we further assume that K is a finite set with m > 1 elements, let B̄(0, R) ⊂

Rn be the closed ball centred at 0 with radius R > 1/λ and E
(λ)
R = {x ∈

B(0, R), Cu
2,λ(F (x)) 6= F (x)}. Then

meas(E(λ)
R )

meas(B(0, R))
≤ C(m,n)

λR

where C(m,n) > 0 is a constant depending only on m and n.

The advantage of our approximation formula (4) is that it connects the original
functions with the squared distance functions to parameterized (convex) sets in-
volved, as seen in (4). Our approximation from above is tight in the sense that in
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any fixed ball centred at 0, the subset on which F (x) 6= Cu
2,λ(F (x)) is very small

when λ > 0 is large. Intuitively, this means that the graph of Cu
2,λ(F (x)) is ‘at-

tached’ to that of F (x) from above, leaving the area where the values of Cu
2,λ(F (x))

and F (x) are different very small, which are exactly a small neighbourhood of the
set where F (x) is not locally C1,1. Note that in a general tightness result in [45] we
showed that for any given continuous function f : Rn 7→ R, satisfying the growth
condition

(7) |f(x)| ≤ C0|x|2 + C1, x ∈ Rn,

where C0 and C1 are non-negative constant, we have, at every point x where f is
C1,1 in a neighbourhood of x, that Cu

2,λ(f(x)) = f(x) when λ > Λx for some Λx > 0
large enough. Also limλ→∞Cu

2,λ(f(x)) = f(x) uniformly on any given compact set.
In Theorem 1.1(iii), we know that the open set on which F (·) is locally C1,1 is
exactly Rn \ MK , thus we can obtain a more precise estimate of Λx > 0 for each
x /∈ MK , such that Cu

2,λ(F (x)) = F (x) when λ > Λx. If K is finite, Theorem 1.1(iv)
provides a volume estimates for the set on which Cu

2,λ(F (x)) 6= F (x) in a given ball
B̄(0, R).

The maximum function fn is one of the most important non-smooth convex
functions in mathematical programming and its applications to economics and en-
gineering [22, 27]. However, since the maximum function fn is not smooth, many
gradient based numerical methods cannot apply directly to such functions.

In the simple two-dimensional case, there are a number of smooth approximations
for the maximum function [13, 28, 19]. For example, by using the fact that

f2(x) = max{x1, x2} = (|x1 − x2|+ x1 + x2)/2,

one can easily think of the smooth approximation (see, for example [19])

F2(ε, x) = (
√

(x1 − x2)2 + ε2 + x1 + x2)/2.

for small ε > 0. In the higher dimensional spaces, a well known C∞-smooth ap-
proximation of the maximum function fn called entropic regularization is given by

(8) fn(λ, x) =
1
λ

log

(
n∑

i=1

eλxi

)
, x = (x1, . . . , xn) ∈ Rn, λ > 0.

The so-called aggregation function fn(λ, x) converges to fn(x) uniformly as λ →
+∞. In fact, there is a uniform error estimate depending on the dimension n as

(9) 0 ≤ fn(λ, x)− fn(x) ≤ 1
λ

log n. x ∈ Rn

Note that in practice the above aggregation function is written in the form
ε log(

∑n
i=1 exp(xi/ε)), replacing λ by 1/ε for small ε > 0. The seemingly artificial

formula (8) turns out to be a natural consequence of the prox-function regulariza-
tion [25] by using the so-called entropic distance. To make the comparison between
the entropic regularization and our quadratic upper transforms easier, we write the
parameter as λ > 0 and the approximation converges to the original function when
λ → +∞. In Example 2.10 and Example 2.11 at the end of Section 2, we plot
graphs for these approximations. We compare the approximations of the maximum
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function by the entropic regularization method and by our upper transforms for one
and two dimensional spaces.

The classical smoothing function (8) has been widely used in smooth minimiza-
tions for non-smooth convex programming problems [4, 9, 5, 21, 26, 29, 30, 14, 32,
34, 35, 25, 38]. The entropic regularization (8) also has a number of very useful alge-
braic and analytic properties which can be verified easily. We know that i) fn(λ, x)
is invariant under the action of the permutation group Sn; ii) fn(λ, x) preserves the
monotonicity property of the maximum function fn; iii) the uniform error estimate
(9) holds, and iv) the gradient satisfies |Dfn(λ, x)| ≤ 1.

However, as pointed by several authors (see, for example [6, 25]) that for large
λ > 0 (or equivalently, small ε = 1/λ), calculations involving exponential functions
in (8) can be very expensive and there is an issue concerning computational stability
as the coupling of the exponential function followed by the logarithm function may
involve dangerous operations. In [6], the authors reported that such a function may
cause the so-called ‘overflow problem’.

In order to overcome such a difficulty, a recursive extension of a simple two
dimensional smoothing function was proposed in [6]. Let ηε(x1, x2) be a smoothing
approximation for the two dimensional maximum function, one may apply such a
smoothing operation repeatedly. For example, in the three-dimensional case, the
approximation ηε(ηε(x1, x2), x3) can be considered. This type of recursive extension
preserves monotonicity property of the maximum function while the permutation
invariance property of the original function is lost. Simple numerical examples by
Matlab based programming presented in [6] show that numerical schemes based
on (8) may blow up for not very large initial values while the recursive extension
method still produces a correct answer. However, for large n > 2, it is difficult to
write down an ‘explicit’ formula for this recursive extension. Also this approach
requires several smoothing operations one after the other, the accumulated error of
the approximation will depend on the dimension n.

It was established in [25, 3] that for C1,1 convex functions, there are effective nu-
merical methods for solving both unconstrained miniminzing problems in bounded
convex domains of Rn and for constrained problems by using the Lagrangian multi-
plier method. Therefore an alternative simple geometric C1,1 convex approximation
such as (4) would be very useful for PC based programming.

Now we turn to the C1,1 smooth approximation for the squared distance function
x → dist2(x,K) for x ∈ Rn and a finite set K. The following squared-distance like
function to a finite set was considered in [45]:

G(x) = min
1≤i≤m

(|x− yi|2 + bi), yi ∈ Rn, bi ≥ 0, i = 1, 2, . . . , m.

Let Km = {yi, i = 1, 2, . . . , m} ⊂ Rn, we see that if bi = 0 for all i = 1, 2, . . . ,,
then G(x) is exactly the squared distance function dist2(x,Km). The method used
in [45] to find an explicit C1,1 approximation for G(x) is to consider the extended
function Fλ : Rn × Rm → R defined by

Fλ(x, t) = min
1≤i≤m

(
(|x|2 − 2x · yi +

|yi|2
1 + λ

)− 2ti

)
, (x, t) ∈ Rn × Rm.
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If we define |y|2 = (|y1|2, · · · , |ym|2) and b = (b1, · · · , bm) ∈ Rm, then it can be
easily verified that G(x) = F (x,−λ|y|2/(2(1 + λ))− b/2). If we define

gλ(x, t) = λ(x, t) = λ|x|2 + (1 + λ)|t|2), (x, t) ∈ Rn × Rm,

then the anisotropic quadratic lower transform C l
gλ

(F (x, t)) is a C1,1 approximation
of Fλ(x, t) which is given explicitly by

Cgλ
(Fλ(x, t)) = (1 + λ) dist2

(
(x, t),

C(K̂m)
1 + λ

)
− gλ(x, t)− 1

1 + λ
,

where K̂m = {(yi, ei), i = 1, 2, . . . , m} ⊂ Rn × Rm is a finite set. It was established
in [45] that the restriction of Cgλ

(Fλ(x, t)) at t = −λ|y|2|/(2(1 + λ)) − b/2 is a
C1,1-smooth approximation of G(x). In fact if we let

Gλ(x) = Cgλ

(
Fλ(x,−λ|y|2|/(2(1 + λ))− b/2))

)
,

then we have

0 ≤ G(x)−Gλ(x) ≤ diam2(Km)
1 + λ

, |DGλ(x)| ≤ 2|Km|, x ∈ Rn,

where diam(Km) and |Km| = max{|w|, w ∈ Km} are the diameter and norm of Km

respectively. This approximation can be considered as explicit if one can successfully
calculates the squared distance function to the convex polytope C(K̂m)/(1 + λ).

