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APPLICATIONS OF FIXED POINT THEOREMS ON ALMOST
CONVEX SETS

SEHIE PARK

Abstract. Our fixed point theorems on multimaps in the class B defined on
almost convex subsets are applied to deduce extension theorems of monotone
sets, intersection theorems, minimax theorems, equilibrium theorems, and quasi-
variational inequalities. Consequently, our new results generalize well-known
works of von Neumann, Nash, Debreu, Fan, Browder, and others.

1. Introduction

The fixed point theory of multimaps in topological vector spaces has numer-
ous applications in many fields in mathematical sciences. Recently, in [15], we
obtained new fixed point theorems for the ‘better’ admissible class B defined on
almost convex subsets of topological vector spaces. It is essential to note that a
multimap in the class has an almost fixed point whenever its range is Klee approx-
imable as in [13].

In the present paper, our fixed point theorems are applied to deduce extension
theorems of monotone sets, intersection theorems, minimax theorems, equilibrium
theorems, and quasi-variational inequalities. Consequently, our new results gener-
alize well-known works of von Neumann [16,17], Nash [7], Debreu [3], Fan [5,6],
Debrunner and Flor [4], Browder [1], and others; for the related history, see the
reference [9].

Section 2 deals with preliminaries on the better admissible classes B for which we
give basic fixed point theorems and a coincidence theorem in [15]. The coincidence
theorem is applied in Section 3 to generalize the extension theorem of nonotone
sets due to Debrunner and Flor [4]. Section 4 deals with generalizations of the
von Neumann intersection lemma [17]. In Section 5, we apply such intersection
theorems to deal with generalizations of the Nash equilibrium theorem [7], which
are applied to various forms of the von Neumann minimax theorem [16] in Section
6. Finally, Section 7 deals with quasi-variational inequality problem as applications
of our fixed point theorems.

2. Better admissible maps

All topological spaces are assumed to be Hausdorff. A t.v.s. means a topological
vector space and V denotes a fundamental system of neighborhoods of the origin 0
of a t.v.s. E. We follow the terminology and notations in our previous work [15].
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Recall that a nonempty topological space is acyclic if all of its reduced Čech
homology groups over rationals vanish. For topological spaces X and Y , a map
F : X ( Y is called a Kakutani map whenever Y is a subset of a t.v.s. and F is
u.s.c. with nonempty compact convex values; and an acyclic map whenever F is
u.s.c. with compact acyclic values.

Let V(X, Y ) be the class of all acyclic maps F : X ( Y , and Vc(X, Y ) all
finite compositions of acyclic maps, where the intermediate spaces are arbitrary
topological spaces.

A polytope P in a subset X of a t.v.s. E is a nonempty compact convex subset
of X contained in a finite dimensional subspace of E.

Recall that a nonempty subset X of a t.v.s. E is said to be admissible (in the
sense of Klee) provided that, for every nonempty compact subset K of X and every
V ∈ V, there exists a continuous function h : K → X such that x−h(x) ∈ V for all
x ∈ K and h(K) is contained in a finite dimensional subspace L of E. Examples of
admissible subsets can be seen in [8,9,13].

A nonempty subset K of E is said to be Klee approximable if for any V ∈ V,
there exists a continuous function h : K → E such that x− h(x) ∈ V for all x ∈ K
and h(K) is contained in a polytope of E. Especially, for a subset X of E, K is
said to be Klee approximable into X whenever the range h(K) is contained in a
polytope in X.

Examples of Klee approximable sets can be seen in [15].
We define a class B of maps from a subset X of a t.v.s. E into a topological

space Y as follows [15]:
F ∈ B(X, Y ) ⇐⇒ F : X ( Y is a map such that, for each polytope P in X and

for any continuous function f : F (P ) → P , the composition f(F |P ) : P ( P has a
fixed point.

We call B the ‘better’ admissible class. Recently it is known that any u.s.c. map
with compact values having trivial shape (that is, contractible in each neighborhood)
belongs to B(X, Y ). Note that the class Bp in [13,15] should be replaced by B.

The following results appeared in our previous work [15]:

Theorem 2.1 ([15, Corollary 2.3]). Let X be a subset of a t.v.s. E and F ∈
B(X, X) a compact closed map. If F (X) is Klee approximable into X, then F has
a fixed point.

