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APPROXIMATION PROCESSES OF CONVOLUTION TYPE
OPERATORS IN BANACH SPACES

TOSHIHIKO NISHISHIRAHO

ABSTRACT. We consider the convergence of approximation processes of convo-
lution type operators in Banach spaces and give quantitative estimates of the
rate of their convergence in terms of the modulus of continuity and higher order
abosolute moments of approximate kernels. Furthermore, applications are dis-
cussed for various summation processes and multiplier operators in connection
with Fourier series expansions corresponding to a total, fundamental sequence
of mutually orthogonal projections as well as for homogeneous Banach spaces
which include the certain classical function spaces, as particular cases. We also
give several concrete examples of approximating operators from a probabilistic
point of view. These can be induced by various probability density functuions,
together with various positive summability kernels.

1. INTRODUCTION

Let X be a Banach space with norm || - |x. Let £ = {Ly ) : @ € D, X € A} be
a family of operators from X to itself, where D is a directed set and A is an index
set. Then the family £ is called an approximation process on X if for every f € X,

(1.1) lim || Lo (f) — fllx =0 uniformly in A € A.

Here we consider a family of convolutuion type operators on X defined as follows:

Let ¥ = {T,(t) : « € D,t € R} be a family of operators from X to itself, where R
denotes the real line, such that for each o € D, f € X, the mapping t — T (t)(f) is
bounded and strongly continuous on R. Let & = {ky ) : @ € D, X € A} be a family
of functions in L!(R), which denotes the Banach space of all Lebesgue integrable
functions g on R with the norm

lglls = /R l9(t)] dt.

Then we define a convolution type operator by the form

(1.2) Laa(f) = /R ko r(OTu((N)dt (f € X)),

which exists as a Bochner integral.
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The purpose of this paper is to consider the convergence behavior (1.1) for the
family £ of convolution type operators defined by (1.2) and give quantitative es-
timates of the rate of its convergence under certain appropriate conditions. Fur-
thermore, applications are discussed for various summation processes (cf. [1], [12])
and multiplier operators on X (cf. [4], [11], [12], [16]) as well as for the homoge-
neous Banach spaces on R (cf. [9], [11], [15], [17]), which include the Banach space
BUC(R) of all bounded uniformly continuous functions f on R with the norm

[flloo = sup{|f(?)] : t € R}

and the Banach space LP(R) of all the pth power Lebesgue integrable functions f
on R with the norm

1= ([1rora)”  @<p<oo

as special cases.

Certain portions of the method treated below can be carried out more generally
for spaces of functions defined on the r-dimensional Euclidean space R". However,
here we shall consider as carrier space only R! = R in view of the great precision of
the results achievable, and the importance of this case in applications.

2. CONVERGENCE THEOREMS

A family & = {ko ) : @ € D, \ € A} of functions in L!(R) is called an approximate
kernel if

(2.1) lim sup(sup{||kaall1 : A € 4}) < o0,
(2.2) lim/ kax(t)dt =1 uniformly in A € A
@ Jr
and for each fixed § > 0,
(2.3) lim |ka(t)]dt =0 uniformly in A € A.
“ o

If ko A(t) > 0 (a.e.t) for all &« € D and all A € A, then R is said to be positive. If

/ ko x(t)dt =1
R

for all @ € D and all A € A, then R is said to be normal.

Remark 1. Let 8 = {go}aep be a net of functions in L*(R). We define k, » =
go for all @ € D and all A € A. Then & is called an approximate identity (or
summability kernel) if £ is an approximate kernel. Thererfore, (2.1), (2.2) and (2.3)
reduce to the following conditions, respectively (cf. [3], [9]):

(2.4) limsup [|ga|l1 < o0,
(6%

(2.5) lién/Rga(u) du =1
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and for each fixed § > 0,
(2.6) lim |ga(u)| du = 0.
@ Jul>8

Let I be an interval of R and 0 € I. Let {f(qs}(a,nepxi be a net of elements
in X and f € X. Then lim(,), f(a,s) = f implies that for any € > 0, there exist
an ag € D and a 6 > 0 such that if @ > ap,a € D and 0 < [t| < d,t € I, then
| fa) — fllx <e

Lemma 2.1. Let & = {ko) : @« € D,A € A} be an approzimate kernel. Let
{¢a}acp be a net of bounded continuous functions from R to X which satisfy

(2.7) ti sup(sup a (1) + ¢ € B}) < o0
and
(2.8) lim ¢, (t) = f.

(a,t)o

Then we have
(2.9) limH/ kax(t)pa(t) dt — fHX =0 uniformly in A € A.
@ JR

Proof. Let € > 0 be given. Then by (2.8), there exist an a; € D and a § > 0 such
that ||@a(t) — fllx < € for all @« € D with @ > a7 and all ¢ € R with 0 < |t| < 4.
Also, by (2.1) and (2.7), there exist an ag € D and a constant C' > 0 such that
|Eaxlli < C and [Jea(t)||x < C for all @ > as,a € D,X € A and all t € R. Now,
we have

| [ Far®sattyat = flx < [ ran(Ollieatt) = flx dt+ | [ Banttyae=1]if1x

= Lo + Ja,)\v
say. Therefore, setting as = sup{ay, @z} we obtain

Ior <Ce+ (C+ Iflx) [ Mealdt @z agre )
t|>6

which together with (2.3) implies lim, I, » = 0 uniformly in A € A. Also, by (2.2)

we have lim, J, » = 0 uniformly in A € A. Thus (2.9) holds. O

For each k € L*(R) and ¢q > 0, we define

(ks g) = / (1)) i,

which is called the gth absolute moment of k.
From now on we suppose that for each f € X,

(2.10) lim;up(sup{]]Ta(t)(f)|]X :teR}) < o0

and

(2.11) lim Ta(t)(f) = f.

(Oé,t)()
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Theorem 2.2. If R = {ko ) : @ € D, X\ € A} is an approximate kernel, then £ is
an approximation process on X.