In this paper we consider another example related to the squared-distance func-
tion defined by

H(x) =
m∑

j=1

(|xj | − dj)2, xj ∈ Rn, x = (x1, · · · , xm) ∈ Rmn, dj > 0, j = 1, 2, . . . , m.

The function H(·) arises from the so-called molecular distance geometry problem [24,
15, 18, 2] where the three-dimensional structure of a molecule is to be determined
with the distances of a subset of the atoms involved are known. The problem is to
find x1, . . . , xk ∈ R3 which describe the positions of the atoms in the molecule such
that for any given pair (i, j) ∈ S, one has |xi − xj | = dij , where S is a subset of all
pairs (i, j). Obviously the required equalities holds if the function

f(x) =
∑

(i,j)∈S

(|xi − xj | − dij)2, x = (x1, . . . , xk) ∈ R3k

reaches a minimizer x∗ and f(x∗) = 0. An alternative model is g(x) =
∑

(i,j)∈S(|xi−
xj |2 − d2

ij)
2. We only consider H(·) obtained from the first model function above.

Our plan for the rest of the paper is as follows. In Section 2, we establish Theo-
rem 1.1 and other results related to quadratic upper transforms for maximum-like
functions. We also use graphs of the absolute value function f(x) = |x| and the
maximum function f(x, y) = max{x, y} to compare approximations by our upper
transforms and those by the entropic approximations given by (8). In Section 3,
we derive a C1,1-smooth approximation for the squared-distance-like function H(x)
defined above, followed by examples of some one and two dimensional explicitly
calculated lower transforms for squared-distance-like functions. We also illustrate
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these examples of explicit approximations by comparing their graphs with those of
the original functions by using Mathematica graphic softwares.

2. Explicit C1,1-approximations for maximum-like function

We need some more notations and preliminaries. For a compact set K ⊂ Rn we
define the diameter of the set K by diam(K) = sup{|x − y|, x, y ∈ K} and let
l(K) = sup{x ∈ Rn, x ∈ K}. The space C1,1(Rn) consists of functions defined on
Rn whose gradient Df are Lipschitz mappings:

|Df(x)−Df(y)| ≤ Lf |x− y|, x, y ∈ Rn

where Lf ≥ 0 is the Lipschitz constant of Df .
Given a compact set K ⊂ Rn and a fixed t > 0, let tK = {tx, x ∈ K}. For ε > 0,

we also let (K)ε = {x ∈ Rn, dist(x,K) ≤ ε} be the closed ε-neighbourhood of K.
We denote by C(K) its convex hull [31]. For a convex compact set K ⊂ Rn and
a given point x ∈ Rn, we denote by PK(x) the unique nearest point in K [20, 16]
such that dist(x,K) = |x − PK(x)|. The mapping x → PK(x) is called the convex
projection to K. For a Lebesgue measurable set Ω ⊂ Rn, we denote by meas(Ω)
the Lebesgue measure of Ω.

Let Sn be the group of all permutations of the set {1, . . . , n}. If σ ∈ Sn is given
by σ(1, . . . , n) = (i1, . . . , in), then we define for a given point x = (x1, . . . , xn),
σ(x) = (xi1 , . . . , xin) as permutation of component positions. It is easy to see that
σ : Rn → Rn is both linear and isometric, satisfying that |σ(x)| = |x|. A function
g : Rn 7→ R is called permutation invariant if g(σ(x)) = g(x) for all σ ∈ Sn. For
a vector h = (h1, . . . , hn) ∈ Rn, we write h ≥ 0 (respectively h ≤ 0) if hi ≥ 0
(respectively hi ≤ 0) for all i = 1, . . . , n. We say that f : Rn → R is monotone
increasing (respectively, decreasing) if f(x + h) ≥ f(x) for all x, h ∈ Rn with h ≥ 0
(respectively, if f(x + h) ≤ f(x) for all x, h ∈ Rn with h ≤ 0). Observe that both
the maximum function fn(x) defined above and the classical smooth approximation
fn(λ, x) defined by (8) are permutation invariant and monotone increasing.

For a compact set K ⊂ Rn, the medial axis MK ⊂ Rn is the closed set on which
dist2(x,K) is not differentiable. It can be described alternatively as the closure
of the set M0

K ⊂ Rn \ K, where M0
K consists all of the points x ∈ Rn and a

corresponding radius r(x) > 0 such that B(x, r(x)) ⊂ Rn \K is the maximal open
ball in the sense that any open ball B containing B(x, r(x)) cannot be completely
contained in Rn \ K [7, 12, 37, 23]. A simple example of points x ∈ M0

K is that
dist(x,K) is reached at least two different points on K. For a finite set K ⊂ Rn,
the medial axis of K is the so-called Voronoi diagram [36, 7, 12, 37]. In this case,
MK consists of those points whose distance to K can be reached by more than one
points in K, that is,

MK = {x ∈ Rn, ∃y1, y2 ∈ F, y1 6= y2, dist(x,K) = |x− x1| = |x− y2|}.
Let us give a short description of the prox-function regularization method for

smoothing a maximum like function proposed by Nesterov [25]. We will compare
our method with this method later. Given a dual pair of finite dimensional normed
linear spaces (E, ‖ · ‖1) and its dual (E∗, ‖ · ‖2). Let A : E → E∗ be and linear map
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and Q2 ⊂ E∗ be a compact convex set. Consider

f(x) = max{〈Ax, y〉2 − φ(y), y ∈ Q2}
where 〈·, ·〉2 is a ‘scalar product’ on E∗ and φ : Q2 → R is a convex function.

A prox-function d2(y) is a strict convex function defined on C(K) satisfying

〈Dd2(y1)−Dd2(y2), y1 − y2〉 ≥ σ‖y1 − y2‖2
2, for some σ > 0.

Let y0 = arg miny{d2(y), y ∈ C(K)} be the ‘prox-centre’, one may assume that
d2(y0) = 0, hence d2(y) ≥ σ

2 ‖y− y0‖2
2. Let µ > 0 be a small smoothness parameter,

the smooth approximation Fµ(x) is defined by

fµ(x) = max{〈Ax, y〉2 − µd2(y), y ∈ Q2}.
The resulting function is a C1,1 approximation with Lipschitz constant of Dfµ

given by ‖A‖2/(µσ). In practice it was proposed in [25] to use either the standard
Euclidean norm or the l1 norm on E∗. We will compare this approach with ours
later in the present paper.

We need the following two lemmas for the proof of Theorem 1.1.

Lemma 2.1. Suppose K ⊂ Rn be a compact set, then
(i) C[dist2(x, K)] = dist2(x, C(K)) for all x ∈ Rn;
(ii) 0 ≤ dist2(x, K)− dist2(x, C(K)) ≤ diam2(K) for all x ∈ Rn.
(iii) If K ⊂ Rn is convex and compact, then

(10) dist2(x, K) = |x− PK(x)|2, x ∈ Rn,

where PK(x) ∈ K is the unique point in K such that (10) holds. Further-
more, PK : Rn → K is continuous and D dist2(x, K) = 2(x − PK(x)), for
all x ∈ Rn.

Lemma 2.2. Let K ⊂ Rn be a compact convex set and define

fλ(x) = λ|x|2 − λ dist2
(

x,
K

2λ

)
+ Cλ

for λ > 0 with Cλ a constant. Let PK/(2λ)(x) the convex projection from x ∈ Rn to
K. Then fλ(x) = 2λ〈x, PK/(2λ)(x)〉+ Cλ and fλ(x) is both convex and of C1,1 with

|Dfλ(x)| ≤ l(K), |Dfλ(x)−Dfλ(y)| ≤ 2λ|x− y|, x, y ∈ Rn.

Lemma 2.1 was proved in [45]. We give a proof to make the present paper self-
contained.

Proof of Lemma 2.1. Item (i) is well-known. Even for the more general case of
quasiconvex envelope of the p-distance function to a closed set K ⊂ MN×n in the
calculus of variations, we have (see [39]) that Q[distp(X, K)] = distp(X, Qp(K)]
where Qp(K) is the quasiconvex hull if K is compact and p-quasiconvex hull of K
is unbounded. The following is a short proof of (i).