Theorem 2.2 ([15, Corollary 3.5.]). Let X be an almost convex admissible subset
of a t.v.s. E and F ∈ B(X, X) a compact closed map. Then F has a fixed point.

For a subset X of a t.v.s. E and a topological space Y , we define a class of
multimaps as follows:

T ∈ M∗(Y, X) ⇐⇒ T : Y ( X is a map such that T |K has a continuous
selection s : K → X for each nonempty compact subset K of Y such that s(K) ⊂ P
for some polytope P of X.

Theorem 2.3 ([15, Theorem 4.5]). Let X be a convex subset of a t.v.s. E and Y
a topological space. Let F ∈ B(X, Y ) be a compact map and T ∈ M∗(Y, X). Then
F and T have a coincidence point.
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Theorem 2.4 ([15, Theorem 6.1]). Let X be an almost convex dense subset of an
admissible subset Y of a t.v.s. E. Let G : Y ( Y be a compact closed map such
that G(x) is acyclic (resp., has trivial shape) for all x ∈ X. Then G has a fixed
point.

3. Extensions of monotone sets

In this section, generalizations of the extension theorems on monotone sets due
to Debrunner and Flor [4] and in [1,6,12] are obtained. In fact, Browder’s extension
theorem [1] involving Kakutani multimaps is extended to the one involving a large
class of ‘better’ admissible maps.

Given two t.v.s. E and F , let 〈 , 〉 : F × E → R be a bilinear pairing which
is continuous on compact subsets of F × E. This assumption is quite natural in
most applications, since the natural pairing between a locally convex t.v.s. E and
its dual space E∗ equipped with the strong topology enjoys this property.

A subset M ⊂ E × F is said to be monotone if for any two points (u,w) and
(u′, w′) in M , we have 〈w − w′, u− u′〉 ≥ 0; see Debrunner and Flor [4].

Browder [1, Theorem 8] obtained the following extension theorem of monotone
sets:

Lemma 3.1 ([1]). Let K be a compact convex subset of a t.v.s. E, and F a t.v.s.
with a bilinear pairing 〈 , 〉 : F × E → R which is continuous on compact subsets
of F ×E. Let f : K → F be continuous and M a monotone subset of K ×F . Then
there exists a u0 ∈ K such that

〈f(u0)− w, u0 − u〉 ≥ 0 for all (u,w) ∈ M,

or equivalently, the set M ∪ {(u0, f(u0))} remains monotone.

This result sharpens corresponding result of Debrunner and Flor [4] for E locally
convex and of Fan [6, Theorem 12] for F locally convex and quasi-complete.

We deduce the following equilibrium existence theorem from Theorem 2.3:

Theorem 3.2. Let K be a compact convex subset of a t.v.s. E, K1 a compact
subset of a t.v.s. F , T ∈ B(K, K1) with closed graph, and M ⊂ E × F . Let
Φ : E × F → R ∪ {−∞} be a function such that

(1) Φ is u.s.c. on compact subsets of E × F ;
(2) for each x ∈ E, Φ(x, ·) is l.s.c. on compact subsets of F ;
(3) for each w ∈ F, F (·, w) is quasiconcave.

Suppose that for each y ∈ K1, there exists an x ∈ K such that

Φ(x− u, y − w) ≥ 0 for all (u,w) ∈ M.

Then there exist a u0 ∈ K and a w0 ∈ T (u0) such that

Φ(u0 − u,w0 − w) ≥ 0 for all (u,w) ∈ M.

Proof. For any ε > 0 and any nonempty finite subset N of M , we set

H(ε,N) = {(u0, w0) ∈ Gr(T ) | Φ(u0 − u,w0 − w) ≥ −ε for all (u,w) ∈ N}
and

H0 := {(u0, w0) ∈ Gr(T ) | Φ(u0 − u,w0 − w) ≥ 0 for all (u,w) ∈ M}
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=
⋂
{H(ε,N) | ε > 0 and N is a finite subset of M}.

