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CONVERGENCE THEOREMS FOR FIXED POINT PROBLEMS
AND VARIATIONAL INEQUALITY PROBLEMS

YONGHONG YAO*, YEONG-CHENG LIOU**, AND RUDONG CHEN

ABSTRACT. In this paper, we introduce an iterative scheme for finding a common
element of the set of fixed points of a nonexpansive mapping and the set of so-
lutions of the variational inequality for an a-inverse-strongly monotone mapping
in a Hilbert space. We show that the sequence converges strongly to a common
element of two sets under the some mild conditions on parameters.

1. INTRODUCTION

Let C be a closed convex subset of a real Hilbert space H. Recall that a mapping
S of C into itself is called nonexpansive if

[Sz — Syl < ||z — ]

for all z,y € C. We denote by F'(S) the set of fixed points of S. A mapping A of
C into H is called monotone if

(1.1) (Au — Av,u —v) >0

for all u,v € C and A is called a-inverse-strongly-monotone if there exists a positive
real number « such that

(Au — Av,u —v) > al|Au — Av|?

for all u,v € C. It is well known that the variational inequality problem VI(C, A)
is to find z* € C such that
(Ax* v —2%) >0

for all v € C (see [1], [3], [7]). The variational inequality has been extensively
studied in the literature. See, e.g., [10], [11], [12] and the references therein.

For finding an element of F'(S)NVI(C, A) under the assumption that aset C C H
is closed and convex, a mapping S of C' into itself is nonexpansive and a mapping A
of C into H is a-inverse-strongly monotone, Takahashi and Toyoda [8] introduced
the following iterative scheme:

(1.2) Tnt1 = n®n + (1 — an)SPo(zy, — A\yAzy,)

foreveryn = 0,1,2,-- -, where P is the metric projection of H onto C, xy = x € C,
{ayn} is a sequence in (0, 1), and {\,} is a sequence in (0, 2«). They showed that, if
F(S)NVI(C, A) is nonempty, then the sequence {x,} generated by (1.2) converges
weakly to some z € F(S)NVI(C,A). In 2005, liduka and Takahashi [2] further
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considered a new iterative scheme for a nonexpansive mapping and an a-inverse-
strongly monotone mapping and obtained the following strong convergence theorem.

Theorem 1.1. Let C be a closed convex subset of a real Hilbert space H. Let A be
an a-inverse-strongly monotone mapping of C into H and let S be a nonexpansive
mapping of C into itself such that F(S)NVI(C,A) # 0. Suppose x1 =z € C and
{zn} is given by

(1.3) Tnt1 = an® + (1 — o) SPo(xy, — A\Axy,)

for every n = 1,2,---, where {a,} is a sequence in [0,1) and {\,} is a sequence
in [0,2a]. If {an} and {\,} are chosen so that X\, € [a,b] for some a,b with
0<a<b<2a,

[o.¢] o o0
lim o, =0, Zan = oo,z |ap+1 — ap| < 0o and Z [Ant1 — An| < 00,
n—oo

n=1 n=1 n=1

then {x,} defined by (1.3) converges strongly to Pr(synvi(c,a)T-

In this paper, motivated by the iterative schemes (1.2) and (1.3), we introduce a
new iterative scheme for finding a common element of the set of fixed points of a
nonexpansive mapping and the set of solutions of the variational inequality prob-
lem for an a-inverse-strongly monotone mapping. We obtain a strong convergence
theorem under the some mild conditions on parameters.

2. PRELIMINARIES

Let H be a real Hilbert space with inner product (-,-) and norm || - || and let C
be a closed convex subset of H. It is well known that, for any v € H, there exists
a unique ug € C such that

llu — up|| = inf{||u — z|| : x € C}.

We denote ug by Pou, where P is called the metric projection of H onto C'. The
metric projection Po of H onto C' has the following basic properties:

Property (i): ||[Pcx — Poy|| < ||z —y|| for all z,y € H;

Property (ii): {(xr — vy, Pcx — Pcy) > |Pcx — Poyl||? for every z,y € H;
Property (iii): (z — Pox,y — Pox) <0 for all z € H and y € C,

Property (iv): ||z — y||* > ||z — Poz||® + ||y — Poz||? for all z € H and y € C.

