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SEQUENTIAL FORMULA FOR SUBDIFFERENTIAL OF
INTEGRAL SUM OF CONVEX FUNCTIONS

OLIVIER LOPEZ AND LIONEL THIBAULT

Abstract. The paper is devoted to the description of the subdifferential of
continuous sum of convex functions on a Banach space. Without any qualification
condition, general sequential formulas are established when the Banach space
is separable. It is also shown how results under qualification condition in the
literature can be derived from sequential ones.

1. Introduction

The paper is devoted to the study of the subdifferential of the integral (or con-
tinuous) sum

(1.1) If (x) =
∫

T
f(t, x) dµ(t),

where f : T ×X → R∪ {+∞} is a normal convex integrand, (T, T , µ) is a measure
space with a σ-finite positive measure µ, and X is a real separable Banach space.
Depending on whether X is finite dimensional, reflexive or not, the established
results and the required assumptions are different.

Essentially, if it is possible, under qualification condition, to obtain (see [8, 7])
the equality

(1.2) ∂If (x̄) =
∫

T
∂ft(x̄) dµ(t) + N(dom If , x̄),

such point formula does not hold without qualification condition. We also refer to
the first papers [15, 4, 11, 19, 20] concerning (1.2) for points x where If is finite and
continuous. When no qualification condition is assumed and when X is reflexive
(resp. not reflexive) it is natural (taking into account results concerning finite sum)
to look whether any continuous linear functional x̄∗ of the subdifferential ∂If (x̄)
can be approximated by an appropriate sequence (x∗

n)n∈N (resp. a net (x∗
i )i∈I). In

other words, do there exist appropriate sequences (xn)n∈N and (x∗
n)n∈N (resp. nets

(xi)i∈I and (x∗
i )i∈I) such that

(1.3)
x̄∗ = lim

n→∞

∫
T

x∗
n(t) dµ(t) in (X∗, ‖ ‖X∗)

x∗
n(t) ∈ ∂ft(xn(t)) µ − a.e.
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(resp.

(1.4)
x̄∗ = lim

i∈I

∫
T

x∗
i (t) dµ(t) in (X∗, w(X∗, X))

x∗
i (t) ∈ ∂ft(xi(t)) µ − a.e.)?

Sequential subdifferential formulas in Convex Analysis began in Hilbert space
with Attouch-Baillon-Théra [1] via the Moreau envelope and in general Banach
space with Thibault [16, 17] via calculus formulas established by Hiriart-Urruty
and Phelps [5] in terms of ε-subdifferentials. The papers [16, 17, 18] provide, in the
setting of reflexive (resp. non reflexive) Banach space and without any qualification
condition, a general approximation by sequences (resp. nets) of any element of the
subdifferential of finite sum or composition (see also [3, 10, 12]). Recently Ioffe
[6] investigated the study of the above continuous sum of convex functions (1.1)
and described its subdifferential when no qualification condition is assumed. In the
case when the Banach space is reflexive (resp. not reflexive) he proved that the
above approximation formula (1.3) (resp. (1.4)) holds. His method involves the use
of a smooth renorm and of an infimum convolution regularization procedure. The
purpose of this paper is to show how formulas (1.3) and (1.4) can be derived from
the sequential formula of the subdifferential of the composition of a convex function
with a continuous linear mapping.

2. Preliminaries

Throughout the paper, we assume that (T, T , µ) is a measure space with a positive
σ-finite measure µ and that X is a (real) separable Banach space. For any element
p ∈ [1,∞] we denote by Lp(T,X) the usual space of classes of measurable (with
respect to T ) mappings g : T → X such that the function ‖g(·)‖ is in Lp(T, R).
Unless otherwise stated, measurability will be taken with respect to the σ-algebra
T .

The topological dual of Lp(T,X) endowed with its usual norm is relied to another
concept of measurability for mappings with values in the topological dual X∗ of X.
A mapping h : T → X∗ is called w∗-measurable if for any x ∈ X the function
t 7→ 〈h(t), x〉 is measurable. The separability of X then yields that the function
‖h(·)‖ is measurable. For any p ∈ [1,∞] we will denote by Lp

w∗(T,X∗) the classes of
w∗-measurable mappings h : T → X∗ such that the function ‖h(·)‖ is in Lp(T, R).
Here classes are taken in the sense that two w∗-measurable mappings h1, h2 from T
into X∗ are considered to be equivalent when for any x ∈ X the functions 〈h1(·), x〉
and 〈h2(·), x〉 are equal a.e. It is known (see e.g. [9] where the notation Lp

