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AN INVERSE OF THE BERGE MAXIMUM THEOREM FOR
INFINITE DIMENSIONAL SPACES

TAKAMITSU YAMAUCHI

Abstract. An inverse of the Berge maximum theorem for paracompact domains
and locally convex topological vector space ranges is proved. Cellina’s approxi-
mate selection theorem for paracompact domains and locally convex topological
vector space ranges is also obtained.

1. Introduction

Throughout this paper, all spaces are assumed to be Hausdorff. For a topological
vector space Y , the set of all non-empty subsets (respectively, non-empty convex
subsets, non-empty compact convex subsets) of Y is denoted by 2Y (respectively, 2Y

c ,
Cc(Y )). For spaces X and Y , a mapping ϕ : X → 2Y is called lower semicontinuous
(respectively, upper semicontinuous) or l.s.c. (respectively, u.s.c.) if for every open
subset V of Y , the set ϕ−1[V ] = {x ∈ X : ϕ(x) ∩ V 6= ∅} (respectively, ϕ#[V ] =
{x ∈ X : ϕ(x) ⊂ V }) is open in X. A mapping ϕ : X → 2Y is called continuous if ϕ
is both l.s.c. and u.s.c. For a vector space Y , a function f : Y → R is quasi-concave
if the set {y ∈ Y : f(y) ≥ r} is convex for each r ∈ R.

The Berge maximum theorem [2, p. 116] is fundamental in mathematical econom-
ics and game theory. The following convex-version of the Berge maximum theorem
is also well-known (cf. [5, §3.4]).

Theorem 1.1 (C. Berge [2]). Let X be a topological space and Y a topological
vector space. If f : X × Y → R is a continuous function such that f(x, ·) : Y → R
is quasi-concave for each x ∈ X and ϕ : X → Cc(Y ) is a continuous mapping, then
the mapping ψ : X → 2Y defined by ψ(x) = {y ∈ ϕ(x) : f(x, y) = max{f(x, z) : z ∈
ϕ(x)}} for each x ∈ X is u.s.c. and compact-and-convex-valued.

In [13], Komiya posed an inverse problem of Theorem 1.1 for Euclidean spaces
and gave an application to Kakutani’s fixed point theorem. Here we state the
problem in a general setting. For a mapping ϕ : X → 2Y , let Grϕ denote the graph
{(x, y) ∈ X × Y : y ∈ ϕ(x)} of ϕ. Notice that, in Theorem 1.1, Grψ is a Gδ-set
(that is, an intersection of countable many open subsets) of Grϕ since the marginal
function M : X → R defined by M(x) = max{f(x, z) : z ∈ ϕ(x)} is continuous
(see [2, Theorem 1 and 2 in Chapter VI, §3]). Thus Komiya’s inverse problem of
Theorem 1.1 can be restated as follows.

Problem 1.2 (H. Komiya [13]). Let X be a topological space, Y a topological vector
space, ϕ : X → Cc(Y ) a continuous mapping and ψ : X → Cc(Y ) a u.s.c. set-valued
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selection of ϕ such that Grψ is a Gδ-set of Grϕ. Then does there exist a continuous
mapping f : X × Y → R such that ψ(x) = {y ∈ ϕ(x) : f(x, y) = max{f(x, z) : z ∈
ϕ(x)}} and the mapping f(x, ·) : Y → R is quasi-concave for each x ∈ X?

Komiya [13, Theorem 2.1] answered Problem 1.2 affirmatively for every subset X
of a Euclidean space and every Euclidean space Y . Park and Komiya [17, Theorem
2] answered Problem 1.2 affirmatively for every σ-selectionable set-valued mapping
ψ from a topological space X to a locally convex metrizable topological vector
space Y . Here we recall that a mapping ψ : X → 2Y is called σ-selectionable (or
said to satisfy property (σ)) if there exists a sequence {ϕn : n ∈ N} of continuous
mappings ϕn : X → Cc(Y ) such that ϕn+1(x) ⊂ ϕn(x) and ψ(x) =

∩
n∈N ψn(x) for

each n ∈ N and x ∈ X. Note that every σ-selectionable mapping ψ : X → Cc(Y )
is u.s.c. Aoyama [1, Theorem 3.6] extended Park-Komiya’s theorem to a convex
metric space Y in the sense of Takahashi [20] with property (K) (see Remark 2.3).
In this context, Komiya [14] asked whether the assumption of σ-selectionability of
the mapping ψ can be removed even in the case that X and Y are subsets of Banach
spaces.

