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APPROXIMATION PROCESSES OF CONVOLUTION TYPE
OPERATORS IN BANACH SPACES

TOSHIHIKO NISHISHIRAHO

Abstract. We consider the convergence of approximation processes of convo-
lution type operators in Banach spaces and give quantitative estimates of the
rate of their convergence in terms of the modulus of continuity and higher order
abosolute moments of approximate kernels. Furthermore, applications are dis-
cussed for various summation processes and multiplier operators in connection
with Fourier series expansions corresponding to a total, fundamental sequence
of mutually orthogonal projections as well as for homogeneous Banach spaces
which include the certain classical function spaces, as particular cases. We also
give several concrete examples of approximating operators from a probabilistic
point of view. These can be induced by various probability density functuions,
together with various positive summability kernels.

1. Introduction

Let X be a Banach space with norm ‖ · ‖X . Let L = {Lα,λ : α ∈ D,λ ∈ Λ} be
a family of operators from X to itself, where D is a directed set and Λ is an index
set. Then the family L is called an approximation process on X if for every f ∈ X,

(1.1) lim
α

‖Lα,λ(f) − f‖X = 0 uniformly in λ ∈ Λ.

Here we consider a family of convolutuion type operators on X defined as follows:
Let T = {Tα(t) : α ∈ D, t ∈ R} be a family of operators from X to itself, where R

denotes the real line, such that for each α ∈ D, f ∈ X, the mapping t 7→ Tα(t)(f) is
bounded and strongly continuous on R. Let K = {kα,λ : α ∈ D,λ ∈ Λ} be a family
of functions in L1(R), which denotes the Banach space of all Lebesgue integrable
functions g on R with the norm

‖g‖1 =
∫

R
|g(t)| dt.

Then we define a convolution type operator by the form

(1.2) Lα,λ(f) =
∫

R
kα,λ(t)Tα(t)(f) dt (f ∈ X),

which exists as a Bochner integral.
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The purpose of this paper is to consider the convergence behavior (1.1) for the
family L of convolution type operators defined by (1.2) and give quantitative es-
timates of the rate of its convergence under certain appropriate conditions. Fur-
thermore, applications are discussed for various summation processes (cf. [1], [12])
and multiplier operators on X (cf. [4], [11], [12], [16]) as well as for the homoge-
neous Banach spaces on R (cf. [9], [11], [15], [17]), which include the Banach space
BUC(R) of all bounded uniformly continuous functions f on R with the norm

‖f‖∞ = sup{|f(t)| : t ∈ R}

and the Banach space Lp(R) of all the pth power Lebesgue integrable functions f
on R with the norm

‖f‖p =
(∫

R
|f(t)|p dt

)1/p
(1 ≤ p < ∞),

as special cases.
Certain portions of the method treated below can be carried out more generally

for spaces of functions defined on the r-dimensional Euclidean space Rr. However,
here we shall consider as carrier space only R1 = R in view of the great precision of
the results achievable, and the importance of this case in applications.

2. Convergence theorems

A family K = {kα,λ : α ∈ D,λ ∈ Λ} of functions in L1(R) is called an approximate
kernel if

(2.1) lim sup
α

(sup{‖kα,λ‖1 : λ ∈ Λ}) < ∞,

(2.2) lim
α

∫
R

kα,λ(t) dt = 1 uniformly in λ ∈ Λ

and for each fixed δ > 0,

(2.3) lim
α

∫
|t|≥δ

|kα,λ(t)| dt = 0 uniformly in λ ∈ Λ.

If kα,λ(t) ≥ 0 (a.e.t) for all α ∈ D and all λ ∈ Λ, then K is said to be positive. If∫
R

kα,λ(t) dt = 1

for all α ∈ D and all λ ∈ Λ, then K is said to be normal.

Remark 1. Let G = {gα}α∈D be a net of functions in L1(R). We define kα,λ =
gα for all α ∈ D and all λ ∈ Λ. Then G is called an approximate identity (or
summability kernel) if K is an approximate kernel. Thererfore, (2.1), (2.2) and (2.3)
reduce to the following conditions, respectively (cf. [3], [9]):

(2.4) lim sup
α

‖gα‖1 < ∞,

(2.5) lim
α

∫
R

gα(u) du = 1
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and for each fixed δ > 0,

(2.6) lim
α

∫
|u|≥δ

|gα(u)| du = 0.

Let I be an interval of R and 0 ∈ I. Let {f(α,t)}(α,t)∈D×I be a net of elements
in X and f ∈ X. Then lim(α,t)0 f(α,t) = f implies that for any ε > 0, there exist
an α0 ∈ D and a δ > 0 such that if α ≥ α0, α ∈ D and 0 < |t| < δ, t ∈ I, then
‖f(α,t) − f‖X < ε.

Lemma 2.1. Let K = {kα,λ : α ∈ D,λ ∈ Λ} be an approximate kernel. Let
{ϕα}α∈D be a net of bounded continuous functions from R to X which satisfy

(2.7) lim sup
α

(sup{‖ϕα(t)‖X : t ∈ R}) < ∞

and

(2.8) lim
(α,t)0

ϕα(t) = f.

Then we have

(2.9) lim
α

∥∥∥∫
R

kα,λ(t)ϕα(t) dt − f
∥∥∥

X
= 0 uniformly in λ ∈ Λ.

Proof. Let ε > 0 be given. Then by (2.8), there exist an α1 ∈ D and a δ > 0 such
that ‖ϕα(t) − f‖X < ε for all α ∈ D with α ≥ α1 and all t ∈ R with 0 < |t| < δ.
Also, by (2.1) and (2.7), there exist an α2 ∈ D and a constant C > 0 such that
‖kα,λ‖1 ≤ C and ‖ϕα(t)‖X ≤ C for all α ≥ α2, α ∈ D,λ ∈ Λ and all t ∈ R. Now,
we have∥∥∥∫

R
kα,λ(t)ϕα(t) dt − f‖X ≤

∫
R
|kα,λ(t)|‖ϕα(t) − f‖X dt +

∣∣∣∫
R

kα,λ(t) dt − 1
∣∣∣‖f‖X

= Iα,λ + Jα,λ,

say. Therefore, setting α3 = sup{α1, α2} we obtain

Iα,λ ≤ Cε + (C + ‖f‖X)
∫
|t|≥δ

|kα,λ(t)| dt (α ≥ α3, λ ∈ Λ),

which together with (2.3) implies limα Iα,λ = 0 uniformly in λ ∈ Λ. Also, by (2.2)
we have limα Jα,λ = 0 uniformly in λ ∈ Λ. Thus (2.9) holds. ¤

For each k ∈ L1(R) and q > 0, we define

µ(k; q) =
∫

R
|t|q|k(t)| dt,

which is called the qth absolute moment of k.
From now on we suppose that for each f ∈ X,

(2.10) lim sup
α

(sup{‖Tα(t)(f)‖X : t ∈ R}) < ∞

and

(2.11) lim
(α,t)0

Tα(t)(f) = f.
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Theorem 2.2. If K = {kα,λ : α ∈ D,λ ∈ Λ} is an approximate kernel, then L is
an approximation process on X.

Proof. Let f ∈ X be fixed. Then we define ϕα(t) = Tα(t)(f) for all α ∈ D and all
t ∈ R. Then (2.10) and (2.11) imply (2.7) and (2.8), respectively. Thus the desired
result follows from Lemma 2.1. ¤

Theorem 2.3. Let K = {kα,λ : α ∈ D,λ ∈ Λ} be a family of functions in L1(R)
satisfying (2.1) and (2.2). If

(2.12) lim
α

µ(kα,λ; q) = 0 uniformly in λ ∈ Λ

for some q > 0, then L is an approximation process on X.

