Journal of Nonlinear and Convex Analysis Volume 9, Number 2, 2008, 249–253

MINIMAL ELEMENT THEOREM WITH SET-RELATIONS

AKIRA SHIMIZU AND TAMAKI TANAKA

ABSTRACT. Hamel and Löhne proved the existence results for minimal points of subsets of the product space $X \times 2^{Y}$, where X and Y are a separated uniform space and a topological vector space, respectively. In this paper, we present a similar minimal element theorem with set-relations to those introduced in [3].

1. INTRODUCTION

In [3], Hamel and Löhne proved the existence results for minimal points of subsets of the product space $X \times 2^{Y}$, where X is a separated uniform space and Y a topological vector space. These principles are based on the following order relations in 2^{Y} :

$$V_1 \leq_C^l V_2 \Leftrightarrow V_2 \subseteq V_1 + C \text{ and } V_1 \leq_C^u V_2 \Leftrightarrow V_1 \subseteq V_2 - C$$

where $C \subseteq Y$ is a convex cone and $V_1, V_2 \in 2^Y$. Moreover, they derived from them new versions of Ekeland's principle for set-valued maps.

In this paper, we introduce a different scalarization function to present a minimal element theorem with set-relations which is similar to those introduced in [3].

This paper is organized as follows. In Section 2, we define two ordering relations and boundedness on 2^Y , where Y is a topological vector space. In Section 3, we introduce two types of nonlinear scalarization functions defined on 2^Y . Those functions are used for the proofs of minimal element theorems introduced in Section 4. In Section 4, we give minimal element theorems with set-relation based on the Brézis-Browder principle.

2. Relationships between two sets and boundedness concepts for subsets of 2^{Y}

Throughout this section, let Y be a real ordered topological vector space with the vector ordering \leq_C induced by a nonempty convex cone C: for $x, y \in Y$,

$$x \leq_C y$$
 if $y - x \in C$.

We introduce two relations \leq_C^u, \leq_C^l on 2^Y and boundedness concepts for subsets of 2^Y .

Definition 2.1 (Set-relationships in [4]). Given nonempty sets $A, B \subset Y$, we define two types of relationships between A and B as follows:

Copyright (C) 2008 Yokohama Publishers http://www.ybook.co.jp

²⁰⁰⁰ Mathematics Subject Classification. Primary: 49J53; Secondary: 90C46.

 $Key\ words\ and\ phrases.$ Nonlinear set-valued optimization, set-valued map, nonlinear scalarization, optimality conditions.

This work is based on research 19540120 supported by Grant-in-Aid for Scientific Research (C) from Japan Society for the Promotion of Science.

A. SHIMIZU AND T. TANAKA

$$A \leq^{l}_{C} B \iff B \subseteq A + C,$$

$$A \leq^{u}_{C} B \iff A \subseteq B - C.$$

Definition 2.2 (Boundedness in [3]). A subset $\mathbb{V} \subseteq 2^Y$ is said to be \leq_C^l -bounded below if there exists some topologically bounded subset $\tilde{V} \subseteq Y$ such that $\tilde{V} \leq_{C}^{l} V$ holds for all $V \in \mathbb{V}$. The set \tilde{V} is called a *lower* \leq_{C}^{l} -bound of \mathbb{V} . A subset $\mathbb{V} \subseteq 2^Y$ is said to be \leq_C^u -bounded above and \tilde{V} is called an upper \leq_C^u -bound of \mathbb{V} if $-\mathbb{V} := \{-V : V \in \mathbb{V}\}$ is \leq_C^l -bounded below with the lower \leq_C^l -bound $-\tilde{V}$.

Definition 2.3 (Boundedness in [3]). A subset $\mathbb{V} \subseteq 2^Y$ is said to be \leq_C^u -bounded below if there exists some topologically bounded subset $\tilde{V} \subseteq Y$ such that $\tilde{V} \leq_{C}^{u} V$ holds for all $V \in \mathbb{V}$. The set \tilde{V} is called a *lower* \leq^u_C -*bound* of \mathbb{V} . A subset $\mathbb{V} \subseteq 2^Y$ is said to be \leq_C^l -bounded above and \tilde{V} is called an upper \leq_C^l -bound of \mathbb{V} if $-\mathbb{V} := \{-V : V \in \mathbb{V}\}$ is \leq_C^u -bounded below with the lower \leq_C^u -bound $-\tilde{V}$.

3. Nonlinear salarization methods on 2^{Y}

In this section, we introduce two types of scalarization functionals defined on 2^{Y} , which have the monotonicity with respect to the set-relation \leq_C^l ; $z : 2^Y \to \mathbb{R} \cup \{\pm \infty\}$ is said to be monotone with respect to \leq_C^l if $V_1 \leq_C^l V_2$ implies $z(V_1) \leq z(V_2)$.

