
Journal of Nonlinear and Convex Analysis
Volume 9, Number 2, 2008, 273–281

COALITION FORMATION IN CONVEX TU-GAMES BASED ON
POPULATION MONOTONICITY OF RANDOM ORDER VALUES

TETSUZO TANINO, ATSUSHI MORITANI, AND KEIJI TATSUMI

Abstract. Two important problems in cooperative games are the coalition for-
mation of players and the allocation schemes of profits among the players (so-
called solutions of the games). The random order values, which include the
Shapley value as a special case, are fundamental point-valued solutions in trans-
ferable utility games (TU-games). We prove the population monotonicity, i.e.,
the monotonicity of allocated individual values with respect to coalitions, of the
random order values in convex games. We also discuss coalition formation in
TU-games as hedonic games based on the random order values. We prove that
the coalition structure obtained from the top coalition algorithm satisfies some
stability properties in hedonic games.

1. Introduction

In the theory of cooperative games there are two important problems. One is
the problem of finding reasonable solutions for games which are allocation schemes
of profits among players. Roughly speaking there are two types of solutions: set-
valued solutions and point-valued solutions. Typical examples of the former are
the core and the stable set. Those of the latter are the Shapley value and some
variations of it (see for example Mondere and Samet [5]). In this paper we focus
on the random order values which are equivalent to the efficient probabilistic values
(i.e. quasi values).

The other important problem in the theory of cooperative games is formation of
coalitions, i.e., discussion on what is the coalition structure formed in the games.
One approach to this problem is dealing with hedonic games which are coalition
formation games under each player’s individual preferences over coalitions including
herself (Banerjee et al. [1], Bogomolnaia and Jackson [2], Sung and Dimitrov [7] and
so on). Some conditions under which reasonable coalition structures can be obtained
algorithmically. One of those conditions is the top coalition property introduced by
Banerjee et al. [1].

In this paper we deal with convex transferable utility games as cooperative games,
which have some nice properties. We generalize the population monotonicity prop-
erty proved for the Shapley value by Sprumont [6] to the random order values. We
assume that each individual preference is specified by the random order value and
prove stability of the coalition structure obtained by the top coalition algorithm
based on this fact.
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The paper is organized as in the following. In section 2 we discuss random order
values for transferable utility games. The main result is the population monotonicity
property of the random order values. Section 3 is devoted to a brief review of
hedonic games with the top coalition property. Finally in section 4 we consider
hedonic games with the individual preferences based on the random order values
and show that the top coalition algorithm effectively produces the stable coalition
structures for those games.

2. Cooperative games and random order values

In this paper we deal with cooperative games, particularly transferable util-
ity games. A transferable utility game (TU-game) is a pair (N, v), where N =
{1, 2, . . . , n} is a finite set of players and v : 2N → R is a function satisfying
v(∅) = 0. When S ⊆ N , we may consider the subgame (S, v) of (N, v) by restricting
the domain of v from 2N to 2S .

In the following, we use abbreviated notations such as v({i}) = v(i), S ∪ {i} =
S ∪ i, S \ {i} = S \ i and so on. We use two kinds of symbols for set inclusion:
S ⊆ T means that S is a subset of T , while S ⊂ T implies that S is a proper subset
of T . We denote the number of elements in S by |S|.

In this paper we focus on convex TU-games which have some nice properties.

Definition 2.1. A TU-game (N, v) is said to be convex if

v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ) for all S, T ⊆ N.

Proposition 2.2. A TU-game (N, v) is convex if and only if

v(S∪ i)−v(S) ≤ v(T ∪ i)−v(T ) and for all S, T ⊆ N with S ⊆ T and for all i 6∈ T.

For S ⊆ N let Π(S) be the set of all orderings on S. Practically π(i) means the
order of player i ∈ S in the ordering π ∈ Π(S). Given an ordering π ∈ Π(S) on
S ⊆ N , let

P (π, i, S) = {j ∈ S | π(j) < π(i)}
and define the marginal contribution of player i ∈ S in the ordering π for the game
(S, v) by

mπ
i (v, S) = v(P (π, i, S) ∪ i) − v(P (π, i, S)).

Now let Λ(S) be the set of all nonnegative weight systems on Π(S), i.e.,

Λ(S) = {λ = (λπ)π∈Π(S) ∈ R|Π(S)| | λπ ≥ 0,
∑

π∈Π(S)

λπ = 1}.

