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A NOTE ON THE APPROXIMATION OF FIXED POINTS IN
THE HILBERT BALL

EVA KOPECKÁ AND SIMEON REICH

Abstract. We establish a strong convergence theorem for an iterative scheme
which approximates fixed points of ρ-nonexpansive self-mappings of the Hilbert
ball.

1. Introduction

In a recent paper we have established a strong convergence theorem [5, The-
orem 3.12] for an implicit continuous scheme which approximates fixed points of
ρ-nonexpansive self-mappings of the Hilbert ball. In the present note we comple-
ment this result by proving a corresponding strong convergence theorem (Theorem
4.1 below) for an explicit discrete scheme. This theorem may be considered a pos-
sible Hilbert ball analogue of the Hilbert space theorems in [8] and [13]. Another
such analogue can be found in [6].

2. Preliminaries

Let (H, 〈·, ·〉) be a complex Hilbert space with inner product 〈·, ·〉 and induced
norm | · |, and let B := {x ∈ H : |x| < 1} be its open unit ball. We denote the
set of natural numbers, the interval [0,∞) and the complex plane by N, R+ and C,
respectively. The hyperbolic metric ρ : B× B 7→ R+ [3, page 98] is defined by

(2.1) ρ(x, y) := argtanh
(
1− σ(x, y)

) 1
2 ,

where

(2.2) σ(x, y) :=
(1− |x|2)(1− |y|2)

|1− 〈x, y〉|2 , x, y ∈ B.

This metric is the infinite-dimensional analogue of the Poincaré metric on the open
unit disk {z ∈ C : |z| < 1}. We let B(a, r) := {x ∈ B : ρ(a, x) < r} stand
for the ρ-ball of center a and radius r. A subset of B is called ρ-bounded if it is
contained in a ρ-ball. We say that a mapping c : R 7→ B is a metric embedding of
the real line R into B if ρ(c(s), c(t)) = |s − t| for all real s and t. The image of
R under a metric embedding is called a metric line. The image of a real interval
[a, b] = {t ∈ R : a ≤ t ≤ b} under such a mapping is called a metric segment.
It is known [3, page 102] that for any two distinct points x and y in B, there is
a unique metric line (also called a geodesic) which passes through x and y. This
metric line determines a unique metric segment joining x and y. We denote this
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segment by [x, y]. For each 0 ≤ t ≤ 1, there is a unique point z ∈ [x, y] such
that ρ(x, z) = tρ(x, y) and ρ(z, y) = (1 − t)ρ(x, y). This point will be denoted by
(1 − t)x ⊕ ty. Similarly, for r ≥ 0, we let (1 + r)x ª ry stand for the unique point
z ∈ B that satisfies ρ(z, x) = rρ(x, y) and ρ(z, y) = (1+ r)ρ(x, y). This point lies on
the unique geodesic determined by x and y. The following inequality [3, page 104]
shows that the metric space (B, ρ) is hyperbolic in the sense of [11].

Lemma 2.1. For any four points a, b, x and y in B, and any number t ∈ [0, 1],

(2.3) ρ((1− t)a⊕ tx, (1− t)b⊕ ty) ≤ (1− t)ρ(a, b) + tρ(x, y).

Next, we mention another useful property of the hyperbolic metric.

Lemma 2.2. For any two points x and y in B, and any number t ∈ [0, 1],

(2.4) ρ(tx, ty) ≤ tρ(x, y).

