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MINIMAL ELEMENT THEOREM WITH SET-RELATIONS

AKIRA SHIMIZU AND TAMAKI TANAKA

Abstract. Hamel and Löhne proved the existence results for minimal points of
subsets of the product space X × 2Y , where X and Y are a separated uniform
space and a topological vector space, respectively. In this paper, we present a
similar minimal element theorem with set-relations to those introduced in [3].

1. Introduction

In [3], Hamel and Löhne proved the existence results for minimal points of subsets
of the product space X × 2Y , where X is a separated uniform space and Y a
topological vector space. These principles are based on the following order relations
in 2Y :

V1 ≤l
C V2 ⇔ V2 ⊆ V1 + C and V1 ≤u

C V2 ⇔ V1 ⊆ V2 − C

where C ⊆ Y is a convex cone and V1, V2 ∈ 2Y . Moreover, they derived from them
new versions of Ekeland’s principle for set-valued maps.

In this paper, we introduce a different scalarization function to present a minimal
element theorem with set-relations which is similar to those introduced in [3].

This paper is organized as follows. In Section 2, we define two ordering rela-
tions and boundedness on 2Y , where Y is a topological vector space. In Section 3,
we introduce two types of nonlinear scalarization functions defined on 2Y . Those
functions are used for the proofs of minimal element theorems introduced in Sec-
tion 4. In Section 4, we give minimal element theorems with set-relation based on
the Brézis-Browder principle.

2. Relationships between two sets and boundedness concepts for
subsets of 2Y

Throughout this section, let Y be a real ordered topological vector space with
the vector ordering ≤C induced by a nonempty convex cone C: for x, y ∈ Y ,

x ≤C y if y − x ∈ C.
We introduce two relations ≤u

C ,≤l
C on 2Y and boundedness concepts for subsets

of 2Y .

Definition 2.1 (Set-relationships in [4]). Given nonempty sets A,B ⊂ Y , we define
two types of relationships between A and B as follows:
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A ≤l
C B ⇐⇒ B ⊆ A + C,

A ≤u
C B ⇐⇒ A ⊆ B − C.

Definition 2.2 (Boundedness in [3]). A subset V ⊆ 2Y is said to be ≤l
C-bounded

below if there exists some topologically bounded subset Ṽ ⊆ Y such that Ṽ ≤l
C V

holds for all V ∈ V. The set Ṽ is called a lower ≤l
C-bound of V. A subset

V ⊆ 2Y is said to be ≤u
C-bounded above and Ṽ is called an upper ≤u

C-bound of
V if −V := {−V : V ∈ V} is ≤l

C-bounded below with the lower ≤l
C-bound −Ṽ .

Definition 2.3 (Boundedness in [3]). A subset V ⊆ 2Y is said to be ≤u
C-bounded

below if there exists some topologically bounded subset Ṽ ⊆ Y such that Ṽ ≤u
C V

holds for all V ∈ V. The set Ṽ is called a lower ≤u
C-bound of V. A subset

V ⊆ 2Y is said to be ≤l
C-bounded above and Ṽ is called an upper ≤l

C-bound of
V if −V := {−V : V ∈ V} is ≤u

C-bounded below with the lower ≤u
C-bound −Ṽ .

3. Nonlinear salarization methods on 2Y

In this section, we introduce two types of scalarization functionals defined on 2Y ,
which have the monotonicity with respect to the set-relation ≤l

C ; z : 2Y → R∪{±∞}
is said to be monotone with respect to ≤l

C if V1 ≤l
C V2 implies z(V1) ≤ z(V2).

Theorem 3.1 ([3]). Let Y be a topological vector space, C ⊆ Y a convex cone
and k0 ∈ C\(−clC). Let V ⊆ 2Y be nonempty and ≤l

C-bounded, i.e., there is a
topological bounded set V ′ ⊆ Y and a nonempty set V ′′ ⊆ Y such that

∀V ∈ V, V ′ ≤l
C V ≤l

C V ′′.
Then, the function zl

k0 : 2Y → R ∪ {±∞}, defined by

zl
k0(V ) := inf{t ∈ R : tk0 + V ′′ ⊆ V + clC},

has the following properties:
(i) zl

k0 is bounded on V;
(ii) V ∈ V, α ∈ R implies zl

k0(V + αk0) = zl
k0(V ) + α;

(iii) zl
k0 is monotone with respect to ≤l

C .