Theorem 3.1 ([3]). Let Y be a topological vector space, $C \subseteq Y$ a convex cone and $k^0 \in C \setminus (-\operatorname{cl} C)$. Let $\mathbb{V} \subseteq 2^Y$ be nonempty and \leq_C^l -bounded, i.e., there is a topological bounded set $V' \subseteq Y$ and a nonempty set $V'' \subseteq Y$ such that

$$\forall V \in \mathbb{V}, \ V' \leq_C^l V \leq_C^l V$$

Then, the function $z_{k^0}^l: 2^Y \to \mathbb{R} \cup \{\pm \infty\}$, defined by

 $z_{k^0}^l(V) := \inf\{t \in \mathbb{R} : tk^0 + V'' \subseteq V + clC\},\$

has the following properties:

- (i) $z_{k^0}^l$ is bounded on \mathbb{V} ;
- (ii) $V \in \mathbb{V}, \alpha \in \mathbb{R}$ implies $z_{k^0}^l(V + \alpha k^0) = z_{k^0}^l(V) + \alpha$; (iii) $z_{k^0}^l$ is monotone with respect to \leq_C^l .

When we assume that \mathbb{V} is " \leq_{C}^{l} -bounded below" instead of a stronger condition " \leq_{C}^{l} -bounded," we propose another scalarization function which has similar properties to those of $z_{k^0}^l$ above.

Theorem 3.2. Let Y be a topological vector space, $C \subseteq Y$ a convex cone and $k^0 \in C \setminus (-\text{cl}C)$. Let $\{\emptyset\} \neq \mathbb{V} \subseteq 2^Y$ be nonempty and \leq_C^l -bounded below, i.e., there is a topological bounded set $V' \subseteq Y$ such that

$$\forall V \in \mathbb{V}, \ V' \leq_C^l V.$$

Then, the function $g_{k^0}^l: 2^Y \to \mathbb{R} \cup \{\pm \infty\}$, defined by $g_{k0}^{l}(V) := \inf\{t \in \mathbb{R} : tk^{0} + V' \subseteq V + clC\},\$

has the following properties:

- (i) $g_{k^0}^l$ is bounded below on \mathbb{V} ;
- (ii) $V \in \mathbb{V}, \alpha \in \mathbb{R} \text{ implies } g_{k^0}^l(V + \alpha k^0) = g_{k^0}^l(V) + \alpha;$ (iii) $g_{k^0}^l$ is monotone with respect to \leq_C^l .

Proof. The statements (ii) and (iii) are obvious. We shall show the statement (i). Since $\mathbb{V} \neq \{\emptyset\}$ and \mathbb{V} is \leq_C^l -bounded below, we have $V' \neq \emptyset$. Assume that $g_{k^0}^l$ is not bounded below. Then for each $n \in \mathbb{N}$, there exist $t_n < -n$ and $V_n \in \mathbb{V}$ such that $t_n k^0 + V' \subseteq V_n + \text{cl}C$. Then

$$-nk^{0} + V' = (-n - t_n)k^{0} + t_nk^{0} + V' \subseteq (C \setminus (-\operatorname{cl} C)) + V_n + \operatorname{cl} C \subseteq V_n + \operatorname{cl} C,$$

and $V_n \subseteq V' + C$ since \mathbb{V} is \leq_C^l -bounded below lower \leq_C^l -bound V'. Consequently, we have $-nk^0 + V' \subseteq V' + clC$ for all $n \in \mathbb{N}$. For arbitrary fixed $v_0 \in V'$ and $n \in \mathbb{N}$, $-nk^0 + v_0 \in V' + clC$ and hence

(3.1)
$$-k^{0} + \frac{1}{n}v_{0} \in \frac{1}{n}V' + clC.$$

Since V' is nonempty and topological bounded, $\frac{1}{n}V' \to \{0\}$. By (3.1) with $\frac{1}{n}v_0 \to 0$ we have $-k^0 \in clC$, which is a contradiction to $k^0 \in C \setminus (-clC)$.

Remark 3.3. Under the conditions of Theorem 3.2, functional $g_{k^0}^l$ takes $+\infty$ possibly.

4. Minimal element theorems in 2^{Y}

In this section, we present minimal element theorems with set-relations. The proofs are indebted to the following existence principle for minimal elements in quasi-ordered sets due to Brézis and Browder [2], 1976.