Proof. Let f € X be fixed. Then we define ¢, (t) = To(t)(f) for all « € D and all
t € R. Then (2.10) and (2.11) imply (2.7) and (2.8), respectively. Thus the desired
result follows from Lemma 2.1. g

Theorem 2.3. Let & = {ko ) : @« € D,\ € A} be a family of functions in L'(R)
satisfying (2.1) and (2.2). If

(2.12) lim pt(kq 23 q) =0 uniformly in X € A
(0%
for some q > 0, then £ is an approximation process on X.

Proof. We have
ko
[ hastolar < 25220 (5
[t]>d

for all @« € D and all A € A, and so (2.12) implies (2.3). Therefore, the desired
result follows from Theorem 2.2. g

In the rest of this section, let {T'(¢) : ¢ € R} be a family of operators from X to
itself such that 7'(0) = I (the identity operator) and for each f € X, the mapping
t — T(t)(f) is bounded and strongly continuous on R, and let {€,}oecp be a net of
positive real numbers.

Corollary 2.4. Let R = {ko ) : @« € D, X € A} be an approzimate kernel. Then the
following statements hold:

(a) Suppose that lim, €4 = 0, and define T,,(t) = T(t + €4) for all o € D and all
t e R. Then £ is an approximation process on X.

(b) Suppose that limsup, eo < 00, and define T, (t) = T'(teys) for all « € D and
all t € R. Then £ is an approximation process on X.

Corollary 2.5. Let & = {kq : @ € D,\ € A} be a family of functions in L'(R)
satisfying (2.1) and (2.2). If (2.12) holds for some q > 0, then statements (a) and
(b) in Corollary 2.4 hold.

Lemma 2.6. Let ¢ : R?> — R be continuous and let F : R — X be bounded and
strongly continuous. Let & = {go}tacp be an approzimate identity. We define

(2.13) FMO:AQJMF@GWDML (o € D,t € R).

Then the following statements hold:
(a) For each a € D, F, is bounded and strongly continuous on R.
(b) We have

(2.14) lim Fy(t) = F((0,0)).

(Oé,t)o

Proof. (a) For all (t,u) € R? we have || F(¢(t,u))||x < C, where C = sup{||F(s)]||x :
s € R} < oo, and so

(2.15) [IFa®lx < Cllgall
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for all @« € D and all t € R. We have ||go(u)F(o(t,u))||x < Clga(u)| for all t,u € R
and all @ € D. Let g € R. Then lim;_, ||ga(uw)(F(o(t,u)) — F(¢(to,u)))||x = 0 for
each u € R. Therefore, the dominated convergence theorem implies lim;_., || Fo () —
Fulto) | = 0.

(b) Let € > 0 be given. Then there exist a § > 0 such that vt + 2 < § implies
|E(o(t,u)) — F(¢(0,0))]|x < e. By (2.4), there exist a constant K > 0 and an
ap € D such that ||go||1 < K for all @ € D with a > ap. Now we have

[Fa(t) = F(e(0,0))[[x < /R |9 (WIIF(p(t,u) = F(p(0,0))| x du

| [ o) du = 1[IP((0.0) 1x = Ta(®) + o

say. Let a > ap,a € D and 0 < [t| < §/2. Then we have V12 +u2 < |t| + |u| < §
whenever |u| < ¢/2, and so

In(®) < Ke (C+ [F0.0)x) [ Jga(w]du
|u[>8/2
which together with (2.6) implies lim, 4), 1o (t) = 0. Also, by (2.5) we have lim, J,, =
0. Thus (2.14) holds. O

Theorem 2.7. Let 8 = {ko ) : @ € D,\ € A} be an approzimate kernel. Let
¢ :R? = R be continuous and ¢(0,0) = 0. Suppose that lim, e, = 0, and define

(2.16) T () = - /0 T(o(t,))(f)du  (a € D,t R, e X).

€a

Then £ is an approximation process on X.

Proof. We define g, = (1/€a)X[0,c,) for all & € D, where x 4 denotes the characteris-
tic function of the set A. Then & = {g, }aecp is an approximate identity. Let f € X
and we define F'(s) = T'(s)(f) for all s € R in Lemma 2.6. Then (2.13) reduces to
(2.16) and since ||ga||1 = 1 for all @ € D, (2.10) hold because of (2.15). Also, (2.14)
implies (2.11) since ¢(0,0) = 0 and 7°(0) = I. Thus the desired result follows from
Theorem 2.2. g

Corollary 2.8. Let & = {kq : @ € D,\ € A} be a family of functions in L'(R)
satisfying (2.1) and (2.2). Suppose that lim, €, = 0, and let ¥ = {T,(t) : « € D,t €
R} be the family of operators definded by (2.16). If (2.12) holds for some q > 0,
then £ is an approrimation process on X.

Theorem 2.9. Let R = {ko ;o € D, X\ € A} be an approzimate kernel. Suppose
that limy, €, = 0. Then the following statements hold:
(a) We define

To(t)(f) = 1/OEQT(t+u)(f)du (aeD,teR, feX)

€a
Then £ is an approximation process on X.
(b) We define
1 [
.0 =~ [ Tww(Pdu  (@eDteRfeX),
0

€a
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Then £ is an approximation process on X.
Proof. (a) Take p(t,u) =t +u, (t,u) € R? in Theorem 2.7.
(b) Take p(t,u) = tu, (t,u) € R? in Theorem 2.7. O

Corollary 2.10. Let & = {kq : « € D, X € A} be a family of functions in L'(R)
satisfying (2.1) and (2.2). If limy €q = 0 and if (2.12) holds for some q > 0, then
the statements (a) and (b) in Theorem 2.9 hold.

Theorem 2.11. Let 8 = {ko ) : @ € D, X\ € A} be an approzimate kernel. Let
@ : R? = R be continuous and ¢(0,0) = 0. Suppose that lim, €, = +00, and define

217)  Ta()(f) = ea/ e~ T(o(t,u))(f)du (o€ Dt €R, f € X).
0
Then £ is an approximation process on X.

