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MINIMAL ELEMENT THEOREM WITH SET-RELATIONS

AKIRA SHIMIZU AND TAMAKI TANAKA

ABSTRACT. Hamel and Lohne proved the existence results for minimal points of
subsets of the product space X x 2¥, where X and Y are a separated uniform
space and a topological vector space, respectively. In this paper, we present a
similar minimal element theorem with set-relations to those introduced in [3].

1. INTRODUCTION

In [3], Hamel and Lohne proved the existence results for minimal points of subsets
of the product space X x 2Y, where X is a separated uniform space and Y a
topological vector space. These principles are based on the following order relations
in 2

Vi<bVaosVaCVi+Cand Vi <4 Vo & Vi CVyp—C

where C' C Y is a convex cone and Vi, Vs € 2¥. Moreover, they derived from them
new versions of Ekeland’s principle for set-valued maps.

In this paper, we introduce a different scalarization function to present a minimal
element theorem with set-relations which is similar to those introduced in [3].

This paper is organized as follows. In Section 2, we define two ordering rela-
tions and boundedness on 2Y, where Y is a topological vector space. In Section 3,
we introduce two types of nonlinear scalarization functions defined on 2Y. Those
functions are used for the proofs of minimal element theorems introduced in Sec-
tion 4. In Section 4, we give minimal element theorems with set-relation based on
the Brézis-Browder principle.

2. RELATIONSHIPS BETWEEN TWO SETS AND BOUNDEDNESS CONCEPTS FOR
SUBSETS OF 2Y

Throughout this section, let Y be a real ordered topological vector space with
the vector ordering <¢ induced by a nonempty convex cone C: for z,y € Y,

r<cyify—zelC.
We introduce two relations <%, SZC on 2¥ and boundedness concepts for subsets
of 2V

Definition 2.1 (Set-relationships in [4]). Given nonempty sets A, B C Y, we define
two types of relationships between A and B as follows:
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A<LB+<= BCA+C,
A<(LB<<— ACB-C.

Definition 2.2 (Boundedness in [3]). A subset V C 2V is said to be <\ -bounded
below if there exists some topologically bounded subset V' C Y such that V glc v
holds for all V € V. The set V is called a lower Slc—bound of V. A subset
V C 2Y is said to be <¢-bounded above and V is called an upper <¢-bound of
Vif —V:={-V:V € V} is <L-bounded below with the lower </ -bound —V.

Definition 2.3 (Boundedness in [3]). A subset V C 2Y is said to be <¢-bounded
below if there exists some topologically bounded subset V C Y such that V <¢V
holds for all V € V. The set V is called a lower <¢-bound of V. A subset
V C 2Y is said to be §lc—b0unded above and V is called an upper Slc—bound of
Vif -V :={-V:V €V} is <¢-bounded below with the lower <¢-bound -V.

3. NONLINEAR SALARIZATION METHODS ON 2Y

In this section, we introduce two types of scalarization functionals defined on 2Y,
which have the monotonicity with respect to the set-relation <.L.; z : 2¥ — RU{=%oc0}
is said to be monotone with respect to SZC if Slc Vo implies z(V1) < z(Va).

Theorem 3.1 ([3]). Let Y be a topological vector space, C C'Y a convexr cone
and k° € C\(—clC). Let V C 2Y be nonempty and <L,-bounded, i.c., there is a
topological bounded set V' CY and a nonempty set V"' CY such that
YW eV, V<L v <L v,
Then, the function z,lgo : 2V = RU {+o0}, defined by
2ho(V) :i=inf{t e Rtk + V" CV +cIC},

has the following properties:

(i) 2k is bounded on V;

(i) V e€V,aeR implies 2o (V + ak®) = 2L (V) + a;

(iii) z,lgo is monotone with respect to <L..

When we assume that V is “glc—bounded below” instead of a stronger condi-
tion “Slc-bounded,” we propose another scalarization function which has similar
properties to those of z,lfo above.

Theorem 3.2. Let Y be a topological vector space, C C'Y a conver cone and
k0 € O\(—clC). Let {0} #V C 2Y be nonempty and <\ -bounded below, i.e., there
is a topological bounded set V' CY such that
vwev, v <L v.
Then, the function g]lﬁo 12V = RU{+o0}, defined by
go(V) :=inf{t e R: tk" + V' C V +clC},

has the following properties:

(i)  gho is bounded below on V;

(i) V eV,aeR implies go(V + ak®) = gty (V) + o;

(iii) gfgo is monotone with respect to <.,.
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Proof. The statements (ii) and (iii) are obvious. We shall show the statement (i).
Since V # {0} and V is <!-bounded below, we have V' # (). Assume that gl, is
not bounded below. Then for each n € N, there exist ¢, < —n and V,, € V such
that t,k° + V' C V,, + clC. Then

—nk? + V' = (—n — )k + t,k* + V' C (C\(—clC)) + V,, + clC C V,, + clC,

and V,, C V' + C since V is glc—bounded below lower glc—bound V', Consequently,
we have —nk% +V’ C V' +clC for all n € N. For arbitrary fixed vg € V' and n € N,
—nk® + vy € V' + clC and hence

1 1
(3.1) —k%+ g € =V’ +clC.
n n

Since V' is nonempty and topological bounded, %V’ — {0}. By (3.1) with %vo —0
we have —k" € clC, which is a contradiction to k° € C\(—clC). O

Remark 3.3. Under the conditions of Theorem 3.2, functional 920 takes 400 pos-
sibly.