Theorem 4.1 (Brézis-Browder principle in [2]). Let (W, \preceq) be a quasi-ordered set (*i.e.*, \preceq is a reflexive and transitive relation on W) and let $\phi : W \to \mathbb{R}$ be a function satisfying

(A1) ϕ is bounded below;

- (A2) $w_1 \preceq w_2$ implies $\phi(w_1) \leq \phi(w_2)$;
- (A3) For every \preceq -decreasing sequence $\{w_n\}_{n\in\mathbb{N}} \subseteq W$ there exists some $w \in W$ such that $w \preceq w_n$ for all $n \in \mathbb{N}$.

Then, for every $w_0 \in W$ there exists some $\bar{w} \in W$ such that

- (i) $\bar{w} \leq w_0$;
- (ii) $\hat{w} \preceq \bar{w} \text{ implies } \phi(\hat{w}) = \phi(\bar{w}).$

Using Theorem 4.1, we get several types of minimal element theorems with setrelations. Let \mathbb{A} be a subset of $X \times 2^{Y}$, where X is a separated uniform space equipped with a families of quasi-metrics $\{q_{\lambda}\}_{\lambda \in \Lambda}$ (see [3] for the detail) and Y is a topological vector space. We define the following notation:

$$\Phi(\mathbb{A}) := \{ V \in 2^Y : \exists x \in X, (x, V) \in \mathbb{A} \}.$$

Using the relation \leq_C^l we introduce the following ordering relation on $X \times 2^Y$:

$$(x_1, V_1) \leq_{k^0}^l (x_2, V_2) \iff \forall \lambda \in \Lambda, V_1 + k^0 q_\lambda(x_1, x_2) \leq_C^l V_2.$$

This ordering has reflexivity and transitivity on $X \times 2^{Y}$.

Theorem 4.2 ([3]). Let X be a separated uniform space and Y a topological vector space, $C \subseteq Y$ a convex cone and $k^0 \in C \setminus (-\operatorname{cl} C)$. Let \mathbb{A} be a nonempty subset of $X \times 2^Y$ such that for some $(x_0, V_0) \in \mathbb{A}$ and for $\mathbb{A}_0 := \{(x, V) \in \mathbb{A} : (x, V) \leq_{k^0}^l (x_0, V_0)\}$ the following conditions are satisfied:

- $\Phi(\mathbb{A}_0) \text{ is } \leq_C^l \text{-bounded above, i.e., } V_0 \text{ is nonempty;} \\ \Phi(\mathbb{A}_0) \text{ is } \leq_C^l \text{-bounded below;}$ (M1)
- (M2)
- (M3)

For every $\leq_{k^0}^l$ -decreasing sequence $\{(x_n, V_n)\}_{n \in \mathbb{N}} \subseteq \mathbb{A}_0$ there exists some $(x, V) \in \mathbb{A}_0$ such that $(x, V) \leq_{k^0}^l (x_n, V_n)$ for all $n \in \mathbb{N}$. Then, there exists $(\bar{x}, \bar{V}) \in \mathbb{A}$ such that

- (i) $(\bar{x}, \bar{V}) \leq_{k^0}^l (x_0, V_0);$
- (ii) $(\hat{x}, \hat{V}) \in \mathbb{A}$ and $(\hat{x}, \hat{V}) \leq_{k^0}^l (\bar{x}, \bar{V}) \Longrightarrow \hat{x} = \bar{x}.$

The theorem above was proved in [3] by applying theorem 4.1 with the result of Theorem 3.1. In the same manner, we use Theorem 3.2 to present another minimal element theorem with the same set-relation.

Theorem 4.3. Let X be a separated uniform space and Y a topological vector space. $C \subseteq Y$ is a convex cone and $k^0 \in C \setminus (-\operatorname{cl} C)$. Let \mathbb{A} be a nonempty subset of $X \times 2^Y$ such that for some $(x_0, V_0) \in \mathbb{A}$ with $V_0 \neq \emptyset$ and for $\mathbb{A}_0 := \{(x, V) \in \mathbb{A} : (x, V) \leq_{k=0}^{l} v_0\}$ (x_0, V_0) the following conditions are satisfied:

- $\begin{array}{ll} (M1) & \Phi(\mathbb{A}_0) \text{ is } \leq_C^l \text{-bounded below with lower} \leq_C^l \text{-bound } V' \text{ of } \Phi(\mathbb{A}_0);\\ (M2) & V_0 \in \mathbb{V}(k^0, V') := \left\{ V \in 2^Y : tk^0 + V' \subseteq V + \text{cl}C \text{ for some } t \in \mathbb{R} \right\}; \end{array}$
- For every $\leq_{k^0}^l$ -decreasing sequence $\{(x_n, V_n)\}_{n \in \mathbb{N}} \subseteq \mathbb{A}_0$ there exists some (M3) $(x,V) \in \mathbb{A}_0$ such that $(x,V) \leq_{k^0}^l (x_n,V_n)$ for all $n \in \mathbb{N}$.

