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WEIGHTED EQUILIBRIUM PROBLEMS

K. R. KAZMI AND S. A. KHAN

Abstract. In this paper, we introduce a weighted equilibrium problem over
product of sets and a system of weighted equilibrium problems for vector-valued
bifunctions and show that both have the same solution set. Further, we introduce
the concept of normalized solution of the system of weighted equilibrium prob-
lems and give its relationship with the solutions of systems of vector equilibrium
problems. Furthermore, several kinds of weighted monotonicities are defined for
the family of vector-valued bifunctions. Using fixed-point theorems, we establish
some existence theorems for these problems. The concepts and results presented
in this paper extend and unify a number of previously known corresponding con-
cepts and results in the literature.

1. Introduction

The equilibrium problems theory has emerged as an interesting and fascinating
branch of applicable mathematics. This theory has become a rich source of in-
spiration and motivation for the study of a large number of problems arising in
economics, optimization, operation research in a general and unified way. Equilib-
rium problems include variational inequalities, complementarity problems, convex
optimization problems, saddle point problems, and Nash equilibrium problems as
special cases.

An important generalization of equilibrium problem is the vector equilibrium
problem which has applications in multiobjective optimization problems. In re-
cent past, various classes of vector equilibrium problems have been introduced and
studied by many authors, see for example [5,6,10-18] and the references therein.

Recently, some systems of vector equilibrium problems, that is, the families of
equilibrium problems with vector-valued bifunctions, defined on product of sets have
been studied by Ansari et al. [3,4] which include the systems of vector variational(-
like) inequality problems; the systems of vector optimization problems; Nash equi-
librium problems for vector-valued functions, relative monotone variational inequal-
ities, see for example [1,5,6,14,17] and the references therein.

Very recently, Ansari et al. [2] introduced the weighted variational inequalities
over product of sets and system of weighted variational inequalities and establish
some existence results for these problems.

Motivated and inspired by the recent work going in this direction, in this paper,
we introduce a weighted equilibrium problem over product of sets and a system
of weighted equilibrium problems for vector-valued bifunctions and show that both
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have the same solution set. Further, we introduce the concept of normalized solu-
tion of the system of weighted equilibrium problems and give its relationship with
the solutions of systems of vector equilibrium problems. Furthermore, several kinds
of weighted monotonicities are defined for the family of vector-valued bifunctions.
Using fixed-point theorems, we establish some existence theorems for these prob-
lems. The concepts and results presented in this paper, extend and unify a number
of previously known corresponding concepts and results in the literature, see for
example [2] and the references therein.

2. Preliminaries

Throughout this paper unless otherwise stated, we use the following notations
and assumptions. Let for each given m ∈ N, (Rm,Rm

+ ) be an ordered Banach space
where Rm

+ = {u = (u1, . . . , um) ∈ Rm : uj ≥ 0 for j = 1, . . . , m} is a pointed
cone. We denote by Tm

+ and intTm
+ , the simplex of Rm

+ and its relative interior,
respectively, that is,

Tm
+ = {u = (u1, . . . , um) ∈ Rm

+ :
m∑

j=1

uj = 1},

intTm
+ = {u = (u1, . . . , um) ∈ intRm

+ :
m∑

j=1

uj = 1}.

Let I = {1, 2, . . . , n} be an index set and for each i ∈ I, let li be a positive
integer. Let, for each i ∈ I, Xi be a real topological vector space (not necessarily
Hausdorff) and let Ki be a nonempty convex subset of Xi, with X =

∏
i∈I Xi and

K =
∏

i∈I Ki.

Let {φi}i∈I be a family of bifunctions φi : K × Ki → Rli such that φi(x, xi) =
0,∀i ∈ I, x ∈ K.

We consider the following system of vector equilibrium problems (for short,
SVEP): Find x̄ ∈ K such that, for each i ∈ I,

(2.1) φi(x̄, yi) 6∈ −Rli
+\{0}, ∀yi ∈ Ki

and the system of weak vector equilibrium problems (for short, SVEPw): Find
x̄ ∈ K such that, for each i ∈ I,

(2.2) φi(x̄, yi) 6∈ − int Rli
+, ∀yi ∈ Ki.