Clearly, dist2(x,K) ≥ C dist2(x,K) ≥ dist2(x,C(K)). We prove the opposite
inequality. Let dist2(x,C(K)) = |x− x0|2 for some x0 ∈ C(K). By Carathéodory’s
theorem [31], there are at most n + 1 points x1, . . . , xn+1 ∈ K, such that x0 =
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∑n+1
i=1 λixi with λi ≥ 0,

∑n+1
i=1 λi = 1. Thus by the convexity of C dist2(·,K), we

have

C dist2(x,K) = C dist2(x +
n+1∑

i=1

λi(xi − x0), K) ≤
n+1∑

i=1

λiC dist2(x + xi − x0, K)

≤
n+1∑

i=1

λi dist2(x + xi − x0, K) ≤
n+1∑

i=1

λi|x + xi − x0 − xi|2

= |x− x0|2 = dist2(x,C(K)).

The proof of (i) is finished.
Item (ii) is a consequence of the Pythagorean theorem. Without loss of gen-

erality, we may assume that the affine dimension of C(K) is n [31]. Clearly
dist2(x, C(K)) ≤ dist2(x, K). Now given x ∈ Rn and dist2(x, C(K)) < dist2(x, K)
and x /∈ C(K), let x0 ∈ C(K) \K be the unique point such that dist2(x, C(K)) =
|x − x0|2. Note that for this particular x, dist2(x, C(K)) = dist2(x, ∂C(K)). Let
E ⊂ Rn be a supporting plane of C(K) passing through x0 with the smallest di-
mension, then we see that x− x0 is perpendicular to E. Now we take x1 ∈ E ∩K
then we have

dist2(x, K)− dist2(x, C(K)) ≤ |x− x1|2 − |x− x0|2
= |x1 − x0|2 ≤ diam2(C(K)) = diam2(K).

The proof for (ii) is finished.
Item (iii) is well known [23, 37]. The proof is also easy due to the nearest

point property for compact convex sets [20]. So it is easy to see that PK(·) is
continuous. The formula for the gradient follows from the continuity of PK and the
definition of the squared distance function. We leave this last point to the proof of
Lemma 2.2. ¤

Proof of Lemma 2.2. It is well-known that the convex projection PK : Rn → K to
a closed convex set K ⊂ Rn satisfies (see [16])

(11) |PK(x)− PK(y)|2 ≤ |x− y|2 − |x− PK(x)|2 − |y − PK(y)|2, x, y ∈ Rn.

This implies that |PK(x) − PK(y)| ≤ |x − y| hence PK(·) is a Lipschitz mapping
with Lipschitz constant 1.

Now we consider fλ(·). We have, by Lemma 2.1 that

Dfλ(x) = 2λx− 2λ(x− PK/2λ(x)) = 2λPK/2λ(x),

hence

(12) |Dfλ(x)| = |2λPK/2λ(x)| ≤ 2λ max
{ |y|

2λ
, y ∈ K

}
= l(K).

By (11) we also have

(13) |Dfλ(x)−Dfλ(y)| = 2λ|PK/2λ(x)− PK/2λ(y)| ≤ 2λ|x− y|.
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We are only left to show that fλ is convex. Since λ dist2(x, K/(2λ)) is both convex
and of C1,1 we have, for any x, y ∈ Rn that

0 ≤ λ dist2(x + y, K/(2λ))− λ dist2(x, K/(2λ))− λD dist2(x, K/(2λ))

= λ[|x + y − PK/(2λ)(x + y)|2 − |x− PK/(2λ)(x)|2 − 2〈x− PK/(2λ)(x), y〉]
≤ λ[|x + y − PK/(2λ)(x)|2 − |x− PK/(2λ)(x)|2 − 2〈x− PK/(2λ)(x), y〉] = λ|y|2.

Thus

fλ(x + y)− fλ(x)− 〈Dfλ(x), y〉
= λ|y|2 − λ[dist2(x + y, K/(2λ))− dist2(x, K/(2λ))−D dist2(x, K/(2λ))] ≥ 0,

hence fλ is convex. ¤
Note that if the convex set K consists of more than one point, (13) is a sharp

estimate for all λ > 0 so that 2λ is the Lipschitz constant of Dfλ(·). This is clearly
seen from (11) because for x, y ∈ K/2λ, x 6= y, we have PK/2λ(x) = x, PK/2λ(y) = y
and Dfλ(x) = 2λx, Dfλ(y) = 2λy.

Proof of Theorem 1.1. Let us establish (4) first. Note that K ⊂ Sn−1, we have

λ|x|2 − F (x) = λ|x|2 −max
y∈K

〈x, y〉(14)

= min
y∈K

[λ|x|2 − 〈x, y〉] = min
y∈K

(
λ

∣∣∣x− y

2λ

∣∣∣
2
− |y|2

4λ

)

=
(

λ min
y∈K

∣∣∣x− y

2λ

∣∣∣
2
)
− 1

4λ
= λ dist2

(
x,

K

2λ

)
− 1

4λ
.

Note that this identity also leads to

(15) F (x) = λ|x|2 − (λ|x|2 − F (x)) = λ|x|2 − λ dist2
(

x,
K

2λ

)
+

1
4λ

.

Now by Lemma 2.1(i), we have

C[λ|x|2 − F (x)] = λ dist2
(

x, C

(
K

2λ

))
− 1

4λ
,

so we have, by definition that

(16) Cu
2,λ(F (x)) = λ|x|2 − C[λ|x|2 − F (x)] = λ|x|2 − λ dist2

(
x, C

(
K

2λ

))
+

1
4λ

.

Next we prove (i). Combining (15), (16) and applying Lemma 2.1(ii) we obtain

0 ≤ Cu
2,λ(F (x))− F (x)

= λ

[
dist2

(
x,

K

2λ

)
− dist2

(
x, C

(
K

2λ

))]
≤ λ diam2

(
K

2λ

)
≤ 1

λ
,

as diam(K) ≤ 2 in our case. The proof of (i) is finished.
Note that l(K) = 1 in our case. Thus (ii) follows from Lemma 2.2.
Now we prove (iii). Because K ⊂ Sn−1, we see that MK = MtK for every

k > 0. This is due to the fact that for any two point set K2 = {x1, x2} ⊂ Sn−1

with x1, 6= x2, we see that MK2 is an n− 1-dimensional subspace in Rn and MtK2 is
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exactly the same subspace. Thus by a limit process we can easily see that in general
MK = MtK for t > 0 and K ⊂ Sn−1.

For x0 ∈ Rn \ C(K/(2λ)) with dist(x0, MK) > 2/λ, we only need to show that

C(λ|x0|2 − F (x0)) = λ|x0|2 − F (x0).

Note that (14) gives

λ|x|2 − F (x) = λ dist2
(

x,
K

2λ

)
− 1

4λ

and λ dist2(x, K/(2λ))− 1/(4λ) is differentiable at x0. In order to show that

C(λ|x0|2 − F (x0)) = λ|x0|2 − F (x0),

we only need to show that

[λ|x|2 − F (x)]− [λ|x0|2 − F (x0)]− 〈D(λ|x0|2 − F (x0)), x− x0〉 ≥ 0, x ∈ Rn,

or equivalently,

(17) dist2
(

x,
K

2λ

)
− dist2

(
x0,

K

2λ

)

−
〈

D dist2
(

x0,
K

2λ

)
, x− x0

〉
≥ 0, x ∈ Rn.

Consider the closed ball B̄(x0, 2/λ) ⊂ Rn\MK , we see that for every x ∈ B(x0, 2/λ),
there is a unique point P (x) ∈ K/(2λ) such that dist(x, K/(2λ)) = |x−P (x)|. Due
to the uniqueness property of the nearest point P (x) for x ∈ B̄(x0, 2/λ), we can
easily prove that D dist2(x, K/(2λ)) = 2(x − P (x)). Furthermore, we can prove
that for x ∈ B̄(x0, 2/λ), we have

|P (x)− P (y)| ≤ |x− y|.
This last claim follows from the simple fact that for x ∈ B̄(x0, 2/λ), P (x) ∈ K/(2λ)
is the only point such that 〈z−P (x), x−P (x)〉 ≤ 0 for all z ∈ K/(2λ) [16]. Taking
z = P (y) for y ∈ B̄(x0, 2/λ), we see that |P (x) − P (y)|2 ≤ 〈P (x) − P (y), x − y〉.
The conclusion follows.

