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FIXED POINTS OF GENERALIZED CONTRACTIVE MAPPINGS

E. M. BRISEID

Abstract. We give an improved version of a theorem of Kincses and Totik
concerning fixed points of a very general class of mappings of contractive type.
By isolating the requirements on the mapping, specifically on the contractivity
condition in question, we give an extension of the theorem from the compact case
to the setting of arbitrary metric spaces. We also supply numerical information
concerning the convergence of the Picard iteration sequence to the fixed point.

Using the uniformity features of the Cauchy rate exhibited we in addition
show that any continuous selfmapping on a compact metric space satisfying one
of the conditions (1)-(50) treated by B.E. Rhoades in the paper [B.E. Rhoades,
A comparison of various definitions of contractive mappings, Transactions of the
American Mathematical Society 226 (1977), 257-290] is an asymptotic contrac-
tion in the sense of Kirk.

The results were derived with the help of techniques and insights from proof
mining.

1. Introduction

If a function f : X → X on a nonempty compact metric space (X, d) is contrac-
tive, i.e. satisfies

∀x, y ∈ X(x 6= y → d(f(x), f(y)) < d(x, y)),

then it has a unique fixed point, and for every starting point x0 ∈ X the iteration
sequence (fn(x0)) converges to this fixed point. This well-known theorem due to
Edelstein has led to the study of many generalizations of the notion of contrac-
tivity. (For a simple proof of Edelstein’s theorem, see e.g. [17].) The hope when
considering such generalizations is then to obtain corresponding generalizations of
the fixed point theorem. These generalized contraction properties are also consid-
ered as conditions on functions f : X → X on complete metric spaces, or on metric
spaces in general. In [27], B.E. Rhoades compares 25 contraction conditions, most
of them previously considered in the literature, and also considers generalizations
of the 25 basic conditions to the cases where the condition holds for various iterates
of the function. The basic conditions are numbered (1)-(25). Functions satisfying
one of these conditions are called functions of contractive type. P. Collaço and
J. Carvalho e Silva completes the comparison of the 25 conditions in [11]. That is,
the implications that hold between the different conditions are completely deter-
mined. Specifically, it is known that condition (25),

∀x, y ∈ X(x 6= y → d(f(x), f(y)) < diam{x, y, f(x), f(y)}),
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is the most general. So if f satisfies one of the conditions (1)-(24), then it also
satisfies condition (25). Hence a fixed point theorem for functions satisfying (25)
would entail as corollaries corresponding fixed point theorems for conditions (1)-
(24). However, a function on a complete metric space satisfying (25) need not have
a fixed point. In [19] it is proved by J. Kincses and V. Totik that if one in addition
assumes that f is continuous and X compact, then f has a unique fixed point, and
for any x0 ∈ X the Picard iteration (fn(x0)) converges to this fixed point. In [19]
it is also proved that this result extends to the case where (25) holds for an iterate
of the function, i.e. if there exists p ∈ N such that

∀x, y ∈ X(x 6= y → d(fp(x), fp(y)) < diam{x, y, fp(x), fp(y)}).
These conditions, where we require that for some p ∈ N we should have that fp

satisfies respectively (1)-(25) are numbered respectively (26)-(50). The fixed point
theorem does not hold for the other standard generalizations treated. For example,
a continuous function on a compact space satisfying the condition that there exists
p : X × X → N such that

∀x, y ∈ X(x 6= y → d(fp(x,y)(x), fp(x,y)(y)) < diam{x, y, fp(x,y)(x), fp(x,y)(y)}),
or satisfying the condition that there exists p, q ∈ N such that

∀x, y ∈ X(x 6= y → d(fp(x), f q(y)) < diam{x, y, fp(x), f q(y)}),
does not necessarily have a fixed point. The second of these cases involves two
iterates, the first involves one iterate which is not uniform in x and y. We will call
a function generalized p-contractive if it satisfies (25) for an iterate p ∈ N.

With the help of techniques and insights from proof mining, as developed in
recent years by U. Kohlenbach, we develop a quantitative version of the theorem
of Kincses and Totik mentioned above. This involves finding a rate of convergence
for Picard iteration sequences to the unique fixed point. Kohlenbach has developed
methods from that part of mathematical logic known as proof theory which under
general conditions allow one to find (“extract”) quantitative information, not earlier
visible, from ordinary mathematical proofs. The new quantitative information can
e.g. be effective bounds with strong uniformity features. This can in many cases also
be used to infer a qualitative improvement of the original mathematical theorem.
When the logical metatheorems guarantee that a mathematical theorem can be
strenghtened, then they also supply an algorithm which can be used as a guideline
when transforming a proof of the original theorem into a proof of the new theorem.
The result of such a process is again an ordinary mathematical proof, with no trace
of logic left. For more on proof mining, see e.g. [22], [15] and [23]. In [4] we give a
novel application of one of Kohlenbach’s logical metatheorems, thereby explaining
how we were able to find a full rate of convergence for the Picard iteration sequence
in Kincses and Totik’s theorem without in addition assuming that the mapping
should be nonexpansive.

Compared to Kincses and Totik’s theorem we also obtain new qualitative infor-
mation, insofar as we show that the convergence of the iteration sequence (fn(x0))
depends on conditions which are satisfied if the space is compact, but conditions
which we can also single out and see satisfied in other cases. Namely, we require
uniform continuity and a uniform version of generalized p-contractivity, and also
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the existence of a bounded iteration sequence for some starting point. Further-
more, we show that the rate of convergence is highly uniform in the sense that it
only depends on the starting point x0 and the function f through suitable moduli
expressing uniform continuity and uniform generalized p-contractivity and a bound
on the iteration sequence (fn(x0)). If the space is not complete we still get a Cauchy
rate for the iteration sequence.

By using the uniformity of the Cauchy rate for the Picard iteration sequence
we also show that any continuous selfmapping on a compact metric space which
satisfies one of the conditions (1)-(50) is an asymptotic contraction in the sense of
Kirk. Asymptotic contractions were introduced by W.A. Kirk in [20], and have in
recent years been quite extensively studied. See for example [1], [3], [2], [5], [6], [7],
[9], [13], [18], [30], [31], [32] and [33].

2. Preliminaries

Definition 2.1. Let (X, d) be a metric space, let p ∈ N and let f : X → X. We
say that f is generalized p-contractive if for all x, y ∈ X with x 6= y we have

d(fp(x), fp(y)) < diam{x, y, fp(x), fp(y)}.
Notice that a generalized p-contractive function is not necessarily nonexpansive,

where f : X → X being nonexpansive means that

∀x, y ∈ X(d(f(x), f(y)) ≤ d(x, y)).

Take for instance f : (0,∞) → (0,∞) defined by f(x) := 2x. Then f is generalized
1-contractive.

Theorem 2.2 (Kincses, Totik [19]). Let (X, d) be a compact metric space, and let
p ∈ N. Let f : X → X be continuous and generalized p-contractive. Then f has a
unique fixed point z, and for every x0 ∈ X we have

lim
n→∞

fn(x0) = z.

To give a quantitative version of this theorem, we express the requirements on f
by the following moduli.

Definition 2.3. Let (X, d) be a metric space, and let f : X → X. We say that
ω : (0,∞) → (0,∞) is a modulus of uniform continuity for f if for all ε ∈ (0,∞)
and for all x, y ∈ X with d(x, y) < ω(ε) we have d(f(x), f(y)) < ε.

Definition 2.4. Let (X, d) be a metric space, and let f : X → X. We say that
η : (0,∞) → (0,∞) is a modulus of uniform generalized p-contractivity for f if for
all ε ∈ (0,∞) and for all x, y ∈ X with d(x, y) > ε we have

d(fp(x), fp(y)) + η(ε) < diam{x, y, fp(x), fp(y)}.