Proof. We have ∫
|t|≥δ

|kα,λ(t)| dt ≤
µ(kα,λ; q)

δq
(δ > 0)

for all α ∈ D and all λ ∈ Λ, and so (2.12) implies (2.3). Therefore, the desired
result follows from Theorem 2.2. ¤

In the rest of this section, let {T (t) : t ∈ R} be a family of operators from X to
itself such that T (0) = I (the identity operator) and for each f ∈ X, the mapping
t 7→ T (t)(f) is bounded and strongly continuous on R, and let {εα}α∈D be a net of
positive real numbers.

Corollary 2.4. Let K = {kα,λ : α ∈ D,λ ∈ Λ} be an approximate kernel. Then the
following statements hold:

(a) Suppose that limα εα = 0, and define Tα(t) = T (t + εα) for all α ∈ D and all
t ∈ R. Then L is an approximation process on X.

(b) Suppose that lim supα εα < ∞, and define Tα(t) = T (tεα) for all α ∈ D and
all t ∈ R. Then L is an approximation process on X.

Corollary 2.5. Let K = {kα,λ : α ∈ D,λ ∈ Λ} be a family of functions in L1(R)
satisfying (2.1) and (2.2). If (2.12) holds for some q > 0, then statements (a) and
(b) in Corollary 2.4 hold.

Lemma 2.6. Let ϕ : R2 → R be continuous and let F : R → X be bounded and
strongly continuous. Let G = {gα}α∈D be an approximate identity. We define

(2.13) Fα(t) =
∫

R
gα(u)F (ϕ(t, u)) du (α ∈ D, t ∈ R).

Then the following statements hold:
(a) For each α ∈ D, Fα is bounded and strongly continuous on R.
(b) We have

(2.14) lim
(α,t)0

Fα(t) = F (ϕ(0, 0)).

Proof. (a) For all (t, u) ∈ R2 we have ‖F (ϕ(t, u))‖X ≤ C, where C = sup{‖F (s)‖X :
s ∈ R} < ∞, and so

(2.15) ‖Fα(t)‖X ≤ C‖gα‖1
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for all α ∈ D and all t ∈ R. We have ‖gα(u)F (ϕ(t, u))‖X ≤ C|gα(u)| for all t, u ∈ R
and all α ∈ D. Let t0 ∈ R. Then limt→t0 ‖gα(u)(F (ϕ(t, u))−F (ϕ(t0, u)))‖X = 0 for
each u ∈ R. Therefore, the dominated convergence theorem implies limt→t0 ‖Fα(t)−
Fα(t0)‖X = 0.

(b) Let ε > 0 be given. Then there exist a δ > 0 such that
√

t2 + u2 < δ implies
‖F (ϕ(t, u)) − F (ϕ(0, 0))‖X < ε. By (2.4), there exist a constant K > 0 and an
α0 ∈ D such that ‖gα‖1 ≤ K for all α ∈ D with α ≥ α0. Now we have

‖Fα(t) − F (ϕ(0, 0))‖X ≤
∫

R
|gα(u)|‖F (ϕ(t, u)) − F (ϕ(0, 0))‖X du

+
∣∣∣∫

R
gα(u) du − 1

∣∣∣‖F (ϕ(0, 0))‖X = Iα(t) + Jα,

say. Let α ≥ α0, α ∈ D and 0 < |t| < δ/2. Then we have
√

t2 + u2 ≤ |t| + |u| < δ
whenever |u| < δ/2, and so

Iα(t) ≤ Kε + (C + ‖F (ϕ(0, 0))‖X)
∫
|u|≥δ/2

|gα(u)| du,

which together with (2.6) implies lim(α,t)0 Iα(t) = 0. Also, by (2.5) we have limα Jα =
0. Thus (2.14) holds. ¤
Theorem 2.7. Let K = {kα,λ : α ∈ D,λ ∈ Λ} be an approximate kernel. Let
ϕ : R2 → R be continuous and ϕ(0, 0) = 0. Suppose that limα εα = 0, and define

(2.16) Tα(t)(f) =
1
εα

∫ εα

0
T (ϕ(t, u))(f) du (α ∈ D, t ∈ R, f ∈ X).

Then L is an approximation process on X.

Proof. We define gα = (1/εα)χ[0,εα] for all α ∈ D, where χA denotes the characteris-
tic function of the set A. Then G = {gα}α∈D is an approximate identity. Let f ∈ X
and we define F (s) = T (s)(f) for all s ∈ R in Lemma 2.6. Then (2.13) reduces to
(2.16) and since ‖gα‖1 = 1 for all α ∈ D, (2.10) hold because of (2.15). Also, (2.14)
implies (2.11) since ϕ(0, 0) = 0 and T (0) = I. Thus the desired result follows from
Theorem 2.2. ¤
Corollary 2.8. Let K = {kα,λ : α ∈ D,λ ∈ Λ} be a family of functions in L1(R)
satisfying (2.1) and (2.2). Suppose that limα εα = 0, and let T = {Tα(t) : α ∈ D, t ∈
R} be the family of operators definded by (2.16). If (2.12) holds for some q > 0,
then L is an approximation process on X.

Theorem 2.9. Let K = {kα,λ; α ∈ D,λ ∈ Λ} be an approximate kernel. Suppose
that limα εα = 0. Then the following statements hold:

(a) We define

Tα(t)(f) =
1
εα

∫ εα

0
T (t + u)(f) du (α ∈ D, t ∈ R, f ∈ X).

Then L is an approximation process on X.
(b) We define

Tα(t)(f) =
1
εα

∫ εα

0
T (tu)(f) du (α ∈ D, t ∈ R, f ∈ X).
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Then L is an approximation process on X.

Proof. (a) Take ϕ(t, u) = t + u, (t, u) ∈ R2 in Theorem 2.7.
(b) Take ϕ(t, u) = tu, (t, u) ∈ R2 in Theorem 2.7. ¤

Corollary 2.10. Let K = {kα,λ : α ∈ D,λ ∈ Λ} be a family of functions in L1(R)
satisfying (2.1) and (2.2). If limα εα = 0 and if (2.12) holds for some q > 0, then
the statements (a) and (b) in Theorem 2.9 hold.

Theorem 2.11. Let K = {kα,λ : α ∈ D,λ ∈ Λ} be an approximate kernel. Let
ϕ : R2 → R be continuous and ϕ(0, 0) = 0. Suppose that limα εα = +∞, and define

(2.17) Tα(t)(f) = εα

∫ ∞

0
e−εαuT (ϕ(t, u))(f) du (α ∈ D, t ∈ R, f ∈ X).

Then L is an approximation process on X.

Proof. We define gα(u) = εαe−εαuχ[0,∞)(u) for all α ∈ D and all u ∈ R. Then
G = {gα}α∈D is an approximate identity. Let f ∈ X and define F (s) = T (s)(f) for
all s ∈ R in Lemma 2.6. Then (2.13) reduces to (2.17) and since ‖gα‖1 = 1 for all
α ∈ D, (2.10) holds because of (2.15). Also, (2.14) implies (2.11) since ϕ(0, 0) = 0
and T (0) = I. Thus the desired result follows from Theorem 2.2. ¤
Corollary 2.12. Let K = {kα,λ : α ∈ D,λ ∈ Λ} be a family of functions in L1(R)
satisfying (2.1) and (2.2). Suppose that limα εα = +∞, and let T = {Tα(t) : α ∈
D, t ∈ R} be a family of operators defined by (2.17). If (2.12) holds for some q > 0,
then L is an approximation process on X.

Theorem 2.13. Let K = {kα,λ : α ∈ D,λ ∈ Λ} be an approximate kernel. Suppose
that limα εα = +∞. Then the following statements hold:

(a) We define

Tα(t)(f) = εα

∫ ∞

0
e−εαuT (t + u)(f) du (α ∈ D, t ∈ R, f ∈ X).

