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A NOTE ON THE APPROXIMATION OF FIXED POINTS IN
THE HILBERT BALL

EVA KOPECKA AND SIMEON REICH

ABSTRACT. We establish a strong convergence theorem for an iterative scheme
which approximates fixed points of p-nonexpansive self-mappings of the Hilbert
ball.

1. INTRODUCTION

In a recent paper we have established a strong convergence theorem [5, The-
orem 3.12] for an implicit continuous scheme which approximates fixed points of
p-nonexpansive self-mappings of the Hilbert ball. In the present note we comple-
ment this result by proving a corresponding strong convergence theorem (Theorem
4.1 below) for an explicit discrete scheme. This theorem may be considered a pos-
sible Hilbert ball analogue of the Hilbert space theorems in [8] and [13]. Another
such analogue can be found in [6].

2. PRELIMINARIES

Let (H,(-,)) be a complex Hilbert space with inner product (-,-) and induced
norm |- |, and let B := {z € H : |z| < 1} be its open unit ball. We denote the
set of natural numbers, the interval [0, 00) and the complex plane by N, R* and C,
respectively. The hyperbolic metric p : B x B — R [3, page 98] is defined by

(2.1) p(z,y) = argtanh(l — O'(:L’,y))%,

where
_ (=== yP)
(22) U(.%',y) T ’1 _ <$7y>‘2 )

This metric is the infinite-dimensional analogue of the Poincaré metric on the open
unit disk {z € C : |z|] < 1}. We let B(a,r) := {x € B : p(a,z) < r} stand
for the p-ball of center a and radius r. A subset of B is called p-bounded if it is
contained in a p-ball. We say that a mapping ¢ : R — B is a metric embedding of
the real line R into B if p(c(s),c(t)) = |s — t| for all real s and ¢. The image of
R under a metric embedding is called a metric line. The image of a real interval
[a,b] = {t € R:a <t < b} under such a mapping is called a metric segment.
It is known [3, page 102] that for any two distinct points x and y in B, there is
a unique metric line (also called a geodesic) which passes through = and y. This
metric line determines a unique metric segment joining x and y. We denote this

z,y € B.
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segment by [z,y]. For each 0 < ¢t < 1, there is a unique point z € [x,y] such
that p(x,z) = tp(x,y) and p(z,y) = (1 — t)p(z,y). This point will be denoted by
(1 —t)x @ ty. Similarly, for r > 0, we let (1 4+ r)z © ry stand for the unique point
z € B that satisfies p(z,x) = rp(x,y) and p(z,y) = (14+7)p(x,y). This point lies on
the unique geodesic determined by x and y. The following inequality [3, page 104]
shows that the metric space (B, p) is hyperbolic in the sense of [11].

Lemma 2.1. For any four points a,b,x and y in B, and any number t € [0,1],
(2.3) p((1—t)a tz, (1 — @ ty) < (1—t)p(a,b) + tp(z, y).
Next, we mention another useful property of the hyperbolic metric.

Lemma 2.2. For any two points x and y in B, and any number t € [0, 1],
(2.4) p(tz,ty) < tp(z,y).

Proof. Tt is clear that we may assume without any loss of generality that |z| < |y|

and that 0 < ¢ < 1. For a fixed 0 < t < 1, the function g : (0,1) — R™ defined by
argtanh(tr)

2.5 =—=, 0 <1

(25) 9(r) argtanh(r) ’ <T<

is decreasing and lim+ g(r) = t. Therefore inequality (2.4) does hold for z = 0

r—0

and we may also assume in the sequel that = # 0. There are numbers 0 < p < 1
and 0 < s < 1 such that tz = (1 — p)0 ® pzr and ty = (1 — 5)0 @ sy. Since the
function ¢ is decreasing and its right limit at zero is ¢, we have s < p < t. Let
z = (1 4+ r)(ty) ©r0, where r := 1/p—1 > 0. Then ty = (1 — p)0 @ pz and
2] < |21 < |yl. Hence p(x,2) < p(z,y) and

p(tz, ty) = p((1 —p)0 @ pzx, (1 — p)0 & pz) < pp(x, z) < pp(z,y) < tp(z,y),
as claimed. O

Recall (see [11] and [12]) that a set-valued operator T' C B x B with domain D(T)
and range R(T) is said to be coaccretive if

(2.6) p(r1,72) < p((1+ 7)1 © TY1, (1 4 7)T2 © TY2)

forall y; € Tx1, yo € Txo, and r > 0. Such operators are the Hilbert ball analogues
of the operators of the form T' = I — A, where A is an accretive operator on a Banach
space. In this case, the operator T is also said to be pseudo-contractive [2, page
876]. Let D be a subset of B. A mapping T : D — B is called p-nonezpansive
if p(Tx1,22) < p(z1,22) whenever x; and z9 belong to D. It is known (see, for
example, [3, page 91]) that each holomorphic self-mapping of B is p-nonexpansive.
Using Lemma 2.1, one can check that all p-nonexpansive mappings are coaccretive.
An interesting family of (possibly set-valued) coaccretive operators is described in
[12, page 641]. These operators are analogues of sub-differentials of convex functions
in Hilbert space. In particular, if Rx : B — K is the nearest point projection
of B onto an arbitrary p-closed and p-convex subset K of B, then the operator
{(Rkz,2RKgz0© z): z € B} C B x B is coaccretive.