The purpose of this paper is to answer Komiya’s question by proving that Prob-
lem 1.2 is affirmative even if X is a paracompact space and Y is a locally convex
topological vector space.

Theorem 1.3. Let X be a paracompact space, Y a locally convex topological vector
space, ϕ : X → 2Y a mapping and ψ : X → Cc(Y ) a u.s.c. mapping such that Grψ
is a Gδ-set of Grϕ. Then there exists a continuous function f : X × Y → [0, 1]
such that ψ(x) = {y ∈ ϕ(x) : f(x, y) = max{f(x, z) : z ∈ ϕ(x)}} and the mapping
f(x, ·) : Y → R is quasi-concave for each x ∈ X.

Proof of Theorem 1.3 is obtained in the next section. A key lemma is Lemma
2.2 below. In section 3, we obtain three applications of Lemma 2.2. The first one
is to give another proof of Fan-Glicksberg’s generalization of Kakutani’s fixed point
theorem ([7], [10]). The second one is to show Cellina’s approximation theorem ([3],
[4]) for paracompact domains and locally convex topological vector space ranges.
The third one is to show that every u.s.c. compact- and convex-valued mapping from
a metric space to a Banach space is σ-selectionable, which also answers Komiya’s
question in [14] affirmatively.

The closure of a subset S of a space X is denoted by Cl(S). A mapping ϕ :
X → 2Y is said to have an open graph if Grϕ is open in X × Y . For undefined
terminology, we refer to [6] and [11].

2. Proof of Theorem 1.3

Lemma 2.1. Let X be a space, Y a locally convex topological vector space, ψ : X →
Cc(Y ) a u.s.c. mapping and O an open subset of X × Y with Grψ ⊂ O. Then for
each x ∈ X, there exist a neighborhood N of x and a convex neighborhood V of the
origin of Y such that Grψ ∩ (N × Y ) ⊂ N × (ψ(x) + V ) ⊂ N × (ψ(x) + 2V ) ⊂ O.

Proof. Let x ∈ X. Since ψ(x) is compact, there exist a neighborhood U of x and
a convex neighborhood V of the origin such that U × (ψ(x) + 2V ) ⊂ O. Put
N = U ∩ ψ#[ψ(x) + V ]. Then N and V are required neighborhoods. ¤
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Lemma 2.2. Let X be a paracompact space, Y a locally convex topological vector
space, ψ : X → Cc(Y ) a u.s.c. mapping and {On : n ∈ N} is a decreasing sequence
of open subsets of X × Y such that Grψ ⊂

∩
{On : n ∈ N}. Then there exists a

continuous function f : X × Y → [0, 1] such that f(Grψ) = {1}, f(X × Y r On) ⊂
[0, 1 − 1/2n−1] for each n ∈ N and the function f(x, ·) : Y → R is quasi-concave
for each x ∈ X.

Proof. As in [13], our proof is based on the idea used in a proof of Urysohn’s Lemma.
Let D = {n/2m : n, m ∈ N} ∩ (0, 1]. We first construct a family {ϕt : t ∈ D} of
mappings ϕt : X → 2Y

c having open graphs such that Grψ ⊂ Grϕs ⊂ Cl(Grϕs) ⊂
Grϕt for each s, t ∈ D with s < t and Grϕt ⊂ On for each t ∈ D and n ∈ N with
t < 1/2n−1 by induction on n.

Define ϕ1 : X → 2Y
c by putting ϕ1(x) = Y for each x ∈ X. Assume that

{ϕt : t ∈ D, 1/2n−1 ≤ t} has been obtained. By Lemma 2.1, for each x ∈ X, there
exist a neighborhood Nx of x and a convex neighborhood Vx of the origin of Y such
that Grψ ∩ (Nx × Y ) ⊂ Nx × (ψ(x) + Vx) ⊂ Nx × (ψ(x) + 2Vx) ⊂ Grψ1/2n−1 ∩ On.
Since X is paracompact, there exist locally finite open covers {Wα : α ∈ A} and
{U1/2n

α : α ∈ A} of X such that the cover {Cl(U1/2n

α ) : α ∈ A} refines {Nx : x ∈ X}
and Cl(Wα) ⊂ U

1/2n

α for each α ∈ A. By using the normality of X, take a family
{Ut : t ∈ D, 1/2n < t < 1/2n−1} of locally finite open covers Ut = {U t

