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COUPLING VISCOSITY METHODS WITH THE
EXTRAGRADIENT ALGORITHM FOR SOLVING EQUILIBRIUM

PROBLEMS

PAUL-EMILE MAINGÉ AND ABDELLATIF MOUDAFI

Abstract. We make use of the viscosity technique to develop a convergent
method for approximating a common element of the set of fixed points of a
demicontractive operator and the set of solutions of a monotone equilibrium
problem. The proposed algorithm is obtained by coupling a modified hybrid
steepest descent method with the extragradient algorithm. Under mild condi-
tions, the strong convergence of the sequences generated by the algorithm is
obtained. Using this result we obtain two corollaries which improve or develop
several corresponding results in this field.

1. Introduction

Throughout this paper, H is a real Hilbert space with inner product 〈., .〉 and
induced norm | . |. Let C be a nonempty closed convex subset of H and denote by
SF the set of solutions of the following equilibrium problem:

(1.1) find u ∈ C such that F (u, y) ≥ 0, ∀y ∈ C,

where F : C × C → IR is a bifunction.
Problem (1.1) is very general in the sense that it includes, as special cases, op-

timization problems, variational inequalities, minmax problems, Nash equilibrium
problem in noncooperative games and others (see, for instance [2], [27] and the ref-
erences quoted therein). In recent years, methods for solving equilibrium problems
have been studied extensively. In [18], Moudafi extended the proximal method to
monotone equilibrium problems and in [9] Konnov used the proximal method to
solve problem (1.1) with weakly monotone bifunctions. Recently, Mastroeni in [16]
extended the so-called auxiliary problem principle to (1.1) involving strong mono-
tone equilibrium problems. Other solution methods such as bundle methods and
extragradient methods are extended to (1.1) in [27] and [28].

Now, consider a (possibly) nonlinear mapping T : H → H with a fixed point set
denoted by Fix(T ) := {x ∈ H; Tx = x} and satisfying Fix(T ) ∩ SF 6= ∅. In this
paper, we are interested in approximating a solution of the mixed problem:

(1.2) find u ∈ SF ∩ Fix(T ).

It is worth noting that numerous algorithms were proposed for solving fixed point
problems for nonexpansive and even more general mappings [1, 7, 11, 13, 19, 22, 31,
32]. Other numerical methods were proposed for solving (1.2) in the special case
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when F (x, y) = 〈Ax, y−x〉, where A : C → H is a monotone and Lipschitz continu-
ous mapping and T is nonexpansive. In this latter case, the proposed methods can
be regarded as a suitable combination of the extra-gradient method initiated in [10]
and either a Mann’s type iteration [14, 20], an Halpern’s type process [6, 33] or the
hybrid steepest descent method [21, 29]. Very recently, a numerical approach was
considered in [24] for solving the more general problem (1.2) where the bifunction
F verifies the following usual conditions:

(A1) F (x, x) = 0 for all x, y ∈ C;
(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;
(A3) limt↓0 F (tz + (1− t)x, y) ≤ F (x, y)for any x, y, z ∈ C;
(A4) for each x ∈ C, y → F (x, y) is convex and lower-semicontinuous.

The main result of [24] can be summarized as follows.

Theorem 1.1. ([24], Theorem 3.2) Let C be a nonempty closed convex subset of
H. Let F be a bi-function from C × C to IR satisfying [(A1)-(A4)] and let T be
a nonexpansive mapping of C into H such that SF ∩ Fix(T ) 6= ∅. Let f be a
contraction of H into itself and let (xn) and (un) be sequences generated by x0 ∈ H
and

(1.3)


 F (un, y) +

1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnf(xn) + (1− αn)Tun,

for all n ∈ IN, where (αn) ⊂ (0, 1] and (rn) ⊂ (0,∞) satisfy:

lim
n→∞αn = 0,

∑
n

αn = ∞,
∑

n

|αn+1 − αn| < ∞,

lim inf
n→∞ rn > 0, and

∑
n

|rn+1 − rn| < ∞.

Then, (xn) and (yn) converge strongly to z in Fix(T )∩SF , where z = PFix(T )∩SF
f(z).