Proof. We define go(u) = €ae™“"X[0,00)(u) for all @ € D and all v € R. Then
® = {ga}aep is an approximate identity. Let f € X and define F(s) = T'(s)(f) for
all s € R in Lemma 2.6. Then (2.13) reduces to (2.17) and since ||gq|[1 = 1 for all
a € D, (2.10) holds because of (2.15). Also, (2.14) implies (2.11) since ¢(0,0) =0
and 7'(0) = I. Thus the desired result follows from Theorem 2.2. O

Corollary 2.12. Let & = {kq : « € D,\ € A} be a family of functions in L'(R)
satisfying (2.1) and (2.2). Suppose that lim, €, = +00, and let T = {T,(t) : o €
D,t € R} be a family of operators defined by (2.17). If (2.12) holds for some q > 0,
then £ is an approrimation process on X.

Theorem 2.13. Let R = {kq ) :a € D,\ € A} be an approximate kernel. Suppose
that lim,, €, = +00. Then the following statements hold:
(a) We define

To(t)(f) = €a /OOO e T (t+u)(f)du (e D,teR, feX).

Then £ is an approximation process on X.
(b) We define

Ta(t)(f) = €a /OOO e~ T (tu)(f)du (v €Dt R, f € X).

Then £ is an approximation process on X.

Proof. (a) Take ¢(t,u) =t + u for all (t,u) € R? in Theorem 2.11.
(b) Take (t,u) = tu for all (t,u) € R? in Theorem 2.11. O

Corollary 2.14. Let & = {kq : @ € D, X € A} be a family of functions in L'(R)
satisfying (2.1) and (2.2). If limgy eq = +oo and if (2.12) holds for some q > 0,
then the statements (a) and (b) in Theorem 2.13 hold.
3. CONVERGENCE RATES
Let f € X and let § > 0. Then we define
(3.1) wa(f,6) = sup{||Ta(@)(f) — fllx : 0 <[t <6} (€ D),

which is called the modulus of continuity of f.
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Lemma 3.1. (a) For each a« € D and f € X, wu(f,-) is a monotone increasing
function on (0,00).

(b) For every f € X, lim(q5),, wa(f,0) = 0. In particular, if {§a}aep is a net of
positive real numbers converging to zero, then limgy wq (f, &) = 0 for every f € X.

Proof. Part (a) immediately follows from the definition (3.1). Part (b) follows from
the limit relation (2.11). O

In order to give quantitative estimate of the rate of convergence for approximation
processes £ on X, we suppose that there exist constants C' > 1 and K > 0 such
that

(3:2) wa(f,€0) < (C+ K&wa(f,0)
forall« € D, f € X and all £,§ > 0.

Lemma 3.2. Suppose that there exists a constant K > 1 such that

(3-3) 1Ta(®)(f) = Ta(s)(f)llx < KTt —s)(f) = fllx

for all « € D;t,s € R and all f € X. Then (3.2) holds with C = 1 for all
ae D, feX and all £,6 > 0.

Proof. If 61,02 > 0 and 0 < [t| < &1 + 02, then there exist 1,2 € R such that
t =1t +t2 and 0 < |t1| < 01,0 < [t2| < da. Therefore, by (3.3), we have

ITa()(f) = fllx < Tty +t2)(f) — Ta(t2)llx + [ Ta(t2)(f) — fllx

< K|[Ta(t1) = flix + [[Ta(t2) = fllx < Kwa(f,01) + wa(f, d2),
which implies
woc(f» 51 + 52) S Kwa(f7 51) + woc(f; 52)

Thus it follows from induction on n that wq(f,nd) < (14 (n — 1)K)w,(f, ) for all
n € N, where N denotes the set of all natural numbers. Therefore, if & > 1, then
denoting the largest positive integer not exceeding & by m, we have

wa(f,60) < wa(f; (m+1)8) < (1 +mK)wa(f,0) < (1+EK)walf,0).
If 0 < £ <1, then wo(f,£9) < wa(f,d) < (14 EK)wa(f,0). O

Let B[X] denote the Banach algebra of all bounded linear operators from X to
itself with the usual operator norm || - || gx]-

Remark 2. If for each o € D, {T,(t) : t € R} is a strongly continuous group of
operators in B[X] satisfying K = sup{[|Ta(?)| px] : @ € D,t € R} < oo, then (3.3)
holds for all « € D,t,s € R and all f € X. If, in addition, each T,(t) is isometric,
then (3.3) reduces to

1Ta(8)(f) = Ta(s)(Pllx = [Talt = 5)(f) = fllx-

For the basic theory of semigroups of operators on Banach spaces, we refer to [2],
[5], [6], [7], [8] and [13].
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Lemma 3.3. Let k € L'(R) and f € X. Then for alla € D,§ >0 and all ¢ > 1,

Ba) | [T — ] | < Clbll+ Kehig, wals.0),
where
ks, 6) = min{§~u(k; q), 6" (ulh; @)K
Proof. 1f |t| > §, then by (3.2) we have
[Ta()(f) = fllx < (C+ K6 t[")wa(f,0),
which always holds for 0 < [¢| < § on account of (3.1) and C' > 1. Thus we derive

35) | [ HOTOW ~ N < ikl + K s )wa(1.0).
On the other hand, since
1Ta@)(f) = fllx < (C+ Klt|/d)walf,6),

using Holder inequality we obtain
1-1
| [ O = ] < (@l 557 uths ) Va1 e £.5),

which together with (3.5) establishes (3.4) for ¢ > 1. If ¢ = 1, then (3.5) is clearly
identical with (3.4). O

We assume that for each a € D,
0 < zq :=sup{||karl1: A € A} < o0

and
0 < Yag = (sup{ulkan;q) : A€ APYI <00 (¢>1).
Furthermore, for any a € D, f € X we define

Za :sup{‘/Rk:av,\(t)dt— 1‘ tA € A}

and
ILa(f) = flla = sup{[|La(f) = fllx : A € A}

Note that £ = {Lyx : @« € D, X € A} is an approximation process on X if and only
if limg, ||La(f) — flla =0 for all f € X.

We are now position to recast Theorem 2.3 in a quantitative form with the rate
of convergence. Let {04 }aecp be a net of positive real numbers.