Throughout rest of the paper unless otherwise stated, we assume that

W = (W1, . . . , Wn) ∈
∏

i∈I

(Rli
+\{0})

is a given weight vector.
Now, we introduce the following weighted equilibrium problem over product of

sets (for short, WEP): Find x̄ ∈ K with respect to (for short, wrt) the weight vector
W such that

(2.3)
∑

i∈I

Wi.φi(x̄, yi) ≥ 0, ∀yi ∈ Ki
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and the following system of weighted equilibrium problems (for short, SWEP): Find
x̄ ∈ K wrt the weight vector W such that, for each i ∈ I,

(2.4) Wi.φi(x̄, yi) ≥ 0, ∀yi ∈ Ki

where dot ‘.’ denotes the inner product on Rli . If, for each i ∈ I, Wi ∈ Tli
+, then

the solutions of WEP (2.3) and SWEP (2.4) are called normalized. We denote Ew

(respectively Ew
s ) the solution set of WEP (2.3) (respectively SWEP (2.4)) and

by Ew
n (respectively Ew

sn) the normalized solution set of WEP (2.3) (respectively
SWEP (2.4)).

Finally, we define the following problem which is closely related to WEP (2.3)
and can be termed as Minty weighted equilibrium problem (for short, MWEP):
Find x ∈ K wrt weight vector W such that

(2.5)
∑

i∈I

Wi.φi(y, xi) ≤ 0, ∀yi ∈ Ki, i ∈ I.

The solution set of MWEP (2.5) is denoted by Ew
M .

First, we show that both WEP (2.3) and SWEP (2.4) have the same solution set.

Lemma 2.1. For a given weight vector W (respectively W = (W1, . . . , Wn) ∈∏
i∈I T

li
+, i ∈ I), Ew = Ew

s (respectively Ew = Ew
sn).

Proof. Evidently, Ew
s ⊆ Ew. Let x̄ ∈ Ew. Then

∑

i∈I

Wi.φi(x̄, yi) ≥ 0, ∀yi ∈ Ki, i ∈ I.

For each j 6= i, let yj = x̄j . Then, from the preceding inequality, it follows that,
for each i ∈ I,

Wi.φi(x̄, yi) ≥ 0, ∀yi ∈ Ki.

Hence, x̄ ∈ Ew
s and this completes the proof. ¤

Next, by making use of SWEP (2.4), we solve SVEP (2.1) (or SVEPw (2.2)).

Lemma 2.2. Each normalized solution x̄ ∈ K with weight vector W ∈ ∏
i∈I T

li
+ (re-

spectively W ∈ ∏
i∈I intTli

+) of SWEP (2.4) is a solution of SVEPw (2.2) (respec-
tively SVEP (2.1)).

Proof. Let x̄ ∈ K be a normalized solution of SWEP (2.4) with weight vector
W ∈ ∏

i∈I T
li
+ (respectively W ∈ ∏

i∈I intTli
+). Suppose that x̄ ∈ K is not a

solution of SVEPw (2.2) (respectively SVEP (2.1)). Then, there exist some i ∈ I
and yi ∈ Ki such that

φi(x̄, yi) ∈ − int Rli
+, (respectively φi(x̄, yi) ∈ −Rli

+\{0}).
Since W ∈ Tli

+ (respectively W ∈ intTli
+), for each i ∈ I, we have Wi.φi(x̄, yi) <

0, for each i ∈ I which contradicts our assumption that x̄ ∈ K is a normalized
solution of SWEP (2.4). Hence, x̄ ∈ K is a solution of SVEPw (2.2) (respectively
SVEP (2.1)) and this completes the proof. ¤

From Lemma 2.1 and Lemma 2.2, we deduce the following result.



372 K. R. KAZMI AND S. A. KHAN

Lemma 2.3. Each normalized solution x̄ ∈ K with weight vector W ∈ ∏
i∈I T

li
+

(respectively W ∈ ∏
i∈I intTli

+) of WEP (2.3) is a solution of SVEPw (2.2) (respec-
tively SVEP (2.1)).

Now, we recall the following fixed point theorems which are important in estab-
lishing the existence theorem for WEP (2.3).

For every nonempty set A, we denote by 2A (respectively F(A)) the family of all
subsets (respectively, finite subsets) of A.

Theorem 2.1 ([8]). Let K be a nonempty and convex subset of a topological vector
space (not necessarily Hausdorff) X and let T : K → 2K be a set-valued mapping.
Assume that the following conditions hold:

(i) For all x ∈ K, T (x) is convex;
(ii) For each A ∈ F(K) and for all y ∈ CoA, T−1(y)

⋂
CoA is open in CoA,

where CoA denotes the convex hull of set A;
(iii) For each A ∈ F(K) and all x, y ∈ CoA and every net {xα}α∈Λ in K con-

verging to x such that ty + (1 − t)x 6∈ T (xα), for all α ∈ Λ and for all
t ∈ [0, 1], we have y 6∈ T (x);

(iv) There exists a nonempty compact subset D of K and an element ỹ ∈ D such
that ỹ ∈ T (x) for all x ∈ K\D;

(v) For all x ∈ D, T (x) is nonempty.
Then, there exists x̂ ∈ K such that x̂ ∈ T (x̂).