α : α ∈ A}
such that Cl(Wα) ⊂ U t

α ⊂ Cl(U t
α) ⊂ U s

α for each α ∈ A and each s, t ∈ D with
1/2n ≤ s < t < 1/2n−1. For each α ∈ A, take xα ∈ X so that Cl(U1/2n

α ) ⊂ Nxα .
Define a mapping ϕt : X → 2Y by

ϕt(x) =
∩

{ψ(xα) + 2ntVxα : α ∈ A, x ∈ Cl(U t
α)}

for each t ∈ D with 1/2n ≤ t < 1/2n−1. Then ϕt is convex-valued.
Let us show that Grψ ⊂ Grϕs ⊂ Cl(Grϕs) ⊂ Grϕt ⊂ Grϕ1/2n−1 ∩ On for each

s, t ∈ D with 1/2n ≤ s < t < 1/2n−1. The first, second and fourth inclusion
is immediate from the definition of ϕt. To show the third one, let s, t ∈ D with
1/2n ≤ s < t < 1/2n−1 and take (x, y) ∈ X × Y r Grϕt. Then there is α ∈ A such
that x ∈ Cl(U t

α) and y /∈ ψ(xα)+2ntVxα . Since Cl(U t
α) ⊂ U s

α, U s
α is a neighborhood

of x. If (u, v) ∈ U s
α × (y − 2n(t − s)Vxα), then u ∈ Cl(U s

α) and v /∈ ψ(xα) + 2nsVxα ,
and hence v /∈ ϕt(u). Thus (U s

α × (y − 2n(t − s)Vxα)) ∩ Grϕs = ∅, which proves
(x, y) ∈ X × Y r Cl(Grϕs). Therefore we have Cl(Grϕs) ⊂ Grϕt.

To see that ϕt has an open graph, take (x, y) ∈ Grϕt and put U = Xr
∪
{Cl(U t

α) :
x /∈ Cl(U t

α)} and V =
∩
{ψ(xα) + 2ntVxα : α ∈ A, x ∈ Cl(U t

α)}. Since {Cl(U t
α) : α ∈

A} is locally finite, U and V are open neighborhoods of x and y, respectively. If
(u, v) ∈ U × V , then

v ∈
∩

{ψ(xα) + 2ntVxα : α ∈ A, x ∈ Cl(U t
α)}

⊂
∩

{ψ(xα) + 2ntVxα : α ∈ A, u ∈ Cl(U t
α)} = ϕt(u).

Hence ϕt has an open graph.
Thus, by induction on n, we obtain the desired family {ϕt : t ∈ D}. Define a

function g : X × Y → [0, 1] by g(x, y) = inf{t ∈ D : (x, y) ∈ Grϕt}. Then g is
continuous and the set {y ∈ Y : f(x, y) ≤ s} =

∩
{ϕt(x) : t > s} is convex for each
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s ∈ R and x ∈ X. Because Grψ ⊂
∩
{Grϕt : t ∈ D} and

∪
{Grϕt : t ∈ D, 0 < t <

1/2n−1} ⊂ On, we have g(Grψ) = {0} and g(X × Y r On) ⊂ [1/2n−1, 1] for each
n ∈ N. Hence, the function f : X × Y → R defined by f(x, y) = 1 − g(x, y) for
each (x, y) ∈ X × Y is the desired one. ¤

Proof of Theorem 1.3. Let X, Y , ϕ : X → 2Y and ψ : X → Cc(Y ) be as in Theorem
1.3. Let {On : n ∈ N} be a decreasing sequence of open subsets of X ×Y such that
Grψ =