Then, there exists $(\bar{x}, V) \in \mathbb{A}$ such that

- (i) $(\bar{x}, \bar{V}) \leq_{k^0}^l (x_0, V_0);$
- (ii) $(\hat{x}, \hat{V}) \in \mathbb{A}$ and $(\hat{x}, \hat{V}) \leq_{k^0}^l (\bar{x}, \bar{V}) \Longrightarrow \hat{x} = \bar{x}$.

Proof. We define $\phi : \mathbb{A}_0 \to \mathbb{R}$ by $\phi(x, V) := g_{k^0}^l(V)$ where $g_{k^0}^l : \Phi(\mathbb{A}_0) \to \mathbb{R}$ is the scalarization function defined in Theorem 3.2

We shall check the assumptions of Theorem 4.1. By (ii) and (iii) of Theorem 3.2,

$$(x_1, V_1) \leq_{k^0}^l (x_2, V_2) \Longrightarrow \phi(x_1, V_1) \leq \phi(x_2, V_2).$$

Hence ϕ is $\leq_{k^0}^{l}$ -monotone on \mathbb{A}_0 (i.e., (A2) holds). By (M1), (M2) and (i) of Theorem 3.2, ϕ is well-defined and bounded below (i.e., (A1) holds). Also (M3) implies (A3) of Theorem 4.1.

Therefore, it follows from Theorem 4.1 that the existence of an element $(\bar{x}, V) \in$ \mathbb{A}_0 such that

(I) $(\bar{x}, V) \leq_{k^0}^{l} (x, V)$ for any $(x, V) \in \mathbb{A}_0$;

(II) $(\hat{x}, \hat{V}) \in \mathbb{A}_0$ and $(\hat{x}, \hat{V}) \leq_{k^0}^l (\bar{x}, \bar{V}) \Rightarrow \phi(\hat{x}, \hat{V}) = \phi(\bar{x}, \bar{V}).$

The property (I) implies the statement (i) of the theorem. To show the statement (ii), let $(\hat{x}, \hat{V}) \in \mathbb{A}$ such that $(\hat{x}, \hat{V}) \leq_{k^0}^l (\bar{x}, \bar{V})$. Since $(\bar{x}, \bar{V}) \in \mathbb{A}_0$, the transitivity of $\leq_{k^0}^{l}$ yields $(\hat{x}, \hat{V}) \in \mathbb{A}_0$. Hence using the property (II), we have

(4.1)
$$\phi(\hat{x}, \hat{V}) = \phi(\bar{x}, \bar{V}).$$

On the other hand, by the definition of $\leq_{k^0}^l$ we have $\hat{V} + k^0 q_\lambda(\hat{x}, \bar{x}) \leq \bar{V}$ for all $\lambda \in \Lambda$. Using the properties (ii) and (iii) of Theorem 3.2, we get for all $\lambda \in \Lambda$,

(4.2)
$$\phi(\hat{x}, \hat{V}) + q_{\lambda}(\hat{x}, \bar{x}) \le \phi(\bar{x}, \bar{V})$$

By (4.1) and (4.2), $q_{\lambda}(\hat{x}, \bar{x}) = 0$ for all $\lambda \in \Lambda$. Since X is separated, we have $\hat{x} = \bar{x}$ by Theorem 4.3 in [3].

252

References

- [1] J. Aubin and H. Frankowska, Set-Valued Analysis, Birkhauser, Boston, 1990.
- [2] H. Brézis and F. Browder, A General Principle on Ordered Sets in Nonlinear Functional Analysis, Advances in Mathematics 21 (1976), 355–364.
- [3] A. Hamel and A. Löhne, Minimal element theorems and Ekeland's principle with set relations, J. of Nonlinear and Convex Anal. 7 (2006), 19–37.
- [4] D. Kuroiwa, T. Tanaka and T. X. D. Ha, On cone convexity of set-valued maps, Nonlinear Anal. 30 (1997), 1487–1496.
- [5] D. T. Luc, *Theory of Vector Optimization*, Lecture Notes in Economics and Mathematical Systems, 319, Springer, Berlin, 1989.
- [6] S. Nishizawa, M. Onodsuka and T. Tanaka, Alternative Theorems for Set-Valued Maps based on a Nonlinear Scalarization, Pacific J. Optim. 1 (2005), 147–159.

Manuscript received September 26, 2007 revised Jun 22, 2008

Akira Shimizu

Department of Mathematical Science, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan

E-mail address: akira@m.sc.niigata-u.ac.jp

TAMAKI TANAKA

Department of Mathematical Science, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan

E-mail address: tamaki@math.sc.niigata-u.ac.jp