X∗ [X] is
used in place of Lp

w∗(T,X∗)) that, for any real number p ∈ [1,∞[ and for q ∈ ]1,∞]
given by 1

p + 1
q = 1, the topological dual of Lp(T,X) endowed with its usual norm

is identified with Lq
w∗(T,X∗) under the pairing 〈h, g〉 =

∫
T 〈h(t), g(t)〉 dµ(t) for any

g ∈ Lp(T,X) and h ∈ Lq
w∗(T,X∗). Observe that it is easily seen that the function

t 7→ 〈h(t), g(t)〉 is measurable and hence summable for |〈h(t), g(t)〉| ≤ ‖h(t)‖·‖g(t)‖.
When the separable Banach space X is reflexive, the normed vector space X∗ is
also a (reflexive) separable Banach space and hence Lq

w∗(T,X∗) is equal to the usual
space Lq(T,X∗).
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Let f : T ×X → R∪{+∞} be a function such that ft := f(t, ·) is, for each t ∈ T ,
a proper lower semicontinuous (lsc) function and such that the set-valued mapping
t 7→ Γ(t) := epi ft is measurable in the usual sense, that is,

Γ−1(U) := {t ∈ T : Γ(t) ∩ U 6= ∅} ∈ T
for any open set U of X×R. (Recall that the properness of f(t, ·) corresponds to the
non-vacuity of the set dom f(t, ·) := {x ∈ X : f(t, x) < ∞} and that the epigraph
epi ft is the set epi ft := {(x, r) ∈ X × R : ft(x) ≤ r}). Such function f is usually
called a normal integrand. When ft is further convex for each t ∈ T , one says that f
is a normal convex integrand . Under the lsc property of f(t, ·) (i.e., the closedness
of Γ(t)), the measurability of the set-valued mapping Γ is known (see e.g. [2]) to
be equivalent to the measurability of the function (t, x, r) 7→ dist((x, r), Γ(t)) with
respect to the σ-algebra T ⊗B(X×R). The latter easily implies the measurability of
the function f with respect to the σ-algebra T ⊗ B(X). Further, the measurability
of Γ being characterized by the existence of a sequence (yn, αn)n∈N of measurable
mappings of T into X×R such that Γ(t) = cl {(yn(t), αn(t)) : n ∈ N} for all t ∈ T (a
Castaing representation of Γ), we see as in [14, p.223] that, for any w∗-measurable
mapping y∗ : T → X∗, the Fenchel conjugate f∗(t, ·) of f(t, ·) at y∗(t) takes the
form

f∗(t, y∗(t)) = sup
(x,r)∈epi ft

[〈y∗(t), u〉 − r] = sup
n∈N

[〈y∗(t), yn(t)〉 − αn(t)]

and this yields that the function t 7→ f∗(t, y∗(t)) is T -measurable. When ft is
further convex, the function f∗(·, ·) is (see [14, Proposition 2]) even a normal convex
integrand whenever X is reflexive and the σ-algebra T is µ-complete.

For any measurable function ϕ : T → R ∪ {−∞,∞} the extended integral∫
T ϕ(t) dµ(t) is defined with the convention that

∫
T ϕ(t) dµ(t) = ∞ whenever the

positive part of the function ϕ is not summable. So for any measurable mapping y :
T → X the integral

∫
T f(t, y(t)) dµ(t) makes sense since the function t 7→ f(t, y(t))

is measurable according to the normality of the integrand f . For any element
p ∈ [1,∞] we may then consider the function If,p : Lp(T,X) → R ∪ {−∞,∞}
defined for any y ∈ Lp(T,X) by

(2.1) If,p(y) :=
∫

T
f(t, y(t)) dµ(t).

In the same way the above measurability of t 7→ f(t, y∗(t)) for any w∗-measurable
mapping y∗ : T → X∗ allows us to define the function If∗,p on Lp

w∗(T,X∗) by

(2.2) If∗,p(y∗) :=
∫

T
f∗(t, y∗(t)) dµ(t) for all y∗ ∈ Lp

w∗(T,X∗).

From now on, we will assume that f is a normal convex integrand. Besides the
function If,p, is associated the continuous sum function If defined on X by

(2.3) If (x) :=
∫

T
f(t, x) dµ(t) for all x ∈ X.

This function is obviously convex. Our aim is to establish, via a composition pro-
cedure, the sequential formulas stated in the introduction for elements of its subd-
ifferential. To do so, we start by observing the following Rockafellar’s description
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of the Fenchel conjugate of the functional integral If,p. Adapting the proofs of [14,
Theorem 2] and [2, Theorem VII-7], for any p ∈ [1,∞[ assuming that If,p is finite
at some point of the space Lp(T,X) one obtains that its Fenchel conjugate is the
function If∗,q defined on Lq

w∗(T,X∗), that is,

(2.4) (If,p)∗(y∗) =
∫

T
f∗(t, y∗(t)) dµ(t) for all y∗ ∈ Lq

w∗(T,X∗),

where 1
p + 1

q = 1. The following theorem (see [14, 2]) is then a consequence of (2.3).