4. MINIMAL ELEMENT THEOREMS IN 2Y

In this section, we present minimal element theorems with set-relations. The
proofs are indebted to the following existence principle for minimal elements in
quasi-ordered sets due to Brézis and Browder [2], 1976.

Theorem 4.1 (Brézis-Browder principle in [2]). Let (W, <) be a quasi-ordered set
(i.e., = is a reflexive and transitive relation on W) and let ¢ : W — R be a function
satisfying

(A1) ¢ is bounded below;

(A2) wy 2wy implies p(w1) < P(wa);

(A3) For every <-decreasing sequence {wy }neny C€ W

there exists some w € W such that w =< w,, for all n € N.

Then, for every wy € W there exists some w € W such that

(1) w = wo;

(il) w < w implies p(w) = p(w).

Using Theorem 4.1, we get several types of minimal element theorems with set-
relations. Let A be a subset of X x 2Y, where X is a separated uniform space
equipped with a families of quasi-metrics {g}rea (see [3] for the detail) and Y is a
topological vector space. We define the following notation:

O(A):={Ve2¥ :qrec X, (2,V) €Al

Using the relation glc we introduce the following ordering relation on X x 2V

(331,‘/1) SLO (‘T2a VQ) < \V/>\ S Av‘/l + k’O(Z)\(SUl,CCQ) SZC ‘/2
This ordering has reflexivity and transitivity on X x 2.
Theorem 4.2 ([3]). Let X be a separated uniform space and'Y a topological vector
space, C C'Y a conver cone and k¥ € C\(—clC). Let A be a nonempty subset of
X x 2V such that for some (xo,Vy) € A and for Ag := {(z,V) € A : (z,V) 520
(0, Vo)} the following conditions are satisfied:
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(M1) ®(Ag) is <L -bounded above, i.e., Vy is nonempty;
(M2) ®(Ag) is <L -bounded below;
(M3)  For every <!,-decreasing sequence {(zn, V1) }nen € Ag
there exists some (x,V) € Ag such that (z,V) <ty (2n,Vy) for alln € N.
Then, there exists (z,V) € A such that
(l) (£'7 Y) S%O (.’L’O, %);A B
(i) (2,V) €A and (&,V) <y (z,V) =& =1z

The theorem above was proved in [3] by applying theorem 4.1 with the result of
Theorem 3.1. In the same manner, we use Theorem 3.2 to present another minimal
element theorem with the same set-relation.

Theorem 4.3. Let X be a separated uniform space andY a topological vector space.
C CY is a conver cone and k° € C\(—clC). Let A be a nonempty subset of X x 2¥
such that for some (o, Vo) € A with Vo # 0 and for Ag := {(z,V) € A: (z,V) <Ly
(0, Vo)} the following conditions are satisfied:

(M1) ®(Ag) is <L -bounded below with lower <L,-bound V' of ®(Ao);

M2) VoeV(ELV):={Ve2¥ :tk+ V' CV +clC for some t € R};

(M3)  For every <!,-decreasing sequence {(zn, Vn)}Inen C Aq there exists some

(z,V) € Ag such that (z,V) <o (zn, Vi) for alln € N.

Then, there exists (Z,V) € A such that

(1) (£'7 V) S%O (.’Eo, %)7

(i) (4,V) €A and (2,V) <ty (2,V) =i =2.
Proof. We define ¢ : Ag — R by ¢(z,V) := glo(V) where gy : ®(Ag) — R is the

scalarization function defined in Theorem 3.2.
We shall check the assumptions of Theorem 4.1. By (ii) and (iii) of Theorem 3.2,

(1, V1) <ho (22, V2) == ¢(x1, V1) < p(22, Va).

Hence ¢ is <!,-monotone on Ag (i.e., (A2) holds). By (M1), (M2) and (i) of
Theorem 3.2, ¢ is well-defined and bounded below (i.e., (Al) holds). Also (M3)
implies (A3) of Theorem 4.1.
Therefore, it follows from Theorem 4.1 that the existence of an element (z,V) €

Ag such that

(D (@,V) <o (2,V) for any (z,V) € Ao;

(I) (#,V) € Agand (2,V) <y (2,V) = ¢(2,V) = ¢(z, V).
The property (I) implies the statement (i) of the theorem. To show the state-
ment (i), let (#,V) € A such that (#,V) <\, (z,V). Since (z,V) € Ay, the
transitivity of 320 yields (i, V) € Ag. Hence using the property (II), we have

(4.1) o2, V) = ¢(z,V).

On the other hand, by the definition of SZO we have V + k%y(2,2) < V for all
A € A. Using the properties (ii) and (iii) of Theorem 3.2, we get for all A € A,

(4.2) 6(2, V) + qr(#,7) < ¢(z,V).

By (4.1) and (4.2), ¢x(Z,Z) = 0 for all A € A. Since X is separated, we have & = Z
by Theorem 4.3 in [3]. O
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