Motivated by the above work and based upon the extragradient method [10, 20,
33], we propose an alternative method for solving (1.2) in the more general case
when T is demicontractive and demi-closed. Then, we prove a strong convergence
theorem which improves or develops several corresponding results in this field.

First of all we recall that T is demicontractive means that there exists a constant
β ∈ [0, 1) such that |Tx − q|2 ≤ |x− q|2 + β|x− Tx|2, for all (x, q) ∈ H × Fix(T ),
which is equivalent to (see [17])

(1.4) 〈x− Tx, x− q〉 ≥ 1− β

2
|x− Tx|2, ∀(x, q) ∈ H × Fix(T ).

Let us also recall that T is called demi-closed (see [5]) if for any sequence (zk) ⊂ H
and z ∈ H, we have:

zk → z weakly, (I − T )(zk) → 0 strongly ⇒ z ∈ Fix(T ).

An operator satisfying (1.4) will be refered to as a β-demicontractive mapping. It is
worth noting that the class of demicontractive maps contains important operators
such as the quasi-nonexpansive maps and the strictly pseudocontractive maps with
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fixed points (see [7, 15, 17]). Finally, let us recall that a mapping T : H → H is
called:

i) nonexpansive if |Tx− Ty| ≤ |x− y| for all (x, y) ∈ H ×H;
ii) quasi-nonexpansive if |Tx− q| ≤ |x− q| for all (x, q) ∈ H × Fix(T );
iii) strictly pseudocontractive if |Tx− Ty|2 ≤ |x− y|2 + ρ|x− y − (Tx− Ty)|2

for all (x, y) ∈ H ×H (for some ρ ∈ [0, 1)).
Observe also that the nonexpansive operators are both quasi-nonexpansive and
strictly pseudocontractive maps and are well-known for being demi-closed.

In view of selecting a particular solution of (1.2), we consider an operator F :
C → H satisfying the following two conditions:

(LC): F is L-Lipschitz continuous (for some L > 0),
i.e. |F(x)−F(y)| ≤ L|x− y| for all x, y ∈ C;

(SM): F is η-strongly monotone (for some η > 0),
i.e. 〈F(x)−F(y), x− y〉 ≥ η|x− y|2 for all x, y ∈ C,

and we investigate the asymptotic behavior of the sequence (xn) generated, from
an arbitrary x0 in H, by the following algorithm:

(1.5)




• x0 ∈ H;

• compute un such that:

F (un, y) +
1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C;

• xn+1 := [(1− w)I + wT ]vn, vn := un − αnF(un),

where T is assumed to be demicontractive, I : H → H stands for the identity
mapping and the parameters are such that: (αn) ⊂ [0, 1), (rn) ⊂ (0,∞) and w ∈
(0, 1).

More precisely, we will prove that the limit is the solution to the following well-
posed variational inequality problem V IP (F , SF ∩ Fix(T )):

(1.6) find x∗ ∈ Fix(T )∩SF such that 〈v−x∗,F(x∗)〉 ≥ 0, ∀v ∈ Fix(T )∩SF .

It is worth mentioning that the existence and the uniqueness of the solution of (1.6)
are ensured by the conditions (LC), (SM) and by the fact that SF ∩ Fix(T ) is a
nonempty closed and convex set.

We would like to emphasize that when F ≡ 0 and C = H, (1.5) reduces to
a modified version of the hybrid steepest descent method recently investigated in
[13] as an algorithmic solution for solving V IP (F , F ix(T )). The convergence in
norm of the iterates generated by this scheme is obtained in the more general case
when T is demicontractive. On the other hand, we would like to emphasize that
the relaxation process induced by the mapping (1− w)I + wT in (1.5) was mainly
suggested by the work of Suzuki [22] (see also [7, 14, 11]) and permits to relax
substantially the conditions on parameters αn and rn. Finally, let us notice that
when C = H and F (x, y) = maxu∈Ax〈u, y − x〉, where A is a maximal monotone
operator, (1.1) amounts to finding zeroes of the operator A and the sequence un

given by (1.5) is nothing but the resolvent operator associated to A at xn, namely



286 P.-E. MAINGÉ AND A. MOUDAFI

un = JA
rn

xn = (I + rnA)−1xn so that the algorithm (1.5) reduces to xn+1 :=
[(1− w)I + wT ]vn with vn := (I − αnF)(JA

rn
xn).