Then L is an approximation process on X.
(b) We define

Tα(t)(f) = εα

∫ ∞

0
e−εαuT (tu)(f) du (α ∈ D, t ∈ R, f ∈ X).

Then L is an approximation process on X.

Proof. (a) Take ϕ(t, u) = t + u for all (t, u) ∈ R2 in Theorem 2.11.
(b) Take ϕ(t, u) = tu for all (t, u) ∈ R2 in Theorem 2.11. ¤

Corollary 2.14. Let K = {kα,λ : α ∈ D,λ ∈ Λ} be a family of functions in L1(R)
satisfying (2.1) and (2.2). If limα εα = +∞ and if (2.12) holds for some q > 0,
then the statements (a) and (b) in Theorem 2.13 hold.

3. Convergence rates

Let f ∈ X and let δ > 0. Then we define

(3.1) ωα(f, δ) = sup{‖Tα(t)(f) − f‖X : 0 < |t| ≤ δ} (α ∈ D),

which is called the modulus of continuity of f .
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Lemma 3.1. (a) For each α ∈ D and f ∈ X, ωα(f, ·) is a monotone increasing
function on (0,∞).

(b) For every f ∈ X, lim(α,δ)+0
ωα(f, δ) = 0. In particular, if {ξα}α∈D is a net of

positive real numbers converging to zero, then limα ωα(f, ξα) = 0 for every f ∈ X.

Proof. Part (a) immediately follows from the definition (3.1). Part (b) follows from
the limit relation (2.11). ¤

In order to give quantitative estimate of the rate of convergence for approximation
processes L on X, we suppose that there exist constants C ≥ 1 and K > 0 such
that

(3.2) ωα(f, ξδ) ≤ (C + Kξ)ωα(f, δ)

for all α ∈ D, f ∈ X and all ξ, δ > 0.

Lemma 3.2. Suppose that there exists a constant K ≥ 1 such that

(3.3) ‖Tα(t)(f) − Tα(s)(f)‖X ≤ K‖Tα(t − s)(f) − f‖X

for all α ∈ D, t, s ∈ R and all f ∈ X. Then (3.2) holds with C = 1 for all
α ∈ D, f ∈ X and all ξ, δ > 0.

Proof. If δ1, δ2 > 0 and 0 < |t| ≤ δ1 + δ2, then there exist t1, t2 ∈ R such that
t = t1 + t2 and 0 < |t1| ≤ δ1, 0 < |t2| ≤ δ2. Therefore, by (3.3), we have

‖Tα(t)(f) − f‖X ≤ ‖Tα(t1 + t2)(f) − Tα(t2)‖X + ‖Tα(t2)(f) − f‖X

≤ K‖Tα(t1) − f‖X + ‖Tα(t2) − f‖X ≤ Kωα(f, δ1) + ωα(f, δ2),

which implies
ωα(f, δ1 + δ2) ≤ Kωα(f, δ1) + ωα(f, δ2).

Thus it follows from induction on n that ωα(f, nδ) ≤ (1 + (n− 1)K)ωα(f, δ) for all
n ∈ N, where N denotes the set of all natural numbers. Therefore, if ξ ≥ 1, then
denoting the largest positive integer not exceeding ξ by m, we have

ωα(f, ξδ) ≤ ωα(f, (m + 1)δ) ≤ (1 + mK)ωα(f, δ) ≤ (1 + ξK)ωα(f, δ).

If 0 < ξ < 1, then ωα(f, ξδ) ≤ ωα(f, δ) ≤ (1 + ξK)ωα(f, δ). ¤

Let B[X] denote the Banach algebra of all bounded linear operators from X to
itself with the usual operator norm ‖ · ‖B[X].

Remark 2. If for each α ∈ D, {Tα(t) : t ∈ R} is a strongly continuous group of
operators in B[X] satisfying K = sup{‖Tα(t)‖B[X] : α ∈ D, t ∈ R} < ∞, then (3.3)
holds for all α ∈ D, t, s ∈ R and all f ∈ X. If, in addition, each Tα(t) is isometric,
then (3.3) reduces to

‖Tα(t)(f) − Tα(s)(f)‖X = ‖Tα(t − s)(f) − f‖X .

For the basic theory of semigroups of operators on Banach spaces, we refer to [2],
[5], [6], [7], [8] and [13].
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Lemma 3.3. Let k ∈ L1(R) and f ∈ X. Then for all α ∈ D, δ > 0 and all q ≥ 1,

(3.4)
∥∥∥∫

R
k(t)(Tα(t)(f) − f) dt

∥∥∥
X

≤ (C‖k‖1 + Kc(k; q, δ))ωα(f, δ),

where
c(k; q, δ) = min{δ−qµ(k; q), δ−1(µ(k; q))1/q‖k‖1−1/q

1 }.

Proof. If |t| > δ, then by (3.2) we have

‖Tα(t)(f) − f‖X ≤ (C + Kδ−q|t|q)ωα(f, δ),

which always holds for 0 < |t| ≤ δ on account of (3.1) and C ≥ 1. Thus we derive

(3.5)
∥∥∥∫

R
k(t)(Tα(t)(f) − f) dt

∥∥∥
X
≤ (C‖k‖1 + Kδ−qµ(k; q))ωα(f, δ).

On the other hand, since

‖Tα(t)(f) − f‖X ≤ (C + K|t|/δ)ωα(f, δ),

using Hölder inequality we obtain∥∥∥∫
R

k(t)(Tα(t)(f) − f) dt
∥∥∥

X
≤ (C‖k‖1 + Kδ−1(µ(k; q))1/q‖k‖1−1/q

1 )ωα(f, δ),

which together with (3.5) establishes (3.4) for q > 1. If q = 1, then (3.5) is clearly
identical with (3.4). ¤

We assume that for each α ∈ D,

0 < xα := sup{‖kα,λ‖1 : λ ∈ Λ} < ∞

and
0 < yα,q := (sup{µ(kα,λ; q) : λ ∈ Λ})1/q < ∞ (q ≥ 1).

Furthermore, for any α ∈ D, f ∈ X we define

zα = sup
{∣∣∣∫

R
kα,λ(t) dt − 1

∣∣∣ : λ ∈ Λ
}

and
‖Lα(f) − f‖Λ = sup{‖Lα,λ(f) − f‖X : λ ∈ Λ}.

Note that L = {Lα,λ : α ∈ D,λ ∈ Λ} is an approximation process on X if and only
if limα ‖Lα(f) − f‖Λ = 0 for all f ∈ X.

We are now position to recast Theorem 2.3 in a quantitative form with the rate
of convergence. Let {δα}α∈D be a net of positive real numbers.

Theorem 3.4. For all f ∈ X,α ∈ D and all q ≥ 1,

(3.6) ‖Lα(f) − f‖Λ ≤ ‖f‖Xzα + (Cxα + K min{δ−q
α , δ−1

α x1−1/q
α })ωα(f, δαyα,q).

In particular, if K is positive and normal, then (3.6) reduces to

‖Lα(f) − f‖Λ ≤ (C + K min{δ−1
α , δ−q

α })ωα(f, δαyα,q).
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Proof. Taking k = kα,λ in Lemma 3.3, we obtain∥∥∥Lα,λ(f) −
∫

R
kα,λ(t) dtf

∥∥∥
X

≤ (Cxα + K min{δ−qyq
α,q, δ−1yα,qx

1−1/q
α })ωα(f, δ).

Thus putting δ = δαyα,q in the above inequality, the desired estimate (3.6) follows
from the inequality

‖Lα,λ(f) − f‖X ≤
∣∣∣∫

R
kα,λ(t) dt − 1

∣∣∣‖f‖X(3.7)

+
∥∥∥Lα,λ(f) −

∫
R

kα,λ(t) dtf
∥∥∥

X
(α ∈ D,λ ∈ Λ).