Definition 2.3. A value is a point-valued solution of TU-games, i.e., a function ξ
which associates an |S| dimensional real vector with each game (S, v). In particular,
a value with a nonnegative weight system λ ∈ Λ(S) defined by

ξλ
i (v, S) =

∑
π∈Π(S)

λπmπ
i (v, S), i ∈ S

is called a random order value. We may often call the vector ξ(v, S) the value (of v
for S) too.
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Proposition 2.4 (Weber [8]). A value satisfies four axioms, Linearity, Null player
property, Efficiency, Monotonicity, if and only if it is a random order value.

Most typical example of random order values is the Shapley value ϕ(v, S), which
is specified by the weight system λπ = 1

|S|! for all π ∈ Π(S), i.e.,

ϕi(v, S) =
1

|S|!
∑

π∈Π(S)

mπ
i (v, S).

Definition 2.5. Let S′ ⊂ S ⊆ N and π ∈ Π(S). A restriction of π onto S′ is the
ordering π′ ∈ Π(S′) uniquely determined by

π′(i) < π′(j) ⇐⇒ π(i) < π(j), for all i, j ∈ S′.

On the contrary, given an ordering π′ ∈ Π(S′), an ordering π ∈ Π(S) is said to be
consistent with π′ if π′ is the restriction of π onto S′. The set of all orderings on S
consistent with π′ is denoted by Π(S;π′).

Remark 2.6. The family {Π(S; π′) | π′ ∈ Π(S′)} is a partition of Π(S), where each
Π(S;π′) consists of |S|!

|S′|! elements.

Definition 2.7. Let S′ ⊂ S ⊆ N and λ ∈ Λ(S). A weight system λ′ ∈ Λ(S′) is
said to be induced from λ if

λ′
π′ =

∑
π∈Π(S;π′)

λπ, for all π′ ∈ Π(S′).

Remark 2.8. Let S′ ⊂ S ⊆ N . Then the weight system 1
|S′|!e = ( 1

|S′|! , . . . ,
1

|S′|!) ∈
Λ(S′) is induced from the weight system 1

|S|!e = ( 1
|S|! , . . . ,

1
|S|!) ∈ Λ(S).

Now we consider a game (N, v), then for each S ⊂ N and λ ∈ Λ(S) we can
define the random order value ξλ(v, S). We obtain the following theorem which
is a generalization of the population monotonicity of the Shapley value proved by
Sprumont [6] (see also Branzei et al. [3]).

Theorem 2.9. Let (N, v) be a TU-game, S′ ⊂ S ⊆ N and λ ∈ Λ(S). If v is a
convex game and λ′ ∈ Λ(S′) is induced from λ, then

ξλ′
i (v, S′) ≤ ξλ

i (v, S) for all i ∈ S′.

Proof. Let π′ ∈ Π(S′) and π ∈ Π(S; π′). Then it is clear that P (π′, i, S′) ⊆ P (π, i, S)
and hence for any i ∈ S′

mπ′
i (v, S′) = v(P (π′, i, S′) ∪ i) − v(P (π′, i, S′))

≤ v(P (π, i, S) ∪ i) − v(P (π, i, S))
= mπ

i (v, S)
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since v is a convex game. Therefore, for any i ∈ S′

ξλ′
i (v, S′) =

∑
π′∈Π(S′)

λ′
π′mπ′

i (v, S′)

=
∑

π′∈Π(S′)

∑
π∈Π(S;π′)

λπmπ′
i (v, S′)

≤
∑

π′∈Π(S′)

∑
π∈Π(S;π′)

λπmπ
i (v, S)

=
∑

π∈Π(S)

λπmπ
i (v, S)

= ξλ
i (v, S).

This completes the proof. ¤

The case of the Shapley value can be obtained as a corollary of the above theorem.

Corollary 2.10. Let (N, v) be a convex TU-game and S′ ⊂ S ⊆ N . Then

ϕi(v, S′) ≤ ϕi(v, S) for all i ∈ S′.

We investigate more results for the random order values. The following lemma
shows a relationship between the marginal contributions and restricted additivity
of a game.