Theorem 3.4. Forall f € X,a € D and all ¢ > 1,
(36) [La(f) = flla < [Ifllxza+ (Caa+ K min{d;9, 6, x5 Dwalf, datiaq)-

In particular, if R is positive and normal, then (3.6) reduces to

ILa(f) = flla < (C + K min{65", 65} wa(f, SaYa.q)-



APPROXIMATION PROCESSES OF CONVOLUTION TYPE OPERATORS 223

Proof. Taking k = k,  in Lemma 3.3, we obtain

| Lan() - /]R Faa(®) dtf|| < (Cra+ Kmindd ™8 o, 6 yagas /") walf,0).

Thus putting § = 64¥Ya,q in the above inequality, the desired estimate (3.6) follows
from the inequality

B0 ILar() = flx < | [ Rar®de=1]171x

+|

Lax(f) - /Rka,,\(t) dtfHX (a €D, eA).
0

As an immediate consequence of Theorem 3.4, we have the following corollary
which can be more convenient for later applications.

Corollary 3.5. Forall f € X and all o € D,
(38)  NLa(f) = flla < Ifllxza + (Ca + K min{d,?, 65 x> wa(f, 6aya,2)-
In particular, if R is positive and normal, then (3.8) reduces to
ILa(f) = flla < (C + Kmin{5;", 657 wa(f. daya.2)-
Let f € X and let § > 0. Then we define
(3.9) wo (f,0) = sup{[|Ta(t)(f) + Ta(=0)(f) = 2flx : 0 <t < 6},
which is called the generalized modulus of continuity of f.

Lemma 3.6. (a) For each o € D and f € X, w)(f,-) is a monotone increasing
function on (0, 00).

(b) wi(f,0) <2wqa(f,0) forallawe D, f € X and all 6 > 0.

(c) For every f € X, lim(y 5, wi(f,6) = 0. In particular, if {{a}tacp is a net of
positive real numbers converging to zero, then lim, w(f,&) = 0 for every f € X.

Proof. Parts (a) and (b) immediately follow from the definition (3.9). Part (c)
follows from Part (b) and Lemma 3.1 (b). O

Here let us impose the following condition on the generalized modulus of conti-
nuity: There exist positive constants A and B such that

(3.10) wa(£,60) < (A+ B wi(f,9)
foralla € D, f € X and all £, > 0.
Lemma 3.7. Suppose that for all o € D, s, t,u € R and oll f € X,

(3-11) [|Ta(s)(f) +Ta(t)(f) = 2Ta(u)(f)lx = [1Ta(s —u)(f) + Tt —u)(f) = 2f]x

and T, (0) = I. Then (3.10) holds with A = B =1 for all« € D, f € X and all
£,6>0.
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Proof. Let n € N;s € R and f € X. Then in view of (3.11), we have
[T (ns)(f) + Ta(=ns)(f) = 2fllx = [Ta(2ns)(f) — 2T (ns)(f) + Ta(0)(f)]Ix

n—1ln—1

= [ S+ 5+ 29)(0) 2+ + D))+ Tl + D))

i=0 j=0

X
< n?||Ta(s)(f) + Ta(—5)(f) — 2f]lx-
Therefore, if 6 > 0 and 0 < t < nd, then we have

ITa() + Ta(=0)(f) = 2fllx < n?|Ta(t/n)(f) + Ta(~t/n)(f) = 2fllx,

which yields w?(f,nd) < nw’(f,d). Therefore, if £ > 1, then denoting the largest
positive integer not exceeding & by m, we obtain

wof€0) < Wi(f, (m+1)0) < (m+1)°wi(f,0) < (€+1)°wi(f, ).
If0 <& <1, then wi(f,£0) < wi(f,0) < (14 &)Wy (f,0). O
Remark 3. If 7,,(0) = I, then (3.11) implies that

[Ta@)(f) = Ta(s)(f)lx = [Talt = s)(f) = fllx (€D, feX,tseR),

and so (3.3) holds with K = 1. If for each a € D, {T,(t) : t € R} is a strongly
continuous group of isometric operators in B[X], then (3.11) always holds.

Lemma 3.8. Let k be an even function in L*(R) and f € X. Then for all « € D
and all 6 > 0,

(3.12) | [ oou - na <wuss
x (A2||k||l1/2 + ABu(k;1)/6 + B2 2 u(k; 2)/2).
Proof. Since, by (3.10),
ITa(t)(f) + Ta(=6)(f) = 2f|lx < (A+ Bt/8)*Vi(f,6),
we have
| [ s - na | <witro) [+ Bysk)
R 0
which immediately implies the desired inequality (3.12). O

In the rest of this section, we suppose that k,  is an even function in L'(R) for
all € D and all A € A.

Theorem 3.9. For all f € X and all « € D,

B13) L) = Sl < Wllxza+ (4T + 1) Wil dunea)

In particular, if R is positive and normal, then (3.13) reduces to

B
ILa(5) = la < 5 (4+ ) Wi/ Gutne).

Proof. Taking k = kq ) and putting § = da¥ya,2 in Lemma 3.8, we obtain (3.13) by
(3.7) and yo,1 < :Ui/ 2ya72 which follows from Holder’s inequality. O
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Lemma 3.10. Suppose that for each o € D, {Tx(t) : t € R} is a strongly continuous
group of operators in B[ X] with its infinitesimal generator G, with domain D(Gy,)
and K = sup{||Ta(t)|px) : @ € D,t € R} < oo. Let k be an even function in L'(R)
and f € D(Gy). ThenforallaGD(5>0andallq>1