¤

As an immediate consequence of Theorem 3.4, we have the following corollary
which can be more convenient for later applications.

Corollary 3.5. For all f ∈ X and all α ∈ D,

(3.8) ‖Lα(f) − f‖Λ ≤ ‖f‖Xzα + (Cxα + K min{δ−2
α , δ−1

α x1/2
α })ωα(f, δαyα,2).

In particular, if K is positive and normal, then (3.8) reduces to

‖Lα(f) − f‖Λ ≤ (C + K min{δ−1
α , δ−2

α })ωα(f, δαyα,2).

Let f ∈ X and let δ > 0. Then we define

(3.9) ω∗
α(f, δ) = sup{‖Tα(t)(f) + Tα(−t)(f) − 2f‖X : 0 < t ≤ δ},

which is called the generalized modulus of continuity of f .

Lemma 3.6. (a) For each α ∈ D and f ∈ X, ω∗
α(f, ·) is a monotone increasing

function on (0,∞).
(b) ω∗

α(f, δ) ≤ 2ωα(f, δ) for all α ∈ D, f ∈ X and all δ > 0.
(c) For every f ∈ X, lim(α,δ)+0

ω∗
α(f, δ) = 0. In particular, if {ξα}α∈D is a net of

positive real numbers converging to zero, then limα ω∗
α(f, ξα) = 0 for every f ∈ X.

Proof. Parts (a) and (b) immediately follow from the definition (3.9). Part (c)
follows from Part (b) and Lemma 3.1 (b). ¤

Here let us impose the following condition on the generalized modulus of conti-
nuity: There exist positive constants A and B such that

(3.10) ω∗
α(f, ξδ) ≤ (A + Bξ)2ω∗

α(f, δ)

for all α ∈ D, f ∈ X and all ξ, δ > 0.

Lemma 3.7. Suppose that for all α ∈ D, s, t, u ∈ R and all f ∈ X,

(3.11) ‖Tα(s)(f)+Tα(t)(f)−2Tα(u)(f)‖X = ‖Tα(s−u)(f)+Tα(t−u)(f)−2f‖X

and Tα(0) = I. Then (3.10) holds with A = B = 1 for all α ∈ D, f ∈ X and all
ξ, δ > 0.
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Proof. Let n ∈ N, s ∈ R and f ∈ X. Then in view of (3.11), we have

‖Tα(ns)(f) + Tα(−ns)(f) − 2f‖X = ‖Tα(2ns)(f) − 2Tα(ns)(f) + Tα(0)(f)‖X

=
∥∥∥n−1∑

i=0

n−1∑
j=0

(Tα((i + j + 2)s)(f) − 2Tα((i + j + 1)s)(f) + Tα((i + j)s)(f))
∥∥∥

X

≤ n2‖Tα(s)(f) + Tα(−s)(f) − 2f‖X .

Therefore, if δ > 0 and 0 < t ≤ nδ, then we have

‖Tα(t) + Tα(−t)(f) − 2f‖X ≤ n2‖Tα(t/n)(f) + Tα(−t/n)(f) − 2f‖X ,

which yields ω∗
α(f, nδ) ≤ n2ω∗

α(f, δ). Therefore, if ξ ≥ 1, then denoting the largest
positive integer not exceeding ξ by m, we obtain

ω∗
α(f, ξδ) ≤ ω∗

α(f, (m + 1)δ) ≤ (m + 1)2ω∗
α(f, δ) ≤ (ξ + 1)2ω∗

α(f, δ).

If 0 < ξ < 1, then ω∗
α(f, ξδ) ≤ ω∗

α(f, δ) ≤ (1 + ξ)2ω∗
α(f, δ). ¤

Remark 3. If Tα(0) = I, then (3.11) implies that

‖Tα(t)(f) − Tα(s)(f)‖X = ‖Tα(t − s)(f) − f‖X (α ∈ D, f ∈ X, t, s ∈ R),

and so (3.3) holds with K = 1. If for each α ∈ D, {Tα(t) : t ∈ R} is a strongly
continuous group of isometric operators in B[X], then (3.11) always holds.

Lemma 3.8. Let k be an even function in L1(R) and f ∈ X. Then for all α ∈ D
and all δ > 0,

(3.12)
∥∥∥∫

R
k(t)(Tα(t)(f) − f) dt

∥∥∥
X

≤ ω∗
α(f, δ)

× (A2‖k‖1/2 + ABµ(k; 1)/δ + B2δ−2µ(k; 2)/2).

Proof. Since, by (3.10),

‖Tα(t)(f) + Tα(−t)(f) − 2f‖X ≤ (A + Bt/δ)2ω∗
α(f, δ),

we have ∥∥∥∫
R

k(t)(Tα(t)(f) − f) dt
∥∥∥

X
≤ ω∗

α(f, δ)
∫ ∞

0
(A + Bt/δ)2|k(t)| dt,

which immediately implies the desired inequality (3.12). ¤
In the rest of this section, we suppose that kα,λ is an even function in L1(R) for

all α ∈ D and all λ ∈ Λ.

Theorem 3.9. For all f ∈ X and all α ∈ D,

(3.13) ‖Lα(f) − f‖Λ ≤ ‖f‖Xzα +
1
2

(
A
√

xα +
B

δα

)2
ω∗

α(f, δayα,2).

In particular, if K is positive and normal, then (3.13) reduces to

‖Lα(f) − f‖Λ ≤ 1
2

(
A +

B

δα

)2
ω∗

α(f, δαyα,2).

Proof. Taking k = kα,λ and putting δ = δαyα,2 in Lemma 3.8, we obtain (3.13) by
(3.7) and yα,1 ≤ x

1/2
α yα,2 which follows from Hölder’s inequality. ¤
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Lemma 3.10. Suppose that for each α ∈ D, {Tα(t) : t ∈ R} is a strongly continuous
group of operators in B[X] with its infinitesimal generator Gα with domain D(Gα)
and K = sup{‖Tα(t)‖B[X] : α ∈ D, t ∈ R} < ∞. Let k be an even function in L1(R)
and f ∈ D(Gα). Then for all α ∈ D, δ > 0 and all q ≥ 1,

(3.14)
∥∥∥∫

R
k(t)(Tα(t)(f) − f) dt

∥∥∥
X

≤
(
µ(k; 1) +

Kµ(k; q + 1)
δq(q + 1)

)
ωα(Gα(f), δ).

Proof. Since

Tα(s)(f) − f =
∫ s

0
Tα(u)(Gα(f)) du

and k is even, we have∫
R

k(t)(Tα(t)(f) − f) dt =
∫ ∞

0
k(t)(Tα(t)(f) + Tα(−t)(f) − 2f) dt

=
∫ ∞

0
k(t)

{∫ t

0
(Tα(u)(Gα(f)) − Tα(−u)(Gα(f))) du

}
dt

=
∫ ∞

0
k(t)

{∫ t

0
(Tα(u)(Gα(f)) − Gα(f)) du

}
dt

+
∫ ∞

0
k(t)

{∫ t

0
(Gα(f) − Tα(−u)(Gα(f))) du

}
dt = g + h,

say. Now, since

‖Tα(u)(Gα(f)) − Gα(f)‖X ≤ (1 + Kδ−quq)ωα(Gα(f), δ)

(cf. Lemma 3.2, Remark 2 and the proof of Lemma 3.3), we obtain

‖g‖X ≤
∫ ∞

0
|k(t)|

{∫ t

0

(
1 +

K

δq
uq

)
ωα(Gα(f), δ) du

}
dt

= ωα(Gα(f), δ)
∫ ∞

0
|k(t)|

(
t +

K

δq(q + 1)
tq+1

)
dt

=
1
2
ωα(Gα(f), δ)

(
µ(k; 1) +

K

δq(q + 1)
µ(k; q + 1)

)
.