When X is a compact metric space, f having such moduli coincides with f being
continuous and generalized p-contractive.

Proposition 2.5. Let (X, d) be a compact metric space, and let f : X → X be
continuous and generalized p-contractive. Then f has moduli ω and η of uniform
continuity and uniform generalized p-contractivity.
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Proof. We can without loss of generality assume that diam(X) > 0, since otherwise
everything is trivial. Existence of a modulus of uniform continuity follows since
f is uniformly continuous. For the other modulus, consider for ε > 0 such that
diam(X) > ε the set

Aε := {(x, y) ∈ X × X : d(x, y) ≥ ε}.
Then Aε is closed and therefore compact, and the continuous function g : X×X → R
defined by g(x, y) := diam{x, y, fp(x), fp(y)}− d(fp(x), fp(y)) assumes its infimum
on Aε. That is, there exists (x, y) ∈ Aε such that g(x, y) = inf g[Aε]. Therefore
inf g[Aε] 6= 0, since we otherwise would have

diam{x, y, fp(x), fp(y)} = d(fp(x), fp(y)),

contradicting the fact that f is generalized p-contractive and d(x, y) ≥ ε. So we can
define a modulus of uniform generalized p-contractivity η by for 0 < ε < diam(X)
letting η(ε) be some positive real number smaller than inf g[Aε] and for ε ≥ diam(X)
letting η(ε) be e.g. 1. ¤

The following is just a way of rephrasing the statement that f has a modulus of
uniform generalized p-contractivity.

Definition 2.6. Let (X, d) be a metric space, let p ∈ N and let f : X → X. We say
that f is uniformly generalized p-contractive if for all real ε > 0 there exists δ > 0
such that for all x, y ∈ X with d(x, y) > ε we have

diam{x, y, fp(x), fp(y)} − d(fp(x), fp(y)) > δ.

We note that for a metric space (X, d) examples of uniformly generalized p-
contractive mappings f : X → X are e.g. the mappings f such that for some
positive integer p we have that fp fulfills condition (24) from [27], i.e. the condition
that there should exist 0 ≤ h < 1 such that

d(f(x), f(y)) ≤ h · diam{x, y, f(x), f(y)}
holds for all x, y ∈ X. This condition was introduced by L.B. Ćirić in [10], and
a mapping on a complete metric space satisfying this condition is called there a
quasi-contraction. Likewise mappings satisfying one of those conditions (1)-(23)
which in [11] are listed as stronger than condition (24) are uniformly generalized
p-contractive. Ćirić proved the following theorem concerning mappings satisfying
condition (24).

Theorem 2.7 (Ćirić). Let (X, d) be a complete metric space, and let f : X → X
and h ∈ [0, 1) be such that

d(f(x), f(y)) ≤ h · diam{x, y, f(x), f(y)}
holds for all x, y ∈ X. Let x0 ∈ X. Then f has a unique fixed point z, and
fn(x0) → z.

This theorem is different from Kincses and Totik’s theorem in much the same way
that Banach’s contraction mapping principle is different from Edelstein’s theorem
on contractive mappings.

A quantitative version of Kincses and Totik’s theorem will involve a rate of con-
vergence to the fixed point.
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Definition 2.8. Let (X, d) be a metric space, let z ∈ X and let (xn) be a sequence
in X converging to z. We say that φ : (0,∞) → N is a rate of convergence for (xn)
if for all ε > 0 and for all n ≥ φ(ε) we have

d(z, xn) ≤ ε.

We say that φ is a rate of convergence for f : X → X (to z ∈ X) if for all x0 ∈ X
and all ε > 0 we have that n ≥ φ(ε) gives d(z, xn) ≤ ε, where (xn) is defined by
xn+1 := f(xn), with x0 as starting point.

Since we will be considering situations where a sequence could be Cauchy without
converging, we include the following notion.

Definition 2.9. Let (X, d) be a metric space, and let (xn) be a sequence in X. We
say that ρ : (0,∞) → N is a Cauchy rate for (xn) if for all ε > 0 and all m,n ≥ ρ(ε)
we have

d(xm, xn) ≤ ε.

We say that ρ : (0,∞) → N is a Cauchy rate for f if for all x0 ∈ X and for all
ε > 0 we have that m, n ≥ ρ(ε) implies d(xm, xn) ≤ ε, where (xn) is defined by
xn+1 := f(xn), with x0 as starting point.

We include also the following.

Definition 2.10. Given a metric space (X, d) and a mapping f : X → X we say
that a sequence (xn) is an approximate fixed point sequence if for all ε > 0 there
exists n ∈ N such that for all m ≥ n we have d(xm, f(xm)) < ε.

3. Main results

Our theorem will concern arbitrary metric spaces instead of compact ones.

Theorem 3.1. Let (X, d) be a metric space, and let p ∈ N. Let f : X → X
have a modulus ω of uniform continuity, and a modulus η of uniform generalized
p-contractivity. Let x0 ∈ X be the starting point of a sequence (xn) defined by
xn+1 := f(xn). Suppose (xn) is bounded, and let b be a bound on d when restricted
to (xn). Let ρ : (0,∞) → (0,∞) be defined by

ρ(ε) := min {η(ε), ε/2, η(1/2 · ωp(ε/2))} .

Let φ : (0,∞) → N be defined by

φ(ε) :=
{

p d(b − ε)/ρ(ε)e if b > ε,
1 otherwise.

Then φ is a Cauchy rate for (xn). Given p, ω, η and b we will denote this Cauchy
rate also by Φ(p, ω, η, b, ·), so that given ε > 0 we get that

m,n ≥ Φ(p, ω, η, b, ε)

gives d(xn, xm) ≤ ε.

So the appropriate moduli, together with the existence of a bounded iteration
sequence, guarantee the existence of a Cauchy sequence which is an approximate
fixed point sequence. If the space is complete, then (xn) converges to a fixed point
z, and φ is a rate of convergence for the sequence. The fixed point is unique if
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it exists, for if x and y were fixed points with x 6= y, we would have d(x, y) =
d(fp(x), fp(y)) and d(fp(x), fp(y)) = diam{x, y, fp(x), fp(y)}, contradicting the
fact that f is generalized p-contractive. The rate φ only depends on the function f
and the starting point x0 ∈ X through p and the moduli ω and η, and also through
a bound b on (xn). If b is a bound on the whole space then the rate does not depend
on x0, and gives if the fixed point exists a rate of convergence for f , or else a Cauchy
rate for f .

We note in passing that the moduli in Definition 2.3 and Definition 2.4 might
be equivalently given as functions ω : N → N and η : N → N with conditions of
the form that e.g. d(x, y) < 2−ω(k) should give d(f(x), f(y)) < 2−k. Likewise the
Cauchy rate in Theorem 3.1 can be given as a function Φ : N → N. In this case we
have that with b an integer and with ω and η computable, then Φ is computable.In
fact, it is clear that a Cauchy rate as in Theorem 3.1 could be given as an effectively
computable function Φ : N × NN × NN × N × N → N taking ω and η as two of its
arguments.

Before proving this theorem we give some corollaries and a definition, and we
also prove some lemmas.

Corollary 3.2. Let (X, d) be a bounded, complete metric space, and let p ∈ N. Let
f : X → X be uniformly continuous and uniformly generalized p-contractive. Then
f has a unique fixed point z, and for every x0 ∈ X we have

lim
n→∞

fn(x0) = z.

Together with Proposition 2.5, this corollary implies the theorem of Kincses and
Totik as a special case.

Corollary 3.3 (Kincses and Totik’s Theorem). Let (X, d) be a compact metric
space, and let p ∈ N. Let f : X → X be continuous and generalized p-contractive.
Then f has a unique fixed point z, and for every x0 ∈ X we have

lim
n→∞

fn(x0) = z.