Proof. It is clear that we may assume without any loss of generality that |x| ≤ |y|
and that 0 < t < 1. For a fixed 0 < t < 1, the function g : (0, 1) 7→ R+ defined by

(2.5) g(r) :=
argtanh(tr)
argtanh(r)

, 0 < r < 1,

is decreasing and lim
r→0+

g(r) = t. Therefore inequality (2.4) does hold for x = 0

and we may also assume in the sequel that x 6= 0. There are numbers 0 < p < 1
and 0 < s < 1 such that tx = (1 − p)0 ⊕ px and ty = (1 − s)0 ⊕ sy. Since the
function g is decreasing and its right limit at zero is t, we have s ≤ p ≤ t. Let
z := (1 + r)(ty) ª r0, where r := 1/p − 1 > 0. Then ty = (1 − p)0 ⊕ pz and
|x| ≤ |z| ≤ |y|. Hence ρ(x, z) ≤ ρ(x, y) and

ρ(tx, ty) = ρ((1− p)0⊕ px, (1− p)0⊕ pz) ≤ pρ(x, z) ≤ pρ(x, y) ≤ tρ(x, y),

as claimed. ¤
Recall (see [11] and [12]) that a set-valued operator T ⊂ B×B with domain D(T )

and range R(T ) is said to be coaccretive if

(2.6) ρ(x1, x2) ≤ ρ((1 + r)x1 ª ry1, (1 + r)x2 ª ry2)

for all y1 ∈ Tx1, y2 ∈ Tx2, and r > 0. Such operators are the Hilbert ball analogues
of the operators of the form T = I−A, where A is an accretive operator on a Banach
space. In this case, the operator T is also said to be pseudo-contractive [2, page
876]. Let D be a subset of B. A mapping T : D 7→ B is called ρ-nonexpansive
if ρ(Tx1, x2) ≤ ρ(x1, x2) whenever x1 and x2 belong to D. It is known (see, for
example, [3, page 91]) that each holomorphic self-mapping of B is ρ-nonexpansive.
Using Lemma 2.1, one can check that all ρ-nonexpansive mappings are coaccretive.
An interesting family of (possibly set-valued) coaccretive operators is described in
[12, page 641]. These operators are analogues of sub-differentials of convex functions
in Hilbert space. In particular, if RK : B 7→ K is the nearest point projection
of B onto an arbitrary ρ-closed and ρ-convex subset K of B, then the operator
{(RKz, 2RKz ª z) : z ∈ B} ⊂ B× B is coaccretive.

When the operator T is coaccretive, one can define for each positive r, a single-
valued ρ-nonexpansive mapping Jr : R((1 + r)I ª rT ) 7→ D(T ), the resolvent of T ,
by
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(2.7) Jr((1 + r)xª ry) = x,

where x ∈ D(T ) and y ∈ Tx. These mappings (which in normed linear spaces are
indeed the resolvents of the accretive operator A = I − T ) satisfy the following
resolvent identity for all t ≥ s > 0 and x ∈ D(Jt):

(2.8) Jtx = Js((s/t)x⊕ (1− s/t)Jtx).

Recall that a mapping T : D 7→ B is said to be firmly nonexpansive of the first
kind [3, page 124] if for each x and y in D, the function φ : [0, 1] 7→ [0,∞) defined
by

(2.9) φ(s) := ρ((1− s)x⊕ sTx, (1− s)y ⊕ sTy), 0 ≤ s ≤ 1,

is decreasing. The set of all firmly nonexpansive mappings of the first kind will be
denoted by FN1.

A proof of our next lemma (based on the resolvent identity (2.8)) can be found
in [5, Section 2].

Lemma 2.3. Any resolvent of a coaccretive operator is firmly nonexpansive of the
first kind.

We say that a coaccretive operator T ⊂ B× B is m-coaccretive if

(2.10) R((1 + r)I ª rT ) = B
for all positive r.

Actually, given a coaccretive operator T , the assumption that (2.10) holds when
r = 1 already implies that it holds for all r > 0. Any ρ-nonexpansive mapping
T : B 7→ B is m-coaccretive.

Lemma 2.4. If 0 ≤ α < 1 and the mapping f : B 7→ αB is holomorphic, then f is
a strict ρ-contraction with a ρ-Lipschitz constant α.

Proof. Since our claim is obviously true when α = 0, we may assume that α is
positive. In this case, the mapping g = f/α is a holomorphic self-mapping of
B. Hence it is ρ-nonexpansive and we have ρ(f(x), f(y)) = ρ(αg(x), αg(y)) ≤
αρ(g(x), g(y)) ≤ αρ(x, y) by Lemma 2.2. ¤

We conclude this section with a simple consequence of inequality (2.3).

