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VECTOR-VALUED WEAKLY ALMOST PERIODIC FUNCTIONS
AND MEAN ERGODIC THEOREMS IN BANACH SPACES

HIROMICHI MIYAKE AND WATARU TAKAHASHI

Abstract. We prove weak and strong mean ergodic theorems for weakly al-
most periodic functions (in the sense of Eberlein) which are defined on an ab-
stract semigroup and take values in a Banach space. Using these results, we
obtain weak and strong mean ergodic theorems for noncommutative semigroups
of nonexpansive mappings, affine nonexpansive mappings and linear bounded op-
erators in Banach spaces. These results are also used to obtain well-known mean
ergodic theorems in cases of discrete and one-parameter semigroups of linear and
nonlinear mappings in Banach spaces.

1. Introduction

Let C be a closed and convex subset of a real Banach space. Then a mapping
T : C → C is called nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C.

In 1975, Baillon [3] originally proved the first nonlinear ergodic theorem in the
framework of Hilbert spaces: Let C be a closed and convex subset of a Hilbert space
and let T be a nonexpansive mapping of C into itself. If the set F (T ) of fixed points
of T is nonempty, then for each x ∈ C, the Cesàro means

Sn(x) =
1
n

n−1∑
k=0

T kx

converge weakly to some y ∈ F (T ). In this case, putting y = Px for each x ∈ C, we
have that P is a nonexpansive retraction of C onto F (T ) such that PT = TP = P
and Px is contained in the closure of convex hull of {Tnx : n = 1, 2, . . . } for each
x ∈ C. We call such a retraction “an ergodic retraction”. In 1981, Takahashi [29, 31]
proved the existence of ergodic retractions for amenable semigroups of nonexpan-
sive mappings on Hilbert spaces. Rodé [24] also found a sequence of means on a
semigroup, generalizing the Cesàro means, and extended Baillon’s theorem. These
results were extended to a uniformly convex Banach space whose norm is Fréchet
differentiable in the case of commutative semigroups of nonexpansive mappings by
Hirano, Kido and Takahashi [12]. In 1999, Lau, Shioji and Takahashi [17] extended
Takahashi’s result and Rodé’s result to amenable semigroups of nonexpansive map-
pings in the Banach space.

By using Rodé’s method, Kido and Takahashi [14] also proved a mean ergodic
theorem for noncommutative semigroups of linear bounded operators in Banach
spaces.

On the other hand, Edelstein [10] studied a nonlinear ergodic theorem for non-
expansive mappings on a compact and convex subset in a strictly convex Banach
space: Let C be a compact and convex subset of a strictly convex Banach space,
let T be a nonexpansive mapping of C into itself and let ξ ∈ C. Then, for each
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point x of the closure of convex hull of the ω-limit set ω(ξ) of ξ, the Cesàro means
1/n

∑n−1
k=0 T kx converge to a fixed point of T , where the ω-limit set ω(ξ) of ξ is

the set of cluster points of the sequence {Tnξ : n = 1, 2, . . . }. By using results
of Bruck [4], Atsushiba and Takahashi [1] proved a nonlinear ergodic theorem for
nonexpansive mappings on a compact and convex subset of a strictly convex Ba-
nach space: Let C be a compact and convex subset of a strictly convex Banach
space and let T be a nonexpansive mapping of C into itself. Then, for each x ∈ C,
the Cesàro means 1/n

∑n−1
k=0 T kx converge to a fixed point of T . This result was

extended to commutative semigroups of nonexpansive mappings by Atsushiba, Lau
and Takahashi [2]. Suzuki and Takahashi [28] constructed a nonexpansive mapping
of a compact and convex subset C of a Banach space into itself such that for some
x ∈ C, the Cesàro means 1/n

∑n−1
k=0 T kx converge to a point of C, but the limit point

is not a fixed point of T . Motivated by the example of Suzuki and Takahashi, Miyake
and Takahashi [21] proved a nonlinear ergodic theorem for nonexpansive mappings
on a compact and convex subset of a general Banach space: Let C be a compact
and convex subset of a Banach space and let T be a nonexpansive mapping of C
into itself. Then, for each x ∈ C, the Cesàro means 1/n

∑n−1
k=0 T kx converge. They

also proved a nonlinear ergodic theorem for semigroups of nonexpansive mappings
on a compact and convex subset of a general Banach space.

In this paper, motivated Kido and Takahashi [14], Hirano, Kido and Takahashi
[12], Lau, Shioji and Takahashi [17], Atsushiba, Lau and Takahashi [2] and Miyake
and Takahashi [21], we first prove weak and strong mean ergodic theorems for weakly
almost periodic functions (in the sense of Eberlein) which are defined on an abstract
semigroup and take values in a Banach space. Using these results, we obtain weak
and strong mean ergodic theorems for noncommutative semigroups of nonexpansive
mappings, affine nonexpansive mappings and linear bounded operators in Banach
spaces. These results are used to obtain new and well-known mean ergodic theorems
in cases of discrete and one-parameter semigroups of linear and nonlinear mappings
in Banach spaces.

2. Preliminaries

Throughout this paper, we denote by S a semigroup with identity and by E a
real Banach space. Let 〈E,F 〉 be the duality between vector spaces E and F . For
each y ∈ F , we define a linear functional fy on E by fy(x) = 〈x, y〉. We denote by
σ(E,F ) the weak topology on E generated by {fy : y ∈ F}. If X is a Banach space,
we denote by X∗ the topological dual of X. We also denote by 〈·, ·〉 the canonical
bilinear form between E and E∗, that is, for x ∈ E and x∗ ∈ E∗, 〈x, x∗〉 is the value
of x∗ at x. If A is a subset of E, then the closure of convex hull of A is denoted by
coA.