Notice that if (X, d) is a compact metric space and f : X → X is continuous
and satisfies one of the conditions (1)-(24) from [27], then f has moduli of uniform
continuity and uniform generalized 1-contractivity, and hence also a rate of con-
vergence as given in Theorem 3.1. As an application of Theorem 3.1 we note also
the following relationship with asymptotic contractions as introduced by W.A. Kirk
in [20]. The following two corollaries already appeared in [6], but the proofs there
made reference to and were dependent on Theorem 3.1 and Proposition 2.5 in the
present paper.

Corollary 3.4. Let (X, d) be a bounded, complete metric space, and let f : X → X
be uniformly generalized p-contractive and uniformly continuous. Then f is an
asymptotic contraction in the sense of Kirk.

Proof. See the proof of Corollary 3.8 in [6]. ¤
Corollary 3.5. Let (X, d) be a compact metric space. Let f : X → X be continuous
and such that it satisfies one of the conditions (1)-(50) from [27]. Then f is an
asymptotic contraction in the sense of Kirk.
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Proof. See the proof of Corollary 3.9 in [6]. ¤

We will in the following let X, b, f , ω and η be as in Theorem 3.1.

Definition 3.6. We say that ρ : (0,∞) → (0,∞) is a modulus of modified uniform
generalized p-contractivity for f if for all ε > 0 and for all x, y ∈ X with

diam{x, y, fp(x), fp(y)} > ε

we have
d(fp(x), fp(y)) + ρ(ε) < diam{x, y, fp(x), fp(y)}.

Lemma 3.7. Define ρ : (0,∞) → (0,∞) by

ρ(ε) := min
{

η(ε),
ε

2
, η (1/2 · ωp(ε/2))

}
.

Then ρ is a modulus of modified uniform generalized p-contractivity for f .

Proof. We consider the different cases.

(1) If d(x, y) > ε then

(1) d(fp(x), fp(y)) + ρ(ε) < diam{x, y, fp(x), fp(y)},

since ρ(ε) ≤ η(ε).
(2) If d(fp(x), x) > ε we again look at the different cases.

(a) If d(x, y) < ωp(ε/2), then

d(fp(x), fp(y)) < ε/2,

and (1) holds since ρ(ε) ≤ ε/2 and

diam{x, y, fp(x), fp(y)} > ε.

(b) If d(x, y) ≥ ωp(ε/2), then by definition of η we have

d(fp(x), fp(y)) + η(1/2 · ωp(ε/2)) < diam{x, y, fp(x), fp(y)}.

Then (1) holds since ρ(ε) ≤ η(1/2·ωp(ε/2)). (This holds in fact whether
d(fp(x), x) > ε or not.)

The cases where d(fp(y), y) > ε, d(fp(x), y) > ε or d(fp(y), x) > ε are treated in
exactly the same way as the case d(fp(x), x) > ε. ¤

Lemma 3.8. Let (X, d) be a metric space, and let x0 ∈ X be such that b is a bound
on (xn). Let ρ be a modulus of modified uniform generalized p-contractivity for f .
Let φ : (0,∞) → N be defined by

φ(ε) :=
{

p d(b − ε)/ρ(ε)e if b > ε,
1 otherwise.

Then φ satisfies
∀ε > 0∀m, n ≥ φ(ε)(d(xm, xn) ≤ ε).
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Proof. The proof of this lemma comes essentially from the proof of the first theorem
in [19]. If ε ≥ b, then

∀ε > 0∀m, n ≥ φ(ε)(d(xm, xn) ≤ ε).

So let ε < b. Let x0 ∈ X, and let n, k, l ∈ N. Let n0 := np + k, m0 := np + l. For
0 ≤ i < n we define ni+1 and mi+1 inductively so that

ni+1, mi+1 ∈ {ni, ni − p,mi,mi − p},
d(xni+1 , xmi+1) = diam{xni , xni−p, xmi , xmi−p}.

We write di for diam{xni , xni−p, xmi , xmi−p} for i < n. If for some i we have di = 0,
then

d(xnp+k, xnp+l) = 0.

So suppose not. Since ρ is a modulus of modified uniform generalized p-contractivity
we have

d(xn0 , xm0) + ρ(ε0) < d0

for all ε0 > 0 with ε0 < d0. Furthermore, we have

d0 + ρ(ε1) < d1

for all ε1 > 0 with ε1 < d1. And in general

di + ρ(εi+1) < di+1

for all εi+1 > 0 with εi+1 < di+1. Therefore, for 0 ≤ i < n,

d(xn0 , xm0) < di −
i∑

j=0

ρ(εj),

for εj > 0 with εj < dj for j ≤ i. If for some 0 ≤ i < n we have di ≤ ε, then

d(xnp+k, xnp+l) = d(xn0 , xm0) < ε.

If on the other hand we have di > ε for all 0 ≤ i < n, then we get

d(xn0 , xm0) < di −
i∑

j=0

ρ(ε).

Thus
d(xnp+k, xnp+l) < b − nρ(ε).

Now let
n := d(b − ε)/ρ(ε)e .

Then d(xnp+k, xnp+l) < ε. And this n does not depend on x0, except through the
bound b. By letting

m := p d(b − ε)/ρ(ε)e ,

we get d(xm+k, xm+l) < ε. And since ε < b we have

φ(ε) = p d(b − ε)/ρ(ε)e .

Since k and l were arbitrary, we get

∀ε > 0∀m, n ≥ φ(ε)(d(xm, xn) < ε).

¤
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Proof of Theorem 3.1. The lemmas give directly that φ as defined in the theorem
is a Cauchy rate for (xn). ¤

The following provides an example with an unbounded complete metric space
(X, d) and a selfmapping f : X → X where the conditions in Theorem 3.1 are
satisfied, where the fixed point is an element of a noncompact closed and bounded
set, and where we cannot remove either d(x, y), d(y, f(x)), d(x, f(y)), d(x, f(x)) or
d(y, f(y)) in the formulation of the condition that for all real ε > 0 there should
exist δ > 0 such that for all x, y ∈ X with d(x, y) > ε we have

max{d(x, y), d(x, f(y)), d(y, f(x)), d(x, f(x)), d(y, f(y))} − d(fp(x), fp(y)) > δ.

In addition the mapping f in the example does not satisfy the condition (24)
from [27]. Thus theorem 2.7 does not apply.

Example 3.9. Let a, b, c, d 6∈ R be pairwise distinct. Let Y = {0, a, b, c, d} and
Y ′ = {3k + 1 : k ≥ 0} ∪ {−3k − 1 : k ≥ 0} ∪ {2−k : k ≥ 0} ∪ {−2−k : k ≥
0} ∪ {0}. Equip Y ′ with the natural metric, and define a metric dY on Y such that
dY (0, a) = 3, dY (0, b) = 3, dY (0, c) = 1, dY (0, d) = 1, dY (c, d) = 2, dY (a, c) = 2,
dY (b, c) = 2, dY (a, d) = 2, dY (b, d) = 2 and dY (a, b) = 3. Let X be the set of
sequences (xn)n≥0 with x0 ∈ Y and with xn ∈ Y ′ for n ≥ 1 such that {|xn| : n ≥ 1}
is bounded. Define a metric on X by for x, y ∈ X with x = (xn)n, y = (yn)n letting
d(x, y) = max{dY (x0, y0), sup{|xn − yn| : n ≥ 1}}. Given x = (xn)n ∈ X and xn

with n ≥ 1, consider the condition:

(2) There is m ≥ 1 with xm > xn.