When we assume that V is “≤l
C-bounded below” instead of a stronger condi-

tion “≤l
C-bounded,” we propose another scalarization function which has similar

properties to those of zl
k0 above.

Theorem 3.2. Let Y be a topological vector space, C ⊆ Y a convex cone and
k0 ∈ C\(−clC). Let {∅} 6= V ⊆ 2Y be nonempty and ≤l

C-bounded below, i.e., there
is a topological bounded set V ′ ⊆ Y such that

∀V ∈ V, V ′ ≤l
C V .

Then, the function gl
k0 : 2Y → R ∪ {±∞}, defined by

gl
k0(V ) := inf{t ∈ R : tk0 + V ′ ⊆ V + clC},

has the following properties:
(i) gl

k0 is bounded below on V;
(ii) V ∈ V, α ∈ R implies gl

k0(V + αk0) = gl
k0(V ) + α;

(iii) gl
k0 is monotone with respect to ≤l

C .
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Proof. The statements (ii) and (iii) are obvious. We shall show the statement (i).
Since V 6= {∅} and V is ≤l

C-bounded below, we have V ′ 6= ∅. Assume that gl
k0 is

not bounded below. Then for each n ∈ N, there exist tn < −n and Vn ∈ V such
that tnk0 + V ′ ⊆ Vn + clC. Then

−nk0 + V ′ = (−n − tn)k0 + tnk0 + V ′ ⊆ (C\(−clC)) + Vn + clC ⊆ Vn + clC,

and Vn ⊆ V ′ + C since V is ≤l
C-bounded below lower ≤l

C-bound V ′. Consequently,
we have −nk0 +V ′ ⊆ V ′ +clC for all n ∈ N. For arbitrary fixed v0 ∈ V ′ and n ∈ N,
−nk0 + v0 ∈ V ′ + clC and hence

(3.1) −k0 +
1
n

v0 ∈ 1
n

V ′ + clC.

Since V ′ is nonempty and topological bounded, 1
nV ′ → {0}. By (3.1) with 1

nv0 → 0
we have −k0 ∈ clC, which is a contradiction to k0 ∈ C\(−clC). ¤

Remark 3.3. Under the conditions of Theorem 3.2, functional gl
k0 takes +∞ pos-

sibly.

4. Minimal element theorems in 2Y

In this section, we present minimal element theorems with set-relations. The
proofs are indebted to the following existence principle for minimal elements in
quasi-ordered sets due to Brézis and Browder [2], 1976.

Theorem 4.1 (Brézis-Browder principle in [2]). Let (W,¹) be a quasi-ordered set
(i.e., ¹ is a reflexive and transitive relation on W ) and let φ : W → R be a function
satisfying
(A1) φ is bounded below;
(A2) w1 ¹ w2 implies φ(w1) ≤ φ(w2);
(A3) For every ¹-decreasing sequence {wn}n∈N ⊆ W

there exists some w ∈ W such that w ¹ wn for all n ∈ N.
Then, for every w0 ∈ W there exists some w̄ ∈ W such that
(i) w̄ ¹ w0;
(ii) ŵ ¹ w̄ implies φ(ŵ) = φ(w̄).

Using Theorem 4.1, we get several types of minimal element theorems with set-
relations. Let A be a subset of X × 2Y , where X is a separated uniform space
equipped with a families of quasi-metrics {qλ}λ∈Λ (see [3] for the detail) and Y is a
topological vector space. We define the following notation:

Φ(A) := {V ∈ 2Y : ∃x ∈ X, (x, V ) ∈ A}.
Using the relation ≤l

C we introduce the following ordering relation on X × 2Y :
(x1, V1) ≤l

k0 (x2, V2) ⇐⇒ ∀λ ∈ Λ, V1 + k0qλ(x1, x2) ≤l
C V2.

This ordering has reflexivity and transitivity on X × 2Y .

