MINIMAL ELEMENT THEOREM WITH SET-RELATIONS

AKIRA SHIMIZU AND TAMAKI TANAKA

Abstract

Hamel and Löhne proved the existence results for minimal points of subsets of the product space $X \times 2^{Y}$, where X and Y are a separated uniform space and a topological vector space, respectively. In this paper, we present a similar minimal element theorem with set-relations to those introduced in [3].

1. Introduction

In [3], Hamel and Löhne proved the existence results for minimal points of subsets of the product space $X \times 2^{Y}$, where X is a separated uniform space and Y a topological vector space. These principles are based on the following order relations in 2^{Y} :

$$
V_{1} \leq_{C}^{l} V_{2} \Leftrightarrow V_{2} \subseteq V_{1}+C \text { and } V_{1} \leq_{C}^{u} V_{2} \Leftrightarrow V_{1} \subseteq V_{2}-C
$$

where $C \subseteq Y$ is a convex cone and $V_{1}, V_{2} \in 2^{Y}$. Moreover, they derived from them new versions of Ekeland's principle for set-valued maps.

In this paper, we introduce a different scalarization function to present a minimal element theorem with set-relations which is similar to those introduced in [3].

This paper is organized as follows. In Section 2, we define two ordering relations and boundedness on 2^{Y}, where Y is a topological vector space. In Section 3, we introduce two types of nonlinear scalarization functions defined on 2^{Y}. Those functions are used for the proofs of minimal element theorems introduced in Section 4. In Section 4, we give minimal element theorems with set-relation based on the Brézis-Browder principle.

2. Relationships Between two sets and boundedness concepts for SUBSETS OF 2^{Y}

Throughout this section, let Y be a real ordered topological vector space with the vector ordering \leq_{C} induced by a nonempty convex cone C : for $x, y \in Y$,

$$
x \leq_{C} y \text { if } y-x \in C
$$

We introduce two relations $\leq_{C}^{u}, \leq_{C}^{l}$ on 2^{Y} and boundedness concepts for subsets of 2^{Y}.

Definition 2.1 (Set-relationships in [4]). Given nonempty sets $A, B \subset Y$, we define two types of relationships between A and B as follows:

[^0]\[

$$
\begin{aligned}
& A \leq_{C}^{l} B \Longleftrightarrow B \subseteq A+C \\
& A \leq_{C}^{u} B \Longleftrightarrow A \subseteq B-C
\end{aligned}
$$
\]

Definition 2.2 (Boundedness in [3]). A subset $\mathbb{V} \subseteq 2^{Y}$ is said to be \leq_{C}^{l}-bounded below if there exists some topologically bounded subset $\tilde{V} \subseteq Y$ such that $\tilde{V} \leq_{C}^{l} V$ holds for all $V \in \mathbb{V}$. The set \tilde{V} is called a lower \leq_{C}^{l}-bound of \mathbb{V}. A subset $\mathbb{V} \subseteq 2^{Y}$ is said to be \leq_{C}^{u}-bounded above and \tilde{V} is called an upper \leq_{C}^{u}-bound of \mathbb{V} if $-\mathbb{V}:=\{-V: V \in \mathbb{V}\}$ is \leq_{C}^{l}-bounded below with the lower \leq_{C}^{l}-bound $-\tilde{V}$.
Definition 2.3 (Boundedness in [3]). A subset $\mathbb{V} \subseteq 2^{Y}$ is said to be \leq_{C}^{u}-bounded below if there exists some topologically bounded subset $\tilde{V} \subseteq Y$ such that $\tilde{V} \leq_{C}^{u} V$ holds for all $V \in \mathbb{V}$. The set \tilde{V} is called a lower \leq_{C}^{u}-bound of \mathbb{V}. A subset $\mathbb{V} \subseteq 2^{Y}$ is said to be \leq_{C}^{l}-bounded above and \tilde{V} is called an upper \leq_{C}^{l}-bound of \mathbb{V} if $-\mathbb{V}:=\{-V: V \in \mathbb{V}\}$ is \leq_{C}^{u}-bounded below with the lower \leq_{C}^{u}-bound $-\tilde{V}$.