We denote by l∞(S) the Banach space of bounded real-valued functions on S
with supremum norm. For each s ∈ S, we define operators l(s) and r(s) on l∞(S)
by

(l(s)f)(t) = f(st) and (r(s)f)(t) = f(ts)

for each t ∈ S and f ∈ l∞(S), respectively. Let X be a subspace of l∞(S) which
contains constants. Then, X is said to be translation invariant if l(s)f ∈ X and
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r(s)f ∈ X for each s ∈ S and f ∈ X. A linear functional µ on X is said to be a
mean on X if ‖µ‖ = µ(e) = 1, where e(s) = 1 for each s ∈ S. We often write µsf(s)
instead of µ(f) for each f ∈ X. For s ∈ S, we can define a point evaluation δs by
δs(f) = f(s) for each f ∈ X. A convex combination of point evaluations is called a
finite mean on S. As is well known, µ is a mean on X if and only if

inf
s∈S

f(s) ≤ µ(f) ≤ sup
s∈S

f(s)

for each f ∈ X; see [32] for more details. If X is translation invariant, then a mean
µ on X is said to be left invariant (resp. right invariant) if µ(l(s)f) = µ(f) (resp.
µ(r(s)f) = µ(f)) for each s ∈ S and f ∈ X. A mean µ on X is said to be invariant
if µ is both left and right invariant. If there exists an invariant mean on X, then
X is said to be amenable. We know from [6] that if S is commutative, then X is
amenable. Let {µα} be a net of means on X. Then {µα} is said to be (strongly)
asymptotically invariant if for each s ∈ S, both l(s)∗µα − µα and r(s)∗µα − µα

converge to 0 in the weak topology σ(X∗, X) (the norm topology), where l(s)∗ and
r(s)∗ are the adjoint operators of l(s) and r(s), respectively. Such nets were first
studied by Day [6].

We denote by l∞(S,E) the Banach space of vector-valued functions on S that
take values in a Banach space E such that for each f ∈ l∞(S,E), f(S) ⊂ E is
bounded. We also denote by l∞c (S,E) the subspace of those elements f ∈ l∞(S,E)
such that f(S) = {f(s) : s ∈ S} is a relatively weakly compact subset of E. Let X
be a subspace of l∞(S) containing constants such that for each f ∈ l∞c (S,E) and
x∗ ∈ E∗, the function s 7→ 〈f(s), x∗〉 is contained in X. Then, for each µ ∈ X∗ and
f ∈ l∞c (S,E), we define a bounded linear functional τ(µ)f on E∗ by

τ(µ)f : x∗ 7→ µ〈f(·), x∗〉.

It follows from the bipolar theorem that τ(µ)f is contained in E. We know that
if µ is a mean on X, then τ(µ)f is contained in the closure of convex hull of
{f(s) : s ∈ S}. We also know that for each µ ∈ X∗, τ(µ) is a bounded linear
mapping of l∞c (S,E) into E such that for each f ∈ l∞c (S,E), ‖τ(µ)f‖ ≤ ‖µ‖‖f‖;
see [13].

Let C be a closed and convex subset of E and let T be a mapping of C into itself.
Then, T is said to be nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for each x, y ∈ C. Let
L(E), A(C) and N(C) be the semigroups of linear bounded operators on E, affine
nonexpansive mappings and nonexpansive mapings of C into itself under operator
multiplication, respectively. If S is a semigroup homomorphism of S into L(E)
(A(C) or N(C)), then S = {T (s) : s ∈ S} is said to be a representation of S as linear
bounded operators on E (as affine nonexpansive mappings on C or as nonexpansive
mappings on C). A subspace X of l∞(S) is said to be admissible if for each x ∈ E
(or C) and x∗ ∈ E∗, the function s 7→ 〈T (s)x, x∗〉 is contained in X. We denote by
F (S) the set of common fixed points of S, that is, F (S) = ∩s∈S{x ∈ C : T (s)x = x}.

Let C be a closed and convex subset of a Banach space E and let S = {T (s) : s ∈
S} be a representation of S as linear bounded operators on E (as affine nonexpansive
mappings on C or as nonexpansive mappings on C) such that T (·)x ∈ l∞c (S,E) for
some x ∈ E (or C), let X be an admissible subspace of l∞(S) which contains
constants and let µ be a mean on X. Then, there exists a unique point x0 of E such
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that µ〈T (·)x, x∗〉 = 〈x0, x
∗〉 for each x∗ ∈ E∗. We denote such a point x0 by T (µ)x.

Note that T (µ)x is contained in the closure of convex hull of {T (s)x : s ∈ S} for
each x ∈ C; see [29] and [12] for more details.

For each s ∈ S, we define the operators R(s) and L(s) on l∞(S,E) by

(R(s)f)(t) = f(ts) and (L(s)f)(t) = f(st)

for each t ∈ S and f ∈ l∞(S,E), respectively. We denote by LO(f) (resp. RO(f))
the set {L(s)f ∈ l∞(S,E) : s ∈ S} of left translates of f (resp. the set {R(s)f ∈
l∞(S,E) : s ∈ S} of right translates of f). A function f ∈ l∞(S,E) is said to be
left (resp. right) almost periodic if LO(f) (resp. RO(f)) is relatively compact in
l∞(S,E); the notion of almost periodicity for real-valued functions on an abstract
group is due to von Neumann [22]. A function f ∈ l∞(S,E) is also said to be left
(resp. right) weakly almost periodic if LO(f) (resp. RO(f)) is relatively weakly
compact in l∞(S,E); the notion of weakly almost periodicity was introduced by
Eberlein [9]. See also [8]. Note that every weakly almost periodic function f ∈
l∞(S,E) is contained in l∞c (S,E).

3. Vector-valued weakly almost periodic functions

In this section, we prove weak and strong mean ergodic theorems for weakly
almost periodic functions (in the sense of Eberlein) which are defined on an abstract
semigroup and take values in a Banach space. Before proving the theorems, we need
some lemmas.

Lemma 3.1. Let X be a subspace of l∞(S) which contains constants, let M be the
set of means on X and let Λ be the set of finite means on S. Then, M is a compact
convex subset of X∗ and is the closure of Λ in the weak topology σ(X∗, X).

For the proof, see Day [6] and Takahashi [32].