Theorem 4.2 ([3]). Let X be a separated uniform space and Y a topological vector
space, C ⊆ Y a convex cone and k0 ∈ C\(−clC). Let A be a nonempty subset of
X × 2Y such that for some (x0, V0) ∈ A and for A0 := {(x, V ) ∈ A : (x, V ) ≤l

k0

(x0, V0)} the following conditions are satisfied:
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(M1) Φ(A0) is ≤l
C-bounded above, i.e., V0 is nonempty;

(M2) Φ(A0) is ≤l
C-bounded below;

(M3) For every ≤l
k0-decreasing sequence {(xn, Vn)}n∈N ⊆ A0

there exists some (x, V ) ∈ A0 such that (x, V ) ≤l
k0 (xn, Vn) for all n ∈ N.

Then, there exists (x̄, V̄ ) ∈ A such that
(i) (x̄, V̄ ) ≤l

k0 (x0, V0);
(ii) (x̂, V̂ ) ∈ A and (x̂, V̂ ) ≤l

k0 (x̄, V̄ ) =⇒ x̂ = x̄.

The theorem above was proved in [3] by applying theorem 4.1 with the result of
Theorem 3.1. In the same manner, we use Theorem 3.2 to present another minimal
element theorem with the same set-relation.

Theorem 4.3. Let X be a separated uniform space and Y a topological vector space.
C ⊆ Y is a convex cone and k0 ∈ C\(−clC). Let A be a nonempty subset of X×2Y

such that for some (x0, V0) ∈ A with V0 6= ∅ and for A0 := {(x, V ) ∈ A : (x, V ) ≤l
k0

(x0, V0)} the following conditions are satisfied:
(M1) Φ(A0) is ≤l

C-bounded below with lower ≤l
C-bound V ′ of Φ(A0);

(M2) V0 ∈ V(k0, V ′) :=
{
V ∈ 2Y : tk0 + V ′ ⊆ V + clC for some t ∈ R

}
;

(M3) For every ≤l
k0-decreasing sequence {(xn, Vn)}n∈N ⊆ A0 there exists some

(x, V ) ∈ A0 such that (x, V ) ≤l
k0 (xn, Vn) for all n ∈ N.

Then, there exists (x̄, V̄ ) ∈ A such that
(i) (x̄, V̄ ) ≤l

k0 (x0, V0);
(ii) (x̂, V̂ ) ∈ A and (x̂, V̂ ) ≤l

k0 (x̄, V̄ ) =⇒ x̂ = x̄.

Proof. We define φ : A0 → R by φ(x, V ) := gl
k0(V ) where gl

k0 : Φ(A0) → R is the
scalarization function defined in Theorem 3.2.

We shall check the assumptions of Theorem 4.1. By (ii) and (iii) of Theorem 3.2,

(x1, V1) ≤l
k0 (x2, V2) =⇒ φ(x1, V1) ≤ φ(x2, V2).

Hence φ is ≤l
k0-monotone on A0 (i.e., (A2) holds). By (M1), (M2) and (i) of

Theorem 3.2, φ is well-defined and bounded below (i.e., (A1) holds). Also (M3)
implies (A3) of Theorem 4.1.

Therefore, it follows from Theorem 4.1 that the existence of an element (x̄, V̄ ) ∈
A0 such that
(I) (x̄, V̄ ) ≤l

k0 (x, V ) for any (x, V ) ∈ A0;
(II) (x̂, V̂ ) ∈ A0 and (x̂, V̂ ) ≤l

k0 (x̄, V̄ ) ⇒ φ(x̂, V̂ ) = φ(x̄, V̄ ).
The property (I) implies the statement (i) of the theorem. To show the state-
ment (ii), let (x̂, V̂ ) ∈ A such that (x̂, V̂ ) ≤l

k0 (x̄, V̄ ). Since (x̄, V̄ ) ∈ A0, the
transitivity of ≤l

k0 yields (x̂, V̂ ) ∈ A0. Hence using the property (II), we have

(4.1) φ(x̂, V̂ ) = φ(x̄, V̄ ).

On the other hand, by the definition of ≤l
k0 we have V̂ + k0qλ(x̂, x̄) ≤ V̄ for all

λ ∈ Λ. Using the properties (ii) and (iii) of Theorem 3.2, we get for all λ ∈ Λ,

(4.2) φ(x̂, V̂ ) + qλ(x̂, x̄) ≤ φ(x̄, V̄ ).

By (4.1) and (4.2), qλ(x̂, x̄) = 0 for all λ ∈ Λ. Since X is separated, we have x̂ = x̄
by Theorem 4.3 in [3]. ¤
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