3. Nonlinear salarization methods on 2^{Y}

In this section, we introduce two types of scalarization functionals defined on 2^{Y}, which have the monotonicity with respect to the set-relation $\leq_{C}^{l} ; z: 2^{Y} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ is said to be monotone with respect to \leq_{C}^{l} if $V_{1} \leq_{C}^{l} V_{2}$ implies $z\left(V_{1}\right) \leq z\left(V_{2}\right)$.

Theorem 3.1 ([3]). Let Y be a topological vector space, $C \subseteq Y$ a convex cone and $k^{0} \in C \backslash(-\operatorname{clC})$. Let $\mathbb{V} \subseteq 2^{Y}$ be nonempty and $\leq_{C}{ }^{\text {-bounded, i.e., there }}$ is a topological bounded set $V^{\prime} \subseteq Y$ and a nonempty set $V^{\prime \prime} \subseteq Y$ such that

$$
\forall V \in \mathbb{V}, V^{\prime} \leq_{C}^{l} V \leq_{C}^{l} V^{\prime \prime}
$$

Then, the function $z_{k^{0}}^{l}: 2^{Y} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$, defined by

$$
z_{k^{0}}^{l}(V):=\inf \left\{t \in \mathbb{R}: t k^{0}+V^{\prime \prime} \subseteq V+\mathrm{cl} C\right\}
$$

has the following properties:
(i) $z_{k^{0}}^{l}$ is bounded on \mathbb{V};
(ii) $V \in \mathbb{V}, \alpha \in \mathbb{R}$ implies $z_{k^{0}}^{l}\left(V+\alpha k^{0}\right)=z_{k^{0}}^{l}(V)+\alpha$;
(iii) $z_{k^{0}}^{l}$ is monotone with respect to \leq_{C}^{l}.

When we assume that \mathbb{V} is " \leq_{C}^{l}-bounded below" instead of a stronger condition " \leq_{C}^{l}-bounded," we propose another scalarization function which has similar properties to those of $z_{k^{0}}^{l}$ above.

Theorem 3.2. Let Y be a topological vector space, $C \subseteq Y$ a convex cone and $k^{0} \in C \backslash(-\mathrm{clC})$. Let $\{\emptyset\} \neq \mathbb{V} \subseteq 2^{Y}$ be nonempty and \leq_{C}^{l}-bounded below, i.e., there is a topological bounded set $V^{\prime} \subseteq Y$ such that

$$
\forall V \in \mathbb{V}, V^{\prime} \leq_{C}^{l} V
$$

Then, the function $g_{k^{0}}^{l}: 2^{Y} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$, defined by

$$
g_{k^{0}}^{l}(V):=\inf \left\{t \in \mathbb{R}: t k^{0}+V^{\prime} \subseteq V+\operatorname{clC}\right\}
$$

has the following properties:
(i) $g_{k^{0}}^{l}$ is bounded below on \mathbb{V};
(ii) $V \in \mathbb{V}, \alpha \in \mathbb{R}$ implies $g_{k^{0}}^{l}\left(V+\alpha k^{0}\right)=g_{k^{0}}^{l}(V)+\alpha$;
(iii) $g_{k^{0}}^{l}$ is monotone with respect to \leq_{C}^{l}.

Proof. The statements (ii) and (iii) are obvious. We shall show the statement (i). Since $\mathbb{V} \neq\{\emptyset\}$ and \mathbb{V} is \leq_{C}^{l}-bounded below, we have $V^{\prime} \neq \emptyset$. Assume that $g_{k^{0}}^{l}$ is not bounded below. Then for each $n \in \mathbb{N}$, there exist $t_{n}<-n$ and $V_{n} \in \mathbb{V}$ such that $t_{n} k^{0}+V^{\prime} \subseteq V_{n}+\operatorname{clC}$. Then

$$
-n k^{0}+V^{\prime}=\left(-n-t_{n}\right) k^{0}+t_{n} k^{0}+V^{\prime} \subseteq(C \backslash(-\mathrm{cl} C))+V_{n}+\mathrm{cl} C \subseteq V_{n}+\mathrm{cl} C
$$