Now for x ∈ B̄(x0, 2/λ), we have

dist2
(

x,
K

2λ

)
− dist2

(
x0,

K

2λ

)
−

〈
D dist2

(
x0,

K

2λ

)
, x− x0

〉

=
∫ 1

0

〈
D dist2

(
x0 + t(x− x0),

K

2λ

)
−D dist2

(
x0,

K

2λ

)
, x− x0

〉
dt

= 2
∫ 1

0
〈(x0 + t(x− x0)− P (x0 + t(x− x0))− (x0 − P (x0), x− x0〉 dt

= 2
[
|x− x0|2 −

∫ 1

0
〈P (x0 + t(x− x0)− P (x0), x− x0〉 dt

]
≥ 0.

Thus (17) holds for x ∈ B̄(x0, 2/λ). Next we consider x ∈ Rn \B(x0, 2/λ), we have
|x−x0| ≥ 2/λ. We use the simple fact that F (·) is Lipschitz with Lipschitz constant
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1, hence at x0, |DF (x0)| ≤ 1. Then we have

dist2
(

x,
K

2λ

)
− dist2

(
x0,

K

2λ

)
−

〈
D dist2

(
x0,

K

2λ

)
, x− x0

〉

= λ|x|2 − F (x)− (λ|x0|2 − F (x0))− 〈2λx0 −DF (x0), x− x0〉
= λ|x− x0|2 − [F (x)− F (x0)− 〈DF (x0), x− x0〉]
= λ|x− x0|2 − 2|x− x0| = |x− x0|(λ|x− x0| − 2) ≥ 0,

as λ|x− x0| ≥ 2. The proof of (iii) is finished.
Before we proceed, we remark that the medial axis MK for a compact set K ⊂

Sn−1 is not necessarily a set of measure zero in Rn. An example of K ⊂ S1

is constructed in [23] such that the two-dimensional Lebesgue measure of MK is
nonzero, that is, meas(MK) > 0.

Next we prove (iv). Given any x ∈ ER, that is, |x| ≤ R, x /∈ C(K/(2λ))
and F (x) < Cu

2,λ(F (x)), the last inequality is equivalent to dist2(x, C(K/(2λ)) <

dist2(x, K/(2λ)).
Let Γ(λ)

k = {∆(λ)
k,s , s = 1, . . . sk} be the collection of k-dimensional faces (k-faces

for short) of the polytope C(K/(2λ) with 1 ≤ k ≤ n − 1. We define ∆(λ)
k,s to be an

open polytope in a k-dimensional space without boundary. We denote by sk the
number of such k-faces and let l

(m)
k be the maximum number of k-faces a convex

polytope with m-vertices (exposed points) [8]. The estimates of lk and properties
of convex polytopes can be found in [8]. Now we see that

E
(λ)
R = ∪n−1

k=1 ∪sk
s=1 V

(λ,R)
k,s ,

where V
(λ,R)
k,s = {x ∈ ER, dist(x, C(K/(2λ))) = dist(x, ∆(λ)

k,s).

This is easy to see as dist(x, C(K/(2λ))) = |x − PC(K/(2λ))(x)|. Now we can eas-

ily give an easy rough estimate of meas(V (λ,R)
k,s ). The k-dimensional face ∆(λ)

k,s is
contained in a k-dimensional ball with radius at most diam(K/(2λ)) ≤ 1/λ, so
meask(∆

(λ)
k,s) ≤ bk/λk where bk is the volume of the k-dimensional unit ball. Thus

meas(V (λ,R)
k,s ) ≤ bkbn−kR

n−k/λk. Therefore

meas(E(λ)
R ) ≤

n−1∑

k=1

sk∑

s=1

meas(V (λ,R)
k,s ) ≤

n−1∑

k=1

skbkbn−k
Rn−k

λk
,

which implies that

meas(E(λ)
R )

meas(Bk)
≤

n−1∑

k=1

skbkbn−k
Rn−k

bnRnλk

≤
n−1∑

k=1

skbkbn−k
1

bn(Rλ)k
≤ 1

Rλ

n−1∑

k=1

l
(m)
k

bkbn−k

bn
=

C(m,n)
Rλ

. ¤

Our next result is concerned with the general set K ⊂ Rn and we have to modify
our function to obtain a simple approximation formula.
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Theorem 2.3. Let G(x) = max{〈x, y〉, y ∈ K} where K ⊂ Rn is a non-empty
compact set. Let

(18) Gλ(x) = max{〈x, y〉 − |y|2
4λ

, y ∈ K}, λ > 0.

Then

(19) G(x)− l2(K)
4λ

≤ Gλ(x) ≤ G(x), x ∈ Rn

and the quadratic upper transform of Gλ(·) is given by

(20) Cu
2,λ(Gλ(x)) = λ|x|2 − λ dist2

(
x, C

(
K

2λ

))
, x ∈ Rn, λ > 0.

Furthermore,

(21) − l2(K)
4λ

≤ Cu
2,λ(Gλ(x))−G(x) ≤ diam2(K)

4λ
, x ∈ Rn,

Cu
2,λ(Gλ(x)) is convex and belongs to C1,1(Rn), and

(22) |DCu
2,λ(Gλ(x))−DCu

2,λ(Gλ(y))| ≤ 2λ|x− y|,
|DCu

2,λ(Gλ(x))| ≤ l(K), x, y ∈ Rn.

Proof of Theorem 2.3. The error estimate (19) is easy to obtain. Now we prove
(20). We have, for λ > 0 that

λ|x|2 −Gλ(x) = λ|x|2 −max
y∈K

[〈x, y〉 − |y|2
4λ

]

= min
y∈K

[λ|x|2 − 〈x, y〉+
|y|2
4λ

] = λ dist2
(

x,
K

2λ

)
.

Thus we can rewrite Gλ(x) as

(23) Gλ(x) = λ|x|2 − (λ|x|2 −Gλ(x)) = λ|x|2 − λ dist2
(

x,
K

2λ

)
.

Now we have

C(λ|x|2 −Gλ(x)) = λ dist2
(

x, C

(
K

2λ

))
,

hence

(24) Cu
2,λ(Gλ(x))) = λ|x|2 − λ dist2

(
x, C

(
K

2λ

))
.

Applying Lemma 2.1(ii) to (23) and (24) we obtain

(25) 0 ≤ Cu
2,λ(Gλ(x)))−Gλ(x) ≤ diam2(K)

4λ
.

Combining (19) and (25) we obtain the error estimate (21). Claim (22) of Theorem
2.3 follow from Lemma 2.2. ¤
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Let us compare the prox-function regularization method for smoothing a max-
imum like function proposed by Nesterov [25] with the general quadratic upper
transform method stated in Theorem 2.3. Let us consider the maximum like func-
tion G(x) in Theorem 2.3 as an example. Applying to the maximum function
fn(x) = max1≤i≤n xi = 〈x, y〉, y ∈ Kn} = max{〈x, y〉, y ∈ C(Kn)}, explicit calcu-
lations are performed for d2(y) = log n+

∑n
i=1 yi log yi in C(Kn) which is a simplex.

The calculations recovers the entropy smoothing formula Fµ(x) = µ log(
∑n

i=1 eyi/µ).
The case under the standard Euclidean norm with d2 = 1

2

∑n
i=1(yi − 1/n)2 was not

calculated in [25] for the maximum function and left as an abstract smoothing for-
mula. This last prox-function was used once for smoothing the Euclidean norm in
[25].