Define f : X → X by for x = (xn)n ∈ X letting f(x) = (yn)n be given by

yn =



0 if xn = 0, xn = c or xn = d,
3k − 2 if xn = 3k + 1, k > 0 an integer,
−3k + 2 if xn = −3k − 1, k > 0 an integer,
−2−k−1 if xn = −2−k, k ≥ 0 an integer,
2−k if xn = 2−k for an integer k ≥ 0 and (2) holds,
−2−k if xn = 2−2k for an integer k ≥ 0 and (2) does not hold,
−2−k if xn = 2−2k−1 for an integer k ≥ 0 and (2) does not hold,
c if xn = a,
d if xn = b.

Then {x ∈ X : d(x, 0) ≤ 1} is not compact, where 0 denotes the sequence which is
constant 0, and it is easy to see that f is uniformly continuous. We leave out the
verification that f is uniformly generalized 1-contractive. We have the following.

(1) For x = (xn)n and y = (yn)n with x0 = 0, y0 = 0 and with xn = 1 and
yn = 0 for all n ≥ 1 we have

d(f(x), f(y)) < d(x, f(x)),

but

d(f(x), f(y)) ≥ d(x, y), d(y, f(y)), d(x, f(y)), d(y, f(x)).
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(2) For x = (xn)n and y = (yn)n with x0 = 0, y0 = 0 and with xn = 4 and
yn = 7 for all n ≥ 1 we have

d(f(x), f(y)) < d(y, f(x)),

but

d(f(x), f(y)) ≥ d(x, y), d(x, f(x)), d(y, f(y)), d(x, f(y)).

(3) For x = (xn)n and y = (yn)n with x0 = a, y0 = b and with xn = 0 and
yn = 0 for all n ≥ 1 we have

d(f(x), f(y)) < d(x, y),

but

d(f(x), f(y)) ≥ d(x, f(x)), d(y, f(y)), d(x, f(y)), d(y, f(x)).

Furthermore, f does not satisfy the condition (24) from [27], i.e. there does not
exist 0 ≤ h < 1 such that

d(f(x), f(y)) ≤ h · diam{x, y, f(x), f(y)}
holds for all x, y ∈ X. For given 0 ≤ h < 1 we can let m ∈ N and consider x = (xn)n

and y = (yn)n with x0 = 0, y0 = 0 and with xn = 2−2m and yn = 0 for all n ≥ 1.
Then d(f(x), f(y)) = 2−m and

diam{x, y, f(x), f(y)} = 2−m + 2−2m.

So for m ∈ N large enough we have d(f(x), f(y)) > h · diam{x, y, f(x), f(y)}.

We note that contrary to the case where f is contractive and we are given a
modulus of uniform contractivity (see [14]), we cannot in Theorem 3.1 replace the
bound b on (xn) by a bound on d(x0, x1). Even if we have a b which for all x ∈ X
bounds d(x, f(x)), we are not guaranteed to have a fixed point. Take for instance
X = R, p = 1 and f(x) := x + 1. Then the identity is a modulus of uniform
continuity for f , and the function η : (0,∞) → (0,∞) defined by η(ε) := 1/2 is a
modulus of uniform generalized 1-contractivity for f . Now d(x, f(x)) is bounded by
1, but the function has no fixed point, and no Picard iteration is a Cauchy sequence.
It is also easy to see that given a uniformly continuous and uniformly generalized
p-contractive f and bounded iteration sequences, we cannot in general construct a
common Cauchy rate involving only the moduli of uniform continuity and uniform
generalized p-contractivity. Consider f : R → R given by f(x) := x

2 .
Furthermore, as the following example shows, we cannot do without the modulus

of uniform generalized p-contractivity. Let X := {xn : n ≥ 1} and d(xi, xj) = 1+ 1
i·j

for i 6= j. Let f : X → X be defined by f(xi) := xi+1. Then X is bounded
(complete, separable) and f is uniformly continuous and generalized 1-contractive,
but no Picard iteration sequence is Cauchy. This example is taken from [19], where it
is used to show that a function satisfying condition (25) need not have a fixed point.
Notice that f in this case is not uniformly generalized 1-contractive. Now consider
uniformly continuous and uniformly generalized p-contractive functions with the
same modulus of uniform continuity, and bounded Picard iteration sequences (xn)
with a common bound. We cannot construct a common Cauchy rate for all the
(xn) involving only the bound b and the modulus of uniform continuity ω, as the
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following example shows. Let Xk := {xn : 1 ≤ n ≤ k} and dk(xi, xj) := 1 + 1
i·j for

i 6= j. Let fk : Xk → Xk be defined by

fk(xi) :=
{

xi+1 for i < k,
xk for i = k.

Then for all k we have the same bound b on (fn
k (x1))n, and we can find a modulus

of uniform continuity which is the same for all fk, but no common Cauchy rate for
all the (fn

k (x1))n exists.
Also, as we show in the following proposition, the modulus of uniform continuity

contributes in an essential way to the Cauchy rate.

Proposition 3.10. There exists a bounded metric space (X, d), a family of uni-
formly continuous functions fi : X → X with i ∈ N, and an η : (0,∞) → (0,∞)
which is a modulus of uniform generalized 1-contractivity for all the fi, such that
for some x0 ∈ X the Picard iterations with starting point x0 do not have a common
Cauchy rate.

Proof. Consider X := {(1
2)n : n ≥ 0}

⋃
{−(1

2)n : n ≥ 0} with the natural metric,
and define fi : X → X by

fi(x) :=


−(1

2)n+1 if x = −(1
2)n,

(1
2)n+1 if x = (1

2)n and n 6= i,
−1 if x = (1

2)n and n = i.

Then each fi is uniformly continuous. And η : (0,∞) → (0,∞) defined by η(ε) := ε
2

is a modulus of uniform generalized 1-contractivity for each fi. To see this, we fix
i and consider different cases. If x, y ∈ X with d(x, y) > ε, and neither is equal to
(1
2)i, then

d(fi(x), fi(y)) =
d(x, y)

2
.

Therefore
diam{x, y, fi(x), fi(y)} − d(fi(x), fi(y)) >

ε

2
.

If x, y ∈ X with d(x, y) > ε, and x = (1
2)i, we have one of the following.

(1) If y = −(1
2)n, then

d(fi(x), x) − d(fi(x), fi(y)) =
(

1
2

)i

+
(

1
2

)n+1

>

(
1
2

)i+1

+
(

1
2

)n+1

>
ε

2
.

(2) If y = (1
2)n and n < i, then

d(fi(x), y) − d(fi(x), fi(y)) =
(

1
2

)n+1

>
(1
2)n − (1

2)i

2
>

ε

2
.

(3) If y = (1
2)n and n > i, then

d(fi(x), x) − d(fi(x), fi(y)) =
(

1
2

)i

−
(

1
2

)n+1

>

(
1
2

)i+1

−
(

1
2

)n+1

>
ε

2
.
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So in all cases we have

diam{x, y, fi(x), fi(y)} − d(fi(x), fi(y)) >
ε

2
,

and η is a modulus of uniform generalized 1-contractivity. Let x0 := 1. Then there
does not exist a Cauchy rate valid for all the sequences (fn

i (x0))n. ¤
As the following lemma shows, a function with a modulus of uniform generalized

p-contractivity has what has been called a modulus of uniqueness. This notion was
defined in full generality by U. Kohlenbach in [21].

Lemma 3.11. Let (X, d) be a metric space. Let f : X → X have a modulus η of
uniform generalized p-contractivity. Define ψ : (0,∞) → (0,∞) by ψ(ε) := η(ε)/2.
Then for all ε ∈ (0,∞) and for all x, y ∈ X, if d(x, fp(x)) ≤ ψ(ε) and d(y, fp(y)) ≤
ψ(ε), then d(x, y) ≤ ε.