Lemma 2.11. Let (N, v) be a convex TU-game, S′ ⊂ S ⊆ N and S′′ = S \ S′.
If mπ′

i (v, S′) = mπ
i (v, S) for all π′ ∈ Π(S′), π ∈ Π(S;π′) and i ∈ S′, then v(T ′ ∪

T ′′) = v(T ′) + v(T ′′) for T ′ ⊆ S′ and T ′′ ⊆ S′′ and mπ′′
j (v, S′′) = mπ

j (v, S) for all
π′′ ∈ Π(S′′), π ∈ Π(S; π′′) and j ∈ S′′.

Proof. Let T ′ ⊆ S′ and T ′′ ⊆ S′′. If T ′ = ∅, the first result is obvious. Hence we
assume that T ′ = {i1, . . . , il} (l ≥ 1). Take orderings π′ ∈ Π(S′) and π ∈ Π(S; π′)
such that

π′(j) < π′(k) ∀j ∈ T ′, ∀k ∈ S′ \ T ′,
π′(i1) < π′(i2) < · · · < π′(il),
π(j) < π(k) ∀j ∈ T ′′, ∀k ∈ S′,
π(j) < π(k) ∀j ∈ S′, ∀k ∈ S′′ \ T ′′.

Then

v(T ′ ∪ T ′′) = v(T ′ ∪ T ′′) − v(T ′ ∪ T ′′ \ il) + v(T ′ ∪ T ′′ \ il)
−v(T ′ ∪ T ′′ \ {il, il−1}) + · · · + v(T ′′ ∪ i1) − v(T ′′) + v(T ′′)

= mπ
il
(v, S) + mπ

il−1
(v, S) + · · · + mπ

i1
(v, S) + v(T ′′)

= mπ′
il

(v, S′) + mπ′
il−1

(v, S′) + · · · + mπ′
i1

(v, S′) + v(T ′′)
= v(T ′) − v(T ′ \ il) + v(T ′ \ il) − v(T ′ \ {il, il−1}) + · · ·

+v(i1) − v(∅) + v(T ′′)
= v(T ′) + v(T ′′).
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Now let π′′ ∈ Π(S′′), π ∈ Π(S; π′′) and j ∈ S′′. Then

mπ
j (v, S) = v(P (π, j, S) ∪ j) − v(P (π, j, S))

= v((P (π, j, S) ∩ S′′) ∪ j) + v(P (π, j, S) ∩ S′)
−v(P (π, j, S) ∩ S′′) − v(P (π, j, S) ∩ S′)

= v(P (π′′, j, S′′) ∪ j) − v(P (π′′, j, S′′))
= mπ′′

j (v, S′′),

as was to be proved. ¤
Theorem 2.12. Let (N, v) be a TU-game, S′ ⊂ S ⊆ N , S′′ = S \S′, and λ ∈ Λ(S)
with λ > 0. If (N, v) is a convex game, λ′ ∈ Λ(S′) and λ′′ ∈ Λ(S′′) are induced from
λ, and

ξλ′
i (v, S′) = ξλ

i (v, S) for all i ∈ S′,

then
ξλ′′
j (v, S′′) = ξλ

j (v, S) for all j ∈ S′′.

Proof. Since λπ > 0 for all π ∈ Π(S), in view of the proof of Theorem 2.9,
mπ′

i (v, S′) = mπ
i (v, S) for all π′ ∈ Π(S′), π ∈ Π(S; π′) and i ∈ S′. Then, due

to Lemma 2.11, mπ′′
j (v, S′′) = mπ

j (v, S) for all π′′ ∈ Π(S′′), π ∈ Π(S; π′′) and
j ∈ S′′. Therefore, as in the proof of Theorem 2.9, we can easily show that

ξλ′′
j (v, S′′) = ξλ

j (v, S) for all j ∈ S′′.

This completes the proof. ¤
Thus if the random order values are all equal for some players, then they are also

equal for the remaining players.

3. Hedonic games and top coalition property

In this section we deal with coalition formation among players in terms of hedonic
games. Let N = {1, 2, . . . , n} be a finite set of players as before. Each player i is
endowed with a preference ºi over the set Ai = {S ⊆ N | i ∈ S} of all possible
coalitions she may belong to. Each ºi is assumed to be a complete pre-ordering,
i.e.,

R ºi S, S ºi T =⇒ R ºi T, ∀R,S, T ⊆ N,
S ºi T or T ºi S, ∀S, T ⊆ N.