Under classical assumptions on the operators and the parameters, we will prove
that the sequences (xn) and (un) generated by the scheme (1.5) converge strongly
to the unique solution of (1.6). Thus by algorithm (1.5), we provide an efficient
selecting method for solving the initial mixed problem (1.2) for a new broad class
of maps. Moreover, the techniques of proofs are simple and different from the usual
ones.

2. Preliminaries

We begin with the following preliminary results (see [2] and [8]).

Lemma 2.1. Let C be a nonempty closed convex subset of H and let F be a bi-
function from C × C into IR satisfying [(A1)-(A4)].
i) Let r > 0 and x ∈ H. Then there exists z ∈ C such that:

F (z, y) +
1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C.

ii) Let Tr : H → C be the mapping defined by

Tr(x) = {z ∈ C : F (z, y) +
1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}.

Then the following hold:

(1) Tr is single-valued;
(2) Tr is firmly nonexpansive, i.e.,

|Trx1 − Trx2|2 ≤ 〈Trx1 − Trx2, x1 − x2〉;
(3) Fix(Tr) = SF (SF being the set of solutions of (1.2));
(4) SF is closed and convex.

The following lemmas, which appear implicitly in [24], will be needed in the se-
quel.

Lemma 2.2. Assume that (xn) and (un) are two sequences in H verifying rn > 0
and un = Trnxn for all n ≥ 0. Then:

(2.1) |un − u|2 ≤ |xn − u|2 − |xn − un|2, ∀n ≥ 0,

where u is any element in SF .

Proof. Indeed, for any u in SF , we successively have

|un − u|2 = |Trnxn − Trnu|2
≤ 〈Trnxn − Trnu, xn − u〉
= 〈un − u, xn − u〉
=

1
2

(|un − u|2 + |xn − u|2 − |xn − un|2
)
,

which clearly leads to (2.1). ¤
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Lemma 2.3. Let (xn) and (un) are two sequences in H verifying un = Trnxn for
all n ≥ 0 and assume that rn ∈ [δ,∞) for some δ > 0. If, in addition, there exists
a subsequence (unk

) of (un) such that:
i) (unk

) converges weakly to some u in H;
ii) |unk

− xnk
| → 0,

then u belongs in SF .

Proof. Since un = Trnxn, for any y ∈ C, we can write

F (un, y) +
1
rn
〈y − un, un − xn〉 ≥ 0.

Monotonicity of F together with property (A2) yields
1
rn
〈y − un, un − xn〉 ≥ −F (un, y) ≥ F (y, un),

which, by replacing n by nk, implies

〈y − unk
,
unk

− xnk

rnk

〉 ≥ F (y, unk
).

As (unk
) is a bounded sequence (since it is weakly convergent), by passing to the

limit in the previous inequality and by taking into account that unk
−xnk

rnk
→ 0 and

unk
⇀ u weakly, we deduce that

0 ≥ F (y, u).

Now, by setting yt = ty + (1− t)u (for t ∈ (0, 1]) and thanks to the fact that y ∈ C
and u ∈ C, we have yt ∈ C so that F (yt, u) ≤ 0.
Hence by virtue of (A1) and (A4), we get

0 = F (yt, yt) ≤ tF (yt, y) + (1− t)F (yt, u) ≤ tF (yt, y).

Consequently, we deduce
F (yt, y) ≥ 0,

which in the light of (A3) entails

F (u, y) ≥ 0, ∀y ∈ C,

thus u ∈ SF . ¤
Now, let us state a key property of the relaxed operator Tw := (1− w)I + wT .