In a similar manner, we get the same estimate for ‖h‖X , and consequently the
desired inequality (3.14) is obtained. ¤

Theorem 3.11. Let {Tα(t) : t ∈ R} be as in Lemma 3.10 for each α ∈ D. Then
for all α ∈ D, f ∈ D(Gα) and all q ≥ 1,

(3.15) ‖Lα(f)−f‖Λ ≤ ‖f‖Xzα+yα,q+1

(
xq/(q+1)

α +
K

δq
α(q + 1)

)
ωα(Gα(f), δαyα,q+1).

In particular, if K is positive and normal, then (3.15) reduces to

‖Lα(f) − f‖Λ ≤ yα,q+1

(
1 +

K

δq
α(q + 1)

)
ωα(Gα(f, δαyα,q+1).

Proof. Taking k = kα,λ and putting δ = δαyα,q+1 in Lemma 3.10, we get (3.15) by
(3.7) and yα,1 ≤ x

q/(q+1)
α yα,q+1 which follows from Hölder’s inequality. ¤
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Corollary 3.12. Let {Tα(t) : t ∈ R} be as in Lemma 3.10 for each α ∈ D. Then
for all α ∈ D and all f ∈ D(Gα),

(3.16) ‖Lα(f) − f‖Λ ≤ ‖f‖Xzα + yα,2

(√
xα +

K

2δα

)
ωα(Gα(f), δαyα,2).

In particular, if K is positive and normal, then (3.16) reduces to

‖Lα(f) − f‖Λ ≤ yα,2

(
1 +

K

2δα

)
ωα(Gα(f), δαyα,2).

Remark 4. Let 1 ≤ p < ∞ and let Lp
2π(R) denote the Banach space of all 2π-

periodic, pth power Lebesgue integrable functions h with the norm

‖h‖p =
( 1

2π

∫ π

−π
|h(t)|p dt

)1/p
.

Let H = {hα,λ : α ∈ D,λ ∈ Λ} be a family of functions in L1
2π(R) having Fourier

series expansions

hα,λ(t) ∼
∞∑

j=−∞

ˆhα,λ(j)eijt, ˆhα,λ(j) :=
1
2π

∫ π

−π
hα,λ(t)e−ijt dt,

and we define
kα,λ =

1
2π

χ[−π,π]hα,λ (α ∈ D,λ ∈ Λ),

which belongs to L1(R). Then the convolution type operator Lα,λ defined by (1.2)
becomes

(3.17) Lα,λ(f) =
1
2π

∫ π

−π
hα,λ(t)Tα(t) dt (f ∈ X).

Consquently, all the results hold for the family L = {Lα,λ : α ∈ D,λ ∈ Λ} of
operators given by (3.17). Note that if hα,λ is nonnegative, then

(3.18) µ(kα,λ; 2) =
1
2π

∫ π

−π
t2hα,λ(t) dt ≤ π2

2
( ˆhα,λ(0) − Re( ˆhα,λ(1))),

where Re( ˆhα,λ(1)) denotes the real part of ˆhα,λ(1). Indeed, by Jordan’s inequality

(3.19)
2
π

t ≤ sin t ≤ t
(
0 ≤ t ≤ π

2

)
,

we have∫ π

−π
t2hα,λ(t) dt ≤ π2

∫ π

−π
hα,λ(t) sin2 t

2
dt =

π2

2

∫ π

−π
(1 − cos t)hα,λ(t) dt,

which yields (3.18).
In the following, let L = {Lα,λ : α ∈ D,λ ∈ Λ} be the family of operators defined

by (3.17), where hα,λ is nonnegative for all α ∈ D and all λ ∈ Λ, and we define

xα = sup{ ˆhα,λ(0) : λ ∈ Λ} < ∞ (α ∈ D),

(3.20) yα = (sup{ ˆhα,λ(0) − Re( ˆhα,λ(1)) : λ ∈ Λ})1/2 < ∞ (α ∈ D)

and
zα = sup{| ˆhα,λ(0) − 1| : λ ∈ Λ} (α ∈ D).
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Theorem 3.13. For all f ∈ X and all α ∈ D,

(3.21) ‖Lα(f) − f‖Λ ≤ ‖f‖Xzα +
(
Cxα +

Kπ√
2

min
{ π√

2δ2
α

,

√
xα

δα

})
ωα(f, δαyα).

In particular, if ˆhα,λ(0) = 1 for all α ∈ D and all λ ∈ Λ, then (3.21) reduces to

(3.22) ‖Lα(f) − f‖Λ ≤
(
C +

Kπ√
2

min
{ π√

2δ2
α

,
1
δα

})
ωα(f, δαyα)

and
yα = (sup{1 − Re( ˆhα,λ(1)) : λ ∈ Λ})1/2.

Proof. In view of (3.18), we have

(3.23) yα,2 ≤ π√
2
yα (α ∈ D),

and so ωα(f, δαyα,2) ≤ ωα(f, (π/
√

2)δαyα). Therefore, putting (
√

2/π)δα instead of
δα, the desired result follows from Corollary 3.5. ¤

Theorem 3.14. Suppose that hα,λ is even for all α ∈ D and all λ ∈ Λ. Then for
all f ∈ X and all α ∈ D,

(3.24) ‖Lα(f) − f‖Λ ≤ ‖f‖Xzα +
1
2

(
A
√

xα +
Bπ√
2δα

)2
ω∗

α(f, δαyα).

In particular, if ˆhα,λ(0) = 1 for all α ∈ D and all λ ∈ Λ, then (3.24) reduces to

(3.25) ‖Lα(f) − f‖Λ ≤ 1
2

(
A +

Bπ√
2δα

)2
ω∗

α(f, δαyα)

and

(3.26) yα = (sup{1 − ˆhα,λ(1) : λ ∈ Λ})1/2.

Proof. By (3.23) we have ω∗
α(f, δαyα,2) ≤ ω∗

α(f, (π/
√

2)δαyα). Therefore, putting
(
√

2/π)δα instead of δα, the desired result follows from Theorem 3.9. ¤

Theorem 3.15. Let {Tα(t) : t ∈ R} be as in Lemma 3.10 for each α ∈ D and
suppose that hα,λ is even for all α ∈ D and all λ ∈ Λ. Then for all α ∈ D and all
f ∈ D(Gα),

(3.27) ‖Lα(f) − f‖Λ ≤ ‖f‖Xzα +
π√
2
yα

(√
xα +

Kπ

2
√

2δα

)
ωα(Gα(f), δαyα).

In particular, if ˆhα,λ(0) = 1 for all α ∈ D and all λ ∈ Λ, then (3.27) reduces to

(3.28) ‖Lα(f) − f‖Λ ≤ π√
2
yα

(
1 +

Kπ

2
√

2δα

)
ωα(Gα(f), δαyα),

where yα is given by (3.26).

Proof. By (3.23) we have ωα(Gα(f), δαyα,2) ≤ ωα(Gα(f), (π/
√

2)δαyα). Therefore,
putting (

√
2/π)δα instead of δα, the desired result follows from Corollary 3.12. ¤
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4. Applications

Put N0 = N∪{0} and let A = {a(λ)
α,m : α ∈ D,m ∈ N0} be a family of scalars such

that
∑∞

m=0 |a
(λ)
α,m| < ∞ for each α ∈ D and λ ∈ Λ. Let {km}m∈N0 be a bounded

sequence of functions in L1(R) and we define

kα,λ =
∞∑

m=0

a(λ)
α,mkm (α ∈ D,λ ∈ Λ),

which belongs to L1(R) and

Kα,m(f) =
∫

R
km(t)Tα(t)(f) dt (f ∈ X),

which exists as a Bochner integral. Then the convolution type operator Lα,λ defined
by (1.2) becomes

(4.1) Lα,λ(f) =
∞∑

m=0

a(λ)
α,mKα,m(f) (f ∈ X).