Then we have to show H0 6= ∅.
By (1), each H(ε,N) is a closed subset of Gr(T ). The intersection of each finite

family of such sets is also a set of the form H(ε′,N ′) for some ε′ > 0 and a finite
subset N ′ of M . Therefore, in order to show H0 6= ∅, it suffices to show that each
H(ε,N) is nonempty.

Choose a given ε > 0 and a nonempty finite subset N of M . Define a map
S : K ( K1 by

S(x) := {y ∈ K1 | Φ(x− u, y − w) > −ε, (u,w) ∈ N}
for x ∈ X. Then S(x) is open in K1 by (2). Moreover,

S−(y) = {x ∈ K | Φ(x− u, y − w) > −ε, (u,w) ∈ N}
is nonempty by hypothesis and convex by (3). Therefore, by [15, Lemma 2.4], we
have S− ∈M∗(K1,K).

Now we apply Theorem 2.3. Then there exists a (u0, w0) ∈ Gr(T ) such that
w0 ∈ S(u0); that is,

Φ(u0 − u,w0 − w) > −ε for all (u,w) ∈ N.

Therefore, H(ε,N) is nonempty. This completes our proof. ¤

Remarks. 1. In Theorem 3.2, instead of T ∈ B(K,K1) with closed graph, we can
adopt T ∈ Aκ

c (K, K1) without affecting its conclusion.
2. In Theorem 3.2, since T has closed graph and K1 is compact, T itself is

actually u.s.c. with compact values.
3. For the subclass C of B, Theorem 3.2 reduces to Fan [6, Theorem 11], who

assumed that F is locally convex and other restrictions.
4. For the subclass K of B, Theorem 3.2 reduces to Browder [1, Theorem 9],

where F is locally convex.

The following is our theorem on extensions of monotone sets:

Theorem 3.3. Let E be a t.v.s., F a t.v.s. with a bilinear pairing 〈 , 〉 : F×E → R
which is continuous on compact subsets of F × E, K a compact convex subset of
E, and K1 a compact subset of F . Let T ∈ B(K,K1) have closed graph and M a
monotone subset of K × F . Then there exist a u0 ∈ K and a w0 ∈ T (u0) such that

〈w0 − w, u0 − u〉 ≥ 0 for all (u,w) ∈ M.

Proof. We put Φ(x,w) = 〈w, x〉 for (x,w) ∈ E × F . Then Φ satisfies conditions
(1)–(3) in Theorem 3.2. By Theorem 3.2, it suffices to show that for each y ∈ K1,
there exists an x ∈ K such that

〈y − w, x− u〉 ≥ 0 for all (u,w) ∈ M.

Now, we define f : K → K1 by

f(v) = y for all v ∈ K.

By applying Lemma 3.1 to f , such an x ∈ K exists. This completes our proof. ¤



APPLICATIONS OF FIXED POINT THEOREMS ON ALMOST CONVEX SETS 49

Remarks. 1. In Theorem 3.3, we can replace T ∈ B(K, K1) with closed graph by
T ∈ Aκ

c (K, K1).
2. For the subclass C of B, Theorem 3.3 reduces to Browder [1, Theorem 8] or

Lemma 3.1.
3. Even for the subclass K of B, Theorem 3.3 improves Browder [1, Theorem 9],

where F is assumed to be locally convex.

From now on, we are mainly concerned with maps with acyclic values or values
of trivial shape. Other types of appropriate values can also be adopted if necessary.
Those results in the following sections have originated from the corresponding ones
for Kakutani maps.

4. The von Neumann type intersection theorems

In this section, we deduce some collectively fixed point theorems for families of
maps and, then, various von Neumann type intersection theorems.

Let {Xi}i∈I be a family of nonempty sets, and let i ∈ I be fixed. Let

X :=
∏

j∈I

Xj and Xi :=
∏

j∈Ir{i}
Xj .

If xi ∈ Xi and j ∈ I r {i}, let xi
j denote the jth coordinate of xi. If xi ∈ Xi and

xi ∈ Xi, let [xi, xi] ∈ X be defined as follows: its ith coordinate is xi and, for j 6= i,
the jth coordinate is xi

j . Therefore, any x ∈ X can be expressed as x = [xi, xi] for
any i ∈ I, where xi denotes the projection of x onto Xi.