Lemma 2.5. Let f and g be two ρ-Lipschitz self-mappings of B with Lipschitz
constants L and M , respectively, and let β ∈ [0, 1]. Then the mapping h : B 7→ B
defined by h(x) := (1 − β)f(x) ⊕ βg(x), x ∈ B, is also ρ-Lipschitz, with Lipschitz
constant (1− β)L + βM .

3. Approximating Curves

Given a ρ-nonexpansive self-mapping T of B, a holomorphic mapping f : B→ αB,
where 0 ≤ α < 1, and a number 0 ≤ t < 1, we define the point zt ∈ B as the unique
fixed point of the strict ρ-contraction S : B 7→ B defined by

(3.1) Sx := (1− t)f(x)⊕ tTx, x ∈ B.
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Note that S is indeed a strict ρ-contraction by Lemmata 2.4 and 2.5. It has a unique
fixed point because the metric space (B, ρ) is complete. In other words,

(3.2) zt = (1− t)f(zt)⊕ tTzt, 0 ≤ t < 1.

In this section we recall a few facts regarding the behavior of the approximating
curve {zt : 0 ≤ t < 1}. See [5, Section 3] for more information regarding this curve
and [6, Section 3] for a study of a related, but different approximating curve.

We can also write

(3.3) zt = Ft(f(zt)),

where Ft : B 7→ B is the mapping defined on page 123 of [3]. This mapping is, in
fact, the resolvent Jr(t) of the m-coaccretive operator T , where r(t) = t/(1− t). In
view of Lemma 2.3, it is firmly nonexpansive of the first kind. It may be defined by
the equation

(3.4) Ft(x) = (1− t)x⊕ tTFt(x), x ∈ B.

Next, we recall [3, Theorem 24.1, page 122] (see also [12, Theorem 3.4, page 642]).
Note (see [3, pages 110 and 120]) that the fixed point set F (T ) of a ρ-nonexpansive
self-mapping T of B is both ρ-closed and ρ-convex, and that the nearest point
projection RK of B onto a ρ-closed and ρ-convex subset K of B is ρ-nonexpansive
(and belongs to FN1). The retraction RK is also strongly nonexpansive [10, 1] and
sunny [4, Proposition 5.4].

Proposition 3.1. Let T : B → B be ρ-nonexpansive and let Ft, 0 ≤ t < 1, be the
family of mappings defined by (3.4). If T has a fixed point, then for each x ∈ B, the
strong lim

t→1−
Ft(x) = RF (T )x.

Finally, we recall Theorem 3.12 of [5] (the proof of which makes use of Proposition
3.1). We say that a mapping f : B 7→ B is compact if the closure of its image f(B)
is a compact subset of H.

Proposition 3.2. Let T be a ρ-nonexpansive self-mapping of B, f : B 7→ αB a
holomorphic mapping, where 0 ≤ α < 1, and let zt, 0 ≤ t < 1, be defined by (3.2).
If T has a fixed point and f is compact, then the strong lim

t→1−
zt = v, where v is the

unique solution of the equation z = RF (T )(f(z)).

4. An Iterative Scheme

In this section we study a discrete iterative scheme for approximating fixed points
of ρ-nonexpansive self-mappings of B. The proof of our convergence theorem (The-
orem 4.1 below) depends on Proposition 3.2.

Let a sequence {αn ∈ [0, 1) : n ∈ N} satisfy the following three conditions:

(4.1) lim
n→∞αn = 1;

(4.2)
∞∑

n=1

(1− αn) = ∞;
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(4.3) lim
n→∞

αn − αn−1

(1− αn)2
= 0.

These conditions, which originate with P.-L. Lions [7], are satisfied, for instance,
when for each n ∈ N, αn = 1− n−β, where 0 < β < 1. They had already been used
in [9].