Theorem 2.1. Let X be a separable Banach space, f : T × X → R ∪ {+∞} be a
normal convex integrand , and p ∈ [1,∞[. Assume that If,p is finite at some point in
Lp(T,X). Then for y ∈ Lp(T,X) where If,p is finite, an element y∗ ∈ Lq

w∗(T,X∗)
is in the subdifferential ∂If,p(y) if and only if

(2.5) y∗(t) ∈ ∂f(t, y(t)) for a.e. t ∈ T.

The case p = ∞ will be considered later.

3. Subdifferential of integral sum on reflexive space

We begin this section by recalling the following theorem (see [18, Theorem 1])
which, in the case of composition with a linear mapping on a reflexive space, can
be stated as follows (see also [3]). Other versions have been first established in
[16, 17, 12] and another approach for composition formula can be found in [10].

Theorem 3.1. Let Y be any Banach space, X be a reflexive Banach space, and
A : X → Y be a coninuous linear mapping. Let ϕ : Y → R ∪ {+∞} be a proper lsc
convex function. Then for any x ∈ X with Ax ∈ domϕ one has x∗ ∈ ∂(ϕ ◦ A)(x)
if and only if there exist sequences (y∗n)n∈N in Y ∗, (yn)n∈N in Y , and (xn)n∈N in X
such that

(a) y∗n ∈ ∂ϕ(yn) for each n ∈ N;
(b) x∗ = lim

n→∞
y∗n ◦ A in (X∗, ‖ ‖);

(c) yn
‖ ‖→ Ax and ϕ(yn)→ϕ(Ax);

(d) 〈y∗n, yn − Ax〉 → 0;

(e) xn
‖ ‖→ x and ‖y∗n‖ · ‖yn − Axn‖ → 0.

This theorem will allow us to establish, via a direct composition procedure, the
first sequential formula in Ioffe [6] concerning the subdifferential of the function
If . The formula as well as all the results in the rest of the paper is stated under
the assumption that the measure µ is finite. In the case where µ is σ-finite, the
corresponding results are obtained by replacing µ by the measure β(·)µ (having β(·)
as density with respect to µ), where β is any µ-summable function with β(t) > 0
for all t ∈ T . (See [6] for more details).

Theorem 3.2 (Ioffe [6]). Let X be a separable reflexive Banach space, p ∈ [1,∞[,
and f : T × X → R ∪ {+∞} be a normal convex integrand for which there exist
α(·) ∈ L1(T, R) and a∗(·) ∈ Lq(T,X∗) such that for a.e. t and all x ∈ X

(3.1) f(t, x) ≥ 〈a∗(t), x〉 + α(t),
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where 1
p + 1

q = 1. Assume that the measure µ is finite. Then for x ∈ dom If one has
x∗ ∈ ∂If (x) if and only if there are sequences of mappings (un)n∈N and (u∗

n)n∈N in
the spaces Lp(T,X) and Lq(T,X∗) respectively such that

(a) u∗
n(t) ∈ ∂ft(un(t)) a.e.;

(b) x∗ = lim
n→∞

∫
T u∗

n(t) dµ(t) in (X∗, ‖ · ‖);
(c) lim

n→∞

∫
T ‖un(t) − x‖p dµ(t) = 0 and lim

n→∞

∫
T f(t, un(t)) dµ(t) = If (x);

(d) lim
n→∞

∫
T < u∗

n(t), x − un(t) > dµ(t) = 0 .

Further, there exists a sequence (xn)n∈N in X converging in norm to x such that
(e1) lim

n→∞

∫
T ‖xn − un(t)‖p dµ(t) = 0;

(e2) lim
n→∞

∫
T ‖u∗

n(t)‖ · ‖xn − un(t)‖ dµ(t) = 0.

Before proving Theorem 3.2 we establish the following semicontinuity lemma.

Lemma 3.1. Let X be a separable Banach space and p, q ∈ [1,+∞] with 1
p + 1

q = 1.
Let f : T × X → R ∪ {+∞} be a normal convex integrand for which there exist
α(·) ∈ L1(T, R) and a∗(·) ∈ Lq

w∗(T,X∗) such that If,p is finite at some point in
Lp(T,X) and for a.e. t and all x ∈ X

(3.2) f(t, x) ≥ 〈a∗(t), x〉 + α(t).

Then the functional integral If,p is proper, convex, and lsc on Lp(T,X).

Proof. It is not difficult to see that If,p is proper and convex so, we only prove
that If,p is lsc. Fix any u ∈ Lp(T,X) and take any sequence (un)n∈N in Lp(T,X)
converging in Lp-norm to u. Taking subsequences if necessary we may suppose that
lim inf

n
If,p(un) = lim

n
If,p(un) and that (un)n converges almost everywhere to u.