For A ⊂ X, xi ∈ Xi, and xi ∈ Xi, let

A(xi) := {yi ∈ Xi | [xi, yi] ∈ A} and A(xi) := {yi ∈ Xi | [yi, xi] ∈ A}.
Theorem 4.1. Let {Ei}n

i=1 be a family of t.v.s. For each i, let Xi be a subset of Ei,
Ki a nonempty compact subset of Xi, and Fi : X ( Ki a closed map with acyclic
values (resp., values of trivial shape). If K :=

∏n
i=1 Ki is Klee approximable into

X, then there exists an x = (xi)n
i=1 ∈ X such that xi ∈ Fi(x) for each i.

Proof. Define F : X ( K by F (x) :=
∏n

i=1 Fi(x) for each x = (xi)n
i=1 ∈ X. Then it

can be checked that F is a compact closed map having acyclic values (resp., values
of trivial shape). Since F (X) ⊂ K is Klee approximable into X, by Theorem 2.1,
F has a fixed point x ∈ X. This completes our proof. ¤

Remark. Recall that K is Klee approximable into X whenever one of the following
holds:

(1) Each Xi is convex and X is admissible (see [10, Theorem 1]).
(2) Each Xi is almost convex and X is admissible.
(3) Each Xi is an almost convex dense subset of an admissible subset (see [15,

Lemma 3.1]).
(4) Each Ki is Klee approximable into Xi.

From Theorem 4.1, we obtain the following von Neumann type intersection the-
orem:
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Theorem 4.2. Let {Xi}n
i=1 be a family of sets, each in a t.v.s. Ei, Ki a nonempty

compact subset of Xi, and Ai a closed subset of X such that Ai(xi) is an acyclic
subset of Ki for each xi ∈ Xi, where 1 ≤ i ≤ n. If X is an almost convex admissible
subset of E, then

⋂n
j=1 Aj 6= ∅.

Proof. We use Theorem 4.1 with Fi : X ( Ki defined by Fi(x) := Ai(xi) for x ∈ X.
Then, for each x ∈ X, we have

(x, y) ∈ Gr(Fi) ⇐⇒ (xi, x
i) ∈ Xi ×Xi and y ∈ Ai(xi) ⊂ Ki

⇐⇒ (xi, x
i, y) ∈ Xi × (Ai ∩ (Xi ×Ki)),

which implies that Gr(Fi) is closed in X ×Ki. Hence, each Fi is a compact closed
map with acyclic values; that is, Fi is an acyclic map. Therefore, by Theorem 4.1,
there exists an x̂ ∈ K such that x̂i ∈ Fi(x̂) for all i. Since x̂i ∈ Ki ⊂ Xi, we have
x̂ = [x̂i, x̂i] ∈ Ai for all i. This completes our proof. ¤

Similarly, we can obtain a more general result than Theorem 4.2 as follows:

Theorem 4.2′. Let I be any index set, {Xi}i∈I a family of sets, each in a t.v.s.
Ei, Ki a nonempty compact subset of Xi, and Ai a closed subset of X for each
i ∈ I. Suppose that for each xi ∈ Xi, Ai(xi) is a convex subset of Ki except a finite
number of i’s for which Ai(xi) is an acyclic subset of Ki. If X is an almost convex
admissible subset of E, then

⋂
j∈I Aj 6= ∅.

Remark. If I = {1, 2}, Ei are Euclidean, Xi = Ki, and Ai(xi) are nonempty and
convex, then Theorem 4.2 or 4.2′ reduces to the intersection lemma of von Neumann
[17].

We have another intersection theorem:

Theorem 4.3. Let X0 be a topological space and {Xi}n
i=1 a family of sets, each in

a t.v.s. Ei. For each i = 0, 1, 2, · · · , n, let Ki be a nonempty subset of Xi which is
compact except possibly Kn and Fi ∈ Vc(Xi, Xi). If K0 is Klee approximable into
X0, then

⋂n
i=0 Gr(Fi) 6= ∅.

Proof. For each i ∈ Zn+1, define a map Vi : Xi ( Xi+1 by letting

Vi(xi) := Fi(xi)×
∏

j∈Zn+1r{i,i+1}
{xi

j} for xi ∈ Xi.