When the operator T is coaccretive, one can define for each positive r, a single-
valued p-nonexpansive mapping J, : R((1 + )l ©rT) — D(T), the resolvent of T,
by
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(2.7) J(1+r)zoery) ==,

where x € D(T') and y € Tx. These mappings (which in normed linear spaces are
indeed the resolvents of the accretive operator A = I — T') satisfy the following
resolvent identity for all t > s > 0 and = € D(Jy):

(2.8) Jix = Js((s/t)x @ (1 — s/t)Jiz).

Recall that a mapping 7' : D — B is said to be firmly nonexpansive of the first
kind [3, page 124] if for each x and y in D, the function ¢ : [0,1] — [0, 00) defined
by

(2.9) o(s) =p(1—=8)r®sTx,(1—s)ydsTy), 0<s<1,

is decreasing. The set of all firmly nonexpansive mappings of the first kind will be
denoted by F'Nj.

A proof of our next lemma (based on the resolvent identity (2.8)) can be found
in [5, Section 2].

Lemma 2.3. Any resolvent of a coaccretive operator is firmly nonexpansive of the
first kind.

We say that a coaccretive operator T' C B x B is m-coaccretive if
(2.10) R(1+r)IerT)=DB

for all positive 7.

Actually, given a coaccretive operator T', the assumption that (2.10) holds when
r = 1 already implies that it holds for all » > 0. Any p-nonexpansive mapping
T :B — B is m-coaccretive.

Lemma 2.4. If 0 < a <1 and the mapping f : B — aB is holomorphic, then f is
a strict p-contraction with a p-Lipschitz constant «.

Proof. Since our claim is obviously true when o = 0, we may assume that « is
positive. In this case, the mapping g = f/a is a holomorphic self-mapping of
B. Hence it is p-nonexpansive and we have p(f(z), f(y)) = plag(x),ag(y)) <
ap(g(x),9(y)) < ap(z,y) by Lemma 2.2. O

We conclude this section with a simple consequence of inequality (2.3).

Lemma 2.5. Let f and g be two p-Lipschitz self-mappings of B with Lipschitz
constants L and M, respectively, and let 5 € [0,1]. Then the mapping h : B — B
defined by h(x) := (1 — B)f(z) ® Bg(z), = € B, is also p-Lipschitz, with Lipschitz
constant (1 — B)L + BM.

3. APPROXIMATING CURVES

Given a p-nonexpansive self-mapping T" of B, a holomorphic mapping f : B — aB,
where 0 < a < 1, and a number 0 < ¢t < 1, we define the point z; € B as the unique
fixed point of the strict p-contraction S : B — B defined by

(3.1) Sr:=01—-1t)f(x)®tTz, zeB.
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Note that S is indeed a strict p-contraction by Lemmata 2.4 and 2.5. It has a unique
fixed point because the metric space (B, p) is complete. In other words,

(32) 2t = (1 — t)f(Zt) Dtlz, 0<t<1.

In this section we recall a few facts regarding the behavior of the approrimating
curve {z; : 0 <t < 1}. See [5, Section 3] for more information regarding this curve
and [6, Section 3| for a study of a related, but different approximating curve.

We can also write

(3.3) z = Fi(f(21)),

where F} : B — B is the mapping defined on page 123 of [3]. This mapping is, in
fact, the resolvent J,. () of the m-coaccretive operator T', where r(t) =t/(1 —t). In
view of Lemma 2.3, it is firmly nonexpansive of the first kind. It may be defined by
the equation

(3.4) Fi(z) = (1 — )z ®tTF(z), z€B.

Next, we recall [3, Theorem 24.1, page 122] (see also [12, Theorem 3.4, page 642]).
Note (see [3, pages 110 and 120]) that the fixed point set F'(T") of a p-nonexpansive
self-mapping T of B is both p-closed and p-convex, and that the nearest point
projection Ry of B onto a p-closed and p-convex subset K of B is p-nonexpansive
(and belongs to F'N1). The retraction R is also strongly nonexpansive [10, 1] and
sunny [4, Proposition 5.4].

Proposition 3.1. Let T : B — B be p-nonexpansive and let Fy, 0 <t < 1, be the
family of mappings defined by (3.4). If T has a fized point, then for each x € B, the
strong lim Fy(r) = Rp(r)®.

t—1—

Finally, we recall Theorem 3.12 of [5] (the proof of which makes use of Proposition
3.1). We say that a mapping f : B — B is compact if the closure of its image f(B)
is a compact subset of H.