A hedonic game is a pair 〈N,º〉, where º is a profile of players’ preferences, i.e.,
º= (º1,º2, . . . ,ºn). An outcome Θ for 〈N,º〉 is a partition of the player set N .
For each partition Θ of N and for each player i ∈ N , we denote by Θ(i) the coalition
in Θ containing i. The following are some notions of stability of a partition of the
players (Dimitrov and Sun [4], Sung and Dimitrov [7]).

Definition 3.1. Given a hedonic game 〈N,º〉 and a partition Θ of N , we say that
• Θ is core stable if, for each nonempty S ⊆ N ,

Θ(i) ºi S for some i ∈ S;

• Θ is strictly core stable if, for each nonempty S ⊆ N ,

Θ(i) ºi S for each i ∈ S if S ºi Θ(i) for each i ∈ S;
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• Θ is Nash stable if, for each S ∈ Θ ∪ {∅} and for each i ∈ N ,

Θ(i) ºi S ∪ i;

• Θ is individually stable if, for each S ∈ Θ ∪ {∅} and for each i ∈ N ,

S Âj S ∪ i for some j ∈ S if S ∪ i Âi Θ(i).

Observe that strict core stability implies core stability and individual stability,
and that Nash stability implies individual stability.

Let i ∈ N and S ∈ Ai. We denote by Ch(i, S) ⊆ 2S ∩ Ai the set of all maximal
elements under ºi, i.e.,

Ch(i, S) = {T ∈ 2S ∩ Ai | T ºi R for any R ∈ 2S ∩ Ai}.

Observe that each T ∈ Ch(i, S) satisfies i ∈ T ⊆ S. Moreover, for each T,R ⊆
2S ∩ Ai, we have T Âi R if T ∈ Ch(i, S) and R 6∈ Ch(i, S).

The following property was introduced by Banerjee et al. [1]

Definition 3.2. A preference profile º of a hedonic game 〈N,º〉 is said to satisfy
the top coalition property if the following holds: For each S ⊆ N , there exists T ⊆ S
such that

T ∈ Ch(i, S) for any i ∈ T.

A hedonic game 〈N,º〉 in which º satisfies the top coalition property is called a
TC hedonic game.

If the hedonic game 〈N,º〉 is a TC hedonic game, we can obtain a partition of
N by using the following top coalition algorithm TCA.

Algorithm TCA

Step 1. Let R1 := N , Θ = ∅ and k := 1.
Step 2. Choose Sk such that Sk ∈ Ch(i, Rk) for all i ∈ Sk.
Step 3. Let Rk+1 := Rk \ Sk and Θ = Θ ∪ {Sk}.
Step 4. If Rk+1 6= ∅, then let k := k + 1 and return to Step 2. If
Rk+1 = ∅, then go to Step 5.
Step 5. Stop with the outcome Θ.

The partition obtained by applying the algorithm TCA to the hedonic game
〈N,º〉 is denoted by ΘTC

〈N,º〉.

Theorem 3.3 ([1]). Let 〈N,º〉 be a TC hedonic game. Then the partition ΘTC
〈N,º〉

is core stable.

We may consider a modified version of the algorithm TCA by choosing Sk with
the largest size in Step 2. The obtained algorithm is called the maximal top coalition
algorithm and is denoted by MTCA. The obtained partition is denoted by ΘMTC

〈N,º〉.

Theorem 3.4. Let 〈N,º〉 be a TC hedonic game. Then the partition ΘMTC
〈N,º〉 is

individually stable.
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Proof. Let S ∈ ΘMTC
〈N,º〉 ∪ {∅} and i ∈ N . Suppose that Θ(i) = Sk in Algorithm