The advantage of the prox-function method is that it can be defined for more
general functions in the form f(x) = max{〈x, y〉 − φ(y), y ∈ C(K)} where φ is
a convex function. If the set C(K) is simple, the norm of E∗ can be chosen so
that d2(·) can be other than the squared Euclidean distance function to the prox-
centre. However, for a given convex set C(K), the prox-centre itself might not
be easy to find and to define a proper prox-function requires some insight of the
set C(K). On the other hand, Theorem 2.3 reduces the smooth approximation
to the calculation of the squared distance function to a shrinking family of known
convex sets. Also in the definition of quadratic upper transform, one only needs
to consider the squared Euclidean norm instead of searching a prox-function d2(·)
based on the geometry of C(K). In fact it was established in [45] that for a general
convex function f : Rn → R satisfying the growth condition (7), the quadratic
upper transform Cu

2,λ(f(x)) is both C1,1 and convex with Lipschitz constant of the
gradient at most 8λ. Clearly, the prox-function method does not apply to general
convex functions. Now in the case of Theorem 2.3, if we rewrite Cu

2,λ(Gλ(x)), we
can find a close connection between the quadratic upper transform of Gλ(x) and
the prox-function approximation of G(·). We have, by Theorem 2.3 that

Cu
2,λ(Gλ(x)) = λ|x|2 − λ dist2

(
x, C

(
K

2λ

))
= λ|x|2 − λ min

y∈C(K)

[∣∣∣x− y

2λ

∣∣∣
2
]

= λ max
y∈C(K)

[
|x|2 −

∣∣∣x− y

2λ

∣∣∣
2
]

= λ max
y∈C(K)

[
〈x,

y

λ
〉 − |y|2

4λ2

]
= max

y∈C(K)

[
〈x, y〉 − |y|2

4λ

]
.

Thus the quadratic upper transform in this case is ‘almost’ the prox-function
smoothing function with d2(y) = |y|2/2 and µ = 1/(2λ) by using the standard
Euclidean norm. However, it is not obvious from the prox-function smoothing
formula to obtain Cu

2,λ(Gλ(x)) through a backward calculation.
As the first application of Theorem 1.1, we have the following result concerning

our C1,1 convex approximation to the maximum function fn(x) = max1≤i≤n xi.
Since fn is both monotone increasing and permutation invariant, we can derive some
more detailed properties of Cu

2,λ(fn(x)). As before, let e1, . . . , en be the standard
Euclidean basis of Rn and let Kn = {e1, . . . , en}. Note here that geometrically Kn

consists all the vertices of an n− 1-dimensional simplex in Rn.
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Corollary 2.4. Let fn(x) = max1≤i≤n xi be the maximum function, then the qua-
dratic upper transform is given by

(26) Cu
2,λ(fn(x)) = λ|x|2 − λ dist2

(
x, C

(
Kn

2λ

))
+

1
4λ

, x ∈ Rn, λ > 0.

Items (i)–(iv) in Theorem 1.1 hold for fn and Kn with a better error estimate than
that in Theorem 1.1 as

(27) 0 ≤ Cu
2,λ(fn(x))− fn(x) ≤ 1

2λ
.

Furthermore,
(i) The quadratic upper transform Cu

2,λ(fn(·)) given by (26) is both monotone
increasing and permutation invariant.

(ii) Given x ∈ MKn where MKn is the Voronoi diagram of Kn such that
dist(x,Kn) = |x − emj | for j = 1, . . . , s ≤ n, where {em1 , . . . , ems} is a
subset of Kn consisting of at least two points, then

lim
λ→+∞

DCu
2,λ(fn(x)) =

1
s

s∑

j=1

emj ∈ ∂fn(x),

where ∂fn(x) is the subdifferential of fn(x) [11].

Questions concerning the limit of gradient of the smooth approximations to the
subdifferential of the original function such as Item (ii) in Corollary 2.4 was studied
in [16]. We need the following Lemma to prove Corollary 2.4(i).

Lemma 2.5. Suppose f : Rn → R satisfies |f(x)| ≤ C0|x|2 + C1 and is mono-
tone increasing (respectively, decreasing), then Cu

2,λ(f(x)) is monotone increasing
(respectively, decreasing).

Proof. Suppose f is monotone increasing and fix h ∈ Rn, h ≥ 0. Let gh(x) =
f(x + h), we have −f(x) ≥ −gh(x) for all x ∈ Rn, hence for any fixed λ > C0,

C[λ|x|2 − f(x)] ≥ Cx[λ|x|2 − gh(x)] = Cx[λ|x + h|2 − f(x + h)− 2λx · h− λ|h|2]
= Cx[λ|x + h|2 − f(x + h)]− 2λx · h− λ|h|2,

due to the fact that lh(x) := −2λx · h − λ|h|2 is affine in x, where Cx(F (x, h)) is
the convex envelope in x for functions F depending on both x and h. It is easy to
see that

Cx[λ|x + h|2 − f(x + h)] = C[λ|x + h|2 − f(x + h)]
where the convex envelope on the right hand side of the above is taken with respect
to the x + h-variable. Thus

C[λ|x|2 − f(x)) ≥ C[λ|x + h|2 − f(x + h)]− 2x · h− |h|2,
which implies that

Cu
2,λ(f(x)) ≤ λ|x|2 − C[λ|x + h|2 − f(x + h)] + 2λx · h + 2λ|h|2

= λ|x + h|2 − C[λ|x + h|2 − f(x + h)] = Cu
2,λ[f(x + h)].

The proof for monotone decreasing f is similar. ¤
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Proof of Corollary 2.4. Estimate (27) follows from the fact that diam(Kn) =
√

2.
We only need to prove Items (i) and (ii). All other claims are consequences of
Theorem 1.1 with K = Kn ⊂ Sn−1. Now we show that Cu

2,λ(fn(·)) is permutation
invariant, that is, for every permutation σ ∈ Sn, Cu

2,λ(fn(σ(x))) = Cu
2,λ(fn(x)) for all

x ∈ Rn, where σ(x1, . . . , xn) = (xσ(1), . . . , xσ(n)). Since λ|x|2 is clearly permutation
invariant, we only need to show that

dist2
(

σ(x), C

(
K

2λ

))
= dist2

(
σ(x),

K

2λ

)
.

This is also easy to see. Note that dist2(x,C(K/2)) = |x− PC(K/(2,λ))(x)|2 and the
convex projection is a convex combination of the vertices of the simplex C(Kn/(2λ)).
Thus we can write PC(K/(2,λ))(x) =

∑n
i=1 τiei with τi ≥ 0 and

∑n
i=1 τi = 1. Let

τ = (τ1, . . . , τn), then

dist2
(

x,C

(
K

2λ

))

= |x− PC(K/(2λ))(x)|2 = |x− τ |2 = |σ(x− τ)|2 = |σ(x)− σ(τ)|2
= |σ(x)− PC(K/(2λ))(σ(x))|2 = dist2(σ(x), C(K/(2λ)),

as σ : Rn → Rn is both linear and isometric under the Euclidean norm.
Since fn is monotone increasing, we have, by Lemma 2.5 that Cu

2,λ(fn(σ(x))) is
monotone increasing.

Now we prove Item (ii). Given x ∈ MKn and let ei1 , . . . , eik ∈ Kn (2 ≤ k ≤ n) be
such that dist(x, Kn) = |x− ei1 | = · · · = |x− eik |. Then it is easy to see that

dist
(

x, C

(
Kn

2λ

))
=

∣∣∣x− ei1

2λ

∣∣∣ = · · · =
∣∣∣x− eik

2λ

∣∣∣

and

PC(Kn/(2λ))(x) =
1
k

k∑

s=1

eis

2λ
, DCu

2,λ(fn(x)) = 2λPC(Kn/(2λ))(x) =
1
n

k∑

s=1

eis

for all λ > 0 hence

lim
λ→∞

DCu
2,λ(fn(x)) =

1
k

k∑

s=1

eik ∈ ∂fn(x) = C({ei1 , . . . , eik}).

The last equality can be found, for example, in [25]. ¤

Since the explicit formula (26) for Cu
2,λ(fn(·)) is not in a closed form, we would

like to remark on the explicit calculations of Cu
2,λ(fn(x)) and DCu

2,λ(fn(x)). These
all come down to the calculation of PC(Kn/(2λ))(x). However, we have

PC(Kn/(2λ))(x) =
1
2λ

PC(Kn)(2λx)
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due to the fact that

dist
(

x, C

(
Kn

2λ

))
= inf

{∣∣∣x− y

2λ

∣∣∣ , y ∈ C(Kn)
}

=
1
2λ

inf{|2λx− y|, y ∈ C(Kn)}

=
1
2λ
|2λx− PC(Kn)(2λx)| =

∣∣∣∣x−
1
2λ

PC(Kn)(2λx)
∣∣∣∣ ,

hence we only need to find an effective way of calculating PC(Kn)(x). Now we
follow [33]. After an re-ordering of the components by a permutation σx such that
σx(x) = (xi1 , . . . , xin) with xi1 ≥ xi2 ≥ · · · ≥ xin . Then the k-th component of
PC(Kn)(σx(x)) is given by

[PC(Kn)(σx(x))]k =

{
xik + 1

m∗

(
1−∑m∗

s=1 xis

)
, 1 ≤ k ≤ m∗,

0, k > m∗,

where m∗ ≤ n is the largest positive integer m such that S(m) :=
∑m

s=1(ais−aim) ≤
1. It was proved in [33] that the sequence S(m) is non-decreasing and S(1) = 0.
Thus

PC(Kn)(x) = σ−1
x (PC(Kn)(σx(x))).