Remark 2.4. (See also [13]) Let T be a β-demicontractive self-mapping on H
with Fix(T ) 6= ∅ and set Tw := (1 − w)I + wT for w ∈ (0, 1]. Then Tw is quasi-
nonexpansive if w ∈ [0, 1− β].
Indeed, for any arbitrary element (x, q) ∈ H × Fix(T ), we have

|Twx− q|2 = |x− q|2 − 2w〈x− q, x− Tx〉+ w2|Tx− x|2,
which according to (1.4) yields

(2.2) |Twx− q|2 ≤ |x− q|2 − w(1− β − w)|Tx− x|2.
Furthermore, we clearly have Fix(T ) = Fix(Tw) if w 6= 0. As a consequence, the
operator Tw is quasi-nonexpansive for w ∈ [0, 1 − β] and Fix(T ) is then a closed
convex subset of H (see [32], Proposition 1).
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The following lemma shows that the sequences (xn) and (un) generated by (1.5)
are bounded.

Lemma 2.5. Suppose T : H → H is β-demicontractive with SF ∩ Fix(T ) 6= ∅ and
let F : H → H be an operator satisfying (LC) and (SM). Assume, in addition, that
w ∈ (0, 1−β], (rn) ⊂ (0,∞) and (αn) ⊂ [0, δ) (for some small enough δ > 0). Then
the sequences (xn) and (un) generated by (1.5) are bounded.

Proof. Without loss of generality, we may assume 0 < η < L. Given µ ∈ (0,∞) and
x, y ∈ H, by using properties (SM) and (LC), we can write

|(µF − I)(x)− (µF − I)(y)|2
= µ2|F(x)−F(y)|2 − 2µ〈x− y,F(x)−F(y)〉+ |x− y|2
≤ µ2L2|x− y|2 − 2µη|x− y|2 + |x− y|2,

so that

(2.3) |(µF − I)(x)− (µF − I)(y)| ≤ (
√

1− 2µη + µ2L2)|x− y|.
Furthermore, taking q ∈ Fix(T ) ∩ SF and recalling that vn = un − αnF(un), we
have
|vn+1 − (q − αn+1F(q))| = |(un+1 − αn+1F(un+1))− (q − αn+1F(q))|

=
∣∣∣∣(1−

αn+1

µ
)(un+1 − q)− αn+1

µ
((µF − I)(un+1)− (µF − I)(q)

∣∣∣∣
≤ (1− αn+1

µ
)|un+1 − q|+ αn+1

µ
|(µF − I)(un+1)− (µF − I)(q)|,

provided that (αn) ⊂ [0, µ), which by (2.3) yields

(2.4) |vn+1 − (q − αn+1F(q))| ≤ (1− αn+1

µ
ν)|un+1 − q|,

where ν := 1−
√

1− 2µη + µ2L2. Clearly, we have that ν ∈ (0, 1) when µ ∈ (0, µ0)
for some small enough µ0. Using (2.1) and observing that Tw := (1 − w)I + wT
is quasi-nonexpansive for w ∈ (0, 1 − β] (see remark 2.4), by (2.1) we additionally
have

(2.5) |un+1 − q| ≤ |xn+1 − q| = |Twvn − q| ≤ |vn − q|.
Combining (2.4) and (2.5), we then get

|vn+1 − (q − αn+1F(q))| ≤ (1− αn+1

µ
ν)|vn − q|.

As a consequence, we deduce

|vn+1 − q| ≤ |vn+1 − (q − αn+1F(q))|+ |(q − αn+1F(q))− q|
≤ (1− αn+1ν

µ
)|vn − q|+ αn+1|F(q)|

= (1− αn+1ν

µ
)|vn − q|+ (

αn+1ν

µ
)(

µ|F(q)|
ν

),

and hence

max
{
|vn+1 − q|, µ|F(q)|

ν

}
≤ max

{
|vn − q|, µ|F(q)|

ν

}
,
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so that for all n ≥ 0,

(2.6) |vn − q| ≤ max
{
|v0 − q|, µ|F(q)|

ν

}
.

Thus (vn) is bounded, which by (2.5) leads to the boundedness of (xn) and (un). ¤

3. Main convergence results

In order to prove our main convergence theorem, we start with some key prelim-
inary results.

Lemma 3.1. Suppose T : H → H be a β-demicontractive mapping with Fix(T ) ∩
SF 6= ∅ and let F : H → H be a given operator. Assume in addition that the
following condition holds:

(H1) : w ∈ (0, 1−β
2 ].