and $V_{n} \subseteq V^{\prime}+C$ since \mathbb{V} is \leq_{C}^{l}-bounded below lower \leq_{C}^{l}-bound V^{\prime}. Consequently, we have $-n k^{0}+V^{\prime} \subseteq V^{\prime}+\operatorname{clC}$ for all $n \in \mathbb{N}$. For arbitrary fixed $v_{0} \in V^{\prime}$ and $n \in \mathbb{N}$, $-n k^{0}+v_{0} \in V^{\prime}+\mathrm{clC}$ and hence

$$
\begin{equation*}
-k^{0}+\frac{1}{n} v_{0} \in \frac{1}{n} V^{\prime}+\operatorname{clC} . \tag{3.1}
\end{equation*}
$$

Since V^{\prime} is nonempty and topological bounded, $\frac{1}{n} V^{\prime} \rightarrow\{0\}$. By (3.1) with $\frac{1}{n} v_{0} \rightarrow 0$ we have $-k^{0} \in \mathrm{clC}$, which is a contradiction to $k^{0} \in C \backslash(-\mathrm{clC})$.

Remark 3.3. Under the conditions of Theorem 3.2, functional $g_{k^{0}}^{l}$ takes $+\infty$ possibly.

4. Minimal element theorems in 2^{Y}

In this section, we present minimal element theorems with set-relations. The proofs are indebted to the following existence principle for minimal elements in quasi-ordered sets due to Brézis and Browder [2], 1976.

Theorem 4.1 (Brézis-Browder principle in [2]). Let (W, \preceq) be a quasi-ordered set (i.e., \preceq is a reflexive and transitive relation on W) and let $\phi: W \rightarrow \mathbb{R}$ be a function satisfying
(A1) ϕ is bounded below;
(A2) $\quad w_{1} \preceq w_{2}$ implies $\phi\left(w_{1}\right) \leq \phi\left(w_{2}\right)$;
(A3) For every $\preceq-d e c r e a s i n g ~ s e q u e n c e ~\left\{w_{n}\right\}_{n \in \mathbb{N}} \subseteq W$
there exists some $w \in W$ such that $w \preceq w_{n}$ for all $n \in \mathbb{N}$.
Then, for every $w_{0} \in W$ there exists some $\bar{w} \in W$ such that
(i) $\bar{w} \preceq w_{0}$;
(ii) $\hat{w} \preceq \bar{w}$ implies $\phi(\hat{w})=\phi(\bar{w})$.

Using Theorem 4.1, we get several types of minimal element theorems with setrelations. Let \mathbb{A} be a subset of $X \times 2^{Y}$, where X is a separated uniform space equipped with a families of quasi-metrics $\left\{q_{\lambda}\right\}_{\lambda \in \Lambda}$ (see [3] for the detail) and Y is a topological vector space. We define the following notation:

$$
\Phi(\mathbb{A}):=\left\{V \in 2^{Y}: \exists x \in X,(x, V) \in \mathbb{A}\right\}
$$

Using the relation \leq_{C}^{l} we introduce the following ordering relation on $X \times 2^{Y}$:

$$
\left(x_{1}, V_{1}\right) \leq_{k^{0}}^{l}\left(x_{2}, V_{2}\right) \Longleftrightarrow \forall \lambda \in \Lambda, V_{1}+k^{0} q_{\lambda}\left(x_{1}, x_{2}\right) \leq_{C}^{l} V_{2}
$$