Then Vi ∈ Vc(Xi, X i+1) for each i ∈ Zn+1. Hence, the composite map V : X0 ( X0

defined by V := VnVn−1 · · ·V0 belongs to Vc(X0, X0).
(1) We claim that V is compact. In fact, for each i = 0, 1, 2, · · · , n − 1, Ki is a

compact subset satisfying Fi(Xi) ⊂ Ki ⊂ Xi. Note that

V0(X0) ⊂ K0 ×X2 × · · · ×Xn,

V1V0(X0) ⊂ K0 ×K1 ×X3 × · · · ×Xn,

and finally,
Vn−1Vn−2 · · ·V0(X0) ⊂ K0 ×K1 × · · · ×Kn−1.

Hence, V (X0) is contained in the compact set Vn(K0 ×K1 × · · · ×Kn−1). Thus V
is compact.
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(2) Note that V (X0) ⊂ K0 is Klee approximable into X0.
Therefore, by Theorem 2.1, V ∈ Vc(X0, X0) has a fixed point x0 ∈ V (x0). Hence,

there exists x1 ∈ X1, · · · , xn ∈ Xn such that xi+1 ∈ Vi(xi) for each i ∈ Zn+1, which
implies

xi+1
i ∈ Fi(xi) for each i ∈ Zn+1

and
xi+1

j = xi
j for each j ∈ Zn+1 r {i, i + 1}.

From this, it follows that xi
j = xk

j for any i, j, k ∈ Zn+1 with j 6= i, j 6= k. Therefore,
[xi, xi+1

i ] = [xk, xk+1
k ] for any i, k ∈ Zn+1. Let us denote by x the point of X given

by x := [xi, xi+1
i ] for any i ∈ Zn+1. Since xi+1

i ∈ Fi(xi), we have x ∈ Gr(Fi) for
each i ∈ Zn+1 and hence

⋂n
i=0 Gr(Fi) 6= ∅. This completes our proof. ¤

Remarks. 1. In case when each Xi is convex for i ≥ 1 and X0 is admissible in E0,
Theorem 4.3 reduces to [11, Theorem 4].

2. Particular forms of Theorem 4.3 were given by von Neumann, Fan, Lassonde,
Chang, and Park; see [11]. The following is one of them:

Corollary 4.4. Let X be a topological space, Y a subset in a t.v.s. E, and F ∈
Vc(X, Y ) and G ∈ Vc(Y, X). If F is compact and F (X) is Klee approximable into
Y , then Gr(F )∩Gr(G) 6= ∅.

From Corollary 4.4, we have the following:

Corollary 4.5. Let X be a topological space and Y a compact subset of a t.v.s. E.
Let A and B be two closed subsets of X × Y such that

(1) for each x ∈ X, A(x) := {y ∈ Y | (x, y) ∈ A} is acyclic; and
(2) for each y ∈ Y , B(y) := {x ∈ X | (x, y) ∈ B} is acyclic.

If A(X) :=
⋃{A(x) | x ∈ X} is Klee approximable into Y , then A ∩B 6= ∅.

Remarks. 1. If Y is an admissible, compact, and almost convex subset of E, then
A(X) is Klee approximable into Y . Especially, for the particular case when X is
compact and Y is convex, Corollary 4.5 was obtained in [10].

2. For other particular forms of Corollary 4.5, see [10].

5. The Nash type equilibrium theorems

From Theorem 4.3, we deduce the following generalized form of the quasi-
equilibrium theorem or the social equilibrium existence theorem in the sense of
Debreu [3]:

Theorem 5.1. Let X0 be a topological space, and {Xi}n
i=1 a family of sets, each

in a t.v.s. Ei. For i = 0, 1, · · · , n, let Ki be a nonempty subset of Xi which is
compact except possibly Kn, Si : Xi ( Ki be a closed map with compact values,
and fi, gi : X = Xi ×Xi → R u.s.c. real functions.

Suppose that for each i = 0, 1, · · · , n,

(i) gi(x) ≤ fi(x) for each x ∈ X;
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(ii) the real function Mi : Xi → R defined by

Mi(xi) := max
yi∈Si(xi)

gi[xi, yi] for xi ∈ Xi

is l.s.c.; and
(iii) for each xi ∈ Xi, the set

{yi ∈ Si(xi) | fi[xi, yi] ≥ Mi(xi)}
is acyclic.