Proof. Since η is a modulus of uniform generalized p-contractivity, it follows that if
d(x, y) > ε then we have one of the following:

d(fp(x), fp(y)) + η(ε) < d(x, y),(3)
d(fp(x), fp(y)) + η(ε) < d(fp(x), y),(4)
d(fp(x), fp(y)) + η(ε) < d(fp(y), x),(5)
d(fp(x), fp(y)) + η(ε) < d(fp(x), x),(6)
d(fp(x), fp(y)) + η(ε) < d(fp(y), y).(7)

We show that if d(x, fp(x)) ≤ η(ε)/2 and d(y, fp(y)) ≤ η(ε)/2, then d(x, y) ≤ ε. So
let d(x, fp(x)) ≤ η(ε)/2 and d(y, fp(y)) ≤ η(ε)/2. Then it is obvious that (6) and
(7) do not hold. Furthermore, we have

d(x, y) ≤ d(fp(x), fp(y)) + d(fp(x), x) + d(fp(y), y) ≤ d(fp(x), fp(y)) + η(ε),

so (3) does not hold. In the same way it follows by the triangle inequality that (4)
and (5) do not hold. It follows that we have d(x, y) ≤ ε. ¤
Corollary 3.12. Let (X, d) be a metric space. Let f : X → X have a modulus η
of uniform generalized p-contractivity. If the sequences (xn) and (yn) satisfy

(8) ∀ε > 0∃n∀m ≥ n(d(xm, fp(xm)) < ε)

and

(9) ∀ε > 0∃n∀m ≥ n(d(ym, fp(ym)) < ε),

then the sequence (d(xn, yn))n converges to 0, and in addition the sequences (xn)
and (yn) are in fact Cauchy sequences.

Proof. Suppose the sequences (xn) and (yn) satisfy (8) and (9). Let ε > 0. Let
n ∈ N be such that for all m ≥ n we have d(xm, fp(xm)) < η(ε)/2. Let m1,m2 ≥ n.
Then d(xm1 , f

p(xm1)) < η(ε)/2 and d(xm2 , f
p(xm2)) < η(ε)/2. And so by Lemma

3.11 it follows that d(xm1 , xm2) ≤ ε. Thus we have that (xn) is a Cauchy sequence.
In the same way it follows that (yn) is a Cauchy sequence. Let n′ ∈ N be such that
for all m ≥ n′ we have d(ym, fp(ym)) < η(ε)/2. Then for m ≥ max{n, n′} we have
d(xm, fp(xm)) < η(ε)/2 and d(ym, fp(ym)) < η(ε)/2. So by Lemma 3.11 it follows
that d(xm, ym) ≤ ε. Hence the sequence (d(xn, yn))n converges to 0. ¤
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We now prove that if the iteration sequence (fn(x0)) is bounded for one x0 ∈ X,
then it is bounded for any x0 ∈ X.

Theorem 3.13. Let (X, d) be a metric space, and let f : X → X be uniformly
generalized p-contractive and uniformly continuous. For x0 ∈ X define the iteration
sequence (xn) by xn+1 := f(xn). Suppose for some x0 ∈ X the iteration sequence is
bounded. Then for every choice of x0 ∈ X the iteration sequence (xn) is bounded,
and in fact Cauchy. Also, for all x0, y0 ∈ X we have limn→∞ d(xn, yn) = 0. If
(X, d) is complete all Picard iteration sequences converge to the unique fixed point
of f .

Proof. We prove first the special case where p = 1 and the space is complete. We
know from Lemma 3.7 that f has a modulus of modified uniform generalized 1-
contractivity. Call this modulus ρ. Likewise from Theorem 3.1 we know that f has
a unique fixed point z. Let x0 ∈ X be arbitrary, and consider diam{x0, . . . , xn}.
Assume xn 6= z, for else (xn) is bounded. Of course xn 6= z also implies z 6= xi for
i < n, and hence d(xi−1, xi) > 0 for 0 < i ≤ n. For some 0 ≤ i ≤ n we have

diam{x0, . . . , xn} = d(x0, xi),

for if we for 0 < i, j ≤ n had diam{x0, . . . , xn} = d(xi, xj), then we would have

diam{xi, xj , xi−1, xj−1} > d(xi, xj) = diam{x0, . . . , xn}.

In the same way, for i > 0 we have

diam{z, x0, . . . , xn} 6= d(z, xi),

for we have for such i

d(z, xi) < max{d(z, xi−1), d(xi, xi−1)}.

Assume
diam{z, x0, . . . , xn, xn+1} > diam{z, x0, . . . , xn}.

By the above we have

diam{z, x0, . . . , xn+1} = d(x0, xn+1).

Assume d(x0, xn+1) > 2d(x0, z). Since

d(z, xn+1) + d(x0, z) ≥ d(x0, xn+1),

we have
d(z, xn+1) > d(x0, z).

Let ε > 0 satisfy ε ≤ d(x0, z). Since ρ is a modulus of modified uniform generalized
1-contractivity, we have either

d(z, xn) > d(z, xn+1) + ρ(ε)

or
d(xn+1, xn) > d(z, xn+1) + ρ(ε).

Let m0 := n + 1 and m′
0 := −1. We will let x−1 denote z. For 0 ≤ i < n we define

mi+1 and m′
i+1 inductively such that the following holds.
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(1) If m′
i = −1, then m′

i+1 ∈ {mi,mi − 1, m′
i} and mi+1 ∈ {mi,mi − 1} such

that
d(xmi+1 , xm′

i+1
) = diam{xmi , xmi−1, z}.

(2) If m′
i 6= −1, then m′

i+1,mi+1 ∈ {mi,mi − 1, m′
i,m

′
i − 1} such that

d(xmi+1 , xm′
i+1

) = diam{xmi , xmi−1, xm′
i
, xm′

i−1}.

Then since d(xm0 , xm′
0
) > ε we can prove by induction on i that

d(xmi+1 , xm′
i+1

) > d(xmi , xm′
i
) + ρ(ε)

and d(xmi , xm′
i
) > ε for all 0 ≤ i < n. And so

d(xmi , xm′
i
) > d(xm0 , xm′

0
) + iρ(ε)

for 0 < i < n. Hence, if n satisfies nρ(ε) > d(x0, z) then we get

d(xmn , xm′
n
) > d(xn+1, z) + d(x0, z) ≥ d(xn+1, x0) = diam{z, x0, . . . , xn+1}.

Specifically, we may take

n :=
⌈

b

ρ(ε)

⌉
,

for any b > d(x0, z). But we have

d(xmn , xm′
n
) ≤ diam{z, x0, . . . , xn+1},

and hence for large enough n we have d(x0, xn+1) ≤ 2d(x0, z) or

diam{z, x0, . . . , xn, xn+1} ≤ diam{z, x0, . . . , xn}.

Thus for the special case where the space is complete and p = 1 we have proved
that if one Picard iteration sequence is bounded, then any Picard iteration sequence
is bounded. And so in this case it follows by Theorem 3.1 that all Picard iteration
sequences converge to the unique fixed point z.

Now let p 6= 1. Then by the above fp has a unique fixed point z and moreover
for any x0 ∈ X we have limn→∞ fnp(x0) = z. A trivial argument now shows that
the same is true for f . So (fn(x0)) converges to z for any x0 ∈ X, and in particular
it is bounded.