Lemma 3.2. Let f ∈ l∞(S,E) be a right weakly almost periodic function and let K
be the closure of convex hull of RO(f). Then, the weak topology on K is identical
with the topology of pointwise weak convergence, that is, the topology on K induced
by the product topology on the Cartesian product ES of (E, σ(E,E∗)).

Proof. Since f is right weakly almost periodic, K is weakly compact in l∞(S,E).
The weak topology on K is finer than the topology of pointwise weak convergence,
that is, the topology on K induced by the product topology

∏
s∈S σ(E,E∗) on the

Cartesian product ES of (E, σ(E,E∗)). Since the latter topology is Hausdorff, it
follows that on K, the weak topology is identical with the topology of pointwise
weak convergence. This completes the proof. ¤

Lemma 3.3. Let f ∈ l∞(S,E) be a right weakly almost periodic function, let X be
a closed and translation invariant subspace of l∞(S) containing constants such that
for each x∗ ∈ E∗, the function s 7→ 〈f(s), x∗〉 is contained in X and let µ be a mean
on X. Then, the function s 7→ τ(l(s)∗µ)f is contained in the closure K of convex
hull of RO(f) in l∞(S,E).
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Proof. Let µ = δ(s) be a point evaluation. Then, we have, for each t ∈ S and
x∗ ∈ E∗,

〈τ(l(t)∗µ)f, x∗〉 = 〈τ(l(t)∗δ(s))f, x∗〉
= l(t)∗δ(s)〈f(·), x∗〉
= 〈f(ts), x∗〉
= 〈(R(s)f)(t), x∗〉,

and hence τ(l(·)∗µ)f = R(s)f .
Next, let µ =

∑n
i=1 λiδ(si) be a finite mean on S with λi ≥ 0 (i = 1, . . . , n) and∑n

i=1 λi = 1. Then, we have, for each t ∈ S and x∗ ∈ E∗,

〈τ(l(t)∗µ)f, x∗〉 = l(t)∗µ〈f(·), x∗〉 = µ〈(L(t)f)(·), x∗〉

= (
n∑

i=1

λiδ(si))〈(L(t)f)(·), x∗〉

=
n∑

i=1

λiδ(si)〈(L(t)f)(·), x∗〉

=
n∑

i=1

λi〈(R(si)f)(t), x∗〉

= 〈(
n∑

i=1

λiR(si)f)(t), x∗〉

and hence τ(l(·)∗µ)f =
∑n

i=1 λiR(si)f .
Finally, let µ be a mean on X. It follows from Lemma 3.1 that there exists a

net {λα} of finite means on S such that {λα} converges to µ in the weak topology
σ(X∗, X). Then, we have, for each t ∈ S and x∗ ∈ E∗,

〈τ(l(t)∗λα)f, x∗〉 = l(t)∗λα〈f(·), x∗〉
= λα〈(L(t)f)(·), x∗〉
→ µ〈(L(t)f)(·), x∗〉
= l(t)∗µ〈f(·), x∗〉
= 〈τ(l(t)∗µ)f, x∗〉.

So, {τ(l(t)∗λα)f} converges weakly to τ(l(t)∗µ)f in E for each t ∈ S. Since f is right
weakly almost periodic in l∞(S,E), it follows from Lemma 3.2 that {τ(l(·)∗λα)f}
in K converges weakly to τ(l(·)∗µ)f . Hence, by weak compactness of K, τ(l(·)∗µ)f
is contained in K. This completes the proof. ¤

Lemma 3.4. Let f ∈ l∞(S,E) be a right weakly almost periodic function, let X be
a closed and translation invariant subspace of l∞(S) containing constants such that
for each x∗ ∈ E∗, the function s 7→ 〈f(s), x∗〉 is contained in X, let µ be a right
invariant mean on X and let λ be a finite mean on S. Then, τ(µ)τ(l(·)∗λ)f = τ(µ)f .
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Proof. Let λ =
∑n

i=1 αiδ(si) with αi ≥ 0 (i = 1, . . . , n) and
∑n

i=1 αi = 1. Then, we
have, for each x∗ ∈ E∗,

〈τ(µ)τ(l(·)∗λ)f, x∗〉 = µ〈τ(l(·)∗λ)f, x∗〉 = µ〈τ(λ)(L(·)f), x∗〉

= µ〈
n∑

i=1

αif(·si), x∗〉 =
n∑

i=1

αiµ〈f(·si), x∗〉

=
n∑

i=1

αir(si)
∗µ〈f(·), x∗〉 =

n∑
i=1

αiµ〈f(·), x∗〉

=
n∑

i=1

αi〈τ(µ)f, x∗〉 = 〈τ(µ)f, x∗〉

and hence τ(µ)τ(l(·)∗λ)f = τ(µ)f . This completes the proof. ¤
Lemma 3.5. Let f ∈ l∞(S,E) be a right weakly almost periodic function and let X
be a closed and translation invariant subspace of l∞(S) containing constants such
that for each x∗ ∈ E∗, the function s 7→ 〈f(s), x∗〉 is contained in X. If X has a
left invariant mean, then there exists a unique constant function in the closure K
of convex hull of RO(f). In this case, the constant function is τ(l(·)∗µ)f = τ(µ)f
for each left invariant mean µ on X. In particular, if µ and ν are left invariant
means on X, then τ(µ)f = τ(ν)f .

Proof. Let µ be a left invariant mean on X. Then, we have, for each t ∈ S and
x∗ ∈ E∗,

〈τ(l(t)∗µ)f, x∗〉 = l(t)∗µ〈f(·), x∗〉 = µ〈f(·), x∗〉 = 〈τ(µ)f, x∗〉
and hence τ(l(t)∗µ)f = τ(µ)f for each t ∈ S. So, we have from Lemma 3.3 that
τ(l(·)∗µ)f = τ(µ)f is a constant function in K.