∩
{On : n ∈ N} ∩Grϕ. Then the mapping f : X × Y → R as in Lemma 2.2

is the desired function. ¤

Remark 2.3. A convex metric space (Y, d,W ) ([20]) is a metric space (Y, d) to-
gether with a mapping W : Y × Y × [0, 1] → Y satisfying d(z,W (x, y, λ)) ≤
λd(z, x) + (1 − λ)d(z, y) for each x, y, z ∈ Y and λ ∈ [0, 1]. A subset C of a
convex metric space (Y, d,W ) is called convex if W (x, y, λ) ∈ C for each x, y ∈ C
and λ ∈ [0, 1]. A convex metric space (Y, d,W ) is said to have property (K) ([1]) if
d(W (x, y, λ),W (x′, y′, λ)) ≤ λd(x, x′) + (1 − λ)d(y, y′) for every x, x′, y, y′ ∈ Y and
λ ∈ [0, 1]. Aoyama [1, Theorem 3.5] extended Park-Komiya’s theorem [17, Theorem
2] to a convex metric space Y with property (K). Concerning Theorem 1.3, we have
the following: Let X be a paracompact space, (Y, d,W ) a convex metric space with
property (K), ϕ : X → 2Y a mapping and ψ : X → Cc(Y ) a u.s.c. mapping such that
Grψ is a Gδ-set of Grϕ. Then there exists a continuous function f : X ×Y → [0, 1]
such that ψ(x) = {y ∈ ϕ(x) : f(x, y) = max{f(x, z) : z ∈ ϕ(x)}} and the map-
ping f(x, ·) : Y → R is quasi-concave for each x ∈ X. The proof is obtained by
repeating the proofs of Lemma 2.2 and Theorem 1.3, and by replacing open neigh-
borhoods of ψ(x) such as “ψ(x) + Vx” with open neighborhoods “Bd(ψ(x), εx)”
for some appropriate εx > 0, where d(y, ψ(x)) = inf{d(y, z) : z ∈ ψ(x)} and
Bd(ψ(x), εx) = {y ∈ Y : d(y, ψ(x)) < εx}.

3. Applications

In this section, we show some applications of Lemma 2.2. The following propo-
sition is immediate from Lemma 2.2.

Proposition 3.1. Let X be a paracompact space, Y a locally convex topological
vector space, ψ : X → Cc(Y ) a u.s.c. mapping and O is an open subset of X × Y
such that Grψ ⊂ O. Then there exists a continuous function f : X × Y → [0, 1]
such that f(Grψ) = {1}, f(X × Y r O) ⊂ {0} and the function f(x, ·) : Y → R is
quasi-concave for each x ∈ X. In particular, there exists a mapping ϕ : X → 2Y

c

having an open graph such that Grψ ⊂ Grϕ ⊂ Cl(Grϕ) ⊂ O.

Applying the KKMF principle ([12], [8]), Fan [9, Theorem 1] proved the following
minimax inequality.

Theorem 3.2 (K. Fan [9]). Let X be a compact convex subset in a topological
vector space. Let f : X × X → R be a function such that the function f(·, y) :
X → R is lower semicontinuous for each y ∈ Y and the function f(x, ·) : X → R
is quasi-concave for each x ∈ X. Then the inequality minx∈X supy∈Y f(x, y) ≤
supx∈X f(x, x) holds.
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From the Fan’s minimax inequality and Proposition 3.1, we can derive Fan-
Glicksberg’s generalization of Kakutani’s fixed point theorem ([7], [10]).

Theorem 3.3 (K. Fan [7], I. L. Glicksberg [10]). Let C be a compact convex subset
of a locally convex topological vector space X. Then every u.s.c. mapping ψ : C →
Cc(C) has a fixed point.

Proof. Assume ψ does not have a fixed point. Then the closed subset ∆ = {(x, x) ∈
C×X : x ∈ C} of C×X does not meet Grψ. By Proposition 3.1, there exists a con-
tinuous mapping f : C×X → R such that f(Grψ) = {1}, f(∆) = {0} and the func-
tion f(c, ·) : X → R is quasi-concave for each c ∈ C. Then minc∈C supx∈C f(c, x) =
1 > 0 = supx∈C f(x, x), which contradicts Theorem 3.2. ¤

Let Grf denote the graph {(x, y) ∈ X×Y : y = f(x)} of a single-valued mapping
f : X → Y . For a mapping ψ : X → 2Y and S ⊂ X, let ψ(S) =

∪
{ψ(x) : x ∈ S}.

For a subset S of a topological vector space Y , let convS denote the convex hull of S.
Cellina [3], [4] proved an approximate selection theorem for upper semicontinuous
convex-valued mappings from metric spaces to metric locally convex topological
vector spaces, and applied the theorem to Kakutani’s fixed point theorem for Banach
spaces. For upper semicontinuous compact- and convex-valued mappings, we can
drop metrizability of both spaces as follows.

Theorem 3.4. Let X be a paracompact space, Y a locally convex topological vector
space, ψ : X → Cc(Y ) a u.s.c. mapping and O an open subset X × Y containing
Grψ. Then there exists a continuous mapping f : X → Y such that Grf ⊂ O and
f(X) ⊂ convψ(X).