Proposition 3.2. Let T be a p-nonexpansive self-mapping of B, f : B — aB a
holomorphic mapping, where 0 < o < 1, and let z;, 0 < t < 1, be defined by (3.2).

If T has a fized point and f is compact, then the strong lim z; = v, where v is the
t—1—

unique solution of the equation z = Rp)(f(2)).

4. AN ITERATIVE SCHEME

In this section we study a discrete iterative scheme for approximating fixed points
of p-nonexpansive self-mappings of B. The proof of our convergence theorem (The-
orem 4.1 below) depends on Proposition 3.2.

Let a sequence {ay, € [0,1) : n € N} satisfy the following three conditions:

(4.1) lim o, = 1;
n—oo

o0

(4.2) Z(l — ap) = o0;

n=1
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Qp — Qp—1

(4.3) lim = 0.

n—o00 (1 — Oén)Q

These conditions, which originate with P.-L. Lions [7], are satisfied, for instance,
when for each n € N, a,, = 1 —n~?, where 0 < 8 < 1. They had already been used
in [9].

Given a p-nonexpansive self-mapping of B, a holomorphic f : B — aB, where
0 < a <1, and a point xg € B, we consider in this section the iterative scheme

(4.4) Tp = (1 —ap)f(xn-1) ® anTrp_1, neN.

Theorem 4.1. Let T be a p-nonexpansive self-mapping of B, f : B — aB a holo-
morphic mapping, where 0 < a < 1, {a, € [0,1) : n € N} a sequence satisfying
(4.1)=(4.3), and xo a point in B. If T has a fized point and f is compact, then the
sequence {x, : n € N} defined by (4.4) converges strongly to the unique solution
v € B of the equation z = Rp(1)(f(2)), where Rp¢ry : B — F(T') is the nearest
point projection of B onto the fized point set F(T) of T.

Proof. Fix n € N and consider the mapping S, : B — B defined by
(4.5) Spzi=1—ap)f(z)®a, Tz, z€B.

In view of Lemmata 2.4 and 2.5, this mapping is a strict p-contraction with Lipschitz
constant

pni=(1—ap)a+a, < 1.

Since the metric space (B, p) is complete, S, has a unique fixed point y, € B. In
other words,

(46) Yn = (1 - an)f(yn) ® OénTyna n € N.

Note that y, = zq,,, in the notation of equation (3.2) and Section 3. Since we already
know by Proposition 3.2 and (4.1) that y,, — v strongly as n — oo, it is sufficient
to show that (z, — y,) — 0 strongly as n — oo. To this end, we first note that

p(l'n, yn) = ,O(Snxnfla Snyn) < pnp(l'nfla yn) < pnp(zvnfla ynfl) + p(ynfla yn)
for all n € N. Setting
(47) A(m) = sup p(ynfhyn)
n>m41 1—pn

for all m € N, we conclude that

(4.8) p(@n, yn) < p(@msym) [ v+ Am)
j=m+1

for all n > m + 1. Since for each n > 2, the points S,_1yn,—1 and Spy,—1 lie on the
metric segment joining f(yn,—1) and Ty,—1, and since the sequences {y, : n € N}
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and {f(y,) : n € N} are p-bounded, there is a number M € R* such that

P(Yn—1,Yn) = p(Sn—1Yn—1, Sn¥n)
< p(Sn-1Yn—1, Sn¥n—1) + p(Sn¥n—1, Sn¥n)
= |om — an—1]p(f(Yn—1), Tyn—1) + pP(Sn¥Yn—1, Snyn)
< Mlan — an—1] + pnp(Yn—1, Yn)
for all n > 2. Hence

4.9 Am) < ———— —_—
) N Ry P M (e

for all m € N. Combining (4.2)-(4.3) with (4.8) and (4.9), we now see that
p(xn,yn) — 0 as n — oo. Since the sequences {z,} and {y,} are p-bounded, it
follows that (x,, — y,) — 0 and x,, — v strongly, as asserted. O

This theorem seems to be new even in the special case where the mapping f is
a constant. It holds, in particular, when the (complex) Hilbert space H is finite
dimensional. It remains an open question whether it continues to hold when H is
infinite dimensional and f is no longer assumed to be compact. Note that although
f is not assumed to be compact in [6, Theorem 4.1] (which concerns a related, but
different iterative scheme), the self-mapping T is assumed to be holomorphic there.
It would also be of interest to determine the behavior of the sequence {z,, : n € N}
when other conditions are imposed on the sequence of parameters {«, : n € N}
and when the mapping T is fixed point free, and to find out if Theorem 4.1 can be
extended to other hyperbolic spaces in the sense of [11].
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