Such properties of Po will be crucial in the proofs of our main results. Let A
be a monotone mapping of C into H. In the context of the variational inequality
problem, it is easy to see from Property (iv) that

(2.1) ueVI(C,A) & u=Po(u—NAu), YA>0.

A set-valued mapping T : H — 2 is called monotone if, for all z,y € H, f € Tx
and g € Ty imply (x —y, f —g) > 0. A monotone mapping T : H — 2 is maximal
if its graph G(T') is not properly contained in the graph of any other monotone
mapping. It is known that a monotone mapping 7' is maximal if and only if, for
(x,f)e Hx H, (x—y, f—g) >0 for every (y,g9) € G(T) implies f € Tz. Let A be
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a monotone mapping of C' into H and let Nov be the normal cone to C' at v € C}
i.e.,
Nev={we H: (v—u,w) >0,Vu € C}.

Define
Av+ Ngv, ifveCC,
Tv = {

0, ifvéedC.
Then T' is maximal monotone and 0 € T'v if and only if v € VI(C, A) (see [2],[5]).

Now, we introduce several lemmas for our main results in this paper.

Lemma 2.1 ([6]). Let {z,} and {y,} be bounded sequences in a Banach space X
and let {Bn} be a sequence in [0,1] with 0 < liminf, . £, < limsup,,_,.. OBn < 1.
Suppose xpy1 = (1 — Bn)yn + Bnxn for all integers n > 0 and limsup,,_, o (||yn+1 —
Ynll = [|Zn+1 — 2nl]) < 0. Then, lim, o ||yn — x| = 0.

Lemma 2.2 ([4]). Let H be a real Hilbert space. Then the following inequality
holds: for each x,y € H, we have

lz +yl? < [l + 2(y, = + ).
Lemma 2.3 ([9]). Assume {an} is a sequence of nonnegative real numbers such
that
Ap+1 < (1 - ')’n)an + 5n7
where {vn} is a sequence in (0,1) and {5, } is a sequence such that

(2) Hmsup,, o0 6/ <0 or > 02 1 0] < oc.

n=1
Then lim,,_,~ a, = 0.

3. MAIN RESULTS
Now we state and prove our main results in this section.

Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H. Let A be
an a-inverse-strongly monotone mapping of C into H and let S be a nonexrpansive
mapping of C into itself such that F(S)NVI(C,A) # 0. Suppose fized u € C and
given xg € C arbitrarily. Let {x,} be generated iteratively by

(3.1) Tpt1 = Py + (1 — B)Slanu + (1 — o) Po(xn — AMAzy)], Yn >0,

where 3 € (0,1) is a constant, {an} is a sequence in [0,1] and {\,} is a sequence
in [0,2a]. If {an} and {\,} are chosen so that A, € la,b] for some a,b with
0<a<b<2aand

(i) limy oo 0 =0, D07 0y = 00,
(ii) limp—oo(Ap+1 — An) =0,
then {x,} defined by (3.1) converges strongly to Pr(synvi(c,a)u-
Proof. Since A\, € [0,2a] and A is an a-inverse-strongly monotone mapping, we
have, for all x,y € C,
(I = AnA)z — (I = 2 A)yl? = (& —y) = Az — Ay)|?
= |lz —yl* = 2\n(z — y, Az — Ay)
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(3.2) —1—)x,%||A:E — AyH2
< o=yl 4 A(An — 20) || Az — Ay|)?,

which implies that I — A\, A is nonexpansive.
Let z* € F(S)NVI(C,A). Then x* = Po(z* — A, Az™). Setting y, = apu+ (1 —
an)Po(xy, — ApAxy,) for all n > 0, we have from Property (i) and (3.2) that
lyn — 2"l = [lon(u —2%) + (1 = an)[Po(zn — AnAzn) — 27|
= |lan(u —z%) + (1 — an)[Po(zn — MAzy) — Po(z™ — M\, Az")]||
apllu — z*|| + (1 — ap) | Po(zn — AnAzy) — Po(z™ — A\ Ax™)||
apllu —x*|| + (1 — an)|[(xn — AnAzy) — (2 — Ny Az™)|]
anu— 2" + (1 = an)|zn — 27|,
By (3.1) and (3.3), we get
[#n1 — 2" = [[B(zn — 27) + (1 = 5)(Syn — 27|
< Bllan — 2| + (1 = B)lyn — 27|
< Bllzn — ¥ + (1 = Ban|u — 27
+ (1= B)(1 = an)llen — 27|
= [ = (1= Ban]llzn — 2"l + (1 = Bl [u — =7
< max{||lu — 27|, [lzo — 2|}
Therefore, {z,} is bounded. Hence {y,}, {Syn} and {Az,} are also bounded.
Note that