Next, let g =
∑n

i=1 λiR(si)f with λi ≥ 0 (i = 1, . . . , n) and
∑n

i=1 λi = 1. Then,
as in the same argument of Lemma 3.3, we have, for each s ∈ S,

g(s) =
n∑

i=1

λiR(si)f(s) = τ(l(s)∗λ)f

where λ =
∑n

i=1 λiδ(si) is a finite mean on S. So, since τ(µ) is a continuous linear
mapping of l∞(S,E) into E, it follows from Lemma 3.4 that τ(µ)f = τ(µ)g for each
g in K. If a constant function c is in K, then c = τ(µ)c = τ(µ)f . In particular, if
µ and ν are left invariant means on X, then we have

τ(µ)f = τ(µ)(τ(ν)f) = τ(ν)f.

This completes the proof. ¤
Remark 3.6. In the above lemma, let us consider that E = R. This implies that
the Banach space WAP (S) of real-valued weakly almost periodic functions defined
on a semigroup S has at most one left (or right) invariant mean. See also [8].

Theorem 3.7. Let f ∈ l∞(S,E) be a right weakly almost periodic function in the
sense of Eberlein, let X be a closed and translation invariant subspace of l∞(S)
containing constants such that for each x∗ ∈ E∗, the function s 7→ 〈f(s), x∗〉 is
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contained in X and let {µα} be an asymptotically invariant net of means on X.
Then, {τ(l(·)∗µα)f} converges weakly to a constant function p in the closure K of
convex hull of RO(f). In this case, p(·) = τ(µ)f in E for each invariant mean µ
on X.

Proof. For each α, we define a function fα ∈ l∞(S,E) by fα(s) = τ(l(s)∗µα)f for
each s ∈ S. Then, since f is right weakly almost periodic, it follows from Lemma
3.3 that {fα} is contained in a weakly compact subset K of l∞(S,E). So, {fα}
has a cluster point g in K. Then, there exists a subnet {fαβ

}β∈Γ of {fα} such
that {fαβ

} converges weakly to g in K. It also follows from Lemma 3.1 that there
exists a cluster point µ of {µαβ

} in the weak topology σ(X∗, X). We show that µ
is an invariant mean on X. Without loss of generality, we can assume that {µαβ

}
converges to µ in the weak topology σ(X∗, X). Let ε > 0, s ∈ S and h ∈ X. Since
{µα} is asymptotically invariant, for each h ∈ X, there exists a β0 ∈ Γ such that
for each β ≥ β0,

|µαβ
(h) − µαβ

(l(s)h)| ≤ ε/3.

Since {µαβ
} converges to µ in the weak topology σ(X∗, X), we can choose a β1 ≥ β0

such that
|µαβ1

(h) − µ(h)| ≤ ε/3

and
|µαβ1

(l(s)h) − µ(l(s)h)| ≤ ε/3.

Hence, we have

|µ(h) − µ(l(s)h)| ≤ |µ(h) − µαβ1
(h)| + |µαβ1

(h) − µαβ1
(l(s)h)|

+ |µαβ1
(l(s)h) − µ(l(s)h)|

≤ ε/3 + ε/3 + ε/3 = ε.

Since ε > 0 is arbitrary, we have µ(h) = µ(l(s)h) for each s ∈ S and h ∈ X.
Similarly, we also have µ(h) = µ(r(s)h) for each s ∈ S and h ∈ X. This implies
that µ is an invariant mean on X.

The above argument shows that there exists a subnet of {µαβ
} of {µα} such that

{µαβ
} converges to µ in the weak topology σ(X∗, X) and {fαβ

} converges weakly
to g in K. Since, for each t ∈ S and x∗ ∈ E∗,

〈fαβ
(t), x∗〉 = 〈τ(l(t)∗µαβ

)f, x∗〉 = (l(t)∗µαβ
)〈f(·), x∗〉

= µαβ
〈(L(t)f)(·), x∗〉

→ µ〈(L(t)f)(·), x∗〉
= (l(t)∗µ)〈f(·), x∗〉 = µ〈f(·), x∗〉
= 〈τ(µ)f, x∗〉,

{fαβ
(t)} converges weakly to τ(µ)f in C for each t ∈ S. Then, by Lemma 3.2,

{fαβ
} converges weakly to τ(µ)f in l∞(S,E). So, we have g(·) = τ(µ)f . Hence, it

follows from Lemma 3.5 that {τ(l(·)∗µα)f} converges weakly to a constant function
p in K and p(·) = τ(µ)f in E for each invariant mean µ on X. Moreover, since µ
is an invariant mean on X, we have τ(µ)f = τ(r(s)∗µ)f = τ(µ)(R(s)f) for each
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s ∈ S and hence τ(µ)g = τ(µ)f for each g ∈ K. So, q(s) = τ(µ)q = τ(µ)f for each
constant function q ∈ K and s ∈ S. This completes the proof. ¤

Theorem 3.8. Let f ∈ l∞(S,E) be a right weakly almost periodic function in the
sense of Eberlein, let X be a closed and translation invariant subspace of l∞(S)
containing constants such that for each x∗ ∈ E∗, the function s 7→ 〈f(s), x∗〉 is
contained in X and let {µα} be a strongly asymptotically invariant net of means on
X. Then, {τ(l(·)∗µα)f} converges strongly to a constant function p in the closure
K of convex hull of RO(f). In this case, p(·) = τ(µ)f for each invariant mean µ
on X.

Proof. We have, for each x∗ ∈ E∗ with ‖x∗‖ = 1 and s, t ∈ S,

|〈τ(l(t)∗µα)(R(s)f) − τ(l(t)∗µα)f, x∗〉|
= |(l(t)∗µα)〈(R(s)f)(·) − f(·), x∗〉|
= |µα〈(L(t)R(s)f)(·) − (L(t)f)(·), x∗〉|
= |µα〈(R(s)L(t)f)(·) − (L(t)f)(·), x∗〉|
= |(r(s)∗µα − µα)〈(L(t)f)(·), x∗〉|
≤ ‖r(s)∗µα − µα‖‖f‖‖x∗‖
= ‖r(s)∗µα − µα‖‖f‖

and hence, for each s ∈ S,

‖τ(l(·)∗µα)(R(s)f) − τ(l(·)∗µα)f‖ ≤ ‖r(s)∗µα − µα‖‖f‖.
Let g ∈ K and let ε > 0. Then, there exists a h =

∑n
i=1 αiR(si)f with si ∈ S

(i = 1, . . . , n) and
∑n

i=1 αi = 1 such that ‖g − h‖ ≤ ε/2. We can choose an α0 such
that for each α ≥ α0,

n∑
i=1

‖r(si)
∗µα − µα‖‖f‖ ≤ ε

2
.