Then, for all n ≥ 0 the sequences (xn) and (un), given by (1.5), satisfy the following
inequality:

(3.1) |xn+1 − q|2 − |xn − q|2
+|xn+1 − un|2 + |xn − un|2 ≤ −2αn〈xn+1 − q,F(un)〉,

where q is any element in Fix(T ) ∩ SF .

Proof. Let q ∈ Fix(T ) ∩ SF . From (1.5) and (2.2) we obtain

(3.2) |xn+1 − q|2 ≤ |vn − q|2 − w(1− β − w)|vn − Tvn|2

and by virtue of (1.5) we also have Tvn− vn = 1
w (xn+1− vn). Consequently, setting

ρ := 1
w (1− β − w), we obtain

(3.3) |xn+1 − q|2 ≤ |vn − q|2 − ρ|xn+1 − vn|2,
hence if w ∈ (0, 1−β

2 ] (so that ρ ≥ 1) we get

(3.4)
|xn+1 − q|2 ≤ |vn − q|2 − |xn+1 − vn|2

= |(un − q)− αnF(un)|2 − |(un − xn+1)− αnF(un)|2
= |un − q|2 − 2αn〈xn+1 − q,F(un)〉 − |xn+1 − un|2.

Furthermore, thanks to (2.1) we have

(3.5) |un − q|2 ≤ |xn − q|2 − |xn − un|2,
which, combined with (3.4), entails the desired result. ¤

Lemma 3.2. Let F : H → H be any operator satisfying (LC). Suppose that T :
H → H is demi-closed with Fix(T ) ∩ SF 6= ∅ and that the following conditions on
the parameters hold:

(C1): (rn) ⊂ [δ,∞) (for some δ > 0);
(H2): (αn) ⊂ [0, 1), αn → 0.

Let (xn), (un) be the sequences generated by (1.5) and assume further the existence
of a subsequence (unk

) of (un) such that:
i) |unk

− xnk+1| → 0; ii) |unk
− xnk

| → 0.
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Then any weak-cluster point of (unk
) belongs to Fix(T ) ∩ SF . Moreover, if in

addition (unk
) is bounded, then

(3.6) lim inf
k→∞

〈unk
− u∗,F(u∗)〉 ≥ 0,

where u∗ is any solution of (1.6).

Proof. Let u ∈ H be a weak-cluster point of (unk
). Then there exists a bounded

subsequence of (unk
) (labeled (umk

)) which weakly converges to u. By i) and ii), we
also have |xmk+1−umk

| → 0 and |xmk
−umk

| → 0. If in addition αn → 0, we easily
deduce that vmk

:= umk
− αmk

F(umk
) weakly converges to u (because F(umk

) is
bounded thanks to (LC)), hence αmk

|F(umk
)| → 0), which by (1.5) entails

|Tvmk
− vmk

| = 1
w
|xmk+1 − vmk

| = 1
w
|(xmk+1 − umk

) + αmk
F(umk

)| → 0.

Now, as T is assumed to be demi-closed, we then obtain u ∈ Fix(T ). Further-
more, recalling that |xmk

− umk
| → 0 and assuming rn ≥ δ > 0, by Lemma 2.3

we get u ∈ SF . Consequently, the set of weak cluster points of (unk
) is included in

SF∩Fix(T ). If (unk
) is also a bounded sequence, so is the quantity 〈unk

−u∗,F(u∗)〉.
It is then immediate that there exists a subsequence of (unk

) (denoted (umk
)) which

converges weakly to some element v in H ( hence v ∈ Fix(T ) ∩ SF ) and such that
lim infk→∞〈unk

− u∗,F(u∗)〉 = limk→∞〈umk
− u∗,F(u∗)〉. Thus, by the weak con-

vergence of (umk
) and by reminding that u∗ is the solution of (1.6), we easily deduce

lim infk→∞〈unk
− u∗,F(u∗)〉 = 〈v − u∗,F(u∗)〉 ≥ 0. This ends the proof. ¤

Lemma 3.3. Assume that T : H → H is β-demicontractive, demi-closed and such
that Fix(T )∩SF 6= ∅; F : H → H satisfies (LC) and (SM) and suppose in addition
that:

(C1): (rn) ⊂ [δ,∞) (for some δ > 0);
(H2): (αn) ⊂ [0, 1), αn → 0.