Ynt1 = Yn = (Qnt1 — an)u+ (1 — any1) Po(Tns1 — A1 AZn41)
— (1 = an)Po(zn — ApAzy,)
= (an41 — ap)u+ (1 = ang1)[Po(@n1 — Ang1Azns1)
— Po(xn — MAzy)] + (an — ang1) Po(xn — A\nAzy).

(3.3)

VAR VARRVAN

It follows that

N

[n+1 = nll < fansr — anl([Jull + | Po(zn — AnAzy)|))
+(1 = any1)l[Po(Tni1 — Ar1Azng1) — Po(zn — AAzy) ||

< omgr — anl([lull + [[Po(zn — AnAzn)]))
+(1 = ant)[[(@n1 — A1 Azng) — (@n — AnAzy) ||
(3-4) = lang1 — anl|([[ull + [Po(zn — AnAzn)]])
+(1 = ans)l[(Tns1 — A1 Azng1) — (Tn — Any1Azy)
+(An = Apg1) Az
< anta = on|(lull + [[Po(zn — AnAzn)|)

Hlzn+1 = @all + [Ang1 — Anll| Aza]|-
Therefore, we have
15ynt1 = Synll < lyn+1 — ynll
< lant1 — an|([[ull + | Po(zn — AnAz,)|)
+ lzns1 — zall + [Ant1 — Anl | Azal,
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which implies that

lim sup([[Synss — Syl — i1 — za]l) < 0.

n—oo

Hence, by Lemma 2.1, we obtain ||Sy, — x,|| — 0 as n — oo. Consequently,
(3.5) lim ||zp41 — 2| = lim (1 — B3)||Sy, — zn|| = 0.
n—oo n—oo

From (3.4) and (3.5), we also have ||yn+1 — yn|| — 0 as n — oo.
For z* € F(S)NVI(C, A), from (3.2), we obtain

zn41 = 27|* = 1B(zn — 2*) + (1 = B)(Syn — )|
< [Bllzn — 2™ + (1 = B)[|Syn — =*[I]?
= Fllzn — 2| + (1 = B)°||Syn — 27|I?
+26(1 = B)llzn — 27| Syn — 27|
< Bl — | + (1~ B8)||Syn — 27|
+B(1 = B)(llzn — 2| + 1Syn — 2*[?)

= Bllan = 2** + (1 = B)|Syn — 2”1
< Bllwn — 21 + (1 = B)llyn — 2™
= Bllan — "I + (1 = Bl (u — 2¥)

+ (1= an)(Pe(wn — AnAan) — Po(a® — Ay Ax"))|]?
< Bllan — 2" + (1 = B)lonflu — 2|
+ (1 —an)l[(zn — AnAzyn) — (2" — )‘nAx*)HZ]
< Bllzn — 2| + (1 = B){anllu — 2** + (1 — an)|Jzn — ™2
+ (1 — ap) (A — 20)|| Az, — Az}
< (1= B)anllu —a*|* + [|lzn — 2|
+ (1= 6)(1 — ay)a(b —2a)|| Az, — Az*||?.

Then we have

(1= B)(1 - an)alb — 2a)|| Az, — Az*|?
< (1= Bamllu — 2> + fan — 2| = [|znsr — 2|
(1= B)anllu— (> + (zn = 2*|| + lzn 1 — 7))
X (|20 = 2|l = lzns1 — 27
< (1= Banllu—a* P + (Jzn = 2*|| + llzass — 7)) x 20 = znsa .

Since o, — 0 and ||z, — Zpy1|| — 0 as n — oo, we obtain ||Az,, — Az*|| — 0 as
n — o00.
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Setting z, = Po(xy, — A\yAxy,) for all n > 0, from Property (ii), we have
lzn — 2*||? = ||Po(xn — MAzy,) — Po(z* — X\, Az™)||?