This ordering has reflexivity and transitivity on $X \times 2^{Y}$.
Theorem 4.2 ([3]). Let X be a separated uniform space and Y a topological vector space, $C \subseteq Y$ a convex cone and $k^{0} \in C \backslash(-\mathrm{clC})$. Let \mathbb{A} be a nonempty subset of $X \times 2^{Y}$ such that for some $\left(x_{0}, V_{0}\right) \in \mathbb{A}$ and for $\mathbb{A}_{0}:=\left\{(x, V) \in \mathbb{A}:(x, V) \leq_{k^{0}}^{l}\right.$ $\left.\left(x_{0}, V_{0}\right)\right\}$ the following conditions are satisfied:
(M1) $\Phi\left(\mathbb{A}_{0}\right)$ is \leq_{C}^{l}-bounded above, i.e., V_{0} is nonempty;
(M2) $\Phi\left(\mathbb{A}_{0}\right)$ is $<_{C}^{l}$-bounded below;
(M2) $\Phi\left(\mathbb{A}_{0}\right)$ is \leq_{C}^{l}-bounded below;
(M3) For every $\leq_{k^{0}}^{l}$-decreasing sequence $\left\{\left(x_{n}, V_{n}\right)\right\}_{n \in \mathbb{N}} \subseteq \mathbb{A}_{0}$
there exists some $(x, V) \in \mathbb{A}_{0}$ such that $(x, V) \leq_{k^{0}}^{l}\left(x_{n}, V_{n}\right)$ for all $n \in \mathbb{N}$.
Then, there exists $(\bar{x}, \bar{V}) \in \mathbb{A}$ such that
(i) $(\bar{x}, \bar{V}) \leq_{k^{0}}^{l}\left(x_{0}, V_{0}\right)$;
(ii) $(\hat{x}, \hat{V}) \in \mathbb{A}$ and $(\hat{x}, \hat{V}) \leq_{k^{0}}^{l}(\bar{x}, \bar{V}) \Longrightarrow \hat{x}=\bar{x}$.

The theorem above was proved in [3] by applying theorem 4.1 with the result of Theorem 3.1. In the same manner, we use Theorem 3.2 to present another minimal element theorem with the same set-relation.

Theorem 4.3. Let X be a separated uniform space and Y a topological vector space. $C \subseteq Y$ is a convex cone and $k^{0} \in C \backslash(-\mathrm{cl} C)$. Let \mathbb{A} be a nonempty subset of $X \times 2^{Y}$ such that for some $\left(x_{0}, V_{0}\right) \in \mathbb{A}$ with $V_{0} \neq \emptyset$ and for $\mathbb{A}_{0}:=\left\{(x, V) \in \mathbb{A}:(x, V) \leq_{k^{0}}^{l}\right.$ $\left.\left(x_{0}, V_{0}\right)\right\}$ the following conditions are satisfied:
(M1) $\Phi\left(\mathbb{A}_{0}\right)$ is \leq_{C}^{l}-bounded below with lower \leq_{C}^{l}-bound V^{\prime} of $\Phi\left(\mathbb{A}_{0}\right)$;
(M2) $\quad V_{0} \in \mathbb{V}\left(k^{0}, V^{\prime}\right):=\left\{V \in 2^{Y}: t k^{0}+V^{\prime} \subseteq V+\operatorname{clC}\right.$ for some $\left.t \in \mathbb{R}\right\}$;
(M3) For every $\leq_{k^{0}}^{l}$-decreasing sequence $\left\{\left(\bar{x}_{n}, V_{n}\right)\right\}_{n \in \mathbb{N}} \subseteq \mathbb{A}_{0}$ there exists some $(x, V) \in \mathbb{A}_{0}$ such that $(x, V) \leq_{k^{0}}^{l}\left(x_{n}, V_{n}\right)$ for all $n \in \mathbb{N}$.
Then, there exists $(\bar{x}, \bar{V}) \in \mathbb{A}$ such that
(i) $(\bar{x}, \bar{V}) \leq_{k^{0}}^{l}\left(x_{0}, V_{0}\right)$;
(ii) $(\hat{x}, \hat{V}) \in \mathbb{A}$ and $(\hat{x}, \hat{V}) \leq_{k^{0}}^{l}(\bar{x}, \bar{V}) \Longrightarrow \hat{x}=\bar{x}$.

Proof. We define $\phi: \mathbb{A}_{0} \rightarrow \mathbb{R}$ by $\phi(x, V):=g_{k^{0}}^{l}(V)$ where $g_{k^{0}}^{l}: \Phi\left(\mathbb{A}_{0}\right) \rightarrow \mathbb{R}$ is the scalarization function defined in Theorem 3.2.