Observing that
f(t, un(t)) − 〈a∗(t), un(t)〉 ≥ α(t)

we see that we may apply the Fatou lemma to obtain

If,p(u) −
∫

T
〈a∗(t), u(t)〉 dµ(t) ≤ lim inf

n
[If,p(un) −

∫
T
〈a∗(t), un(t)〉 dµ(t)],

which yields If,p(u) ≤ lim inf
n

If,p(un) and hence the lsc property of If,p. ¤

Proof of Theorem 3.2. It is not difficult to see that the assertions (a) , (b) , (c) ,
and (d) imply that x∗ ∈ ∂If (x). To prove the reverse implication, suppose that
x∗ ∈ ∂If (x̄). We may also suppose that µ(T ) = 1 (replace the measure µ by the
measure µ̃ := 1

µ(T ) ·µ). Let j : X → Lp(T,X) be the mapping defined for all x ∈ X

by
jx : T → X with (jx)(t) = x for all t ∈ T.

It is clear that j is a continuous linear mapping and that If = If,p ◦ j. Observe
also by Lemma 3.1 that If,p is lsc. Then according to Theorem 3.1, there exist
u∗

n ∈ Lq(T,X∗), un ∈ Lp(T,X), and xn ∈ X such that
(a′) u∗

n ∈ ∂If,p(un);

(b′) u∗
n ◦ j

‖·‖→ x∗;
(c′) un→jx in norm in Lp(T,X) and If,p(un)→If,p(jx);
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(d′) 〈u∗
n, un − jx〉Lq(X∗),Lp(X) → 0;

(e′) xn
‖·‖→ x and ‖u∗

n‖Lq(X∗) · ‖un − xn‖Lp(X) → 0.
It follows from (2.5) in Theorem 2.1, from the finiteness of If,p at jx̄ and from (a′)
that for each integer n

u∗
n(t) ∈ ∂ft(un(t)) a.e.

The condition (c′) gives us on the one hand

If,p(un) =
∫

T
f(t, un(t)) dµ(t) → If (x)

and on the other hand ∫
T
‖un(t) − x‖p dµ(t) → 0,

which becomes by using the first part of (e′)∫
T
‖un(t) − xn‖p dµ(t) → 0.

The assertion (d′) can be translated into

lim
n→+∞

∫
T
〈u∗

n(t), un(t) − x〉 dµ(t) = 0.

The second part of assertion (e′) corresponds to

lim
n→+∞

‖u∗
n‖Lq(X∗) · (

∫
T
‖un(t) − (jxn)(t)‖p dµ(t))

1
p = 0,

and by Hölder inequality it follows that

lim
n→+∞

∫
T
‖u∗

n(t)‖ · ‖un(t) − xn‖ dµ(t) = 0.

It remains to prove the assertion (b) of Theorem 3.2 . Observe that for all x ∈ X
and n ∈ N we have

〈u∗
n ◦ j, x〉X∗,X = 〈u∗

n, jx〉Lq(X∗),Lp(X)

=
∫

T
〈u∗

n(t), (jx)(t)〉X∗,X dµ(t)

= 〈
∫

T
u∗

n(t) dµ(t), x〉X∗,X

and hence

u∗
n ◦ j =

∫
T

u∗
n(t) dµ(t).

Applying (b′) we obtain

x∗ = lim
n→∞

∫
T

u∗
n(t) dµ(t) in (X∗, ‖ · ‖),

which completes the proof. ¤

Sometimes it may be convenient to use the following corollary in order to get
elements in ∂If .
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Corollary 3.1. Let X be a separable reflexive Banach space, p ∈ [1,∞[, and f :
T × X → R ∪ {+∞} be a normal convex integrand satisfying (3.1). Then for
x ∈ dom If one has x∗ ∈ ∂If (x) if and only if there are sequences of mappings
(un)n∈N and (u∗

n)n∈N in the spaces Lp(T,X) and Lq(T,X∗) respectively such that
(a) u∗

n(t) ∈ ∂ft(un(t)) a.e.;
(b) x∗ = lim

n→∞

∫
T u∗

n(t) dµ(t) in (X∗, w∗(X∗, X));

(c′) lim
n→∞

∫
T ‖un(t) − x‖p dµ(t) = 0;

(d) lim
n→∞

∫
T < u∗

n(t), x − un(t) > dµ(t) = 0 .

Proof. It is enough to show that any such x∗ is in ∂Ifx. For such element, writing
for any x ∈ X

〈u∗
n(t), x − un(t)〉 ≤ f(t, x) − f(t, un(t)),

we get

〈
∫

T
u∗

n(t) dµ(t), x − x〉 +
∫

T
〈u∗

n(t), x − un(t)〉 dµ(t) ≤ If (x) −
∫

T
f(t, un(t)) dµ(t).

Taking the lower semicontinuity of If over Lp(T,X) into account and passing to
the limit, we obtain

〈x∗, x − x〉 ≤ If (x) − If (jx) = If (x) − If (x).