So, since, for each x∗ ∈ E∗ and t ∈ S,

‖τ(l(t)∗µα)g − τ(l(t)∗µα)f‖
≤ ‖τ(l(t)∗µα)g − τ(l(t)∗µα)h‖

+ ‖τ(l(t)∗µα)h − τ(l(t)∗µα)f‖
≤ ‖τ(µα)‖‖L(t)g − L(t)h‖

+
n∑

i=1

αi‖τ(l(t)∗µα)(R(si)f) − τ(l(t)∗µα)f‖

≤ ‖g − h‖ +
n∑

i=1

αi‖r(si)
∗µα − µα‖‖f‖

≤ ε

2
+

ε

2
= ε,

we have, for each g ∈ K,

lim
α

‖τ(l(·)∗µα)g − τ(l(·)∗µα)f‖ = 0.
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It follows from Theorem 3.7 that {τ(l(·)∗µα)f} converges weakly to a constant
function p in K such that p(·) = τ(µ)f for each invariant mean µ on X. Hence, we
have

lim
α

‖τ(l(·)∗µα)f − p‖ = lim
α

‖τ(l(·)∗µα)f − τ(l(·)∗µα)p‖ = 0.

This completes the proof. ¤

4. Mean ergodic theorems for semigroups of operators

In this section, using Theorems 3.7 and 3.8, we obtain weak and strong mean
ergodic theorems for noncommutative semigroups of nonexpansive mappings, affine
nonexpansive mappings and linear bounded operators in Banach spaces.

Theorem 4.1. Let C be a compact and convex subset of a Banach space E, let
S = {T (s) : s ∈ S} be a representation of S as nonexpansive mappings on C, let
X be a closed, translation invariant and admissible subspace of l∞(S) containing
constants and let {µα} be an asymptotically invariant net of means on X. Then,
for each x ∈ C, {T (l(h)∗µα)x} converges strongly to a point p uniformly in h ∈ S.
In this case, p = T (µ)x for each invariant mean µ on X.

Proof. For each x ∈ C, we define a function fx ∈ l∞(S,E) by fx(s) = T (s)x for
each s ∈ S. We show that for each x ∈ C, fx is right almost periodic. In fact, we
have, for each s ∈ S,

(R(s)fx)(t) = T (ts)x = T (t)T (s)x = fT (s)x(t)

for each t ∈ S. Hence, RO(fx) is contained in {fy : y ∈ C}. We define a mapping Φ
of C into l∞(S,E) by Φ(x) = fx for each x ∈ C. Then, we have, for each x, y ∈ C,

‖Φ(x) − Φ(y)‖ = ‖fx − fy‖
= sup

t∈S
‖fx(t) − fy(t)‖

= sup
t∈S

‖T (t)x − T (t)y‖

≤ ‖x − y‖

and hence Φ is norm-to-norm continuous. Since C is compact, RO(fx) is contained
in a compact subset Φ(C) of l∞(S,E). So, for each x ∈ C, fx ∈ l∞(S,E) is right
almost periodic.

It follows from Theorem 3.7 that {T (l(·)∗µα)x} converges strongly to a constant
function q in l∞(S,E). In this case, q(·) = T (µ)x for each invariant mean µ on
X. Hence, {T (l(h)∗µα)x} converges strongly to a point T (µ)x uniformly in h ∈ S
where µ is an invariant mean on X. This completes the proof. ¤

Remark 4.2. In [28], Suzuki and Takahashi constructed a nonexpansive mapping
T of a compact convex subset C of a Banach space E without strict convexity into
itself such that for some x ∈ C, the Cesàro means 1/n

∑n−1
k=0 T kx converge to a

point which is not a fixed point of T .

Lemma 4.3. Let C be a compact and convex subset of a Banach space E, let S be a
commutative semigroup with identity and let S = {T (s) : s ∈ S} be a representation
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of S as nonexpansive mappings on C. Then, S is asymptotically isometric on C,
that is, for each x, y ∈ C,

lim
s∈S

‖T (s + h)x − T (s + k)y‖

exists uniformly in h, k ∈ S.

Proof. For each s ∈ S, we define a real-valuded function fs on a compact metric
space C × C by fs(x, y) = ‖T (s)x − T (s)y‖ for each x, y ∈ C. Then, by nonexpan-
siveness of T (s) (s ∈ S), {fs : s ∈ S} is equicontinuous. Since, for each x, y ∈ C
and s, t ∈ S,

‖T (s + t)x − T (s + t)y‖ ≤ ‖T (s)x − T (s)y‖,
lims∈S ‖T (s)x − T (s)y‖ = lims∈S fs(x, y) exists for each x, y ∈ C. So, putting
f(x, y) = lims∈S ‖T (s)x− T (s)y‖ for each x, y ∈ C, we have that {fs} converges to
f uniformly on C × C. This completes the proof. ¤

Lemma 4.4. Let C be a compact and convex subset of a strictly convex Banach
space E, let S be a commutative semigroup with identity and let S = {T (s) : s ∈ S}
be a representation of S as nonexpansive mappings on C. Then, for each x ∈ C,

lim
s∈S

‖T (h)T (r(s)∗λ)x − T (r(h + s)∗λ)x‖ = 0

uniformly in h ∈ S and λ ∈ Λ, where Λ is the set of finite means on S.

For the proof, see Lemma 4.3 and [13, Proposition 3.8].