Next suppose the space X is not complete. We consider the completion of X and
the canonical extension of the uniformly continuous function f . Then the extension
of f still has moduli of uniform continuity and uniform generalized p-contractivity,
and the bounded Picard iteration sequence we presupposed stays the same. So by
the above every Picard iteration sequence in the completion of X converges to the
unique fixed point z. And so for all x0, y0 ∈ X we have that (xn) and (yn) are
Cauchy and in particular bounded, and furthermore that limn→∞ d(xn, yn) = 0.
This ends the proof. ¤

Corollary 3.14. Let (X, d) be a complete metric space, and let p ∈ N. Let f :
X → X have a modulus η of uniform generalized p-contractivity and a modulus ω
of uniform continuity. Suppose for some starting point the Picard iteration sequence
is bounded. Let z be the unique fixed point of f . Let x0 ∈ X and for 0 ≤ i < p let
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bi > 0 and δi > 0 satisfy δi ≤ d(xi, z) < bi. Let ε > 0. Let Φ be as in Theorem 3.1
and let

Ni =
⌈

bi

ρ(δi)

⌉
,

where ρ : (0,∞) → (0,∞) is defined by

ρ(γ) = min
{

η(γ),
γ

2
, η(1/2 · ωp(γ/2))

}
.

Let
Mi = max

{
2bi, diam{z, xi, f

p(xi), f2p(xi), . . . , fNip(xi)}
}

,

and let
M = max{M0, . . . ,Mp−1}.

Then for all m, n ∈ N we have that

m,n ≥ Φ(p, ω, η, 2M, ε)

gives
d(xn, xm) ≤ ε

and so
d(xn, z) ≤ ε.

Proof. We first note that since fp has moduli η and ωp of uniform generalized 1-
contractivity and uniform continuity, we have by Lemma 3.7 that ρ is a modulus
of modified uniform generalized 1-contractivity for fp. Then by the proof of The-
orem 3.13 we can infer that for 0 ≤ i < p the iteration sequence (fpn(xi))n∈N is
bounded by Mi. Namely, we proved that

diam{z, xi, f
p(xi), f2p(xi), . . . , f (n+1)p(xi)} =

diam{z, xi, f
p(xi), f2p(xi), . . . , fnp(xi)}

if
diam{z, xi, f

p(xi), f2p(xi), . . . , f (n+1)p(xi)} > 2d(xi, z)
and n ≥ Ni. Thus (fn(x0))n∈N is bounded by 2M . Now the claim follows by
Theorem 3.1. ¤
Corollary 3.15. Let (X, d) be a complete metric space, and let p ∈ N. Let f :
X → X have a modulus η of uniform generalized p-contractivity and a modulus ω
of uniform continuity. Suppose for some starting point the Picard iteration sequence
is bounded. Let z be the unique fixed point of f . Let x0 ∈ X and let δ, b > 0 be such
that δ ≤ d(x0, z) < b. Let ε > 0. Let Φ be as in Theorem 3.1. Let

N =
⌈

b

ρ(δ)

⌉
,

where ρ is as in Corollary 3.14. Let

M = max{2b, diam{z, x0, f
p(x0), f2p(x0), . . . , fNp(x0)}},

and let
K = Φ(1, ωp, η,M, 1/2 · min{1, ω(1), ω2(1), . . . , ωp−1(1)}).
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Let
M ′ = diam{xn : 0 ≤ n ≤ Kp} + 2.

Then for all m, n ∈ N we have that

m,n ≥ Φ(p, ω, η,M ′, ε)

gives
d(xn, xm) ≤ ε

and so
d(xn, z) ≤ ε.

Proof. As in the proof of Corollary 3.14 we note that fp has moduli η of uniform
generalized 1-contractivity, ωp of uniform continuity and ρ of modified uniform
generalized 1-contractivity. Furthermore, as in the proof of Corollary 3.14 we get
that (fpn(x0))n is bounded by M . Then for m,n ≥ K we have

d(xmp, xnp) ≤ 1/2 · min{1, ω(1), ω2(1), . . . , ωp−1(1)}

and
d(z, xnp) ≤ 1/2 · min{1, ω(1), ω2(1), . . . , ωp−1(1)}.

Since ω is a modulus of uniform continuity for f we have in particular that

d(xnp, z) < 1,

d(xnp+1, z) < 1,

d(xnp+2, z) < 1,

...
d(xnp+(p−1), z) < 1,

for n ≥ K. And so for n ≥ Kp we have in fact d(xn, z) < 1. Let now m,n be
nonnegative integers. We distinguish three cases:

(1) If m,n ≤ Kp, then

d(xn, xm) ≤ diam{xk : 0 ≤ k ≤ Kp} < M ′.

(2) If m,n ≥ Kp, then

d(xn, xm) ≤ d(xn, z) + d(xm, z) < 2 ≤ M ′.

(3) If m < Kp and n > Kp, then

d(xn, xm) ≤ d(xm, xKp) + d(xn, xKp) < diam{xk : 0 ≤ k ≤ Kp} + 2 = M ′.

It follows that M ′ is a bound on (xn)n. Now Theorem 3.1 gives the conclusion. ¤

In the previous two corollaries we gave rates of convergence which were dependent
on strictly positive upper and lower bounds on d(z, xi) for some i. We will now
improve this as follows.
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Corollary 3.16. Let (X, d) be a complete metric space, and let p ∈ N. Let f :
X → X have a modulus η of uniform generalized p-contractivity and a modulus ω
of uniform continuity. Suppose for some starting point the Picard iteration sequence
is bounded. Let x0 ∈ X and let δ > 0 be such that δ ≤ d(x0, x1). Let b, c, ε > 0.
Let Φ be as in Theorem 3.1. Assume that there is y ∈ X such that d(x0, y) < b and
d(x1, y) < b, and such that either

d(y, fp(y)) <
η(c)
2

or (fn(y))n is bounded by c. Let

N =
⌈

b + c

ρ(δ/2)

⌉
,

where ρ is as in Corollary 3.14. Let

M0 = max{2(b + c), diam{x0, f
p(x0), f2p(x0), . . . , fNp(x0)} + b + c},

M1 = max{2(b + c), diam{x1, f
p(x1), f2p(x1), . . . , fNp(x1)} + b + c},

and let

K = Φ(1, ωp, η, max{M0,M1}, 1/2 · min{1, ω(1), ω2(1), . . . , ωp−1(1)}).

Let
M ′ = diam{xn : 0 ≤ n ≤ Kp + 1} + 2.

Then for all m, n ∈ N we have that

m,n ≥ Φ(p, ω, η,M ′, ε)

gives
d(xn, xm) ≤ ε.

And so
d(xn, z) ≤ ε,

where z is the unique fixed point.

Proof. By Lemma 3.11 it follows that d(y, z) ≤ c, where z is the unique fixed point.
Thus by the triangle inequality d(x0, z) < b + c and d(x1, z) < b + c. Furthermore,
either δ/2 ≤ d(x0, z) or δ/2 ≤ d(x1, z). As in the proof of Corollary 3.14 we get
that either (fpn(x0))n is bounded by M0 or (fpn(x1))n is bounded by M1. So we
have that d(fn(x0), z) < 1 for all n ≥ K or d(fn(x1), z) < 1 for all n ≥ K, and so
we have d(fn(x0), z) < 1 for all n ≥ K + 1. Hence, M ′ is a bound on (xn)n, and
the conclusion follows by Theorem 3.1. ¤

The Cauchy rates appearing in the last three corollaries depend heavily on f .
If the space satisfies a further structural condition we may find Cauchy rates with
uniformity properties with respect to f . This will include for instance spaces of
hyperbolic type in the sense of [16], as well as hyperbolic spaces in the sense of [26]
and hyperbolic spaces in the sense of [22], and therefore e.g. normed linear spaces,
Hadamard manifolds and CAT(0)-spaces.
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Definition 3.17. Let (X, d) be a metric space. Let ε > 0 and x, y ∈ X. We say
that x is ε-step-equivalent to y if there exist points x0 = x, x1, . . . , xn = y, belonging
to X, with d(xi, xi+1) ≤ ε for i < n. This defines for each ε > 0 an equivalence
relation on X. We call the equivalence classes ε-step-territories.