< A(zp, — MAzxy) — (2 — ANyAZ"), 2, — 2¥)

= 2@~ MnAza) = (@ = AnATYP + fzn — |
— (@ = AnAzn) = (2° = Andz™) = (20 —2")|%}

< Sllen =27 + Iz — 27|”
— (@n = 2n) = An(Azn — Az")|}

= S lllen — 271+ llzn — "I ~ llzm — zal?
+ 20Ty — 2, Axyy — Ax*) — N2 || Az, — Ax*||?).

So, we obtain

2n — 2| < llzn — 2*|° — [|#n — 2n]?
+ 2\ (@, — 2Zn, Az — Ax™) — )\,%HAxn — Aac*||2,

and hence
[Znt1 = 2*|* = [|8(zn — 2) + (1 = B)(Syn — )|
< Bllzn — ¥ + (1 = B)lyn — ™12
< Bllan — 2| + (1 = B)lanllu — ™[> + (1 — an)|lz0 — 2*|?]
< apllu—2|* + Bllan — a1 + (1= )z — 2*|?

< agllu =2 + flon — 2 = (1 = B)|zn — 2l
+2(1 = B)Ai(@p — 2n, Axy, — Az*) — (1 — B)N2|| Az, — Az*|)?

< apllu—a"|? + llzn — 2*|* = (1 = B)lon — 2n|?

+2(1 = B)Anllzn — znlll|Azn — Az,
which implies that
(1= Bllzn = 2l < anllu = 2*|* + lon — 2[* = [J@ns — 27|
+2(1 = B)Anllzn — znlll| Azn — Az]|

< apllu = 2" |? + llon = 2paa ]| x (e = 2| + o —2*])

+2(1 = B)\ullzn — znll|| Az, — Az™||.

Since a,, — 0,||zp, — Tpt1|| — 0 and ||Az, — Az*|| — 0 as n — oo, we have
|xr, — 2zn|| — 0 as n — oco. At the same time, we note that

Yn — 2n = an(u - Zn)v
then we have

(3.6) lim |y, — 2| = 0.
n—oo
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Since
1520 = znll < 1520 = Synll + [[Syn — znll + [l2n — 20|
<lzn = ynll +115yn — zall + ll2n — zall;
we can conclude that || Sz, — z,|| — 0 as n — oc.

Next we show that

lim sup(u — 20, 2, — 20) < 0,
n—oo

where 20 = PF(S)QVI(C,A)U-
To show it, we choose a subsequence {z,,} of {z,} such that

lim sup(u — 29, Sz, — z0) = lim (u — 20, Szn, — 20)-
n—oo 71— 00

As {zp,} is bounded, we have that a subsequence {2, } of {2} converges weakly
to z. We may assume without loss of generality that z,, — 2. Since ||Sz, — 2| — 0,
we obtain Sz,, — z as i — 0co. Then we can obtain z € F(S)NVI(C,A). In fact,
let us first show that z € VI(C, A).
Let
Av + Now,v € C,

Tv= { 0,v¢C.
Then T is maximal monotone. Let (v, w) € G(T'). Since w— Av € Ngv and z, € C,
we have (v — z,,w — Av) > 0. On the other hand, from z, = Po(z, — A\yAxy,), we
have (v — zp, zn — (Tn, — ApAzy,)) > 0, that is,
Zn

Fn " %n + Az,) > 0.

(v — 2zn, "

Therefore, we have

<U - zni7w> > <U - Zn¢>Av>

> (v — zp,;, Av) — (v — zp,, ng ~ Fni Azy,)

Aoy
= (v — 2, Av — Az, — 2Ty
Aoy

— <U - Z’n,”AfU — A2n2> + <U - Zni,Azni — A:L’nl>

Zn: — Tn,

- <’U—zm,anin’>
= <U - z"z'?Azm' - Axnz> - <’U — Zn;» w>

n;