Theorem 4.5. Let C be a compact and convex subset of a strictly convex Banach
space E, let S = {T (s) : s ∈ S} be a representation of S as nonexpansive mappings
on C, let X be a closed, translation invariant and admissible subspace of l∞(S)
containing constants and let {µα} be an asymptotically invariant net of means on
X. Then, for each x ∈ C, {T (l(h)∗µα)x} converges strongly to a common fixed
point p of S uniformly in h ∈ S. In this case, p = T (µ)x for each invariant mean
µ on X. Moreover, if S is commutative, then

{T (µ)x} = ∩s∈Sco{T (s + t)x : t ∈ S} ∩ F (S)

for each invariant mean µ on X.

Proof. We know from Theorem 3.7 and [21, Theorem 2] that for each x ∈ C,
{T (l(h)∗µα)x} converges strongly to a common fixed point p uniformly in h ∈ S
and, in this case, p = T (µ)x for each invariant mean µ on X. Since, for each s ∈ S,

T (µ)x = T (r(s)∗µ)x = T (µ)T (s)x ∈ co{T (s + t)x : t ∈ S},

we have
T (µ)x ∈ ∩s∈Sco{T (s + t)x : t ∈ S} ∩ F (S).

So, it suffices to show that if p ∈ ∩s∈Sco{T (s+ t)x : t ∈ S}∩F (S), then p = T (µ)x.
Let x ∈ C, let ε > 0 and let p ∈ ∩s∈Sco{T (s + t)x : t ∈ S} ∩ F (S). Then, by

Lemma 4.4, there exists a s0 ∈ S such that

‖T (h)T (r(s0)
∗λ)x − T (r(s0 + h)∗λ)x‖ <

ε

2
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for each h ∈ S and λ ∈ Λ, where Λ is the set of finite means on S. Then, by
p ∈ co{T (s0 + t)x : t ∈ S}, there exists a finite mean λ0 on S such that

‖p − T (r(s0)
∗λ0)x‖ = ‖p − T (λ0)T (s0)x‖ <

ε

2
.

So, from Lemma 3.4 we have

‖p − T (µ)x‖ ≤ ‖p − T (µ)T (r(s0)
∗λ0)x‖

+ ‖T (µ)T (r(s0)
∗λ0)x − τ(µ)T (r(· + s0)

∗λ)x‖
+ ‖τ(µ)T (r(· + s0)

∗λ)x − T (µ)x‖
≤ ‖p − T (r(s0)

∗λ0)x‖
+ sup

s∈S
‖T (s)T (r(s0)

∗λ0)x − T (r(s + s0)
∗λ)x‖

+ ‖τ(µ)T (r(·)∗λ)T (s0)x − T (µ)x‖

<
ε

2
+

ε

2
+ ‖T (µ)T (s0)x − T (µ)x‖

= ε.

Since ε > 0 is arbitrary, we have p = T (µ)x. This completes the proof. ¤

Theorem 4.6. Let S = {T (s) : s ∈ S} of S be a representation of S as linear
bounded operators on a Banach space E such that for s ∈ S, ‖T (s)‖ ≤ M and
for each x ∈ E, {T (s)x : s ∈ S} is relatively weakly compact, let X be a closed,
translation invariant and admissible subspace of l∞(S) containing constants and let
{µα} be a strongly asymptotically invariant net of means on X. Then, for each
x ∈ E, {T (l(h)∗µα)x} converges strongly to a common fixed point p of S uniformly
in h ∈ S. In this case, p = T (µ)x and

{T (µ)x} = co{T (s)x : s ∈ S} ∩ F (S)

for each invariant mean µ on X.

Proof. For each x ∈ E, we define a function fx ∈ l∞(S,E) by fx(s) = T (s)x for
each s ∈ S. We show that for each x ∈ E, fx is right weakly almost periodic. In
fact, we have, for each s ∈ S,

(R(s)fx)(t) = T (ts)x = T (t)T (s)x = fT (s)x(t)

for each t ∈ S. Hence, RO(fx) is contained in {fy : y ∈ C}, where C = c̄o{T (s)x :
s ∈ S}. We define a mapping Φ of E into l∞(S,E) by Φ(x) = fx for each x ∈ E.
Then, Φ is a bounded linear mapping and hence is weak-to-weak continuous. Since
C is weakly compact, RO(fx) is contained in a weakly compact subset Φ(C) of
l∞(S,E). So, for each x ∈ E, fx ∈ l∞(S,E) is right weakly almost periodic.

It follows from Theorem 3.8 that {T (l(·)∗µα)x} converges strongly to a constant
function q in l∞(S,E). In this case, q(·) = T (µ)x for each invariant mean µ on X.
Hence, for each x ∈ E, {T (l(h)∗µα)x} converges strongly to a point T (µ)x in C
uniformly in h ∈ S where µ is an invariant mean on X. Since, for each s ∈ S and
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x∗ ∈ E∗,
〈T (s)T (µ)x, x∗〉 = 〈T (µ)x, T (s)∗x∗〉 = µ〈T (·)x, T (s)∗x∗〉

= µ〈T (s)T (·)x, x∗〉 = µ〈T (s·)x, x∗〉
= l(s)∗µ〈T (·), x∗〉 = µ〈T (·), x∗〉
= 〈T (µ)x, x∗〉

where T (s)∗ is the adjoint operator of T (s), we have T (s)T (µ)x = T (µ)x for each
s ∈ S.

It remains to show that {T (µ)x} = co{T (s)x : s ∈ S} ∩ F (S) for each x ∈ C.
Since µ is an invariant mean on X, we have T (µ)x = T (r(s)∗µ)x = T (µ)T (s)x
for each s ∈ S and hence T (µ)x = T (µ)y for each y ∈ co{T (s)x : s ∈ S}. This
completes the proof. ¤

Lemma 4.7. Let C be a bounded closed and convex subset of a Banach space E,
let F be a Banach space and let T be an affine continuous mapping of C into F .
Then, T is weak-to-weak continuous.