The notions in Definition 3.17 are taken from [24]. The condition on a metric
space which in the terminology of Definition 3.17 amounts to requiring that the
space should be an ε-step-territory was already treated by M. Edelstein. We will
employ a uniform version of ε-step-territories.

Definition 3.18. Let (X, d) be a metric space, and let ε > 0. A subset Tε of X
is a uniform ε-step-territory if there exists αε : N → N such that for all x, y ∈ Tε

and all n ∈ N, if d(x, y) < nε, then there exist x0 = x, x1, . . . , xαε(n) = y ∈ Tε with
d(xi, xi+1) < ε for i < αε(n).

Definition 3.19. Let (X, d) be a metric space. A subset T of X is called a territory
if it is an ε-step-territory for each ε > 0. A subset T of X is called a uniform territory
if it is a uniform ε-step-territory for each ε > 0.

Definition 3.20. Let (X, d) be a metric space, and let T be a subset of X. A
function α : R × N → N is called a uniform territory modulus for T if for each
ε > 0 and for all x, y ∈ T and n ∈ N such that d(x, y) < nε, there exist x0 =
x, x1, . . . , xα(ε,n) = y ∈ T with d(xi, xi+1) < ε for i < α(ε, n).

We note that if T has a uniform territory modulus then T is a uniform territory.

Corollary 3.21. Let (X, d) be a complete metric space with a uniform territory
modulus α. Let f : X → X have a modulus η of uniform generalized p-contractivity
and a modulus ω of uniform continuity. Suppose for some starting point the Picard
iteration sequence is bounded. Let z be the unique fixed point of f . Let x0 ∈ X and
let b > 0 satisfy d(x0, z) < b. Let ε > 0. Then for all n ∈ N,

d(z, fn(x0)) < Kp−1(b + KNp(b)),

where K : (0,∞) → (0,∞) is defined by

K(γ) := max
{

α

(
ω(ε),

⌈
γ

min{ε, ω(ε)}

⌉)
· ε, γ

}
,

N :=
⌈

b

ρ(δ)

⌉
,

ρ : (0,∞) → (0,∞) is defined by

ρ(γ) := min
{

η(γ),
γ

2
, η

(
1
2
ωp

(γ

2

))}
,

and δ := min{b, ω(b)}. Let ε′ > 0 and let Φ be as in Theorem 3.1. Then

m,n ≥ Φ(p, ω, η, 2Kp−1(b + KNp(b)), ε′)

gives d(xn, xm) ≤ ε′.
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Proof. Since fp has moduli η and ωp of uniform generalized 1-contractivity and
uniform continuity, we have that ρ is a modulus of modified uniform generalized
1-contractivity for fp. Now, if d(x0, z) < δ, then if we do not for all n ∈ N have
d(fn(x0), z) < δ, it follows from the definition of δ that we for some m ∈ N have
δ ≤ d(fm(x0), z) < b. For if fm(x0) is the first member of the sequence which is
not an element of the set {x ∈ X : d(x, z) < δ}, then d(fm−1(x0), z) < δ ≤ ω(b).
So since ω is a modulus of uniform continuity for f we have d(fm(x0), z) < b. So in
total δ ≤ d(fm(x0), z) < b. We can take fm(x0) as the starting point x′

0 of a new
Picard iteration sequence. If we can establish the bound on d(fn(x′

0), z) for this
sequence, then it is also proved for our original sequence, since d(f i(x0), z) < δ <
Kp−1(b + KNp(b)) for i < m. The last inequality follows since K(γ) ≥ γ for γ > 0.
Hence, we may assume

δ ≤ d(x0, z) < b.

Then as in the proof of Corollary 3.14 we can infer that the iteration sequence
(fpn(x0))n∈N is bounded by

M := max{2d(x0, z), diam{z, x0, f
p(x0), f2p(x0), . . . , fNp(x0)}}.

From the proof of Theorem 3.13 it follows that

diam{z, x0, f
p(x0), f2p(x0), . . . , fNp(x0)} = d(x0, z)

or
diam{z, x0, f

p(x0), f2p(x0), . . . , fNp(x0)} = d(x0, f
ip(x0)),

for some i ≤ N . Therefore

(10) diam{z, x0, f
p(x0), f2p(x0), . . . , fNp(x0)} ≤ d(x0, z) + d(z, f ip(x0)),

for some i ≤ N . Since

d(z, x0) <

⌈
b

min{ε, ω(ε)}

⌉
· ω(ε),

we have by definition of K and by the assumed property of the space that d(z, f(x0)) <
K(b). This follows since with

m := α

(
ω(ε),

⌈
b

min{ε, ω(ε)}

⌉)
,

we have that there exist x′
0 = x0, x

′
1, . . . , x

′
m = z ∈ X with

d(x′
i, x

′
i+1) < ω(ε)

for i < m. And so d(f(x0), z) < K(b). Furthermore,

d(z, f(x0)), d(z, f2(x0)) < K2(b),

since K(γ) ≥ γ. And in general,

d(z, f(x0)), d(z, f2(x0)), . . . , d(z, fk(x0)) < Kk(b).

So by (10) we have

diam{z, x0, f
p(x0), f2p(x0), . . . , fNp(x0)} < b + KNp(b).

Thus M < b + KNp(b). Hence for any n ∈ N we have

d(z, fnp(x0)) < b + KNp(b),
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and so
d(z, fnp(x0)), d(z, fnp+1(x0)) < K(b + KNp(b)).

For all n ∈ N we have

d(z, fnp(x0)), d(z, fnp+1(x0)), . . . , d(z, fnp+p−1(x0)) < Kp−1(b + KNp(b)).

That is, for all n ∈ N we have

d(z, fn(x0)) < Kp−1(b + KNp(b)).

Hence, 2Kp−1(b + KNp(b)) is a bound on (xn), and the conclusion follows by The-
orem 3.1. ¤

Notice that the Cauchy rate in the preceeding corollary only depends on p, ω,
η, α, b and ε. Given these the rate is uniform in the space, the mapping and the
starting point.

We can treat the situation where the space is not complete as follows. We con-
sider a metric space (X, d) and a function f : X → X with moduli ω and η of
uniform continuity and uniform generalized p-contractivity. We denote by f also
the canonical extension of f to the completion of X. We can then define e.g.
ω′ : (0,∞) → (0,∞) by ω′(ε) := ω(ε/2) and η′ : (0,∞) → (0,∞) by η′(ε) := η(ε)/2.
It is easy to see that ω′ and η′ are moduli of uniform continuity and uniform gen-
eralized p-contractivity for f considered as a function on the completion of X. We
can thus find Cauchy rates for (xn)n with x0 ∈ X by considering the completion
and the suitably modified moduli.

We will now improve Corollary 3.21 similarly to the way Corollary 3.16 is an
improvement of Corollary 3.15, and at the same time spell out the details for what
happens in this case when the space is not complete.

Corollary 3.22. Let (X, d) be a metric space with a uniform territory modulus
α. Let f : X → X have a modulus η of uniform generalized p-contractivity and
a modulus ω of uniform continuity. Suppose for some starting point the Picard
iteration sequence is bounded. Let ω′ and η′ be defined as above, and let ε > 0. Let
x0 ∈ X, and let b, c ∈ (0,∞) be such that there is y ∈ X with

d(y, fp(y)) <
η′(c)

2
,

such that d(x0, y) < b. Then (fn(x0)) is bounded by

2Kp−1(b + c + KNp(b + c)),

where K : (0,∞) → (0,∞) is defined by

K(γ) := max
{

α

(
1
2
· ω′(ε),

⌈
γ

1/2 · min{ε, ω′(ε)}

⌉)
· ε, γ

}
,

N :=
⌈

b + c

ρ′(δ)

⌉
,

ρ′ : (0,∞) → (0,∞) is defined by

ρ′(γ) := min
{

η′(γ),
γ

2
, η′

(
1
2
ω′p

(γ

2

))}
,
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and δ := min{b + c, ω′(b + c)}. Let ε′ > 0 and let Φ be as in Theorem 3.1. Then

m,n ≥ Φ(p, ω, η, 2Kp−1(b + c + KNp(b + c)), ε′)

gives d(xn, xm) ≤ ε′.