Theorem 2.2 ([9]). Let K be nonempty convex subset of a topological vector space
(not necessarily a Hausdorff) E and let S, T : K → 2K be set-valued mappings.
Assume that the following conditions hold:

(i) For all x ∈ K, S(x) ⊆ T (x);
(ii) For all x ∈ K, T (x) is convex and S(x) is nonempty;
(iii) For all y ∈ K, S−1(y) := {x ∈ K : y = S(x)} is compactly open;
(iv) There exists a nonempty closed, compact (not necessarily convex) subset D

of K and ỹ ∈ D such that K\D ⊂ T−1(ỹ).
Then, there exists x̂ ∈ K such that x̂ ∈ T (x̂).

3. Existence theorems for WEP (2.3)

First, we give the following definitions.

Definition 3.1. A family {φi}i∈I of bifunctions φi : K ×Ki → Rli is said to be
(i) Weighted monotone wrt the weight vector W if, for all x, y ∈ K, we have

∑

i∈I

Wi.φi((x, yi) + φ(y, xi)) ≤ 0;

(ii) Weighted pseudomonotone wrt the weight vector W if, for all x, y ∈ K, we
have ∑

i∈I

Wi.φi(x, yi) ≥ 0 ⇒
∑

i∈I

Wi.φi(y, xi) ≤ 0;

(iii) Weighted strictly pseudomonotone wrt the weight vector W if, the second
inequality in (ii) is strict for all x 6= y;
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(iv) Weighted convex in second argument wrt weight vector W if for all x, y, z ∈
K and λ ∈ [0, 1], we have

∑

i∈I

Wi.fi(z, λxi + (1− λ)yi) ≤ λ
∑

i∈I

Wi.fi(z, xi) + (1− λ)
∑

i∈I

Wi.fi(z, yi).

Definition 3.2. A family {φi}i∈I of bifunctions φi : K × Ki → Rli is said to be
weighted hemicontinuous wrt the weight vector W if, for all x, y ∈ K and λ ∈ [0, 1],
the mapping λ → ∑

i∈I Wi.φi(y + λ(x− y), yi) is continuous.

It is remarked that the concepts given in Definitions 3.1–3.2 are the natural
extensions of the corresponding concepts given in [1,2,17].

Now, we prove the following Minty type lemma for WEP (2.3).

Lemma 3.1. If family {φi}i∈I of bifunctions φi : K ×Ki → Rli is weighted pseu-
domonotone and weighted hemicontinuous wrt the weight vector W and convex in
second argument, then Ew=Ew

M .

Proof. Ew ⊆ Ew
M is directly followed by weighted pseudomonotonicity of the family

{φi}i∈I . Let x ∈ Ew
M , we have

∑

i∈I

Wi.φi(y, xi) ≤ 0, ∀yi ∈ Ki, i ∈ I.

Since, for each i ∈ I, Ki is convex, ]xi, yi[:= αyi + (1− α)xi ∈ K ∀α ∈ (0, 1), and
hence, we have

(3.1)
∑

i∈I

Wi.φi(z, xi) ≤ 0, ∀zi ∈]xi, yi[.

Again, since φi(z, .) is convex, we have

(3.2) 0 =
∑

i∈I

Wi.φi(z, zi) ≤ α
∑

i∈I

Wi.φi(z, yi) + (1− α)
∑

i∈I

Wi.φi(z, xi).

From inclusions (3.1) and (3.2), we have
∑

i∈I

Wi.φi(z, yi) ≥ 0.

By weighted hemicontinuity of the family {φi}i∈I , the preceding inequality implies
that ∑

i∈I

Wi.φi(x, yi) ≥ 0, ∀yi ∈ Ki, i ∈ I.

That is, x ∈ Ew, and this completes the proof. ¤
Theorem 3.1. Let the family {φi}i∈I of bifunctions φi : K×Ki → Rli be such that
φi(x, xi) = 0, ∀x ∈ K and let {φi}i∈I be weighted convex and weighted continuous
in second argument and weighted pseudomonotone, weighted hemicontinuous wrt
the weight vector W . Assume that there exists a nonempty, closed and compact
subset of D of K and ỹ ∈ D such that, for each x ∈ K\D,

∑
i∈I Wi.φi(x,ỹi) < 0.