This means that x ∈ ∂If (x). ¤

4. The non-reflexive case

In this section we consider the case when X is a general (non-reflexive) separable
Banach space. We state first the following form of [18, Theorem 1] in this case.

Theorem 4.1. Let X and Y be Banach spaces and A : X → Y be a continuous
linear mapping from X into Y . Let ϕ : Y → R ∪ {+∞} be a proper lsc convex
function. Then for any x ∈ X with Ax ∈ domϕ one has x∗ ∈ ∂(ϕ ◦ A)(x) if and
only if there exist nets (y∗i )i∈I in Y ∗, (yi)i∈I in Y , and (xi)i∈I such that (a), (c),
(d), (e) in Theorem 3.1 hold with I instead of N and such that one has the weak-star
convergence in (b) of Theorem 3.1, that is,

(b) x∗ = lim
i∈I

y∗i ◦ A with respect to the w(X∗, X)-topology.

The lsc property in Lemma 3.1 being true in the context where the Banach space
X is not necessarily reflexive, we may follow the proof of Theorem 3.2 with the use
of Theorem 4.1 in place of Theorem 3.1. So after appropriate adaptations we obtain
the following theorem of Ioffe [6].

Theorem 4.2. Let X be a separable Banach space, p ∈ [1,∞[, and f : T × X →
R ∪ {+∞} be a normal convex integrand for which there exist α(·) ∈ L1(T, R) and
a∗(·) ∈ Lq

w∗(T,X∗) such that for a.e. t and all x ∈ X

(4.1) f(t, x) ≥ 〈a∗(t), x〉 + α(t),

where 1
p + 1

q = 1. Then for x ∈ dom If one has x∗ ∈ ∂If (x) if and only if there
are nets of mappings (ui)i∈I and (u∗

i )i∈I in the spaces Lp(T,X) and Lq
w∗(T,X∗)

respectively such that
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(a) u∗
i (t) ∈ ∂ft(ui(t)) a.e.;

(b) x∗ = lim
i∈I

∫
T u∗

i (t) dµ(t) with respect to the w(X∗, X)-topology;

(c) lim
i∈I

∫
T ‖ui(t) − x‖p dµ(t) = 0 and lim

i∈I

∫
T f(t, ui(t)) dµ(t) = If (x);

(d) lim
i∈I

∫
T < u∗

i (t), x − ui(t) > dµ(t) = 0 .

Further, there exists a net (xi)i∈I in X converging in norm to x such that
(e1) lim

i∈I

∫
T ‖xi − ui(t)‖p dµ(t) = 0;

(e2) lim
i∈I

∫
T ‖u∗

i (t)‖ · ‖xi − ui(t)‖ dµ(t) = 0.

5. The case p = ∞

Otherwise stated we assume henceforth that the measure space is complete and
that X is a separable reflexive Banach space. (The case where the separable Banach
space X is not reflexive is considered in the comments after the proof of Theorem
5.2 and the ones preceding the proof of Theorem 5.3). Recall that a continous linear
functional s∗ on L∞(T,X) is said to be singular if there is an increasing sequence
(Tn)n of measurable sets satisfying T =

⋃
n∈N Tn such that, whenever u ∈ L∞(T,X)

is a mapping vanishing almost everywhere outside of some Tn , one has 〈s∗, u〉 = 0.
The set of these singular functionals forms a vector space denoted by Lsing(T,X) .
It is known (see e.g. [2, 14]) that

(5.1) (L∞(T,X))∗ = L1(T,X∗) ⊕ Lsing(T,X).

Rockafellar (see [14, Theorem 4]) established the following expression of the Fenchel
conjugate of If,∞.

Theorem 5.1. Let X be a separable reflexive Banach space and f : T × X →
R ∪ {+∞} be a normal convex integrand. Assume that the functional integral If,∞
on L∞(T,X) is finite at some point in L∞(T,X). Then the Fenchel conjugate of
If,∞ on (L∞(T,X))∗ is given for all u∗ ∈ (L∞(T,X))∗ by

(If,∞)∗(u∗) = If∗,1(v∗) + sup
u∈dom If,∞

〈s∗, u〉(L∞(X))∗,L∞(X),

where u∗ = v∗ + s∗, v∗ ∈ L1(T,X∗) and s∗ ∈ Lsing(T,X).

This theorem yields the following description of the subdifferential of If,∞.

Proposition 5.1. Assume the hypotheses of Theorem 5.1. For any u ∈ L∞(T,X)
where If,∞ is finite and u∗ = v∗ + s∗ in (L∞(T,X))∗ with v∗ ∈ L1(T,X∗) and
s∗ ∈ Lsing(T,X), one has u∗ ∈ ∂If,∞(u) if and only if

v∗(t) ∈ ∂ft(u(t)) a.e. and s∗ ∈ N(domIf,∞, u),

where N(dom If,∞, u) is the normal cone to dom If,∞ at u ∈ domIf,∞ .