Let (xn), (un) be the sequences generated by (1.5) and assume furthermore the
existence of a bounded subsequence (unk

) of (un) such that :
i) |unk

− xnk+1| → 0; ii) |xnk
− unk

| → 0;
iii) 〈xnk+1 − x∗,F(unk

)〉 ≤ 0, where x∗ is the solution of (1.6).
Then (xnk

) and (unk
) converge strongly to x∗.

Proof. From the boundedness of (unk
), we can extract a subsequence (again labeled

(unk
)) which converges weakly to some q in H and such that i), ii) and iii) still hold.

Thanks to Lemma 3.2 we infer that q ∈ Fix(T ) ∩ SF . Furthermore, by (SM) we
observe that
η|unk

− x∗|2 ≤ 〈unk
− x∗,F(unk

)−F(x∗)〉

= 〈xnk+1 − x∗,F(unk
)〉+ 〈unk

− xnk+1,F(unk
)〉 − 〈unk

− x∗,F(x∗)〉,
which in the light of iii) entails

(3.7) η|unk
− x∗|2 ≤ 〈unk

− xnk+1,F(unk
)〉 − 〈unk

− x∗,F(x∗)〉.
Hence by (3.7), ii) and (1.6) we obviously have

lim sup
k→+∞

|unk
− x∗|2 ≤ −(1/η)〈q − x∗,F(x∗)〉 ≤ 0.
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Therefore, we obtain limk→+∞ |unk
−x∗| = 0 and by virtue of ii) and the uniqueness

of x∗ we deduce that (xnk
) also converge strongly to x∗, which completes the proof.

¤

Lemma 3.4. Let F : H → H be an operator satisfying (LC) and (SM), suppose that
T : H → H is β-demicontractive, demi-closed with Fix(T ) ∩ SF 6= ∅ and assume
that the following conditions on the parameters hold:

(H1): w ∈ (0, 1−β
2 ];

(H2): (αn) ⊂ [0, 1), αn → 0;
(C2): (rn) ⊂ [δ,∞) (for δ > 0);
(SP):

∑
n≥0 αn = ∞.

Assume furthermore that the sequences (xn) and (un) given by (1.5) satisfy :
i) |un − xn+1| → 0; ii) |xn − un| → 0;
iii) limn→∞ |xn − x∗| exists, x∗ being the solution of (1.6).

Then (xn) and (un) converge strongly to x∗.

Proof. Using condition (SM), we obviously obtain

(3.8) 〈xn+1−x∗,F(un)〉 ≥ η|un−x∗|2 + 〈un−x∗,F(x∗)〉+ 〈xn+1−un,F(un)〉.
Set limn→∞ |xn − x∗| = λ ≥ 0. (xn) is thus bounded and, thanks to ii), so is (un).
Since Lemma 3.2 is applicable, we also have

(3.9) lim inf
n→∞ 〈un − x∗,F(x∗)〉 ≥ 0.

Therefore, by (3.8), (3.9) and i) we get

lim inf
n→∞ 〈xn+1 − x∗,F(un)〉 ≥ ηλ2.

Hence, for ε > 0, from Lemma 3.1, we deduce that for n ≥ n0 (for some n0 large
enough),

|xn+1 − x∗|2 − |xn − x∗|2 ≤ −2αn(ηλ2 − ε).
This easily leads to

|xn+1 − x∗|2 − |xn0 − x∗|2 ≤ −2(λ2η − ε)
n∑

k=n0

αk.

Assuming
∑

αk = ∞, we observe that this last inequality is absurd for λ > 0,
since (xn) is bounded. As a straightforward consequence, we obtain λ = 0, namely
(xn) converges strongly to x∗ and according to ii) so is (un). This completes the
proof. ¤

We are now in a position to give the following main convergence theorem.

Theorem 3.5. Suppose T : H → H is β-demicontractive, demi-closed with Fix(T )∩
SF 6= ∅. Let F : H → H be satisfying (LC) and (SM) and assume the following
conditions hold:

(H1): w ∈ (0, 1−β
2 ];

(H2): (αn) ⊂ [0, 1), αn → 0;
(H3): (rn) ⊂ [δ,∞) (where δ > 0);
(SP):

∑
n≥0 αn = ∞.
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Then the sequences (xn) and (un) generated by (1.5) converge strongly to x∗, the
unique solution of the variational inequality (1.6).