Note also that DCu
2,λ(fn(x)) = PC(Kn/(2λ))(x).

Next we consider C1,1 smooth approximations to maximum-like functions. The
first example of such a function is the l∞ norm on Rn defined by

(28) gn(x) = ‖x‖∞ = max
1≤i≤n

|xi|, x = (x1, x2, . . . , xn) ∈ Rn.

It is known that if we enlarge the dimension of the space, we can write gn(x) =
{x1,−x1, . . . , xn,−xn} and define the C∞ approximation (see, for example [25]) by

gn(λ, x) =
1
λ

log

(
n∑

i=1

[
eλxi + e−λxi

])
.

However, if we apply the quadratic upper transform to gn(·) we do not have to
enlarge the dimension. Instead, we consider a cube with twice as many points as
the set Kn by defining Jn = Kn ∪ (−Kn), where Kn is defined in Corollary 2.4.
Observe that Jn is the set of vertices of an n-dimensional cube with side-length√

2. Again, we can derive a very simple geometric formula for Cu
2,λ(gn(x)) without

enlarge the dimension of the space.

Corollary 2.6. Suppose gn(·) is defined by (28) and Jn is defined as above, then

(29) Cu
2,λ(gn(x)) = λ|x|2 − λ dist2

(
x, C

(
Jn

2λ

))
+

1
4λ

, x ∈ Rn, λ > 0.

Items (i)–(iv) of Theorem 1.1 hold. In particular, if we replace the ball B(0, R) in
Theorem 1.1(iv) by the cube DR = RC(Jn) = {Ry, y ∈ C(Jn)} and let

U
(λ)
R = {x ∈ C(RJn) \ C(Jn/(2λ)), gn(x) < Cu

2,λ(gn(x))},
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then we have

(30)
meas(U (λ)

R )
meas(DR)

= 1−
(

1− 1
2λR

)n

.

Furthermore, for any x ∈ MJn where MJn is the Voronoi diagram of Jn such that
dist(x, Jn) = |x − umj | for j = 1, . . . , s ≤ 2n, where {um1 , . . . , ums} is a subset of
Jn consisting of at least two points, then

lim
λ→+∞

DCu
2,λ(gn(x)) =

1
s

s∑

j=1

umj ∈ ∂gn(x).

Proof of Corollary 2.6. We only establish the volume ratio equality (30) for
meas(U (λ)

R ))/ meas(DR). The set DR \ U
(λ)
R on which Cu

2,λ(gn(x)) = gn(x) consists
of 2n smaller cubes with total volume 2n(

√
2R−√2/(2λ))n. Thus

meas(U (λ)
R )) =

(
(
√

2R)n − 2n(
√

2R

2
−

√
2

2(2λ)

)n

,

hence

meas(U (λ)
R ))

meas(DR)
=

(
√

2R)n − (
√

2R−√2/(2λ))n

(
√

2R)n
= 1−

(
1−

(
1

2Rλ

)n)
. ¤

In our next example we consider the positive part of the maximum function
defined by f+(x) = max{fn(x), 0}, where fn is the maximum function in Corollary
2.4. If we apply the quadratic upper transform to f+, we will see that the calculation
can be more complicated than that for the maximum function. However, if we give
away a bit of tightness of the approximation, we may perturb our original function
f+ by a family of functions fλ(x) = max{f(x), 1/(4λ)}. It is easy to see that
0 ≤ fλ(x) − f+(x) ≤ 1/(4λ). Thus for large λ > 0, fλ(·) is a very good uniform
approximation of f+(·). Now we denote by K

(0)
n = Kn ∪ {0}, where Kn is defined

in Corollary 2.4. The proof of the following result follows directly from that of
Theorem 1.1 and is left to interested readers.

Corollary 2.7. Let fλ and K
(0)
n be defined above, then for λ > 0,

(31) Cu
2,λ(fλ(x)) = λ|x|2 − λ dist2

(
x, C

(
K

(0)
n

2λ

))
+

1
4λ

, x ∈ Rn.

Theorem 1.1(i)–(iv) are satisfied for fλ and Cu
2,λ(fλ(x)). Furthermore, we have the

following uniform error estimate

(32) 0 ≤ Cu
2,λ(fλ(x))− f+(x) ≤ 3

4λ
, x ∈ Rn.

Our next example is a tight C1,1 approximation for the non-smooth function

(33) G(y, t) = max{|yi|+ ti, y = (y1, . . . , ym) ∈ RN , yi ∈ Rki ,

t = (t1, . . . , tm) ∈ Rm},
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where N =
∑m

i=1 ki. The function G(y, t) arises from the so-call second order cone
optimization where the following constrained minimization problem is considered
[1, 10]

(34)
{ minimize f · x,

subject to |Aix + bi| ≤ ci · x + di, i = 1, . . . , m,

where x ∈ Rn is independent variable, and all other quantities, f ∈ Rn, Ai ∈ Mki×n,
bi ∈ Rki , ci ∈ Rn, and di ∈ R are given. As the standard Euclidean norm is not
smooth at 0, the constraints are non-smooth. We can rewrite the constraint in an
equivalent form

(35) max
1≤i≤m

[|Aix + bi| − (ci · x + di)] ≤ 0, x ∈ Rn.

Now we consider the function G(x, t) defined above by (33) on RN+m = Πm
i=1(Rki ×

R) Then (35) is just the evaluation of G(y, t) at yi = Aix + bi, ti = −(ci · x + di).
Before we write down the upper compensated convex transforms Cu

2,λ(G(y, t)), let
us define some subsets of RN+m = Πm

i=1Rki × R. We define the sphere

Si
λ = {(y, t) ∈ RN+m, yj = 0, tj = 0, j 6= i, |yi| = 1

2λ
, ti =

1
2λ
}, Sλ = ∪Si

λ.

The following is an explicit C1,1 approximation of G(y, t) by its quadratic upper
transform.

Theorem 2.8. The quadratic upper transform Cu
2,λ(G(y, t)) is given by

(36)

Cu
2,λ(G(y, t)) = λ(|y|2 + |t|2)−λ dist2((y, t), C(Sλ))+

1
2λ

, (y, t) ∈ RN+m, λ > 0.

Furthermore, Cu
2,λ(G(y, t)) is convex and belongs to C1,1(RN+m),

(37) 0 ≤ Cu
2,λ(G(y, t))−G(y, t) ≤ 1

λ
, (y, t) ∈ RN+m, λ > 0,

and

(38) |DCu
2,λ(G(y, t))| ≤ 1, |DCu

2,λ(G(y, t))−DCu
2,λ(G(y′, t′))| ≤ 2λ|(y, t)− (y′, t′)|.

The proof of Theorem 2.8 is similar to that of Theorem 1.1. The calculation of
Cu

2,λ(G(y, t)) is straight forward as

λ(|y|2 + |t|2)−G(y, t) = min
1≤i≤m

[λ(|y|2 + |t|2)− (|yi|+ ti) +
1
2λ

]− 1
2λ

= λ dist2((y, t), Sλ) +
1
2λ

.

From the above we see that the calculation of Cu
2,λ(G(y, t)). However, if one tries to

apply the prox-function regularization, it is not obvious how to find a proper d2(·)
and calculate a corresponding smooth approximation Gµ(y, t).

Next we apply Theorem 2.3 to the following piecewise affine convex function
widely used in non-smooth convex programming [25, 17]:

(39) h(x) = min
1≤j≤m

(aj · x + bj), x, aj ∈ Rn, bj ∈ R.
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The sub-level sets of such a function can also be used to define convex polytopes [17].
A convex polytope K is a convex body in Rn generated by a finite set. Therefore
K has finitely many facets, that is, faces of dimension n − 1. Let V1, . . . , Vm be
the half spaces defining K with Vi = {x, ai · x + bi ≤ 0}, where ai ∈ Rn, bi ∈ R,
i = 1, 2, . . . m. We can write K = ∩m

i=1Vi [31]. Thus K can also be written as

K = {x ∈ Rn,
m

max
i=1

(ai · x + bi) ≤ 0}.