Hence we obtain (v — z,w) > 0 as ¢ — oo. Since T' is maximal monotone, we have
z € T710 and hence z € VI(C, A). Let us show that z € F(S). Assume z ¢ F(S).
From Opial’s condition, we have

liminf ||z, — z|| < liminf ||z,, — Sz||
71— 00 1—00
= liminf ||z, — Szn, + Szn, — Sz||
71— 00
< liminf ||Sz,, — Sz||
71— 00

< liminf ||z, — 2.
71— 00
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This is a contradiction. Thus, we obtain z € F(S). Then we have

limsup(u — 29, 2, — 20) = limsup(u — 20,5z, — 20)
(3.7) o = IQIEOZ — 20, S2n, — 20)
= (u—2z0,2— 20)
< 0.
It follows from (3.6) and (3.7) that
(3.8) lim sup(u — 20, yn — 20) < 0.

n—oo

Therefore, form Lemma 2.2 and (3.1), we have
zns1 = 201* < Bllan — 20l + (1 = B)llyn — 20
< Bllan — 2l + (1 =B - an)llza — 2o
+20, (U — 20, Yn — 20)]
Bllan = zoll* + (1 = B)[(1 — an)lzn — 20/
20 (u — 20, Yn — 20)]
= [1— (1~ Banlllen — 20l* + (1 — Ban{2(u — 20,yn — 20)}
= (I—m)llzn — 20H2 + 0n;

where v, =1 — (1 — ), and 6, = (1 — B)an{2{u — 20, yn — 20)}. It is easily seen
that Y2 jyn = co and

(3.9)

IN

lim sup 6y, /v, = limsup{2(u — 2o, yn — 20)} < 0.

n—oo n—oo

Thus by Lemma 2.3 and (3.9), we can obtain the desired conclusion. This completes
the proof. O

Corollary 3.2. Let C be a closed convexr subset of a real Hilbert space H. Let A
be an a-inverse-strongly monotone mapping of C into H such that VI(C, A) # (.
Suppose fizred u € C and given xo € C arbitrarily. Let {x,} be generated iteratively
by

(3.10) Tny1 = Py + (1 = B)[anu + (1 — an) Po(xn — \yAxy,)], ¥n >0,
where § € (0,1) is constant, {ay} is a sequence in [0,1] and {\,} is a sequence
in [0,2a]. If {an} and {\,} are chosen so that A, € la,b] for some a,b with
0<a<b<2xand

(i) limy oo 0, =0, D07 0y = 00,
(ii) lmy—oo(Ant1 — An) =0,
then {x,} defined by (5.10) converges strongly to Py rc,a)u-

A mapping T : C — C is called strictly pseudocontractive if there exists k with
0 < k < 1 such that

1T = Ty|* < [|lz = yl* + &l|(I = T)x — (I - T)y|?
for all x,y € C. Put A=1 —T. Then we have
I = Az — (I = Ayl* < ||z — )| + k|| Az — Ay|>.
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On the other hand,
I = A)z = (I = Ayyl2 = llz — yl2 + | Az — Ay|]2 - 2z — y, Az — Ay).

Hence we have -
4w — Ay,

(x —y, Az — Ay) >
Now we can get the following result.

Theorem 3.3. Let C be a closed convex subset of a real Hilbert space H. Let T be
a k-strictly pseudocontractive mapping of C into itself and let S be a nonexrpansive
mapping of C into itself such that F(T)NF(S) # 0. Suppose fivred u € C and given
xo € C arbitrarily. Let {x,} be generated iteratively by

(3.11) zpy1 = Prp+ (1= B)S{anu+ (1 — an)[(1 = Ap)xn + ATxy]}, Vn >0,

where § € (0,1) is constant, {ay} is a sequence in [0,1] and {\,} is a sequence
in [0,2a]. If {an} and {\,} are chosen so that A, € la,b] for some a,b with
0<a<b<2aand

(i) limy oo 0, =0, D07 0y = 00,
(i) limy—oo(Ant1 — An) =0,
then {x,} defined by (3.11) converges strongly to Pp(ynp(s)u-

Proof. Put A =1 —T. Then A is (1 — k)/2-inverse-strongly monotone. We have
F(T) =VI(C,A) and Po(zy, — MAzy) = (1 — Ap)xpn + ATz So, by Theorem
3.1, we can obtain the desired result. This completes the proof. O
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