310 | [HO@m0 - D < (w1 + BT Ga1).9),

-7 = [ Tal(Gal ) du
and k is even, we have

/R KO (Ta(t)(f) — ) d = /0 T ROTa6)(f) + Ta(—0)(f) - 2f) dt

Proof. Since

= [ #0{ [ @u(Galh) = Tul=u) Gl ) du}
00 t
= [ r0{ [ @Gl - Gty du ar
[T RO [ (Galh) = Tal-u)Galr)) du dt = g+ b

say. Now, since

[T (u)(Galf)) = Ga(f)llx < (1 + K6 u)wa(Galf),9)
(cf. Lemma 3.2, Remark 2 and the proof of Lemma 3.3), we obtain

ot < [ IO [ (1+ 8o Gal ), ) du}

o K
= wa(Gal(f),0 k()| (t+ ——t9") dt
nlGal£):0) [ KON+ 50 55t)
1 K
= —wa(Gua(f),d kil) + ————u(k; 1)).
3 Gal), ) (ulhs )+ g~ smlksa +1)
In a similar manner, we get the same estimate for ||h|/x, and consequently the
desired inequality (3.14) is obtained. O

Theorem 3.11. Let {T,(t) : t € R} be as in Lemma 3.10 for each o € D. Then
foralla€ D, f € D(Gy) and all g > 1,

(3'15) HLOé(f)_fHA < ||f||XZa+ya,q+1 (mg/(q+1)+m)wa(Ga(f)75aya,q+1)'

In particular, if R is positive and normal, then (3.15) reduces to

K
||La(f) - fHA < Ya,q+1 (1 + m)WQ(Ga(f, 50cyoc,q+1)-

Proof. Taking k = kg ) and putting 6 = dq¥Ya,q+1 in Lemma 3.10, we get (3.15) by
(3.7) and yo,1 < 2Y (qﬂ)ya’qﬂ which follows from Hoélder’s inequality. O
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Corollary 3.12. Let {T,(t) : t € R} be as in Lemma 3.10 for each o € D. Then
for alla € D and all f € D(G,),
K
(3.16)  La(f) = Fla < [Flxza+vaz(vEa + 55 Jwa(Galf). dayas).
In particular, if R is positive and normal, then (3.16) reduces to

ILa(1) = £ll4 < v (14 5 )0 (GalF): o).

Remark 4. Let 1 < p < oo and let L) _(R) denote the Banach space of all 27-
periodic, pth power Lebesgue integrable functions h with the norm

1 (7 1/p
o= (5 | Wnteede) ™"

Let $ = {hax : @ € D, € A} be a family of functions in Li_(R) having Fourier
series expansions

N L h g . 1 [T L
ha,)\<t) ~ Z ha,A(])e ]t7 ha,)\(]) = 771_ / ha,)\ (t)e I dt,
j=—o00 -

and we define )
ka)\ = %X[*ﬂ',ﬂ']h’a,A (Oé € D) )‘ S A)7
which belongs to L*(R). Then the convolution type operator L, defined by (1.2)
becomes
1 s
(3.17) Loalf) = 55 | haa®Ta®dt (€ X),

27 J_,

Consquently, all the results hold for the family £ = {Ly) : &« € D, A € A} of
operators given by (3.17). Note that if h, ) is nonnegative, then

1 [7 RN ~

(3.18) lhani2) = 5 [ Phaa)dt < T (har(0) = Relhaa(1)

where Re(h(; A(1)) denotes the real part of h(; A(1). Indeed, by Jordan’s inequality
2

(3.19) Sp<sint<t (ogtgf),
m 2

we have

™ ™ t 2 ™
/ 2ha(t)dt < 7'('2/ ha(t)sin® = dt = % (1 — cost)hax(t) dt,

which yields (3.18).
In the following, let £ = {Ly )\ : @ € D, X € A} be the family of operators defined
by (3.17), where h, ) is nonnegative for all « € D and all A € A, and we define

2o = sup{har(0): A€ A} <0 (a€ D),
(3.20) Yo = (sup{har(0) — Re(hgr(1)) : A e ANY2 <00 (€ D)

and .
2o = sup{|hax(0) — 1] : XA € A} (€ D).
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Theorem 3.13. For all f € X and all a € D,

321 NLal) = fla < Ixza+ (Crat - Zmin{ 2 S} Jur (b

In particular, if ho;,\(()) =1 for alla € D and all X € A, then (3.21) reduces to

Km . T 1
62 Laf) = fla< (04 JFmin{ e o} )wafbase)
and
Yo = (sup{l — Re(hgy’A(l)) AE /1})1/2.
Proof. In view of (3.18), we have

(3.23) (a € D),

T
Ya,2 < ﬁya

and s0 wo(f, 0alYa2) < walf, (7/v/2)daya). Therefore, putting (v/2/7)d, instead of
da, the desired result follows from Corollary 3.5. g

Theorem 3.14. Suppose that hq y is even for all a« € D and all A\ € A. Then for
all f € X and all a € D,

(321)  Lalh) ~ fla < Iz 3 (AVEa+ o) whlF. B
V20,

In particular, if h(;,\(()) =1 foralla € D and all X € A, then (3.24) reduces to

(3.25) o) = fla < 5 (A+ 25) el due)

and

(3.26) Yo = (sup{l — ha (1) : X € ANHV2.

Proof. By (3.23) we have w(f,0a%a2) < wi(f, (7/vV/2)0aya). Therefore, putting
(v/2/7)64 instead of d,, the desired result follows from Theorem 3.9. O

Theorem 3.15. Let {T,(t) : t € R} be as in Lemma 3.10 for each o« € D and
suppose that hqy is even for all « € D and all X € A. Then for all « € D and all

fe€D(Gy),

3.27 Lo(f) — < o o + wa(Ga(f),0aya)-
(321 Zalf) = Flla < Wfllxza+ Tova( Vo 2{5 == )wa(Gal(f), daba)
In particular, if ho;/\(o) =1 for alla € D and all X\ € A, then (3.27) reduces to

T (Gl ). ati).

(3.28) ILa(f) = fla s Z5ba (1 NG

where Yo is given by (3.26).