Thus if we can find an explicit smooth approximation of h(x) := maxm
i=1(ai ·x+ bi),

then we can see that we may obtain a C1,1-approximation of the convex polytope.
One way to smooth h is to apply Theorem 1.1 directly to the m-dimensional

maximum function fm(y) and calculate C l
2,λ(fm(y)), then we set yi = ai · x + bi.

Alternatively, we can introduce another perturbation of h and calculate the resulting
upper transform. Let b = (b1, . . . , bm) and cλ = (c(λ)

1 , · · · , c
(λ)
1 ) ∈ Rm with c

(λ)
i =

|aj |2/(4λ), i = 1, 2, . . . . Let

Hλ(x, t) = max
1≤j≤m

(
aj · x− |aj |2

4λ
+ tj

)
, (x, t) ∈ Rn × Rm, t = (t1, · · · , tm).

We have h(x) ≥ Hλ(x, b + cλ). Let Lm = {aj , 1 ≤ j ≤ m} and L̂m = {(aj , ej), 1 ≤
j ≤ m} where {e1, . . . , em} is the standard basis of Rm. Then we have

Theorem 2.9. Under the assumptions above, we have for λ > 0 that

(40)

Cu
2,λ(Hλ(x, t)) = λ(|x|2 + |t|2)− λ dist2

(
(x, t), C

(
Lm

2λ

))
,

Cu
2,λ(Hλ(x, b + cλ)) = λ(|x|2 + |b + cλ|2)− λ dist2

(
(x, b + cλ), C

(
L̂m

2λ

))
,

h(x) ≤ Cu
2,λ(Hλ(x, b + cλ)) ≤ h(x) +

diam2(L̂m)
2λ

,

|DCu
2,λ(Hλ(x, b + cλ))| ≤ |Lm|, x ∈ Rn.

We conclude this section by showing the graphs of two explicit examples of
maximum-like functions and their approximations.

Example 2.10. Consider the absolute value function f(x) = |x|, we see that
f(x) = max{−x, x}. Thus we have the entropic regularization for f(x) given by
the aggregation function (8), that is,

f(λ, x) =
1
λ

log
(
eλx + e−λx

)
, x ∈ R, λ > 0.

We also have

Cu
2,λ(f(x)) =





λx2 +
1
4λ

, |x| ≤ 1
2λ

,

f(x), |x| ≥ 1
2λ

.

Clearly, Cu
2,λ(f(x)) is a tight approximation of f(x) while f(λ, x) is not.
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Figure 1. (Example 2.10) f(x) = |x| (bottom), Cu
2,λ(f(x)) (middle)

and f(λ, x) (top) with λ = 5

In Figure 1 we plot the graphs for f(x) = |x| (bottom), Cu
2,λ(f(x)) (middle) and

f(λ, x) (top) for λ = 5 to compare different approximations to f(x) from above by
Cu

2,λ(f(x)) and f(λ, x).

Example 2.11. Now we illustrate approximations to the maximum function f(x, y) =
max{x, y} in R2 by both our upper transform Cu

2,λ(f(x, y)) and by the entropic
method.

We may write Cu
2,λ(f(x, y)) in the following explicit form

Cu
2,λ(f(x, y)) =





f(x, y), |x− y| ≥ 1
2λ

,

λ

2
(x− y)2 +

1
2
(x + y) +

1
8λ

, |x− y| ≤ 1
2λ

.

The entropic approximation (8) in this case is f(λ, x, y) = (1/λ) log[eλx + eλy].
In Figure 2, we display graphs for f(x, y), Cu

2,λ(f(x, y)) and f(λ, x, y) in the
domain |x| ≤ 0.2, |y| ≤ 0.2 with λ = 4. In Figure 3, we examine the errors of
approximations with λ = 4 in the order from the left to the right: Cu

2,λ(f(x, y)) −
f(x, y), f(λ, x, y) − f(x, y) and f(λ, x, y) − Cu

2,λ(f(x, y)). We can see that the
maximum error between Cu

2,λ(f(x, y)) and f(x, y) in the domain |x| ≤ 0.2, |y| ≤
0.2 is about 0.03 while the gap between f(λ, x, y) and f(x, y) is about 0.2. The
maximum different between f(λ, x, y) and Cu

2,λ(f(x, y)) is close to 0.2. Therefore
we see that Cu

2,λ(f(x, y)) is a better approximation than f(λ, x, y) for the same λ.

3. C1,1 approximations for squared-distance and distance like
functions

In this section we first define a smooth approximation for the function H(x) =∑m
j=1(|xj | − dj)2. Then we examine some one and two dimensional examples for

explicitly calculated lower transforms for squared distance like functions. We use
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Figure 2. (Example 2.11) Left: f(x, y), middle: Cu
2,λ(f(x, y)) and

right: f(λ, x, y) with λ = 4.

Figure 3. (Example 2.11) Left: Cu
2,λ(f(x, y)) − f(x, y), middle:

f(λ, x, y)− f(x, y) and right: f(λ, x, y)− Cu
2,λ(f(x, y)) with λ = 4.

Mathematica again to plot graphs of these approximations which illustrate the effects
of the so called tight approximations. We also consider an approximation to the
distance function by a combination of lower and upper transforms.

It is easy to see that (|xj | − dj)2 = dist2(xj , Sdj
) where Sdj

= {y ∈ Rn, |y| = dj}
is the n − 1-dimensional sphere centred at 0 with radius dj . Let T ⊂ Rnm be the
torus T = {y = (y1, . . . , ym), yi ∈ Sdi

}, we see that H(x) =
∑m

j=1(|xj | − dj)2 =
dist2(x, T ). Now we consider

λ|x|2 + H(x) =
m∑

j=1

[λ|xj |2 + (|xj | − dj)2] =
m∑

j=1

[
(1 + λ)

(
|xj | − dj

1 + λ

)2

+
λd2

j

1 + λ

]
.

This indicates that if we consider another function

Hλ(x, t) =
m∑

j=1

(|xj |2 − 2|xj |dj +
d2

j

1 + λ
− 2tj), (x, t) ∈ Rnm × Rm,

and let d2 = (d2
1, . . . , d

2
m) ∈ Rm, then H(x,−λd2/(2(1 + λ)) = H(x). Also

λ|x|2 + (1 + λ)|t|2 + H(x, t)

= (1 + λ)





m∑

j=1

[(
|xj | − dj

1 + λ

)2

+ (tj − 1
1 + λ

)2
]

− m

(1 + λ)
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= (1 + λ)




m∑

j=1

dist2((xj , tj),
1

1 + λ
S∗j )


− m

(1 + λ)

= (1 + λ) dist2
(

(x, t),
1

1 + λ
T ∗

)
− m

(1 + λ)
,

where S∗j = {(y, 1) ∈ Rn+1, y ∈ Sdj
is the (n−1)-dimensional sphere in Rn+1 centred

at (0, 1) with radius dj while if we write Rmn×Rm = {((x1, t1), . . . , (xm, tm)), xj ∈
Rn, tj ∈ R, j = 1, . . . , m}, then T ∗ = {(x, t) ∈ Rmn × Rm, (xi, ti) ∈ S∗j , j =
1, . . . , m}. Now we define the convex function gλ(x, t) = λ|x|2 + (1 + λ)|t|2 for
(x, t) ∈ Rmn × Rm, then

gλ(x, t) + Hλ(x, t) = (1 + λ) dist2
(

(x, t),
1

1 + λ
T ∗

)
− m

(1 + λ)
,

hence

(41) C[gλ(x, t) + Hλ(x, t)] = (1 + λ) dist2
(

(x, t),
1

1 + λ
C(T ∗)

)
− m

(1 + λ)
,

where C(T ∗) is the convex hull of T ∗, so that

(42) C l
gλ

(Hλ(x, t)) = (1 + λ) dist2
(

(x, t),
1

1 + λ
C(T ∗)

)

− m

(1 + λ)
− gλ(x, t), (x, t) ∈ Rmn × Rm.