Proof. We consider the completion (X̂, d̂ ) of (X, d) and the canonical extension of
f , which we also denote f . We have that ω′ and η′ are moduli of uniform continuity
and uniform generalized p-contractivity for f . Now (X̂, d̂) satisfies the condition
that for each ε > 0 and for all x, y ∈ X̂ and n ∈ N, if d̂(x, y) < nε, then there
exist x′

0 = x, x′
1, . . . , x

′
α(ε,n) = y ∈ X̂ with d̂(x′

i, x
′
i+1) < 2ε for i < α(ε, n). Let z

be the unique fixed point. By assumption we have d(y, fp(y)) < η′(c)/2, and so by
Lemma 3.11 we get that d̂(y, z) ≤ c. And since we assume that d(x0, y) < b we get
d̂(x0, z) < b + c. Our new definition of K serves the same purpose as the version in
Corollary 3.21, i.e. for x ∈ X̂ and b′ > 0 with d̂(x, z) < b′, we get d̂(f(x), z) < K(b′).
This follows since ⌈

b′

1/2 · min{ε, ω′(ε)}

⌉
· 1/2 · ω′(ε) > d̂(x, z),

so with

m := α

(
1/2 · ω′(ε),

⌈
b′

1/2 · min{ε, ω′(ε)}

⌉)
,

we have that there exist x′
0 = x, x′

1, . . . , x
′
m = z ∈ X̂ with

d̂(x′
i, x

′
i+1) < 2 · 1/2 · ω′(ε)

for i < m. And so d̂(f(x), z) < K(b′). Now by identical reasoning as in Corol-
lary 3.21 we get that for all n ∈ N we have

d̂(fn(x0), z) < Kp−1(b + c + KNp(b + c)).

Thus 2Kp−1(b + c + KNp(b + c)) is a bound on (fn(x0)) in X̂, and hence also in X.
The conclusion follows by Theorem 3.1. ¤

Corollary 3.23. Let (X, d) be a metric space with a uniform territory modulus
α. Let f : X → X have a modulus η of uniform generalized p-contractivity and
a modulus ω of uniform continuity. Suppose for some starting point the Picard
iteration sequence is bounded. Let ε > 0. Let x0, y0 ∈ X, and let b, c ∈ (0,∞) be
such that d(x0, y0) < b and such that c is a bound on (fn(y0)). Then (fn(x0)) is
bounded by

2Kp−1(b + c + KNp(b + c)),
where K, N , ρ′ and δ are defined as in Corollary 3.22. Let ε′ > 0 and let Φ be as
in Theorem 3.1. Then

m,n ≥ Φ(p, ω, η, 2Kp−1(b + c + KNp(b + c)), ε′)

gives d(xn, xm) ≤ ε′.

Proof. We have in the completion (X̂, d̂ ) of (X, d) that d̂(x0, z) < b + c, where z is
the unique fixed point. Now the result follows as in Corollary 3.22. ¤
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Finally we include some remarks on applications of fixed point theorems for
mappings satisfying contractive type conditions more general than the one due to
Banach or the one due to Edelstein. Such contractive type conditions have been
extensively studied as part of an attempt to conceptually understand the fixed point
theory of selfmappings of abstract metric spaces, but they are often difficult to apply
in other areas of mathematics. We will now consider how we can formulate a more
general version of Picard’s theorem for differential equations using Theorem 2.7.
This will illustrate the fact that often, when one wishes to apply fixed point theorems
for more general contractive conditions to obtain in turn more general versions of
theorems outside of metric fixed point theory, the results are indeed more general,
but also seemingly not very practical.

Picard’s theorem (for a proof, see e.g. [8]) tells us that given a bounded, continu-
ous real-valued function f : G → R defined on an open subset G of R2, if f satisfies
a Lipschitz condition with respect to the second variable, i.e. if there exists M ≥ 0
such that

|f(x, y1) − f(x, y2)| ≤ M |y1 − y2|
holds for all (x, y1), (x, y2) ∈ G, then for any (x0, y0) ∈ G the differential equation
y′ = f(x, y) with initial condition y(x0) = y0 has a unique solution φ in some
interval I = [x0 − δ, x0 + δ]. Here δ > 0 is chosen such that Mδ < 1 and such that

{(x, y) : |x − x0| ≤ δ, |y − y0| ≤ Kδ} ⊆ G,

where K > 0 is such that |f(x, y)| ≤ K for all (x, y) ∈ G. The proof involves
considering the complete metric space (X, d) of all continuous functions g : I →
[y0 − Kδ, y0 + Kδ], with the metric d defined by d(g, h) = maxt∈I |g(t) − h(t)|, and
the mapping T : X → X defined by

(Tg)(x) = y0 +
∫ x

x0

f(t, g(t)) dt

for all g ∈ X and x ∈ I, and then showing that T is a contraction. As a consequence
we also get that (Tng)n converges to the unique solution φ for any g ∈ X. A crucial
step in the proof involves showing that d(Tg, Th) ≤ Mδ · d(g, h) by showing that

|(Tg)(x) − (Th)(x)| ≤
∣∣∣∣∫ x

x0

[f(t, g(t)) − f(t, h(t))] dt

∣∣∣∣ ≤ Mδ · d(g, h)

for all g, h ∈ X and all x ∈ I. This follows since f is Lipschitzian with constant M
with respect to the second variable. Now from Ćirić’s theorem we can deduce that
if we remove the condition that f is Lipschitzian with respect to the second variable
(but still assume that f is continuous and bounded) then for (x0, y0) ∈ G and initial
condition y(x0) = y0 we can still conclude the existence of a unique solution φ in
I = [x0 − δ, x0 + δ], with δ > 0 such that

{(x, y) : |x − x0| ≤ δ, |y − y0| ≤ Kδ} ⊆ G,

if for some M ≥ 0 with Mδ < 1 we for all x ∈ I and all g, h ∈ X have∣∣∣∣∫ x

x0

[f(t, g(t)) − f(t, h(t))] dt

∣∣∣∣ ≤ Mδ · max
t∈I

|g(t) − h(t)|,
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x0

[f(t, g(t)) − f(t, h(t))] dt

∣∣∣∣ ≤ Mδ · max
t∈I

∣∣∣∣ y0 +
∫ t

x0

f(u, h(u)) du − h(t)
∣∣∣∣ ,∣∣∣∣∫ x

x0

[f(t, g(t)) − f(t, h(t))] dt

∣∣∣∣ ≤ Mδ · max
t∈I

∣∣∣∣ y0 +
∫ t

x0

f(u, g(u)) du − g(t)
∣∣∣∣ ,∣∣∣∣∫ x

x0

[f(t, g(t)) − f(t, h(t))] dt

∣∣∣∣ ≤ Mδ · max
t∈I

∣∣∣∣ y0 +
∫ t

x0

f(u, g(u)) du − h(t)
∣∣∣∣

or ∣∣∣∣∫ x

x0

[f(t, g(t)) − f(t, h(t))] dt

∣∣∣∣ ≤ Mδ · max
t∈I

∣∣∣∣ y0 +
∫ t

x0

f(u, h(u)) du − g(t)
∣∣∣∣ .

We have also in this situation that (Tng)n converges to the unique solution φ for
any g ∈ X.
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