Proof. By (3.23) we have wa(Ga(f), dava2) < Wa(Galf), (1/v/2)daya). Therefore,
putting (v/2/m)6, instead of d,, the desired result follows from Corollary 3.12. [
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4. APPLICATIONS

Put Ng = NU{0} and let A = {a,(jzn ca € D,m € Ny} be a family of scalars such

that > \a(of\znl < oo for each o« € D and A € A. Let {kp}men, be a bounded
sequence of functions in L!(R) and we define

kar= > al)km  (x€D,XEA),
m=0

which belongs to L'(R) and

Kom(f) = / En(OTa(t)()dt (€ X),

which exists as a Bochner integral. Then the convolution type operator L, x defined
by (1.2) becomes

o0

(4.1) Lap(f) =Y al) Kam(f)  (f € X).

m=0

Let £ = {Lyx : @« € D, X € A} be the family of operators given by (4.1). The
family {Kqm @ @ € D,m € Ny} is called an A-summation process on X if the
family £ is an approximation process on X. Consequently, the results obtained in
the preceding sections are applicable to the family £. In the following, we especially
restrict ourselves to the case where A is stochastic, i.e.,

al), >0  (aeDmeNy, ed), Y al) =1 (aeDAeA

and k,, is a probability density function in L'(R) for each m € Ny.
Theorem 4.1. Let ¢ > 1 and let

Ya,g i= (sup{i agi‘,)num(q) tAE A})l/q < 00 (o € D),

where pim(q) = p(km; q) < 0o. Then the following statements hold:
(a) For all f € X and all a € D,

ILa(f) = flla < (C + Kmin{d;", 5,7 )wa(f: dalaq)-
(b) If kyp, is an even function for each m € Ny, then for all f € X and all « € D,

1 B2
1Za() = flla < 5 (A+ 5 ) walf. datia2).

(c) Let {Tx(t) : t € R} be as in Lemma 3.10 for each o € D. If ky, is an even
function for each m € Ny, then for all o € D and all f € D(Gy),

K
1Lalf) = Flla < Yagrr (1+ m)wa@a( £): batiogir)-

Proof. R is positive and normal. Therefore, (a), (b) and (c) follow from Theorems
3.4, 3.9 and 3.11, respectively. O
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Here we mention several concrete examples of functions k,,, m € Ny, which are
induced by various probability density functions defined as follows:

Let {am}men, and {Bm}men, be sequences of positive real numbers, and let
qg > 0.

(1°) Gauss type distribution:

Then we have

where

I'(z) = /Ooo t"le~tat (x >0)

is the gamma function. In particular, we have pi,, (1) = /m /7, um(2) = am /2.
(2°) Laplace type distribution:

Then we have
1m(q) = qI'(q)a,,
and 80 pm (1) = am and 1, (2) = 202,.
(3°) Student (t) type distribution:

L Qm F(ﬂm) 2 _ﬁm
km(t) := ,/—W 7p(ﬂm_%)(1+amt ) (t € R).
Then we have

(%) 1 Nl (B — 15
and so LI 0 .
m(l) = —— LC m(2) = — -~
(4°) Gamma type distribution:
Br™ tam—1,—Bm
() 1= {mam)t temfm! (t>0)
0 (t<0
Then we have
1 F(Q+am)
and so (o + 1)
A, A (i,
m = 5 m(2) = ———.
fim (1) G fim(2) )

(5°) Beta type distribution:

_ 1 gsom—1 _ \Bm—1
(1) 1= 4 Bt =) 0<t<1)
0 (t<0orl<t),
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where )
B(z,y) ::/ F1 - td (ny > 0)
0

is the beta function. Then we have
_B(O‘m“‘%ﬁm)_[‘(am"‘ﬁm) F(am+q)

) = B )~ T(am)  Tlam + G+ @)
and so ( )
_ Ol B am (o + 1
Mm(l) B am"‘ﬁm’ Mm(Q) B (am‘i‘ﬂm)(am‘kﬂm‘i‘l)‘

(6°) Landau type distribution:

(1) 1= L 2By (1 1) (1t < 1)
0 (1t > 1).

Then we have

—_

I(52) T(Bn+5,)

#nl0) = 1Y g, - o)
and so
= D) T+ ) @ = D) DBn+57)
TR T ) T T TG T )

In particular, if «,, = 2 for all m € Ny, then

pm(q) = VT T(Bmt 1)’

and so .
1 I'(Bm+3) 1
m()= =022 (2) =
) = 2By PP = 5511
(7°) Weibull type distribution:
Bm 4Bm—1 _tfm
km(t) = amt eXp( Am ) (t > O)
0 (t<0)
Then we have
Q/ﬁm
qOm q
fm(q) = 5 I‘Bf%
and so
1/Bm 2/Bm
Om 1 2000, 2
m(l) = I'(—), m(2) = I'(—).
pn(D) = =5 —=I(5),  wn@==5—1(5")

Let {hy, bmen, be a bounded sequence of nonnegative functions in L3 (R) having
Fourier series expansions

h(t)  ~ D h(h)e,

j=—o00
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and we define

1

L / U haOTa®)(f)dt (f € X),

Ha,m(f) = o

which exists as a Bochner integral. Suppose that agw)n >0 for all « € D,m € Ny
and all A € A, and we define

(4.2) Z O Houm (f € X),
which converges in X. Furthermore, for each o € D we define
To = sup{ Z aa),‘mh;l(O) tA€ A} < 00
m=0
> o) 1/2
(4.3) = (sup{z aa, —Re(hn(1): A e A}) < 00

m=0

and .
za:sup{’Z (’\) hm —1) )\6/1}

Theorem 4.2. The following statements hold:
(a) The inequality (3.21) holds for all f € X and all « € D. In particular, if A
is stochastic and if hy,(0) =1 for all m € Ny, then (3.21) reduces to (3.22) and

Yo = sup{l - Z &’T%Re(h (1) :Xe€ A}.
m=0
(b) Suppose that hy, is an even function for each m € No. Then (3.24) holds for
all f € X and all « € D. In particular, if A is stochastic and if hy,(0) = 1 for all
m € Ny, (5.24) reduces to (3.25) and

(4.4) Yo = (sup{l - i o (1) 1 X € A})I/Q
m=0

(c) Let {T,(t) : t € R} be as in Lemma 3.10 for each a € D and suppose that hy,
is an even function for each m € Ng. Then (3.27) holds for all « € D and all

f €D(Gy). In particular, if A is stochastic and if h;n(O) =1 for all m € Ny, then
(8.27) reduces to (3.28) and yo is given by (4.4).