Then, there exists a solution x̄ ∈ K of WEP (2.3) and hence it is a solution SWEP
(2.4). Furthermore, if W ∈ ∏

i∈I T
li
+, then there exists a normalized solution x̄ ∈ K

of WEP (2.3) and hence it is a solution of SVEPw (2.2). Furthermore, if W ∈∏
i∈I intTli

+, then x̄ ∈ K is a solution of SVEP (2.1).
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Proof. For each x ∈ K, define the set-valued mappings S, T : K → 2K by

S(x) = {y ∈ K :
∑

i∈I

Wi.φi(y, xi) > 0}

and
T (x) = {y ∈ K :

∑

i∈I

Wi.φi(x, yi) < 0}.

Now, for each x ∈ K, we claim that T (x) is convex. Indeed, let y1, y2 ∈
T (x), α, β ≥ 0 such that α + β = 1, αy1 + βy2 ∈ K as K is convex. Hence

∑

i∈I

Wi.φi(x, y1,i) < 0 and
∑

i∈I

Wi.φi(x, y2,i) < 0.

Since {φi}i∈I is convex in second argument, we have
∑

i∈I

Wi.φi(x, (αy1,i + βy2,i)) < 0 ⇒ αy1 + βy2 ∈ T (x).

Hence our claim is verified.
Further, it follows from weighted pseudomonotonicity of the family {φi}i∈I , that

S(x) ⊆ T (x) for each x ∈ K. Since

S−1(y) = {x ∈ K : y ∈ S(x)},
i.e.,

S−1(y) = {x ∈ K :
∑

i∈I

Wi.φi(y, xi) > 0},

then
(S−1(y))c = {x ∈ K :

∑

i∈I

Wi.φi(y, xi) ≤ 0}.

It is easy observed from weighted hemicontinuity of the family {φi}i∈I , that
(S−1(y))c is closed, for each y ∈ K and hence S−1(y) is open in K. Therefore,
S−1(y) is compactly open.

Assume that, for all x ∈ K, S(x) is nonempty. Then all the conditions of Theorem
2.2 are satisfied and therefore there exists x̂ ∈ K such that x̂ ∈ T (x̂).

It follows that
0 =

∑

i∈I

Wi.φi(x̂, x̂i) < 0,

which is impossible.
Hence, there exists x ∈ K such that S(x) = ∅. This implies that, for all y ∈ K,∑
i∈I Wi.φi(y, xi) ≤ 0, that is, there exists x̄ ∈ K wrt the weight vector W such

that ∑

i∈I

Wi.φi(y, x̄i) ≤ 0, ∀yi ∈ Ki, i ∈ I.

By Lemma 3.1, x̄ ∈ K is a solution of WEP (2.3) and so by Lemma 2.1, it is a
solution of SWEP (2.4). If W ∈ ∏

i∈I T
li
+, then x̄ ∈ K is a normalized solution of

SWEP (2.4) and hence by Lemma 2.2, it is a solution of SVEPw (2.2). Further, if
W ∈ ∏

i∈I intTli
+, then again by Lemma 2.2, x̄ ∈ K is a solution of SVEP (2.1),

and this completes the proof. ¤
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Theorem 3.2. Let the family {φi}i∈I of bifunctions φi : K×Ki → Rli be such that
φi(x, xi) = 0, ∀x ∈ K and let {φi}i∈I be weighted convex and weighted continuous
in second argument and weighted strictly pseudomonotone, weighted hemicontinuous
wrt weight vector W . Assume that there exists a nonempty, closed and compact
subset of D of K and ỹ ∈ D such that for each x ∈ K\D,

∑
i∈I Wi.φi(x, ỹi) <

0. Then there exists a unique solution x̄ ∈ K of WEP (2.3) and hence it is a
solution SWEP (2.4). Furthermore, if W ∈ ∏

i∈I T
li
+, then there exists a unique

normalized solution x̄ ∈ K of WEP (2.3) and hence it is a solution of SVEPw

(2.2). Furthermore, if W ∈ ∏
i∈I intTli

+, then x̄ ∈ K is a unique solution of SVEP
(2.1).

Proof. In view of Theorem 3.1, it is sufficient to show that WEP (2.3) has at most
one solution. Suppose that there exist two solutions x

′
, x

′′
of WEP (2.3). Then, we

have ∑

i∈I

Wi.φi(x
′′
, x

′
i) ≥ 0.