Proof. The implication ⇐ being easy to verify, only the opposite one needs to be
proved. Let u∗ ∈ ∂If,∞(u) where u∗ = v∗ + s∗, v∗ ∈ L1(T,X∗), s∗ ∈ Lsing(T,X).
By the characterization of the subdifferential in terms of the Fenchel conjugate we
have

If,∞(u) + (If,∞)∗(u∗) ≤ 〈u∗, u〉(L∞)∗,L∞
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which yields according to Theorem 5.1

If,∞(u) + If∗,1(v∗) + sup
y∈dom If,∞

〈s∗, y〉(L∞)∗,L∞ ≤ 〈v∗, u〉(L∞)∗,L∞ + 〈s∗, u〉(L∞)∗,L∞ .

Rewriting this inequality in the form

(5.2) If,∞(u) + If∗,1(v∗) − 〈v∗, u〉(L∞)∗,L∞

≤ 〈s∗, u〉(L∞)∗,L∞ − sup
y∈dom If,∞

〈s∗, y〉(L∞)∗,L∞ ,

we obtain in particular

(5.3) If,∞(u) + If∗,1(v∗) − 〈v∗, u〉(L∞)∗,L∞ ≤ 0.

In other respects, since 〈v∗, u〉(L∞)∗,L∞ =
∫
T 〈v

∗(t), u(t)〉X∗,X dµ(t), the Fenchel in-
equality ensures that

(5.4) If,∞(u) + If∗,1(v∗) − 〈v∗, u〉

=
∫

T
[f(t, u(t)) + f∗(t, v∗(t)) − 〈v∗(t), u(t)〉X∗,X ] dµ(t) ≥ 0,

which entails that (5.3) is in fact an equality, that is,∫
T
[f(t, u(t)) + f∗(t, v∗(t)) − 〈v∗(t), u(t)〉X∗,X ] dµ(t) = 0.

Since the integrand in the latter integral is nonnegative by the Fenchel inequality
(as already seen in (5.4)), we have

f(t, u(t)) + f∗(t, v∗(t)) − 〈v∗(t), u(t)〉X∗,X = 0 a.e.,

that is,
v∗(t) ∈ ∂ft(u(t)) a.e..

On the other hand , by (5.2) and (5.4) we also have

〈s∗, u〉(L∞)∗,L∞ − sup
y∈dom If,∞

〈s∗, y〉(L∞)∗,L∞ ≥ 0,

which is equivalent to s∗ ∈ N(dom If,∞, u). The proof is then complete. ¤
Our composition approach allows us to establish the following theorem which is

new and which provides a sequential formula in the case p = ∞.

Theorem 5.2. Let X be a separable reflexive Banach space and f : T × X →
R ∪ {+∞} be a normal convex integrand for which there exist α(·) ∈ L1(T, R) and
a∗(·) ∈ L1(T,X∗) such that for a.e. t and all x ∈ X

(5.5) f(t, x) ≥ 〈a∗(t), x〉 + α(t).

Assume that the measure µ is finite. Then for x ∈ dom If one has x∗ ∈ ∂If (x) if
and only if there are sequences (un)n∈N and (u∗

n)n∈N in the spaces L∞(T,X) and
(L∞(T,X∗))∗ respectively with u∗

n = v∗n + s∗n, v∗n ∈ L1(T,X∗) and s∗n ∈ Lsing(T,X)
such that

(a) v∗n(t) ∈ ∂ft(un(t)) a.e. and s∗n ∈ N(dom If,∞, un) ;
(b) x∗ = lim

n→∞

[∫
T v∗n(t) dµ(t) + s∗n ◦ j

]
in (X∗, ‖ · ‖), where j denotes the canon-

ical embedding of X into L∞(T,X);
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(c) lim
n→∞

‖un(·) − x‖L∞(X) = 0 and lim
n→∞

∫
T f(t, un(t)) dµ(t) = If (x);

(d) lim
n→∞

[∫
T < u∗

n(t), un(t) − x > dµ(t) + 〈s∗n, un(·) − jx〉
]

= 0 .

Further, there exists a sequence (xn)n∈N in X converging in norm to x such that
(e1) lim

n→∞
‖un(·) − xn‖L∞(X) = 0;

(e2) lim
n→∞

‖u∗
n‖ · ‖un(·) − xn‖L∞(X) = 0.