Proof. We define
har= Y a) by (@ €D,XN€ A),

which is nonnegative and belongs to L} _(R). Then (3.17) and (3.20) turn out (4.2)
and (4.3), respectively (cf. Remark 4). Therefore, (a), (b) and (c) follow from
Theorems 3.13, 3.14 and 3.15, respectively. Il
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In the following, we especially restrict ourselves to the case where A is stochastic

and
m

ho(t) =1, hm(t) =142 6On(j)cosjt>0  (meN,teR),
j=1
where (0,,(7)) (m,j = 1,2,...,) is a lower triangular infinite matrix of real numbers.

Therefore, h,(0) = 1 for all m € Ny, and so (4.3) reduces to

Yo = (sup{i (),\7)71(1 —0n(1): N € A}) V2 Oo(1) := 0.

Remark 5. Applying the Abel’s transfomation twice to the function h,,(t), we
have

m—1
="+ DE(O)A00(5) + (m + 1) (m) Fn(t), 0 (0) =1,
7=0
where
- Gl N e 1 gsing(n+ 1)t
FMt):Z(l—%ﬂ)e] :n—l—l{ smt }

j=-n 2
is the nth Fejér kernel and
A% () = Om(5) = 20m (5 + 1) + Om(j +2).
Therefore, if 0,,,(m) > 0 and {0,,,(j)};en, is convex, i.e., A%6,,(j) > 0 for all j € Ny,
then h,,(t) is a nonnegative, even trigonometric polynomlal of degree at most m.
Several examples of 6,,(j) produce important positive summability kernels given

as follows:
(8°) Fejér:

0 (J )
(9°) de la Vallée-Poussin:
(m))?
O (5) {(mj)!(mﬂ) (I=j=<m)
0 (4 >m)
(10°) Fejér-Korovkin:
0 (]) — Am Z?T’Ln:_()] Anljtn (1 SJ < m)
" 0 j>m)
where
./ n+1 m _1
CLn:SIH<m+2>7T (n=0,1,2,...m), Ay = (Zai) )
n=0

In this case, we have

m 2
hm(t) = Am‘z ane™
n=0
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(11°) Nérlund:

m

Qm—j .
N ) Tont (1<j<m)
Imla) = {0 (j > m),

where
m
O<QO§QmSQm+1> QmZan (mENo).
n=0

Obviously, if ¢, = 1 for all m € Ny, then the Norlund kernel reduces to the Fejér
kernel.
(12°) Cesaro:

e, :
o) =4 i ISI=M g5y
0 (G > m),

where 7 > —1 and

c{’ =1

C(T)_<n+7) (t+1)(t+2)---(T+n) (n € N).

’ " n n!

Note that if ¢, = Cy(,f U for all m € Np, then the Noérlund kernel reduces to the
Cesaro kernel. In particular, if 8 = 1, then the Cesaro kernel turns out the Fejér
kernel.

Other important examples of the sequences { A, }men, of nonnegative, even func-

tions in Cox(R) with h,y, (0) = 1 are the following, where Ca, (R) denotes the Banach
space of all 2w-periodic, continuous functions A on R with the norm

[1Plloc = max{[A(t)] : [¢] < 7}.
(13°) Jackson:

sin((m+1)t/2) | 2 e .
B (£) = s (£) = s <7Sin(t/2) ) if ¢ is not a multiple of 27
(m+1)% if ¢ is a multiple of 2,

where s € N and the normalizing constant c¢,, ; > 0 is taken in such a way that

1 iy
/ B (1)t = 1.
0

™
Since hp(t) = cms(m + 1)°Fp ()%, hms(t) is a nonnegative, even triginometric
polynomial of degree ms and we have ¢, 1 = 1/(m + 1) for s = 1, and s0 hy, 1(t)
becomes the Fejér kernel. Also, we have
3 ~ 2m(m + 2)
= hma(l) = —————.
M2 It DEm+ 12+ 1) ma(l) = o o 3

Furthermore, making use of Jordan’s inequality (3.19) we have that for s > 3,

T 1—2828_1 _ T 2s _
(5) om0 <en < (G)

and 225 1) .
7T) > (m+1)72

0< 1= hs(1) < (5 37(25 = 3)
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(14°) Abel-Poisson:

[0.9]
hm(t)zl—i—QZT,T%cosnt (t € R),
n=1
where {r,, }men, is a sequence of real numbers converging to one such that 0 <

rm < 1 for all m € Ng. Note that
1— 2
i (1) = “m

(1 —7,)2 + 41y, sin?(t/2)

and (4.3) becomes

Yo = <sup{§:a’\ (I —7rp): AEA})1/2

m=0

(15°) Gauss- Weierstrass:

- /= i exp{ - =27 ‘4;:”)2} (teR).

where {pm }men, 1S a sequence of positive real numbers converging to zero. We can
rewrite h,,(t) as

(e}
hm(t) =142 Z e=Pm" cosnt,

n=1

and so (4.3) becomes

Yo = (sup{z a&’}?n l—ePm):Xe /1})

Let Z denote the set of all integers, and let P = {P;};cz be a sequence of
projection operators in B[X] satisfying the following conditions:
(P-1) B is orthogonal, i.e., PjP, = §;,P, for all j,n € Z, where §,, denotes
Kronecker’s symbol.
(P-2) B is fundamental, i.e., the linear span of the set Ujcz Pj(X) is dense in X.
(P-3) B is total, i.e., if f € X and Pj(f) =0 for all j € Z, then f =0.

For any f € X, we associate its (formal) Fourier series expansion

(4.5) fo~ ) B

j=—o00

1/2

An operator T' € B[X] is called a multiplier operator on X if there exists a sequence
{7j}jez of scalars such that for every f € X,

(4.6) T(f) ~ >, mPif),
j=—00
and the following notation is used:

T ~ Z Tij
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(cf. [4], [11], [12], [16]). Let M[X] denote the set of all multiplier operators on X,
which is a commutative closed subalgebra of B[X] containing I.