We have

Theorem 3.1. For x ∈ Rmn, the family of functions

Fλ(x) = C l
gλ

[
Hλ

(
x,− λd2

2(1 + λ)

)]
(43)

= (1 + λ) dist2
((

x, − λd2

2(1 + λ)

)
,

1
1 + λ

C(T ∗)
)

− m

(1 + λ)
− λ|x|2 − λ2|d2|

4(1 + λ)
,

defined by evaluating C l
gλ

(Hλ(x, t)) at t = −λd2/(2(1 + λ)) for λ > 0 is a C1,1

approximation of H(x) as λ → +∞ with the estimates

0 ≤ H(x)− Fλ(x) ≤ diam2(T ∗)
1 + λ

, |DFλ(x)| ≤ 2|T ∗|, x ∈ Rn.

Let us apply the quadratic lower transforms to some one-dimensional examples.
The widely used fourth-order double-well function f(x) = (x2 − 1)2 vanishes

exactly at 1 and −1. The advantage of such a function in modelling a double-well
structure is that it is a fourth-order polynomial hence is smooth. The disadvantage
of such a choice is that it is super-quadratic hence is more difficult to control. The
natural geometric choice of the double-well function g(x) = dist2(x, {−1, 1}) =
min{|x− 1|2, |x + 1|2} is not smooth, therefore it cannot be used directly. Now we
take the quadratic lower transform on g(x) to obtain a C1,1 approximation.
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Figure 4. (Example 3.2) Left: f(x) and C l
2,λ(f(x)), middle: h(x, y)

and right: C l
2,λ(h(x, y)) with α = 1/2, λ = 7.

Example 3.2. Let g(x) = dist2(x, {−1, 1}) = min{|x− 1|2, |x + 1|2}, x ∈ R, then
for λ > 0,

C l
2,λ(g(x)) =





λ

1 + λ
− λ|x|2, |x| ≤ 1

1 + λ
,

g(x), |x| ≥ 1
1 + λ

.

We see that the lower transform simply smoothens out the corner and make the
resulting function C1,1. Clearly C l

2,λ(g(x)) → g(x) uniformly as λ → +∞, and
[C l

2,λ(g(x))]′ → g′(x) except at 0.

We would also like to present a slightly more general squared distance-like func-
tion and its lower transform. Consider f(x) = min{(x + 1)2, (x − 1)2 + α} with
0 ≤ α < 4 and the function h(x, y) = f(x) + y2 of two variables. We have
h(x, y) = min{|(x, y)− (−1, 0)|2, |(x, y)− (1, 0)|2 + α}. We have

C l
2,λ(f(x)) =





α(λ + 1)
2

x− (λ + 1)
(

α

4
− 1

λ + 1

)2

+ 1− λx2,

x ∈
[
α

4
− 1

λ + 1
,

α

4
+

1
λ + 1

]
,

f(x), otherwise.

It is also easy to see that C l
2,λ(h(x, y)) = C l

2,λ(f(x)) + y2. In Figure 4 we plot the
graphs of f(x) and C l

2,λ(f(x)) in the same picture with α = 1/2, λ = 7. We also
show the three dimensional graph of h(x, y) and C l

2,λ(h(x, y)).

Example 3.3. Now we consider a genuine two dimensional function. Let K ⊂ R2

be the four point set K = {(−1, 1), , (1, 1), (1,−1), (−1,−1)} and let f(x, y) =
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Figure 5. (Example 3.3) Left: f(x, y), right: C l
2,λ(f(x, y)) with λ = 7.

dist2((x, y),K). For λ > 0,

C l
2,λf(x, y) = C[dist2((x, y),K) + λ|(x, y)|2]− λ|(x, y)|2

=





2− 2
1 + λ

− λ(x2 + y2), − 1
1 + λ

≤ x, y ≤ 1
1 + λ

,

f(x, y), |x| ≥ 1
1 + λ

, |y| ≥ 1
1 + λ

,

(1 + λ)
(

x− 1
1 + λ

)2

+ 2
(

1− 1
1 + λ

)
− λ(x2 + y2),

x ≥ 1
1 + λ

, − 1
1 + λ

≤ y ≤ 1
1 + λ

,

(1 + λ)
(

x +
1

1 + λ

)2

+ 2
(

1− 1
1 + λ

)
− λ(x2 + y2),

x ≤ − 1
1 + λ

, − 1
1 + λ

≤ y ≤ 1
1 + λ

,

(1 + λ)
(

y − 1
1 + λ

)2

+ 2
(

1− 1
1 + λ

)
− λ(x2 + y2),

y ≥ 1
1 + λ

, − 1
1 + λ

≤ x ≤ 1
1 + λ

,

(1 + λ)
(

y +
1

1 + λ

)2

+ 2
(

1− 1
1 + λ

)
− λ(x2 + y2),

y ≤ − 1
1 + λ

, − 1
1 + λ

≤ x ≤ 1
1 + λ

.

In Figure 5, we plot the graphs of f(x, y) and C l
2,λ(f(x, y)) for λ = 4 in the domain

|x| ≤ 2.5, |y| ≤ 2.5.

Example 3.4. Consider the distance function

f(x) = dist(x, {−1, 1}) = min{|x− 1|, |x + 1|} = ||x| − 1|, x ∈ R.
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Figure 6. (Example 3.4) f(x) and C l
2,λ(f(x)). Left: λ = µ = 2,

right: λ = µ = 5.

We have

C l
2,λ(f(x)) =





1− 1
4λ

− λx2, |x| ≤ 1
2λ

,

f(x), |x| ≥ 1
2λ

;
(

λ ≥ 1
2

)
.

Cu
2,µ(f(x)) =





µ(|x| − 1)2 +
1
4µ

, ||x| − 1| ≤ 1
2µ

,

f(x), otherwise;
(

µ ≥ 1
2

)
;

If we apply the lower transform first followed by an upper transform for λ > 1 and
µ > 1, we have

Cu
2,µ[C l

2,λ(dist(x, {−1, 1})] =





1− 1
4λ

− λx2, |x| ≤ 1
2λ

,

µ(|x| − 1)2 +
1
4µ

, ||x| − 1| ≤ 1
2µ

,

dist(x, {−1, 1}), otherwise.

Due to the locality property of quadratic transforms, we see that in this example
Cu

2,µ[C l
2,λ(f(x)] = C l

2,µ[Cu
2,λ(f(x)] for large λ > 0 and µ > 0 because the lower and

upper transforms act on different part of the graph respectively, upper near non-
smooth local convex points −1 and 1 while lower near the concave point 0. In Figure
6, we compare two sets of graphs between f(x) and C l

2,λ(f(x)) with λ = µ = 2 and
λ = µ = 5 respectively.

Example 3.5. Example 3.4 can be easily extended to a two dimensional one. Con-
sider

g(x, y) = dist(x, {−1, 1}) + dist(y, {−1, 1})
= min{|x− 1|, |x + 1|}+ min{|x− 1|, |x + 1|}
= ||x| − 1|+ ||y| − 1|.
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Figure 7. (Example 3.5) Left: graph of g(x, y) and right:
Cu

2,λ[C l
2,λ(g(x, y))] with λ = µ = 5.

Due to the special form g(x, y) = f(x) + f(y), we see, by the definition of convex
envelope that

C[g(x, y) + λ(|x|2 + |y|2)] = C[(f(x) + λ|x|2) + (f(y) + λ|y|2)]
= C[(x) + λ|x|2] + C[f(y) + λ|y|2].

Therefore
C l

2,λ[g(x, y)] = C l
2,λ[f(x)] + C l

2,λ[f(y)],
hence

Cu
2,τ [C

l
2,λ[g(x, y)]] = Cu

2,τ [C
l
2,λ[f(x)]] + Cu

2,τ [C
l
2,λ[f(y)]].

Thus for λ > 0 and τ > 0 small, Cu
2,τ [C

l
2,λ[g(x, y)]] = C l

2,λ[Cu
2,τ [g(x, y)]] and it

defines a tight C1,1 approximation for g(x, y). Figure 7 shows how Cu
2,τ [C

l
2,λ[g(x, y)]]

smoothes g(x, y) near the edges and corners of the graph of g(x, y). Observe that
for λ = µ = 5, the two graphs are almost the same except at the edges and corners
where C l

2,λ[Cu
2,τ [g(x, y)]] smoothes them out.
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