Proof. It suffices to show that for each x∗ ∈ F ∗, the function x 7→ 〈Tx, x∗〉 is weakly
continuous on C. Let x∗ ∈ F ∗ and let {xα} be a net in C such that {xα} converges
weakly to x. Then since {〈Txα, x∗〉} has a cluster point w in the real numbers,
there exists a subnet {xαβ

} of {xα} such that {〈Txαβ
, x∗〉} converges to w. Let

ε > 0. Then, there exists a β0 such that for each β ≥ β0,

|〈Txαβ
, x∗〉 − w| ≤ ε.

Since x is contained in the closure of convex hull of {xαβ
} and T is continuous,

there exists a y =
∑n

i=1 λixαβi
with βi ≥ β0, λi ≥ 0 (i = 1, . . . , n) and

∑n
i=1 λi = 1

such that ‖Tx − Ty‖‖x∗‖ ≤ ε. Then, we have

|w − 〈Tx, x∗〉| ≤ |w − 〈Ty, x∗〉| + |〈Ty − Tx, x∗〉|

≤

∣∣∣∣∣w − 〈T (
n∑

i=1

λixαβi
), x∗〉

∣∣∣∣∣ + ‖Ty − Tx‖‖x∗‖

≤

∣∣∣∣∣w − 〈
n∑

i=1

λiTxαβi
, x∗〉

∣∣∣∣∣ + ε

≤
n∑

i=1

λi|w − 〈Txαβi
, x∗〉| + ε

≤ ε + ε = 2ε.

Since ε > 0 is arbitrary, we have w = 〈Tx, x∗〉. It follows that the function x 7→
〈Tx, x∗〉 is weakly continuous on C. This completes the proof. ¤

From Day [7, Lemma 2] and Lemma 4.7, we can prove the following lemma.

Lemma 4.8. Let C be a weakly compact and convex subset of a Banach space E,
let S = {T (s) : s ∈ S} be a representation of S as affine nonexpansive mappings
on C, let X be a closed, translation invariant and admissible subspace of l∞(S)
containing constants and let µ be a mean on X. Then, for each x ∈ C and s ∈ S,
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T (l(s)∗µ)x = T (s)T (µ)x. In particular, if µ is an invariant mean on X, then T (µ)x
is a common fixed point of S.

Theorem 4.9. Let C be a weakly compact and convex subset of a Banach space E,
let S = {T (s) : s ∈ S} be a representation of S as affine nonexpansive mappings on
C, let X be a closed, translation invariant and admissible subspace of l∞(S) con-
taining constants and let {µα} be a strongly asymptotically invariant net of means
on X. Then, for each x ∈ C, {T (r(h)∗µα)x} converges strongly to a common fixed
point p of S uniformly in h ∈ S. In this case, p = T (µ)x and

{T (µ)x} = co{T (s)x : s ∈ S} ∩ F (S)

for each invariant mean µ on X.

Proof. For each x ∈ C, we define a function fx ∈ l∞(S,E) by fx(s) = T (s)x for
each s ∈ S. We show that for each x ∈ C, fx is right weakly almost periodic. In
fact, we have, for each s ∈ S,

(R(s)fx)(t) = T (ts)x = T (t)T (s)x = fT (s)x(t)

for each t ∈ S. Hence, RO(fx) is contained in {fy : y ∈ C}. We define a mapping
Φ of C into l∞(S,E) by Φ(x) = fx for each x ∈ C. Since Φ is an affine continuous
mapping of C into l∞(S,E), we have from Lemma 4.7 that Φ is weak-to-weak
continuous. Then, by weak compactness of C, RO(fx) is contained in a weakly
compact subset Φ(C) of l∞(S,E). So, for each x ∈ C, fx ∈ l∞(S,E) is right weakly
almost periodic.

It follows from Theorem 3.8 that for each x ∈ C, {T (l(·)∗µα)x} converges strongly
to a constant function q in l∞(S,E). In this case, q(·) = T (µ)x in C for each
invariant mean µ on X. Hence, for each x ∈ C, {T (l(h)∗µα)x} converges strongly
to a point T (µ)x uniformly in h ∈ S where µ is an invariant mean on X. By Lemma
4.8, T (µ)x is a common fixed point of S.

It remains to show that {T (µ)x} = co{T (s)x : s ∈ S} ∩ F (S) for each x ∈ C.
Since µ is an invariant mean on X and T (µ) is an affine nonexpansive mapping, we
have T (µ)x = T (r(s)∗µ)x = T (µ)T (s)x for each s ∈ S and hence T (µ)x = T (µ)y
for each y ∈ co{T (s)x : s ∈ S}. This completes the proof. ¤

5. Some nonlinear ergodic theorems

In this section, using the generalized nonlinear ergodic theorems for nonexpansive
semigroups in Section 4, we obtain some nonlinear ergodic theorems in cases of
discrete and one-parameter semigroups of nonexpansive mappings. We denote by
N, N+ and R+ the set of positive integers, the set of non-negative integers and the
set of non-negative real numbers, respectively.

Let C be a compact and convex subset of a Banach space E. In the case of a
single nonexpansive mapping T of C into itself, choose S = N+. For each n ∈ N,
define

µn(f) =
1
n

n−1∑
i=0

f(i)
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for each f ∈ l∞(N+). Then, {µn} is an asymptotically invariant sequence of means
on l∞(N+); for more details, see [32]. We have, for each x∗ ∈ E∗,

(µn)i〈T ix, x∗〉 =
1
n

n−1∑
i=0

〈T ix, x∗〉

=

〈
1
n

n−1∑
i=0

T ix, x∗

〉
and hence

Tµnx =
1
n

n−1∑
i=0

T ix.

Therefore, it follows from Theorem 4.1 that 1/n
∑n−1

i=0 T i+hx converges uniformly
in h ∈ N+. Further, if E is a strictly convex Banach space, then we have from
Theorem 4.5 that, for each x ∈ C,

1
n

n−1∑
i=0

T i+hx

converges to a fixed point of T uniformly in h ∈ N+.
In the case of a finite family of nonexpansive mappings T1, . . . , Tk of C into itself

such that TiTj = TjTi for each i, j = 1, . . . , k, consider S = N+
k. For each n ∈ N,

define

µn(f) =
1
nk

n−1∑
i1=0

· · ·
n−1∑
ik=0

f(i1, . . . , ik)

for each f ∈ l∞(N+
k). Then, {µn} is an asymptotically invariant sequence of means

on l∞(N+
k); for more details, see [32]. As in the above argument, we have

Tµnx =
1
nk

n−1∑
i1=0

· · ·
n−1∑
ik=0

T1
i1 . . . Tk

ikx.