If K0 is Klee approximable into X0 and if Sn is u.s.c., then there exists an
equilibrium point x̂ ∈ X; that is,

x̂i ∈ Si(x̂i) and fi(x̂i, x̂i) ≥ max
yi∈Si(xi)

gi[xi, yi] for each i ∈ Zn+1.

Proof. For each i ∈ Zn+1, define a map Ti : Xi ( Xi by

Ti(xi) := {yi ∈ Si(xi) | fi[xi, yi] ≥ Mi(xi)}
for xi ∈ Xi. Note that each Ti(xi) is nonempty by (ii) since Si(xi) is compact and
gi[xi, ·] is u.s.c. on Si(xi). We show that Gr(Ti) is closed in Xi × Si(Xi). In fact,
let [xi

α, yα
i ] ∈ Gr(Ti) and [xi

α, yα
i ] → [xi, yi]. Then

fi[xi, yi] ≥ lim
α

fi[xi
α, yα

i ] ≥ lim
α

Mi(xi
α) ≥ lim

α
Mi(xi

α) ≥ Mi(xi)

and, since Gr(Si) is closed in Xi × Si(Xi), yα
i ∈ Si(xi

α) implies yi ∈ Si(xi). Hence,
[xi, yi] ∈ Gr(Ti). Therefore, all Ti are closed.

Since Ti is compact for all i 6= n, each Ti is u.s.c. for i 6= n by (iii). Moreover,
Sn is u.s.c. with compact values by assumption and Tn is closed, Tn = Sn ∩ Tn is
u.s.c. Hence we have Ti ∈ V(Xi, Xi). Therefore, by Theorem 4.3, there exists an
x̂ ∈ ⋂n

i=0 Gr(Ti); that is, x̂i ∈ Ti(x̂i) for all i ∈ Zn+1. This completes our proof. ¤

Remarks. 1. For particular forms of Theorem 5.1, see [10,11].
2. If Si are u.s.c., by Berge’s theorem, Mi is automatically u.s.c. since gi is u.s.c.

If Si and gi are continuous, condition (ii) holds immediately by Berge’s theorem,
and hence, each Mi is continuous; see [11].

Therefore, from Theorem 5.1, we have the following particular form:

Theorem 5.2. Let X0 be a topological space, and {Xi}n
i=1 a family of sets, each in

a t.v.s. Ei. For i = 0, 1, · · · , n, let Ki be a nonempty subset of Xi which is compact
except possibly Kn, Si : Xi ( Ki be a continuous multimap with compact values,
and fi : X = Xi ×Xi → R a continuous real function.

Suppose that for each i = 0, 1, · · · , n, the following holds:
(0) for each xi ∈ Xi and each α ∈ R, the set

{xi ∈ Si(xi) | fi[xi, xi] ≥ α}
is empty or acyclic.

If K0 is Klee approximable into X0, there exists an equilibrium point x̂ ∈ X.
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Remarks. 1. If each Xi is convex and if X is admissible in E, then Theorem 5.2
reduces to [11, Theorem 6].

2. For other particular forms of Theorems 5.1 and 5.2, see [10,11].

The following generalizes the Nash theorem:

Corollary 5.3. Let X0 be a compact topological space, and {Xi}n
i=1 a family of

convex sets, each in a t.v.s. Ei, such that each Xi is compact except Xn. For
i = 0, 1, · · · , n, let fi : X = Xi ×Xi → R be a continuous real function such that

(1) for each xi ∈ Xi and each α ∈ R, the set

{xi ∈ Xi | fi[xi, xi] ≥ α}
is empty or acyclic.

If X0 is admissible, then there exists an equilibrium point x̂ ∈ X; that is,

fi(x̂) = max
yi∈Xi

fi[x̂i, yi] for all i ∈ Zn+1.

Proof. Apply Theorem 5.2 with Si(x) := Xi for x ∈ X and Ki := Xi for each i.
Then we have the conclusion. ¤

Remarks. 1. This slightly extends [10, Theorem 7].
2. If all Xi are compact convex subsets of Euclidean spaces and if xi 7→ fi[xi, xi]

is quasiconcave for each xi ∈ Xi, then Corollary 5.3 reduces to Nash [7, Theorem].