MTCA. First we consider the case S = ∅. In this case it does not occur that
S ∪ {i} = {i} Âi Θ(i). Now let S = Sm 6= ∅. If k = m, S ∪ i = Sm ∪ i = Sk ∪ i =
Sk 6Âi Sk. Next suppose that k < m. Since Sk ∈ Ch(i, Rk) and Sm ∪ i ⊆ Rk,
Sm ∪ i 6Âi Sk. Finally suppose that k > m and Sm ∪ i Âi Sk. Since i ∈ Sk and
Sk ∩ Sm = ∅, i 6∈ Sm. Since Sm ∈ Ch(j, Rm) for all j ∈ Sm, Sm ºj Sm ∪ i for
all j ∈ Sm. If Sm ∼j Sm ∪ i for all j ∈ Sm, then Sm ∪ i ∈ Ch(i, Rm), which
contradicts that Sm is of the largest size. Therefore there exists some j ∈ Sm such
that Sm Âj Sm ∪ i. This completes the proof. ¤

4. Hedonic games with the preferences based on the random order
values

Now we consider a TU-game (N, v) and suppose that the total profit v(S) is
allocated according to the random order value ξλ(v, S) if a coalition S ⊆ N is
formed. Hereafter, given a weighting system λ ∈ Λ(N), we consider the random
order value ξλ′

(v, S) with the weighting system λ′ ∈ Λ(S) induced from λ. Therefore
we denote it by ξλ(v, S). Then we can consider the hedonic game based on the
random order value as follows.

Definition 4.1. Given a game (N, v) and a weighting system λ ∈ Λ(N), the pref-
erence ordering º(v,ξλ)

i of player i on Ai is defined by

S º(v,ξλ)
i T ⇐⇒ ξλ

i (v, S) ≥ ξλ
i (v, T ), ∀S, T ∈ Ai.

Then we can obtain the following result directly from Theorem 2.9 and it implies
that the hedonic game 〈N,º(v,ξλ)〉 satisfies the top coalition property if (N, v) is a
convex game.

Theorem 4.2. If a TU-game (N, v) is convex, then for any weighting system λ ∈
Λ(N),

S º(v,ξλ)
i T for any i ∈ T, with T ⊆ S ⊆ N.

Lemma 4.3. Let 〈N, v〉 be a hedonic game and Θ be a partition of N . If i ∈ Θ(i) ∈
Ch(i,N) for each i ∈ N , then Θ is strictly core stable and Nash stable.

Proof. Since Θ(i) ∈ Ch(i,N), from the definition of Ch(i,N), we have Θ(i) ºi T
for any T ∈ Ai. Therefore it is obvious that Θ is core stable, strictly core stable,
Nash stable and individually stable. ¤
Theorem 4.4. If a TU-game (N, v) is convex and a weighting system λ ∈ Λ(N) is
positive, then the partition ΘTC

〈N,º(v,ξλ)〉
is strictly core stable and Nash stable (and

therefore also core stable and individually stable).

Proof. Let ΘTC

〈N,º(v,ξλ)〉
= {S1, . . . , Sl}. Since S1 ∈ Ch(i,N) for all i ∈ S1, ξλ

i (v, S1) ≥
ξλ
i (v,N) for all i ∈ S1. Then, due to Theorem 2.9, ξλ

i (v, S1) = ξλ
i (v,N) for all

i ∈ S1. Because of Theorem 2.12, ξλ
j (v,R2) = ξλ

j (v,N) for all j ∈ R2 = N \ S1.
Analogously S2 ∈ Ch(i, R2) implies that ξλ

i (v, S2) = ξλ
i (v,R2) = ξλ

i (v,N) for all
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i ∈ S2. Then, because of Theorem 2.12, ξλ
j (v,R3) = ξλ

j (v,R2) = ξλ
j (v,N) for all

j ∈ R3. Thus, by continuing this process, we can prove generally that, for each
Sk(k = 1, . . . , l) and i ∈ Sk, ξλ

i (v, Sk) = ξλ
i (v,N) ≥ ξλ

i (v, T ) for all T ∈ Ai, i.e.,
Sk ∈ Ch(i,N). Therefore, the theorem follows immediately due to Lemma 4.3. ¤

Finally we should note that the maximal top coalition algorithm always provides
the grand coalition as its outcome for any convex game.

Remark 4.5. If a TU-game (N, v) is convex, then the partition ΘMTC
〈N,º(v,ξλ)〉

= {N}.

5. Conclusion

Any random order value for a convex TU-game satisfies the population mono-
tonicity. A hedonic game (coalition formation game) based on a random order value
for a convex TU-game satisfies the top coalition property. The top coalition algo-
rithm provides a stable coalition structure for a hedonic game based on a random
order value for a convex TU-game.
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