Therefore, it follows from Theorem 4.1 that

1
nk

n−1∑
i1=0

· · ·
n−1∑
ik=0

T1
i1+h1 . . . Tk

ik+hkx

converges uniformly in h1, . . . , hk ∈ N+. If E is a strictly convex Banach space,
then we have from Theorem 4.5 that, for each x ∈ C,

1
nk

n−1∑
i1=0

· · ·
n−1∑
ik=0

T1
i1+h1 . . . Tk

ik+hkx

converges to a common fixed point of T1, . . . , Tk uniformly in h1, . . . , hk ∈ N+.
Let Q = {qn,m}n,m∈N+ be a matrix satisfying the following conditions:
(a) supn≥0

∑∞
m=0 |qn,m| < ∞;

(b)
∑∞

m=0 qn,m = 1 for each n ∈ N;
(c) limn→∞

∑∞
m=0 |qn,m+1 − qn,m| = 0.
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Such a matrix Q is called strongly regular in the sense of Lorentz [18]. If Q is a
strongly regular matrix, then for each m ∈ N, we have |qn,m| → 0 as n → ∞; see
[12]. For each n ∈ N, define

µn(f) =
∞∑

m=0

qn,mf(m)

for each f ∈ l∞(N+). Then, {µn} is an asymptotically invariant sequence of means;
for more details, see [32]. We have, for each x∗ ∈ E∗,

(µn)m〈Tmx, y〉 =
∞∑

m=0

qn,m〈Tmx, y〉

=

〈 ∞∑
m=0

qn,mTmx, y

〉
and hence

Tµnx =
∞∑

m=0

qn,mTmx.

Therefore, it follows from Theorem 4.1 that
∑∞

m=0 qn,mTm+hx converges uniformly
in h ∈ N+. Further, if E is a strictly convex Banach space, then we also have from
Theorem 4.5 that, for each x ∈ C,

∞∑
m=0

qn,mTm+hx

converges to a fixed point of T uniformly in h ∈ N+.
In the case of a strongly continuous one-parameter semigroup of nonexpansive

mappings of C into itself, consider S = R+. For t > 0, define

µt(f) =
1
t

∫ t

0
f(s) ds

for each f ∈ C(R+), where C(R+) is the space of real-valued, bounded and con-
tinuous functions on R+ with supremum norm. Then, {µt} is an asymptotically
invariant net of means on C(R+); for more details, see [32]. We have, for each
x∗ ∈ E∗,

µt〈T (·)x, x∗〉 =
1
t

∫ t

0
〈T (s)x, x∗〉 ds

=
〈

1
t

∫ t

0
T (s)x ds, x∗

〉
and hence

T (µt)x =
1
t

∫ t

0
T (s)x ds.

Therefore, it follows from Theorem 4.1 that 1/t
∫ t
0 T (s+h)x ds converges uniformly

in h ∈ R+. Further if E is a strictly convex Banach space, then we also have from
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Theorem 4.5 that, for each x ∈ C,

1
t

∫ t

0
T (s + h)x ds

converges to a common fixed point of S uniformly in h ∈ R+.
Finally, for r > 0, define

µr(f) = r

∫ ∞

0
exp(−rs)f(s) ds

for each f ∈ C(R+). Then, {µr} is an asymptotically invariant net of means on
C(R+); for more details, see [32]. We have, for each x∗ ∈ E∗,

µr〈T (·)x, x∗〉 = r

∫ ∞

0
exp(−rs)〈T (s)x, x∗〉 ds

=
〈

r

∫ ∞

0
exp(−rs)T (s)x ds, x∗

〉
and hence

T (µr)x = r

∫ ∞

0
exp(−rs)T (s)x ds.

Therefore, it follows from Theorem 4.1 that r
∫ ∞
0 exp(−rs)T (s + h)x ds converges

uniformly in h ∈ R+. In the case of strict convexity of E, we have from Theorem
4.5 that, for each x ∈ C,

r

∫ ∞

0
exp(−rs)T (s + h)x ds

converges to a common fixed poit of S uniformly in h ∈ R+.
Similarly, we can prove such mean ergodic theorems for linear bounded operator

T of a Banach space E into itself such that ‖Tn‖ ≤ M for all n ∈ N or a commutative
family {T (s) : s ∈ S} of linear bounded operators such that ‖T (s)‖ ≤ M for all
s ∈ S. We also obtain mean ergodic theorems for an affine nonexpansive mapping of
a closed convex subset of a Banach space into into itself, or strongly continuous one-
parameter semigroups of affine nonexpansive mappings. As in the above argument,
the following corollaries are obtained by using Theorem 4.9:

Corollary 5.1. Let C be a weakly compact and convex subset of a Banach space E
and let T be an affine nonexpansive mapping of C into itself. Then, for each x ∈ C,

1
n

n−1∑
i=0

T i+hx

converges to a fixed point of T uniformly in h ∈ N+.

Corollary 5.2. Let C be a weakly compact and convex subset of a Banach space
E, let Q = {qn,m}n,m∈N+ be a strongly regular matrix and let T be an affine nonex-
pansive mapping of C into itself. Then, for each x ∈ C,

∞∑
m=0

qn,mTm+hx

converges to a fixed point of T uniformly in h ∈ N+.
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Corollary 5.3. Let C be a weakly compact and convex subset of a Banach space E
and let S = {T (s) : s ∈ R+} be a strongly continuous one-parameter semigroup of
affine nonexpansive mappings of C into itself. Then, for each x ∈ C,

1
t

∫ t

0
T (s + h)x ds

converges to a common fixed point of S uniformly in h ∈ R+.
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