Let L = {Lα,λ : α ∈ D,λ ∈ Λ} be the family of operators given by (4.1). The
family {Kα,m : α ∈ D,m ∈ N0} is called an A-summation process on X if the
family L is an approximation process on X. Consequently, the results obtained in
the preceding sections are applicable to the family L. In the following, we especially
restrict ourselves to the case where A is stochastic, i.e.,

a(λ)
α,m ≥ 0 (α ∈ D,m ∈ N0, λ ∈ Λ),

∞∑
m=0

a(λ)
α,m = 1 (α ∈ D,λ ∈ Λ)

and km is a probability density function in L1(R) for each m ∈ N0.

Theorem 4.1. Let q ≥ 1 and let

yα,q :=
(
sup

{ ∞∑
m=0

a(λ)
α,mµm(q) : λ ∈ Λ

})1/q
< ∞ (α ∈ D),

where µm(q) := µ(km; q) < ∞. Then the following statements hold:
(a) For all f ∈ X and all α ∈ D,

‖Lα(f) − f‖Λ ≤ (C + K min{δ−1
α , δ−q

α })ωα(f, δαyα,q).

(b) If km is an even function for each m ∈ N0, then for all f ∈ X and all α ∈ D,

‖Lα(f) − f‖Λ ≤ 1
2

(
A +

B

δα

)2
ω∗

α(f, δαyα,2).

(c) Let {Tα(t) : t ∈ R} be as in Lemma 3.10 for each α ∈ D. If km is an even
function for each m ∈ N0, then for all α ∈ D and all f ∈ D(Gα),

‖Lα(f) − f‖Λ ≤ yα,q+1

(
1 +

K

δq
α(q + 1)

)
ωα(Gα(f), δαyα,q+1).

Proof. K is positive and normal. Therefore, (a), (b) and (c) follow from Theorems
3.4, 3.9 and 3.11, respectively. ¤
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Here we mention several concrete examples of functions km,m ∈ N0, which are
induced by various probability density functions defined as follows:

Let {αm}m∈N0 and {βm}m∈N0 be sequences of positive real numbers, and let
q > 0.

(1◦) Gauss type distribution:

km(t) :=
√

1
παm

exp
(
− t2

αm

)
(t ∈ R).

Then we have
µm(q) =

1√
π

Γ
(q + 1

2
)
αq/2

m ,

where

Γ (x) :=
∫ ∞

0
tx−1e−t dt (x > 0)

is the gamma function. In particular, we have µm(1) =
√

αm/π, µm(2) = αm/2.
(2◦) Laplace type distribution:

km(t) :=
1

2αm
exp

(
− |t|

αm

)
(t ∈ R).

Then we have
µm(q) = qΓ (q)αq

m,

and so µm(1) = αm and µm(2) = 2α2
m.

(3◦) Student (t) type distribution:

km(t) :=
√

αm

π

Γ (βm)
Γ

(
βm − 1

2

)(1 + αmt2)−βm (t ∈ R).

Then we have

µm(q) =
Γ

( q+1
2

)
√

π

( 1
√

αm

)q Γ
(
βm − q+1

2

)
Γ

(
βm − 1

2

) ,

and so

µm(1) =
1

√
παm

Γ (βm − 1)
Γ

(
βm − 1

2

) , µm(2) =
1

αm(2βm − 3)
.

(4◦) Gamma type distribution:

km(t) :=

{
βαm

m

Γ (αm) t
αm−1e−βmt (t > 0)

0 (t ≤ 0).

Then we have

µm(q) =
1

βq
m

Γ (q + αm)
Γ (αm)

,

and so

µm(1) =
αm

βm
, µm(2) =

αm(αm + 1)
β2

m

.

(5◦) Beta type distribution:

km(t) :=

{
1

B(αm,βm) t
αm−1(1 − t)βm−1 (0 < t < 1)

0 (t ≤ 0 or 1 ≤ t),
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where

B(x, y) :=
∫ 1

0
tx−1(1 − t)y−1 dt (x, y > 0)

is the beta function. Then we have

µm(q) =
B(αm + q, βm)

B(αm, βm)
=

Γ (αm + βm)
Γ (αm)

Γ (αm + q)
Γ (αm + βm + q)

,

and so

µm(1) =
αm

αm + βm
, µm(2) =

αm(αm + 1)
(αm + βm)(αm + βm + 1)

.

(6◦) Landau type distribution:

km(t) :=

{
αm

2B(1/αm,βm)(1 − |t|αm)βm−1 (|t| ≤ 1)

0 (|t| > 1).

Then we have

µm(q) =
Γ

( q+1
αm

)
Γ

(
1

αm

) Γ
(
βm + 1

αm

)
Γ

(
βm + q+1

αm

) ,

and so

µm(1) =
Γ

(
2

αm

)
Γ

(
1

αm

) Γ
(
βm + 1

αm

)
Γ

(
βm + 2

αm

) , µm(2) =
Γ

(
3

αm

)
Γ

(
1

αm

) Γ
(
βm + 1

αm

)
Γ

(
βm + 3

αm

) .

In particular, if αm = 2 for all m ∈ N0, then

µm(q) =
Γ

( q+1
2

)
√

π

Γ
(
βm + 1

2

)
Γ

(
βm + q+1

2

) ,

and so

µm(1) =
1√
π

Γ
(
βm + 1

2

)
βmΓ (βm)

, µm(2) =
1

2βm + 1
.

(7◦) Weibull type distribution:

km(t) :=

{
βm

αm
tβm−1 exp

(
− tβm

αm

)
(t > 0)

0 (t ≤ 0).

Then we have

µm(q) =
qα

q/βm
m

βm
Γ

( q

βm

)
,

and so

µm(1) =
α

1/βm
m

βm
Γ

( 1
βm

)
, µm(2) =

2α
2/βm
m

βm
Γ

( 2
βm

)
.

Let {hm}m∈N0 be a bounded sequence of nonnegative functions in L1
2π(R) having

Fourier series expansions

hm(t) ∼
∞∑

j=−∞
ĥm(j)eijt,
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and we define

Hα,m(f) =
1
2π

∫ π

−π
hm(t)Tα(t)(f) dt (f ∈ X),

which exists as a Bochner integral. Suppose that a
(λ)
α,m ≥ 0 for all α ∈ D,m ∈ N0

and all λ ∈ Λ, and we define

(4.2) Lα,λ(f) =
∞∑

m=0

a(λ)
α,mHα,m(f) (f ∈ X),

which converges in X. Furthermore, for each α ∈ D we define

xα = sup
{ ∞∑

m=0

a(λ)
α,mĥm(0) : λ ∈ Λ

}
< ∞,

(4.3) yα =
(
sup

{ ∞∑
m=0

a(λ)
α,m(ĥm(0) − Re(ĥm(1)) : λ ∈ Λ

})1/2
< ∞

and

zα = sup
{∣∣∣ ∞∑

m=0

a(λ)
α,mĥm(0) − 1

∣∣∣ : λ ∈ Λ
}

.

Theorem 4.2. The following statements hold:
(a) The inequality (3.21) holds for all f ∈ X and all α ∈ D. In particular, if A

is stochastic and if ĥm(0) = 1 for all m ∈ N0, then (3.21) reduces to (3.22) and

yα = sup
{

1 −
∞∑

m=0

a(λ)
α,mRe(ĥm(1)) : λ ∈ Λ

}
.