Proof. Let x∗ in ∂If (x). Writing If = If,∞ ◦ j and arguing as in the proof of
Theorem 3.2, we obtain there exist u∗

n ∈ (L∞(T,X∗))∗, un ∈ L∞(T,X), and xn ∈ X
such that

(a′) u∗
n ∈ ∂If,∞(un);

(b′) u∗
n ◦ j

‖·‖→ x∗;
(c′) un(·)→jx in norm in L∞(T,X) and If,∞(un)→If,∞(jx);
(d′) 〈u∗

n, un(·) − jx〉(L∞(X∗))∗,L∞(X) → 0;

(e′) xn
‖·‖→ x and ‖u∗

n‖(L∞(X∗))∗ · ‖un(·) − jxn‖L∞(X) → 0.
Taking into account the fact that If,∞ is finite at some point (here jx), (a′) and
Proposition 5.1 entail that for each integer n

v∗n(t) ∈ ∂ft(un(t)) a.e.

The condition (c′) gives us on the one hand

If,p(un) =
∫

T
f(t, un(t)) dµ(t) → If (x)

and on the other hand ‖un(·) − x‖L∞(X) → 0 and hence according to (e′) we have
that ‖un(·) − xn‖L∞(X) → 0. The assertion (d′) can be translated into

lim
n→+∞

[∫
T
〈u∗

n(t), un(t) − x〉 dµ(t) + 〈s∗n, un(·) − jx〉
]

= 0

and the second part of assertion (e′) into

lim
n→+∞

‖u∗
n‖ · ‖un(·) − xn‖L∞(X) = 0.

Finally to obtain the assertion (b) of the theorem, we observe that for all x ∈ X
and n ∈ N, like in the proof of Theorem 3.2, we have v∗n ◦ j =

∫
T v∗n(t) dµ(t). So

according to (b′) we conclude that

x∗ = lim
n→∞

[∫
T

u∗
n(t) dµ(t) + s∗n ◦ j

]
in (X∗, ‖ · ‖). ¤

When the separable Banach space X is nonreflexive, arguing as in section 4, we
see that Theorem 5.2 still holds with nets (ui)i∈I , (u∗

i )i∈I , (v∗i )i∈I , and (s∗i )i∈I in
place of sequences and the w(X∗, X)-topology in place of the ‖ ‖-topology in (b).
Indeed, the representation of the topological dual of L∞(T,X) is given (see e.g. [2,
Theorem VII.5]) by (5.1) with L1

w∗(T,X∗) in place of L1(T,X∗). Therefore, it is
enough to use Theorem 4.1 in place of Theorem 3.1 and the result corresponding to
Theorem 5.1 with L1

w∗(T,X∗) in place of L1(T,X∗) obtained by following the proof
of Theorem 10 in [14].
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Our aim now is to show how classical formulas under qualification conditions can
be derived from the above sequential formulas for integral sums of convex functions.
We begin with the following result of Ioffe and Levin [7, Theorem 3, p. 23]. The
theorem is proved below with the assumption that the separable Banach space X is
reflexive. The case of a general separable Banach space (not necessarily reflexive) is
easily deduced via arguments similar to those above just past the proof of Theorem
5.2.

Theorem 5.3 (Ioffe & Levin [7]). Let X be a separable reflexive Banach space and
f : T ×X → R∪ {+∞} be a normal convex integrand. Assume that the hypotheses
of Theorem 5.2 hold and assume that the following qualification condition
(QC) there exists some x0 ∈ X such that If,∞ is bounded from above on some

neighborhood of x0 in (L∞(T,X), ‖ · ‖L∞(X))
also holds.

Then for any x ∈ dom If one has

∂If (x) =
∫

T
∂ft(x) dµ(t) + N(dom If , x),

where
∫
T ∂ft(x) dµ(t) := {

∫
T y∗(t) dµ(t) : y∗ ∈ L1(T,X∗) and y∗(t) ∈ ∂ft(x) a.e.}.

Proof. The inclusion of the second member into the first one is not difficult to be
verified. To prove the reverse inclusion, let us fix x and x∗ with x∗ ∈ ∂If (x).
Theorem 5.2 yields the existence of sequences (u∗

n)n in (L∞(T,X))∗ and (un)n in
(L∞(T,X) such that

(a) u∗
n ∈ ∂If,∞(un);

(b) u∗
n ◦ j → x∗ in (X∗, ‖ · ‖) where j is the canonical embedding of X into

L∞(T,X);
(c) lim

n→∞
‖un(·) − x‖L∞(X) = 0 and lim

n→∞
If,∞(un) = If,∞(jx);

(d) < u∗
n, un − jx >(L∞(X))∗,L∞(X)→ 0.

By the qualification condition (QC) there are some c > 0 and ε > 0 such that for
all u ∈ L∞(T,X) with ‖u‖L∞(X) ≤ ε the inequality

|If,∞(jx0 + u)| ≤ c

holds. Then by (a), for any u ∈ L∞(T,X) with ‖u‖L∞(X) ≤ ε and all n ∈ N we
have

〈u∗
n, u〉(L∞)∗,L∞ ≤ If,∞(jx0 + u) − If,∞(un) − 〈u∗

n, jx0 − un〉(L∞)∗,L∞

and consequently

〈u∗
n, u〉(L∞)∗,L∞ ≤ c − If,∞(un) − 〈u∗

n, jx0 − un〉(L∞)∗,L∞ .