6. The von Neumann type minimax theorems

From Corollaries 4.5 or 5.3, we have the following von Neumann type minimax
theorem:

Theorem 6.1. Let X be a compact space and Y an admissible compact convex
subset of a t.v.s., and f : X × Y → R a continuous real function. Suppose that for
each x0 ∈ X and y0 ∈ Y , the sets

{x ∈ X | f(x, y0) = max
ζ∈X

f(ζ, y0)}

and
{y ∈ Y | f(x0, y) = min

η∈Y
f(x0, η)}

are acyclic. Then
(1) f has a saddle point (x0, y0) ∈ X × Y ; that is,

min
η∈Y

f(x0, y) = f(x0, y0) = max
ζ∈X

f(ζ, y0).

(2) We have the minimax inequality

max
x∈X

min
y∈Y

f(x, y) = min
y∈Y

max
x∈X

f(x, y).

Proof. (1) Note that a saddle point is a particular case of an equilibrium point
for two agents (i = 0, 1) in Corollary 5.3 for X0 = X, X1 = Y and f0(x, y) =
f(x, y), f1(x, y) = −f(x, y).
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The existence of a saddle point can be also shown by Corollary 4.5 as follows:
Let

S(x) := {y ∈ Y | f(x, y) = min
η∈Y

f(x, η)}
and

T (y) := {x ∈ X | f(x, y) = max
ζ∈X

f(ζ, y)}.
Since f is continuous and X, Y are compact, each S(x) and T (y) are nonempty and
closed for all x ∈ X and y ∈ Y . Moreover, by Berge’s theorem, S : X ( Y and
T : Y ( X are u.s.c. with closed values. Therefore A := Gr(S) and B := Gr(T−)
are closed subsets in X × Y . Moreover, A(X) = S(X) is a compact subset of an
admissible convex set Y , and hence, by Corollary 3.2 of [40], it is Klee approximable
into Y . Therefore, by Corollary 4.6, there exists an (x0, y0) ∈ A ∩B; that is,

max
x∈X

f(x, y0) = f(x0, y0) = min
y∈Y

f(x0, y).

(2) This implies

min
y∈Y

max
x∈X

f(x, y) ≤ max
x∈X

f(x, y0) = f(x0, y0) = min
y∈Y

f(x0, y) ≤ max
x∈X

min
y∈Y

f(x, y).

On the other hand, we clearly have

min
y∈Y

max
x∈X

f(x, y) ≥ max
x∈X

min
y∈Y

f(x, y).

This completes our proof. ¤
Remarks. 1. Theorem 6.1 includes [10, Theorem 4] and [11, Corollary 6.2], where
some particular forms were noted.

2. For Euclidean spaces or locally convex t.v.s., if acyclicity is replaced by con-
vexity, then Theorem 5.1 reduces to the von Neumann minimax theorem [16] or
Fan [5, Theorem 3], resp.

The following generalization of the von Neumann minimax theorem is a simple
consequence of Corollary 4.6 or Theorem 6.1:

Theorem 6.2. Let X, Y , and f be the same as in Theorem 6.1. Suppose that
(1) for every x ∈ X and α ∈ R, {y ∈ Y | f(x, y) ≤ α} is acyclic; and
(2) for every y ∈ Y and β ∈ R, {x ∈ X | f(x, y) ≥ β} is acyclic.

Then we have
max
x∈X

min
y∈Y

f(x, y) = min
y∈Y

max
x∈X

f(x, y).

7. Quasi-Variational Inequalities

Let E be a t.v.s., X ⊂ E and x ∈ E. The inward set of X at x (due to Halpern;
see [9]) is defined by

IX(x) = x +
⋃

r>0

r(X − x).