(b) Suppose that hm is an even function for each m ∈ N0. Then (3.24) holds for
all f ∈ X and all α ∈ D. In particular, if A is stochastic and if ĥm(0) = 1 for all
m ∈ N0, (3.24) reduces to (3.25) and

(4.4) yα =
(
sup

{
1 −

∞∑
m=0

a(λ)
α,mĥm(1) : λ ∈ Λ

})1/2
.

(c) Let {Tα(t) : t ∈ R} be as in Lemma 3.10 for each α ∈ D and suppose that hm

is an even function for each m ∈ N0. Then (3.27) holds for all α ∈ D and all
f ∈ D(Gα). In particular, if A is stochastic and if ĥm(0) = 1 for all m ∈ N0, then
(3.27) reduces to (3.28) and yα is given by (4.4).

Proof. We define

hα,λ =
∞∑

m=0

a(λ)
α,mhm (α ∈ D,λ ∈ Λ),

which is nonnegative and belongs to L1
2π(R). Then (3.17) and (3.20) turn out (4.2)

and (4.3), respectively (cf. Remark 4). Therefore, (a), (b) and (c) follow from
Theorems 3.13, 3.14 and 3.15, respectively. ¤
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In the following, we especially restrict ourselves to the case where A is stochastic
and

h0(t) = 1, hm(t) = 1 + 2
m∑

j=1

θm(j) cos jt ≥ 0 (m ∈ N, t ∈ R),

where (θm(j)) (m, j = 1, 2, . . . , ) is a lower triangular infinite matrix of real numbers.
Therefore, ĥm(0) = 1 for all m ∈ N0, and so (4.3) reduces to

yα =
(
sup

{ ∞∑
m=0

a(λ)
α,m(1 − θm(1)) : λ ∈ Λ

})1/2
, θ0(1) := 0.

Remark 5. Applying the Abel’s transfomation twice to the function hm(t), we
have

hm(t) =
m−1∑
j=0

(j + 1)Fj(t)∆2θm(j) + (m + 1)θm(m)Fm(t), θm(0) := 1,

where

Fn(t) =
n∑

j=−n

(
1 − |j|

n + 1

)
eijt =

1
n + 1

{sin 1
2(n + 1)t
sin t

2

}2

is the nth Fejér kernel and

∆2θm(j) = θm(j) − 2θm(j + 1) + θm(j + 2).

Therefore, if θm(m) ≥ 0 and {θm(j)}j∈N0 is convex, i.e., ∆2θm(j) ≥ 0 for all j ∈ N0,
then hm(t) is a nonnegative, even trigonometric polynomial of degree at most m.

Several examples of θm(j) produce important positive summability kernels given
as follows:

(8◦) Fejér :

θm(j) =

{
1 − j

m+1 (1 ≤ j ≤ m)
0 (j > m).

(9◦) de la Vallée-Poussin :

θm(j) =

{
(m!)2

(m−j)!(m+j)! (1 ≤ j ≤ m)

0 (j > m).

(10◦) Fejér-Korovkin :

θm(j) =

{
Am

∑m−j
n=0 anaj+n (1 ≤ j ≤ m)

0 (j > m),

where

an = sin
( n + 1

m + 2

)
π (n = 0, 1, 2, . . .m), Am =

( m∑
n=0

a2
n

)−1
.

In this case, we have

hm(t) = Am

∣∣∣ m∑
n=0

aneint
∣∣∣2, θm(1) = cos

( π

m + 2

)
.
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(11◦) Nörlund :

θm(j) =

{
Qm−j

Qm
(1 ≤ j ≤ m)

0 (j > m),
where

0 < q0 ≤ qm ≤ qm+1, Qm =
m∑

n=0

qn (m ∈ N0).

Obviously, if qm = 1 for all m ∈ N0, then the Nörlund kernel reduces to the Fejér
kernel.

(12◦) Cesàro:

θm(j) =


C

(β)
m−j

C
(β)
m

(1 ≤ j ≤ n)

0 (j > m),
(β ≥ 1)

where τ > −1 and

C
(τ)
0 = 1, C(τ)

n =
(

n + τ

n

)
=

(τ + 1)(τ + 2) · · · (τ + n)
n!

(n ∈ N).

Note that if qm = C
(β−1)
m for all m ∈ N0, then the Nörlund kernel reduces to the

Cesàro kernel. In particular, if β = 1, then the Cesàro kernel turns out the Fejér
kernel.

Other important examples of the sequences {hm}m∈N0 of nonnegative, even func-
tions in C2π(R) with ĥm(0) = 1 are the following, where C2π(R) denotes the Banach
space of all 2π-periodic, continuous functions h on R with the norm

‖h‖∞ = max{|h(t)| : |t| ≤ π}.
(13◦) Jackson :

hm(t) = hm,s(t) = cm,s


(

sin((m+1)t/2)
sin(t/2)

)2s
if t is not a multiple of 2π

(m + 1)2s if t is a multiple of 2π,

where s ∈ N and the normalizing constant cm,s > 0 is taken in such a way that

1
π

∫ π

0
hm(t) dt = 1.

Since hm(t) = cm,s(m + 1)sFm(t)s, hm,s(t) is a nonnegative, even triginometric
polynomial of degree ms and we have cm,1 = 1/(m + 1) for s = 1, and so hm,1(t)
becomes the Fejér kernel. Also, we have

cm,2 =
3

(m + 1)(2(m + 1)2 + 1)
, ˆhm,2(1) =

2m(m + 2)
2m(m + 2) + 3

.

Furthermore, making use of Jordan’s inequality (3.19) we have that for s ≥ 3,(π

2

)1−2s 2s − 1
2s

(m + 1)1−2s < cm,s ≤
(π

2

)2s
(m + 1)1−2s

and

0 < 1 − ˆhm,s(1) <
(π

2

)2(2s−1) 8s

3π(2s − 3)
(m + 1)−2.
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(14◦) Abel-Poisson :

hm(t) = 1 + 2
∞∑

n=1

rn
m cos nt (t ∈ R),

where {rm}m∈N0 is a sequence of real numbers converging to one such that 0 ≤
rm < 1 for all m ∈ N0. Note that

hm(t) =
1 − r2

m

(1 − rm)2 + 4rm sin2(t/2)

and (4.3) becomes

yα =
(
sup

{ ∞∑
m=0

a(λ)
α,m(1 − rm) : λ ∈ Λ

})1/2
.

(15◦) Gauss-Weierstrass :

hm(t) =
√

π

ρm

∞∑
n=−∞

exp
{
−(t − 2πn)2

4ρm

}
(t ∈ R),

where {ρm}m∈N0 is a sequence of positive real numbers converging to zero. We can
rewrite hm(t) as

hm(t) = 1 + 2
∞∑

n=1

e−ρmn2
cos nt,

and so (4.3) becomes

yα =
(
sup

{ ∞∑
m=0

a(λ)
α,m(1 − e−ρm) : λ ∈ Λ

})1/2
.

Let Z denote the set of all integers, and let P = {Pj}j∈Z be a sequence of
projection operators in B[X] satisfying the following conditions:
(P-1) P is orthogonal, i.e., PjPn = δj,nPn for all j, n ∈ Z, where δj,n denotes

Kronecker’s symbol.
(P-2) P is fundamental, i.e., the linear span of the set ∪j∈ZPj(X) is dense in X.
(P-3) P is total, i.e., if f ∈ X and Pj(f) = 0 for all j ∈ Z, then f = 0.
For any f ∈ X, we associate its (formal) Fourier series expansion

(4.5) f ∼
∞∑

j=−∞
Pj(f).

An operator T ∈ B[X] is called a multiplier operator on X if there exists a sequence
{τj}j∈Z of scalars such that for every f ∈ X,

(4.6) T (f) ∼
∞∑

j=−∞
τjPj(f),

and the following notation is used:

T ∼
∞∑

j=−∞
τjPj
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(cf. [4], [11], [12], [16]). Let M [X] denote the set of all multiplier operators on X,
which is a commutative closed subalgebra of B[X] containing I.