By the weighted strictly pseudomonotonicity of the family {φi}i∈I of bifunctions,
we have ∑

i∈I

Wi.φ(x
′
, x

′′
i ) ≤ 0,

that is, x
′

is not a solution of WEP(2.3), a contradiction. This completes the
proof. ¤

Now, we extend the notion of B-pseudomonotonicity given by Brezis [5] and
Ansari et al. [1, 2].

Definition 3.3. A family {φi}i∈I of bifunctions φi : K × Ki → Rli is said to be
weighted B-pseudomonotone wrt weight vector W , if for each x ∈ K and every net
{xα}α∈Λ in K converging to x with lim infα[

∑
i∈I Wi.φi(xα, xi)] ≥ 0, we have

lim sup
α

∑

i∈I

Wi.φi(xα, yi) ≤
∑

i∈I

Wi.φi(x, yi), ∀yi ∈ Ki.

Theorem 3.3. Let the family {φi}i∈I of bifunctions φi : K×Ki → Rli be such that
φi(x, xi) = 0, ∀x ∈ K and let {φ}i∈I be weighted convex in second argument and
weighted B-pseudomonotone wrt weight vector W such that, for each A ∈ F(K),
x 7−→ ∑

i∈I Wi.φi(x, yi) is lower semicontinuous on CoA. Assume that there ex-
ists a nonempty compact subset D of K and ỹ ∈ D such that for all x ∈ K\D,∑

i∈I Wi.φi(x, ỹi) < 0. Then there exists a solution x̄ ∈ K of WEP (2.3) and
hence it a solution of SWEP (2.4). Furthermore, if W ∈ ∏

i∈I T
li
+, then there ex-

ists a normalized solution x̄ ∈ K of WEP (2.3) which is also a unique solution of
SVEPw (2.4). Furthermore, if W ∈ ∏

i∈I intTli
+, then x̄ ∈ K is a unique solution

of SVEP (2.1).

Proof. For each x ∈ K, let T : K → 2K be same defined in the proof of Theorem
3.1, then for all x ∈ K, T (x) is convex. Let A ∈ F(K). Then for all y ∈ CoA,

[(T−1(y))c]
⋂

CoA = {x ∈ CoA :
∑

i∈I

Wi.φi(x, yi) ≥ 0}
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is closed in CoA by the lower semicontinuity of the mapping x 7−→ ∑
i∈I Wi.φi(x, yi)

on CoA. Hence (T−1(y))
⋂

CoA is open in CoA. Suppose that x, y ∈ CoA and
{xα}α∈Λ is a net in K converging to x such that

∑
i∈I Wi.φi(xα, tyi +(1− t)xi) ≥ 0

for all α ∈ Λ and all t ∈ [0, 1]. For t = 0, we have
∑

i∈I Wi.φ(xα, xi) ≥ 0, ∀α ∈ Λ
and therefore lim infα[

∑
i∈I Wi.φi(xα, xi)] ≥ 0.

By weighted B-pseudomonotonicity of φ, we have

(3.3)
∑

i∈I

Wi.φi(x, yi) ≥ lim sup
α

∑

i∈I

Wi.φi(xα, yi).

For t = 1, we have
∑

i∈I Wi.φi(xα, yi) ≥ 0 for all α ∈ Λ and therefore

(3.4) lim inf
α

[
∑

i∈I

Wi.φi(xα, xi)] ≥ 0.

From inclusions (3.3) and (3.4), we have
∑

i∈I Wi.φi(x, yi) ≥ 0 which implies
y 6∈ T (x).

Assume that, for all x ∈ K, T (x) is nonempty. Then, all the conditions of
Theorem 2.1 are satisfied. Hence, there exists x̂ ∈ K such that x̂ ∈ T (x̂), that is,

0 =
∑

i∈I

Wi.φi(x̂, x̂i) < 0.

This is a contradiction.
Thus, there exists x̄ ∈ K such that T (x̄) = ∅, that is,

∑

i∈I

Wi.φi(x, yi) ≥ 0, ∀yi ∈ Ki, i ∈ I.

Hence, x̄ is a solution of WEP (2.3) and so by Lemma 2.1, it is a solution of
SWEP (2.4).

If Wi ∈
∏

i∈I T
li
+, then x̄ ∈ K is a normalized solution of SVEPw (2.2). Further,

if Wi ∈
∏

i∈I(intTli
+) then again by Lemma 2.2, x̄ ∈ K is a solution of SVEP (2.1).

This completes the proof. ¤

It is of further research interest to generalize and extend the concepts and the-
orems presented in this paper for the system of weighted equilibrium problems
involving set-valued bifunctions and set-valued mappings.
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