In this section, we show that our fixed point theorems can be applied to various
types of quasi-variational inequalities on almost convex sets. For example, from
Theorem 2.2, we have the following main result of this section:
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Theorem 7.1. Let X be an almost convex admissible subset of a t.v.s. E, S :
X ( X a compact map, F a t.v.s., T ∈ V(X, F ) a compact map, and C an almost
convex admissible subset of F containing T (X), and φ : X × C ×X → R a u.s.c.
function. Suppose that

(1) φ(x, y, x) ≤ 0 for all (x, y) ∈ X × C; and
(2) the map M : X × C → X defined by

M(x, y) = {u ∈ S(x) | φ(x, y, u) = max
s∈S(x)

φ(x, y, s)} for (x, y) ∈ X × C

belongs to V(X × C, X).
Then there exist an x ∈ S(x) and a y ∈ T (x) such that

φ(x, y, x) ≤ 0 for all x ∈ S(x).

Further, if φ(x, y, x) = 0 for all (x, y) ∈ X × C, S(x) is convex, and x 7→ φ(x, y, x)
is concave and l.s.c., then

φ(x, y, x) ≤ 0 for all x ∈ IS(x)(x).

Proof. Define a map G : X × C ( X × C by

G(x, y) := M(x, y)× T (x) for (x, y) ∈ X × C.

Then G ∈ V(X × C, X × C). In fact, since M and T are compact-valued u.s.c.
maps, their product G is also compact-valued and u.s.c. Note that each G(x, y) is
acyclic. Moreover, G is compact because

G(X × C) ⊂ S(X)× T (X) ⊂ X × C.

Since X ×C is an almost convex admissible subset of the t.v.s. E×F , by Theorem
2.2, G has a fixed point (x, y) ∈ X × C. Since

(x, y) ∈ G(x, y) = M(x, y)× T (x) ⊂ S(x)× T (x),

we have x ∈ S(x) and y ∈ T (x). Moreover, since x ∈ M(x, y), by (1), we have

0 ≥ φ(x, y, x) = max
x∈S(x)

φ(x, y, x).

For the last part, since x 7→ φ(x, y, x) is l.s.c., it is sufficient to show that

φ(x, y, x) ≤ 0 for all x ∈ IS(x)(x)\Sx.

For any x ∈ IS(x)(x)\S(x), there exist z ∈ S(x) and r > 0 such that x = x+r(z−x).
Then we must have r > 1; otherwise, x = (1− r)x + rz ∈ S(x) since 0 < r ≤ 1 and
S(x) is convex. Suppose φ(x, y, x) > 0. Since r > 1 and

1
r
x + (1− 1

r
)x = z ∈ S(x),

we have

φ(x, y, z) = φ(x, y,
1
r
x+(1− 1

r
)x) ≥ 1

r
φ(x, y, x)+(1− 1

r
)φ(x, y, x) =

1
r
φ(x, y, x) > 0

by the concavity of x 7→ φ(x, y, x) and condition (1). This is a contradiction.
Therefore, we have φ(x, y, x) ≤ 0. This completes our proof. ¤
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Remarks. 1. Theorem 7.1 has a number of particular cases by considering particular
ones of S, T and φ.

2. Instead of V, we can adopt the class A of u.s.c. approachable maps or other
appropriate class; see [2, Theorem 1], which was stated for convex subsets X, C of
locally convex t.v.s.

From Theorem 7.1, we obtain the following:

Theorem 7.2. Let X, S, F, T and C be the same as in Theorem 7.1. Suppose that
S ∈ V(X, X) is l.s.c. (hence continuous). Let φ : X × C ×X → R be continuous
such that, for each (x, y) ∈ X × C,

(1) φ(x, y, x) ≤ 0; and
(2) M(x, y) = {u ∈ S(x) |φ(x, y, u) = maxs∈S(x) φ(x, y, s)} is acyclic.

Then there exist an x ∈ S(x) and a y ∈ T (x) such that

φ(x, y, x) ≤ 0 for all x ∈ S(x).

Further, if φ(x, y, x) = 0 for all (x, y) ∈ X ×C, S(x) is convex, and x 7→ φ(x, y, x)
is concave, then

φ(x, y, x) ≤ 0 for all x ∈ IS(x)(x).

Remark. In our previous work [2], particular forms of Theorems 7.1 and 7.2 are
applied to more than fifteen known variational or quasi-variational inequalities due
to Hartman-Stampacchia, Browder, Lions-Stampacchia, Mosco, Saigal, and many
others. Now all of them can be stated for almost convex sets instead of convex sets.
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