Remark 6. The expansion (4.5) represents a generalization of the concept of
Fourier series in a Banach space X associated with a fundamental, total, biorthog-
onal system F = {fj , f

∗
j }j∈Z. Here, {fj}j∈Z and {f∗

j }j∈Z are sequences of elemets
in X and X∗ (the dual space of X), respectively, such that the linear span of the
set {fj : j ∈ Z} is dense in X (fundamental), f ∈ X and f∗

j (f) = 0 for all j ∈ Z
imply f = 0 (total), and f∗

j (fn) = δj,n for all j, n ∈ Z (biorthogonal). Then (4.5)
and (4.6) read

(4.7) f ∼
∞∑

j=−∞
f∗

j (f)fj and T (f) ∼
∞∑

j=−∞
τjf

∗
j (f)fj ,

respectively (cf. [10], [14]).
Let T = {Tα(t) : α ∈ D, t ∈ R} be a family of operators in M [X] having the

expansions

(4.8) Tα(t) ∼
∞∑

j=−∞
vα,j(t)Pj (α ∈ D, t ∈ R)

with

(4.9) sup{‖Tα(t)‖B[X] : t ∈ R} < ∞

for each α ∈ D, where V = {vα,j : α ∈ D, j ∈ Z} is a family of scalar-valued
continuous functions on R such that

(4.10) cα,λ,j = cα,λ,j(K, V) :=
∫

R
kα,λ(t)vα,j(t) dt < ∞

for each α ∈ D,λ ∈ Λ and j ∈ Z. Then Condition (P-2) and (4.9) imply that
for each α ∈ D and f ∈ X, the mapping t 7→ Tα(t)(f) is bounded and strongly
continuous on R. Also, the convolution type opetator Lα,λ defined by (1.2) belongs
to M [X] and

(4.11) Lα,λ ∼
∞∑

j=−∞
cα,λ,jPj (α ∈ D,λ ∈ Λ).

Furthermore, if for each j ∈ Z,

(4.12) lim
(α,t)0

vα,j(t) = 1

and if

(4.13) lim sup
(α,t)0

‖Tα(t)‖B[X] < ∞,

then Condition (P-2) implies the limit relation (2.11) for every f ∈ X. Conse-
quently, the results obtained in the preceding sections are applicable to the family
L = {Lα,λ : α ∈ D,λ ∈ Λ} of multiplier operators having the expansions given by
(4.11).
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In the following, we especially restrict ourselves to the case where Tα(t) is induced
by a uniformly bounded family T = {T (t) : t ∈ R} of operators in M [X] having the
expansions

(4.14) T (t) ∼
∞∑

j=−∞
vj(t)Pj (t ∈ R),

where {vj}j∈Z is a sequence of scalar-valued continuous functions on R such that
vj(0) = 1 for all j ∈ Z. Let {εα}α∈D be a net of positive real numbers such that
lim supα εα < ∞ and let Tα(t) = T (tεα) for all α ∈ D and all t ∈ R. Then (4.8)
holds with vα,j(t) = vj(tεα) and (4.11) holds with

(4.15) cα,λ.j =
∫

R
kα,λ(t)vj(tεα) dt < ∞ (α ∈ D,λ ∈ Λ, j ∈ Z).

Furthermore, (4.12) holds for each j ∈ Z and since

sup{‖Tα(t)‖B[X] : α ∈ D, t ∈ R} ≤ sup{‖T (s)‖B[X] : s ∈ R} < ∞,

(4.13) holds. In particular, if {ξj}j∈Z is a sequence of scalars and vj(t) = eξjt for
all j ∈ Z and all t ∈ R, then T becomes a strongly continuous group of operators
in M [X] and (4.15) reduces to

cα,λ,j =
∫

R
kα,λ(t)eξjtεα dt (α ∈ D,λ ∈ Λ, j ∈ Z).

Furthermore, the infinitesimal genetator G of T with domain D(G) satisfies

G(f) ∼
∞∑

j=−∞
ξjPj(f) (f ∈ D(G)),

and if {Sn}n∈N0 denotes the sequence of the nth partial sum operators of the Fourier
series expansion (4.5), that is,

Sn =
n∑

j=−n

Pj (n ∈ N0)

and if the sequence {σn}n∈N0 of the Cesàro mean operators defined by

σn =
1

n + 1

n∑
m=0

Sm =
n∑

j=−n

(
1 − |j|

n + 1

)
Pj (n ∈ N0)

is uniformly bounded, then

D(G) = {f ∈ X : g ∼
∞∑

j=−∞
ξjPj for some g ∈ X}

(cf. [11, Proposition 2]). Note that D(Gα) = D(G), Gα = εαG for each α ∈ D.
Also, we have

ωα(f, δ) = ω(f, δεα) (f ∈ X,α ∈ D, δ > 0),

where
ω(f, ξ) := sup{‖T (t)(f) − f‖X : 0 < |t| ≤ ξ} (ξ > 0)
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denotes the modulus of continuity of f associated with T , and

ω∗
α(f, δ) = ω∗(f, δεα) (f ∈ X,α ∈ D, δ > 0),

where

ω∗(f, ξ) := sup{‖T (t)(f) + T (−t)(f) − 2f‖X : 0 < t ≤ ξ} (ξ > 0)

denotes the generalized modulus of continuity of f associated with T .
Finally, we restrict ourselves to the case where X is a homogeneous Banach space

on R (cf. [15], [17]). That is, (X, ‖ · ‖X) is a Banach space of Lebesgue measurable
functions on R which satisfies the following conditions:
(H-1) The right translation oprator Tt defined by

Tt(f)(·) = f(· − t) (f ∈ X)

belongs to B[X] and it is isometric on X for each t ∈ R.
(H-2) For each f ∈ X, the mapping t 7→ Tt(f) is strongly continuous on R.

Typical examples of homogeneous Banach spaces on R are BUC(R) and Lp(R) (1 ≤
p < ∞).

If a homogeneous Banach space (X, ‖ · ‖X) on R is a linear subspace of L1
2π(R)

and if it is continuously embedded in L1
2π(R), i.e., there exists a constant K > 0

such that
‖f‖1 ≤ K‖f‖X

for all f ∈ X, then X is called a 2π-periodic homogeneous Banach space on R (cf.
[9], [11]). Typical examples of 2π-periodic homogeneous Banach spaces on R are
C2π(R) and Lp

2π(R) (1 ≤ p < ∞). For other examples, see [11] (cf. [9], [15], [17]).
Now let X be a 2π-periodic homogeneous Banach space on R. Let T = {Tt : t ∈

R} be the family of right translation operators on X, which is an isometric strongly
continuous group in B[X]. We define

fj(t) = eijt (j ∈ Z, t ∈ R) and f∗
j (f) = f̂(j) (j ∈ Z, f ∈ X).

Then F = {fj , f
∗
j }j∈Z becomes a fundamental, total, biorthogonal system (cf. [9,

Theorems 2.7, 2.11 and 2.12]) and (4.7) reads

f ∼
∞∑

j=−∞
f̂(j)eij· and T (f) ∼

∞∑
j=−∞

τj f̂(j)eij·.

Furthermore, we have

T (t)(f) ∼
∞∑

j=−∞
f̂(j)eij(·−t) (t ∈ R, f ∈ X)

(cf. (4.14)),

ω(f, ξ) = sup{‖f(· − t) − f(·)‖X : 0 < |t| ≤ ξ} (f ∈ X, ξ > 0)

and

ω∗(f, ξ) = sup{‖f(· + t) + f(· − t) − 2f(·)‖X : 0 < t ≤ ξ} (f ∈ X, ξ > 0).
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