Note that an analogous approximation theorem was proved by Repovš, Semenov
and Ščepin [18, Theorem 1.3]. A family {pα : α ∈ A} of continuous functions
pα : X → [0, 1] is called a partition of unity on X if

∑
α∈A pα(x) = 1 for each

x ∈ X. A partition of unity {pα : α ∈ A} on X is said to be locally finite if the
cover {{x ∈ X : pα(x) > 0} : α ∈ A} of X is locally finite. For an open cover
U of X, a partition of unity {pα : α ∈ A} on X is subordinated to U if the cover
{{x ∈ X : pα(x) > 0} : α ∈ A} of X refines U .

Proof of Theorem 3.4. By Proposition 3.1, there is a mapping ϕ : X → 2Y
c having

an open graph such that Grψ ⊂ Grϕ ⊂ O. Since the collection U = {ϕ−1[{y}] :
y ∈ ψ(X)} is an open cover of the paracompact space X, there exists a locally
finite partition of unity {pα : α ∈ A} subordinated to U . For each α ∈ A, take
yα ∈ ψ(X) such that {x ∈ X : pα(x) > 0} ⊂ ψ−1[{yα}]. Define a mapping
f : X → Y by putting f(x) =

∑
α∈A pα(x)yα for each x ∈ X. Then f is continuous,

f(X) ⊂ convψ(X) and f(x) ∈ ϕ(x) for each x ∈ X. Thus Grf ⊂ Grϕ ⊂ O. ¤
Remark 3.5. By applying the Schauder-Tychonoff fixed point theorem and Theorem
3.4, we can also obtain Theorem 3.3.

Finally, we consider σ-selectionability of u.s.c. mappings. The set of all non-
empty closed convex subsets of a Banach space Y is denoted by Fc(Y ). The following
theorem is proved by Nepomnyashchĭı [16] (see also [15, Theorem 1.2], [19, Theorem
1]).
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Theorem 3.6 (G. M. Nepomnyashchĭı [16]). Let X be a paracompact space, Y
a Banach space, ϕ : X → Fc(Y ) an l.s.c. mapping and ψ : X → Cc(Y ) a u.s.c.
mapping. Then there exists a continuous mapping θ : X → Cc(Y ) such that ψ(x) ⊂
θ(x) ⊂ ϕ(x) for each x ∈ X.

Applying Theorem 3.6 and Proposition 3.1, we have the following.

Theorem 3.7. Let X be a paracompact space, Y a Banach space and ψ : X →
Cc(Y ) a u.s.c. mapping such that Grψ is a Gδ-set of X × Y . Then ψ is σ-
selectionable.

Proof. There is a decreasing sequence {On : n ∈ N} of open subsets of X × Y such
that Grψ =

∩
n∈N On. By Proposition 3.1, there exists a sequence {θn : n ∈ N}

of mappings θn : X → 2Y
c such that each θn has an open graph, Grψ ⊂ Grθ1 ⊂

Cl(Grθ1) ⊂ O1 and Grψ ⊂ Grθn+1 ⊂ Cl(Grθn+1) ⊂ Grθn ∩ On+1 for each n ∈ N.
We construct the required sequence {ϕn : n ∈ N} of continuous mappings ϕn :
X → Cc(Y ) by induction on n. Since the mapping γ1 : X → Fc(Y ) defined by
γ1(x) = Cl(θ1(x)) for each x ∈ X is l.s.c., by virtue of Theorem 3.6, there exists
a continuous mapping ϕ1 : X → Cc(Y ) such that ψ(x) ⊂ ϕ1(x) ⊂ γ1(x) for each
x ∈ X. Assume ϕn has been obtained. Then the mapping γn+1 : X → Fc(Y )
defined by γn+1(x) = Cl(ϕn(x) ∩ θn(x)) for each x ∈ X is l.s.c. Thus, by virtue of
Theorem 3.6 again, there exists a continuous mapping ϕn+1 : X → Cc(Y ) such that
ψ(x) ⊂ ϕn+1(x) ⊂ γn+1(x) for each x ∈ X. Then {ϕn : n ∈ N} is the required
sequence. ¤

Thus we have the following corollary which answers Komiya’s question in [14]
affirmatively.

Corollary 3.8. Every u.s.c. compact-valued mapping from a metric space to a
Banach space is σ-selectionable.
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[15] E. Michael, A theorem of Nepomnyashchii on continuous subset-selections, Topology Appl.

142 (2004), 235–244.
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