Proof. The boundedness of (xn) and (un) is deduced from Lemma 2.5, so that
there exists a constant C ≥ 0 such that |〈xn+1 − x∗,F(un)〉| ≤ C for all n ≥ 0.
Consequently, by Lemma 3.1 we get

(3.10) |xn+1 − x∗|2 − |xn − x∗|2 + |xn+1 − un|2 + |xn − un|2 ≤ 2Cαn.

The rest of the proof can be divided into two cases:
Case 1) Assume (|xn − x∗|) is a monotone sequence. In other words, for n0 large

enough, (|xn − x∗|)n≥n0 is either non-decreasing or non-increasing and being also
bounded, (|xn− x∗|) is thus convergent. Clearly, we then have |xn+1− x∗|2− |xn−
x∗|2 → 0, which by (3.10) yields |xn+1 − un| → 0 and |xn − un| → 0. Consequently,
by Lemma 3.4 we deduce that (xn), (un) converge strongly to x∗.

Case 2) Assume (|xn− x∗|) is not a monotone sequence, set Γn := |xn− x∗|2 and
let τ : IN → IN be the map defined for all n ≥ n0 (for some n0 large enough) by

(3.11) τ(n) := max{k ∈ IN; k ≤ n, Γk ≤ Γk+1}.
Clearly, τ is a non-decreasing sequence such that τ(n) → +∞ (as n → +∞) and
Γτ(n) ≤ Γτ(n)+1 (for n ≥ n0), which by (3.10) entails

|xτ(n)+1 − uτ(n)|2 + |xτ(n) − uτ(n)|2 ≤ 2Cατ(n) → 0,

thus |xτ(n)+1 − uτ(n)| → 0 and |xτ(n) − uτ(n)| → 0, so that |xτ(n)+1 − xτ(n)| → 0.
Furthermore, by Lemma 3.1 we have

for any j ≥ 0 〈xj+1 − x∗,F(uj)〉 > 0 ⇒ Γj+1 < Γj .

As a consequence, since Γτ(n) ≤ Γτ(n)+1, we get

〈xτ(n)+1 − x∗,F(uτ(n))〉 ≤ 0 for all n ≥ n0.

Applying Lemma 3.3, we deduce that |xτ(n)−x∗| → 0 and it is then immediate that
limn→∞ Γτ(n) = limn→∞ Γτ(n)+1 = 0, since |xτ(n)+1 − xτ(n)| → 0. Furthermore, for
n ≥ n0, it is easily observed that Γn ≤ Γτ(n)+1 if n 6= τ(n) (that is, if τ(n) < n),
because Γj > Γj+1 for τ(n)+1 ≤ j ≤ n. As a consequence, we obtain for all n ≥ n0,

0 ≤ Γn ≤ max{Γτ(n), Γτ(n)+1} = Γτ(n)+1.

Hence limn→∞ Γn = 0, that is (xn) converges strongly to x∗. In view of (3.10), we
also obtain the strong converge of (un) to x∗, which completes the proof. ¤

We end this section with two important particular cases. First, when F ≡ 0, we
have un = PCxn. So as a direct consequence of Theorem 3.5, we obtain that the
sequence generated from x0 by

xn+1 := [(1− w)I + wT ](I − αnF)(PCxn)

converges strongly to x∗ ∈ FixT which solves the variational inequality

〈v − x∗,F(x∗)〉 ≥ 0, ∀v ∈ Fix(T ).
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In the case when T = I, algorithm (5.1) generates from an arbitrary x0 ∈ H two
sequences (un) and (xn) by the following rule

(3.12)




• compute un such that:

F (un, y) +
1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C;

• xn+1 = un − αnF(un).

As a direct consequence of Theorem 3.5, we obtain that the sequences (xn) and (un)
strongly converge to x∗ ∈ SF which solves the variational inequality

〈v − x∗,F(x∗)〉 ≥ 0, ∀v ∈ SF .
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