Given a ρ-nonexpansive self-mapping of B, a holomorphic f : B 7→ αB, where
0 ≤ α < 1, and a point x0 ∈ B, we consider in this section the iterative scheme

(4.4) xn = (1− αn)f(xn−1)⊕ αnTxn−1, n ∈ N.

Theorem 4.1. Let T be a ρ-nonexpansive self-mapping of B, f : B 7→ αB a holo-
morphic mapping, where 0 ≤ α < 1, {αn ∈ [0, 1) : n ∈ N} a sequence satisfying
(4.1)–(4.3), and x0 a point in B. If T has a fixed point and f is compact, then the
sequence {xn : n ∈ N} defined by (4.4) converges strongly to the unique solution
v ∈ B of the equation z = RF (T )(f(z)), where RF (T ) : B 7→ F (T ) is the nearest
point projection of B onto the fixed point set F (T ) of T .

Proof. Fix n ∈ N and consider the mapping Sn : B 7→ B defined by

(4.5) Snz := (1− αn)f(z)⊕ αnTz, z ∈ B.

In view of Lemmata 2.4 and 2.5, this mapping is a strict ρ-contraction with Lipschitz
constant

pn := (1− αn)α + αn < 1.

Since the metric space (B, ρ) is complete, Sn has a unique fixed point yn ∈ B. In
other words,

(4.6) yn = (1− αn)f(yn)⊕ αnTyn, n ∈ N.

Note that yn = zαn in the notation of equation (3.2) and Section 3. Since we already
know by Proposition 3.2 and (4.1) that yn → v strongly as n → ∞, it is sufficient
to show that (xn − yn) → 0 strongly as n →∞. To this end, we first note that

ρ(xn, yn) = ρ(Snxn−1, Snyn) ≤ pnρ(xn−1, yn) ≤ pnρ(xn−1, yn−1) + ρ(yn−1, yn)

for all n ∈ N. Setting

(4.7) A(m) = sup
n≥m+1

ρ(yn−1, yn)
1− pn

for all m ∈ N, we conclude that

(4.8) ρ(xn, yn) ≤ ρ(xm, ym)
n∏

j=m+1

pj + A(m)

for all n ≥ m + 1. Since for each n ≥ 2, the points Sn−1yn−1 and Snyn−1 lie on the
metric segment joining f(yn−1) and Tyn−1, and since the sequences {yn : n ∈ N}
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and {f(yn) : n ∈ N} are ρ-bounded, there is a number M ∈ R+ such that

ρ(yn−1, yn) = ρ(Sn−1yn−1, Snyn)

≤ ρ(Sn−1yn−1, Snyn−1) + ρ(Snyn−1, Snyn)

= |αn − αn−1|ρ(f(yn−1), T yn−1) + ρ(Snyn−1, Snyn)

≤ M |αn − αn−1|+ pnρ(yn−1, yn)

for all n ≥ 2. Hence

(4.9) A(m) ≤ M

(1− α)2
sup

n≥m+1

|αn − αn−1|
(1− αn)2

for all m ∈ N. Combining (4.2)–(4.3) with (4.8) and (4.9), we now see that
ρ(xn, yn) → 0 as n → ∞. Since the sequences {xn} and {yn} are ρ-bounded, it
follows that (xn − yn) → 0 and xn → v strongly, as asserted. ¤

This theorem seems to be new even in the special case where the mapping f is
a constant. It holds, in particular, when the (complex) Hilbert space H is finite
dimensional. It remains an open question whether it continues to hold when H is
infinite dimensional and f is no longer assumed to be compact. Note that although
f is not assumed to be compact in [6, Theorem 4.1] (which concerns a related, but
different iterative scheme), the self-mapping T is assumed to be holomorphic there.
It would also be of interest to determine the behavior of the sequence {xn : n ∈ N}
when other conditions are imposed on the sequence of parameters {αn : n ∈ N}
and when the mapping T is fixed point free, and to find out if Theorem 4.1 can be
extended to other hyperbolic spaces in the sense of [11].
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