Remark 6. The expansion (4.5) represents a generalization of the concept of
Fourier series in a Banach space X associated with a fundamental, total, biorthog-
onal system § = {fj, f;}jez. Here, {f;}jez and {f;}jez are sequences of elemets
in X and X* (the dual space of X), respectively, such that the linear span of the
set {fj 1 j € Z} is dense in X (fundamental), f € X and f;(f) =0 for all j € Z
imply f = 0 (total), and f7(fn) = d; for all j,n € Z (biorthogonal). Then (4.5)
and (4.6) read

an f o~ X LWL ad T~ Y (N
j=—o0 j=—o0
respectively (cf. [10], [14]).
Let T = {TI,(t) : a € D,t € R} be a family of operators in M[X] having the
expansions

(4.8) Ta(t) ~ i Ua’j(t)Pj (a e D,te R)
with
(4.9) sup{||Ta(t)Bx) : t € R} < o0

for each av € D, where U = {v,; : @« € D,j € Z} is a family of scalar-valued
continuous functions on R such that

(4.10) Canns = Cons (R 1) = / o (t)va(£) dt < 00
R

for each « € D,A € A and j € Z. Then Condition (P-2) and (4.9) imply that
for each « € D and f € X, the mapping ¢t — T,(¢)(f) is bounded and strongly
continuous on R. Also, the convolution type opetator L, \ defined by (1.2) belongs
to M[X] and

(4.11) Loy ~ Z Ca,)\J‘Pj (Oé eD,)e /1)

)

j=—o0

Furthermore, if for each j € Z,

(4.12) lim v, ;(t) =1
(a,t)o

and if

(4.13) limsup || 7a(t) || px) < o0,

(a,t)o
then Condition (P-2) implies the limit relation (2.11) for every f € X. Conse-
quently, the results obtained in the preceding sections are applicable to the family

£ ={Lax:a € D, e A} of multiplier operators having the expansions given by
(4.11).
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In the following, we especially restrict ourselves to the case where T, () is induced
by a uniformly bounded family 7 = {T'(¢) : t € R} of operators in M[X] having the
expansions

o)

(4.14) T ~ > P  (teR),

j==o0

where {v;}ez is a sequence of scalar-valued continuous functions on R such that
vj(0) = 1 for all j € Z. Let {€x}acp be a net of positive real numbers such that
limsup, €, < oo and let T, (t) = T'(teq) for all @« € D and all t € R. Then (4.8)
holds with v, j(t) = vj(tes) and (4.11) holds with

(415)  cany = / ko (D)vs(tea) dt < 50 (€ DA€ A j € 7).
R

Furthermore, (4.12) holds for each j € Z and since
sup{|[|Ta(t)|lpx) : @ € D,t € R} <sup{||T(s)|px] : s € R} < o0,
(4.13) holds. In particular, if {¢;};ez is a sequence of scalars and vj(t) = e%? for

all j € Z and all t € R, then 7 becomes a strongly continuous group of operators
in M[X] and (4.15) reduces to

Carj = / Ko\ ()57 dt (ae D, e A jeT).
R

Furthermore, the infinitesimal genetator G of 7 with domain ®(G) satisfies

G(f) ~ D &GP (feD@)),

j=—o0

and if {S), }nen, denotes the sequence of the nth partial sum operators of the Fourier
series expansion (4.5), that is,

S, = ZP]‘ (nENo)

j=—n

and if the sequence {0y, }nen, of the Cesaro mean operators defined by

n

1 n .
Un_““mzos - Z(1-n|fr|1)Pj (n € No)

j=-n

is uniformly bounded, then

DGE)={feX:g ~ Z &jP;  for some g € X}

j==o0

(cf. [11, Proposition 2]). Note that D(Gq) = D(G),Gq = €,G for each a € D.
Also, we have

wa(f,0) = w(f,deqa) (fe X,a€e D, >0),

where

w(f, &) :==sup{[|T(t)(f) = fllx : 0 <[] <& (£>0)
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denotes the modulus of continuity of f associated with 7, and
wo(f,0) =w'(f,0ea)  (f€X, €D, 6>0),
where

W (f,€) == sup{lIT()(f) + T(=t)(f) = 2flx 0 <t <& (£>0)

denotes the generalized modulus of continuity of f associated with 7.

Finally, we restrict ourselves to the case where X is a homogeneous Banach space
on R (cf. [15], [17]). That is, (X, || - [|x) is a Banach space of Lebesgue measurable
functions on R which satisfies the following conditions:

(H-1) The right translation oprator T; defined by

LN =rC—-1)  (feX)
belongs to B[X] and it is isometric on X for each ¢ € R.

(H-2) For each f € X, the mapping ¢t — T;(f) is strongly continuous on R.
Typical examples of homogeneous Banach spaces on R are BUC(R) and LP(R) (1 <
p < 00).

If a homogeneous Banach space (X, || - ||x) on R is a linear subspace of L}_(R)

and if it is continuously embedded in L3 _(R), i.e., there exists a constant K > 0
such that

Ifllr < K fllx

for all f € X, then X is called a 27-periodic homogeneous Banach space on R (cf.
[9], [11]). Typical examples of 2m-periodic homogeneous Banach spaces on R are
Co:(R) and L5 _(R) (1 < p < o0). For other examples, see [11] (cf. [9], [15], [17]).

Now let X be a 2m-periodic homogeneous Banach space on R. Let 7 ={T; : t €
R} be the family of right translation operators on X, which is an isometric strongly
continuous group in B[X]|. We define

fity=€9  (jezZteR) and fi(f)=/() (€L feX).

Then § = {fj, f;‘}jez becomes a fundamental, total, biorthogonal system (cf. [9,
Theorems 2.7, 2.11 and 2.12]) and (4.7) reads

fo~ > feT and T(f) ~ > mfli)e”.

j=—o00 j=—o0
Furthermore, we have

TE() ~ Y fGeT (teR, feX)

(cf. (4.14)),
w(f, &) =sup{[[f(- —t) — fO)lIx:0<[t| <&  (fe€X,£>0)
and

W (f, &) =sup{[lf(-+1) + f( =) =2f()x:0<t <& (feX,£>0).
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