Write this inequality in the form 〈u∗
n, u〉(L∞)∗,L∞ ≤ c+θn where θn := −If,∞(un)−

〈u∗
n, jx0 − un〉(L∞)∗,L∞ . The assertions (b) , (c) , (d) imply that the sequence (θn)n

converges in R and hence the sequence (c + θn)n∈N is bounded from above by some
real number M ≥ 0. This yields for any n ∈ N that

|〈u∗
n, u〉(L∞)∗,L∞ | ≤ M

ε
‖u‖ for all u ∈ L∞(T,X)
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and hence ‖u∗
n‖ ≤ M

ε . The Banach-Alaoglu-Bourbaki theorem allows us to take
some subnet (u∗

k(i))i∈I converging in the w((L∞(X))∗, L∞(X))-topology to some
u∗ = v∗ + s∗ ∈ L1(T,X∗) ⊕ Lsing(T,X). Using this convergence and (b) we obtain

(5.6) u∗
k(i) ◦ j → v∗ ◦ j + s ◦ j = x∗.

Further, writing

|〈u∗
k(i), u − uk(i)〉 − 〈u∗, u − jx〉| ≤ |〈u∗

k(i) − u∗, u − jx〉| + |〈u∗
k(i), jx − uk(i)〉|,

we see by (d) and by the w((L∞(X))∗, L∞(X))-convergence of (u∗
k(i)) to u∗ that

(5.7) lim
i∈I

〈u∗
k(i), u − uk(i)〉(L∞)∗,L∞ = 〈u∗, u − jx〉(L∞)∗,L∞ .

In other respects , we know by the definition of subdifferential that for all i ∈ I and
all u ∈ L∞(T,X)

〈u∗
k(i), u − uk(i)〉(L∞)∗,L∞ ≤ If,∞(u) − If,∞(uk(i))

and then by (c) and (5.7)

〈u∗, u − jx〉(L∞)∗,L∞ ≤ If,∞(u) − If,∞(jx),

that is v∗ + s∗ = u∗ ∈ ∂If,∞(jx). Proposition 5.1 then says that v∗(t) ∈ ∂ft(x)
a.e. and s∗ ∈ N(dom If,∞, jx). On the one hand, since v∗ ◦ j =

∫
T v∗(t) dµ(t) like

in the proof of Theorem 3.2, we have v∗ ◦ j ∈
∫
T ∂ft(jx) dµ(t). On the other hand,

observing that, for every x ∈ dom If , we have jx ∈ dom If,∞, we see through the
inclusion s∗ ∈ N(dom If,∞, jx) that

0 ≥ 〈s∗, jx − jx〉(L∞)∗,L∞ = 〈s∗ ◦ j, x − x〉,

that is, s∗ ◦ j ∈ N(dom If , x). Taking the equality in the second member of (5.6)
into account, we see that the proof is complete. ¤

In the case where X is a finite dimensional space the qualification condition (QC)
can be rewritten to yield the following result of Ioffe and Tikhomirov [8].

Corollary 5.1. Let f : T ×X → R∪{+∞} be a normal convex integrand. In addi-
tion to the hypotheses of Theorem 5.2, assume that the space X is finite dimensional
and that the following qualification condition
(QC0) the interior in X of dom If is non empty
also holds.

Then for any x ∈ dom If one has

∂If (x) =
∫

T
∂ft(x) dµ(t) + N(dom If , x).

Proof. We may suppose that X = Rm and that ‖ · ‖ is the supremum (box) norm.
The assumptions and the qualification condition (QC0) ensure that the convex func-
tion If is finite over a neighborhood in X of some point x0, that is, there exist some
positive number r such that If (x0 + x) is finite for all x ∈ X with ‖x‖ ≤ r. Fix
a finite set of points x1, · · · , xN of X with ‖xk‖ ≤ r for k = 1, · · · , N and whose
convex hull contains the closed ball of X centered at the origin and with radius r.



SEQUENTIAL FORMULA FOR SUBDIFFERENTIAL OF INTEGRAL SUM 307

Fix also any u(·) ∈ L∞(T,X) with ‖u‖L∞(X) < r. Then for a.e. t ∈ T we have
‖u(t)‖ ≤ r and hence the convexity of f(t, ·) allows us to write∫

T
f(t, x0 + u(t)) dµ(t) ≤

∫
T

max
1≤k≤N

f(t, x0 + xk) dµ(t).

Denoting by j the embedding mapping of X into L∞(T,X) we see that If,∞ is
bounded from above on some neighborhood of jx0 in L∞(T,X). Thus the corollary
follows from Theorem 5.3. ¤
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