We shall check the assumptions of Theorem 4.1. By (ii) and (iii) of Theorem 3.2,

$$
\left(x_{1}, V_{1}\right) \leq_{k^{0}}^{l}\left(x_{2}, V_{2}\right) \Longrightarrow \phi\left(x_{1}, V_{1}\right) \leq \phi\left(x_{2}, V_{2}\right)
$$

Hence ϕ is $\leq_{k^{0}}^{l}$-monotone on \mathbb{A}_{0} (i.e., (A2) holds). By (M1), (M2) and (i) of Theorem 3.2, ϕ is well-defined and bounded below (i.e., (A1) holds). Also (M3) implies (A3) of Theorem 4.1.

Therefore, it follows from Theorem 4.1 that the existence of an element $(\bar{x}, \bar{V}) \in$ \mathbb{A}_{0} such that
(I) $\quad(\bar{x}, \bar{V}) \leq_{k^{0}}^{l}(x, V)$ for any $(x, V) \in \mathbb{A}_{0}$;
(II) $\quad(\hat{x}, \hat{V}) \in \mathbb{A}_{0}$ and $(\hat{x}, \hat{V}) \leq_{k^{0}}^{l}(\bar{x}, \bar{V}) \Rightarrow \phi(\hat{x}, \hat{V})=\phi(\bar{x}, \bar{V})$.

The property (I) implies the statement (i) of the theorem. To show the statement (ii), let $(\hat{x}, \hat{V}) \in \mathbb{A}$ such that $(\hat{x}, \hat{V}) \leq_{k^{0}}^{l}(\bar{x}, \bar{V})$. Since $(\bar{x}, \bar{V}) \in \mathbb{A}_{0}$, the transitivity of $\leq_{k^{0}}^{l}$ yields $(\hat{x}, \hat{V}) \in \mathbb{A}_{0}$. Hence using the property (II), we have

$$
\begin{equation*}
\phi(\hat{x}, \hat{V})=\phi(\bar{x}, \bar{V}) \tag{4.1}
\end{equation*}
$$

On the other hand, by the definition of $\leq_{k^{0}}^{l}$ we have $\hat{V}+k^{0} q_{\lambda}(\hat{x}, \bar{x}) \leq \bar{V}$ for all $\lambda \in \Lambda$. Using the properties (ii) and (iii) of Theorem 3.2, we get for all $\lambda \in \Lambda$,

$$
\begin{equation*}
\phi(\hat{x}, \hat{V})+q_{\lambda}(\hat{x}, \bar{x}) \leq \phi(\bar{x}, \bar{V}) \tag{4.2}
\end{equation*}
$$

By (4.1) and (4.2), $q_{\lambda}(\hat{x}, \bar{x})=0$ for all $\lambda \in \Lambda$. Since X is separated, we have $\hat{x}=\bar{x}$ by Theorem 4.3 in [3].

References

[1] J. Aubin and H. Frankowska, Set-Valued Analysis, Birkhauser, Boston, 1990.
[2] H. Brézis and F. Browder, A General Principle on Ordered Sets in Nonlinear Functional Analysis, Advances in Mathematics 21 (1976), 355-364.
[3] A. Hamel and A. Löhne, Minimal element theorems and Ekeland's principle with set relations, J. of Nonlinear and Convex Anal. 7 (2006), 19-37.
[4] D. Kuroiwa, T. Tanaka and T. X. D. Ha, On cone convexity of set-valued maps, Nonlinear Anal. 30 (1997), 1487-1496.
[5] D. T. Luc, Theory of Vector Optimization, Lecture Notes in Economics and Mathematical Systems, 319, Springer, Berlin, 1989.
[6] S. Nishizawa, M. Onodsuka and T. Tanaka, Alternative Theorems for Set-Valued Maps based on a Nonlinear Scalarization, Pacific J. Optim. 1 (2005), 147-159.

Manuscript received September 26, 2007
revised Jun 22, 2008

Akira Shimizu

Department of Mathematical Science, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan

E-mail address: akira@m.sc.niigata-u.ac.jp
Tamaki Tanaka
Department of Mathematical Science, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan

E-mail address: tamaki@math.sc.niigata-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary: 49J53; Secondary: 90C46.
 Key words and phrases. Nonlinear set-valued optimization, set-valued map, nonlinear scalarization, optimality conditions.

 This work is based on research 19540120 supported by Grant-in-Aid for Scientific Research (C) from Japan Society for the Promotion of Science.

