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ON ABSTRACT CONVEXITY AND SET VALUED ANALYSIS

REGINA SANDRA BURACHIK AND ALEX RUBINOV

Abstract. Given a set L ⊂ RX of functions defined on X, we consider abstract
monotone (or, for short, L-monotone) multivalued operators T : X « L. We
extend the definition of enlargement of monotone operators to this framework
and study semicontinuity properties of these mappings. We prove that sequential
outer semicontinuity, which holds for maximal monotone operators and their
enlargements in the classical case (i.e., when L = X∗ and X is a Banach space),
holds also in our abstract setting. We also show through examples that some
properties, known to hold in the classical case, may no longer be valid in the
abstract setting. One of these properties is the maximality of the subdifferential
and another one is the lack of inner semicontinuity of (point-to-set) monotone
operators in the interior of their domain. We also focus on the structure of
both the abstract subdifferential and the abstract ε-subdifferential. This is a key
question in abstract convexity because these sets may be very large for certain
choices of L and therefore it is important to be able to represent them by means
of some special elements of the set of “affine” functions induced by L.

1. Introduction

Abstract convexity opens the way for extending some main ideas and results
from classical convex analysis to much more general classes of functions, mappings
and sets. It is well-known that every convex, proper and lower semicontinuous
function is the upper envelope of a set of affine functions. Therefore, affine functions
play a crucial role in classical convex analysis. In abstract convexity, the role of
the set of affine functions is taken by an alternative set H of functions, and their
upper envelopes constitute the set of abstract convex functions. Different choices
of the set H generate variants of the classical concepts, and have shown important
applications, especially in global optimization (see e.g., [19, 18, 17, 20]). Moreover,
if a family of functions is abstract-convex for a specific choice of H, then we can use
some key ideas of convex analysis in order to gain new insight on these functions.
On the other hand, by using an alternative set for affine functions, we identify those
facts in classical convex analysis which depend on the specific properties of affine
functions.

Abstract convexity has mainly been used for the study of point-to-point functions.
An example of its use in the analysis of multivalued operators can be found in the
works of Levin [10, 11], who focused in the study of abstract cyclical monotonicity.

Our first aim is to consider abstract maximal monotone operators and their en-
largements. We analyze whether some semicontinuity properties, known to hold in
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the classical setting, can be extended to the abstract setting. We recall the defi-
nition of abstract maximal monotonicity given in [10, 11] and based on the works
[5, 4, 6, 12] we introduce the definition of enlargement of an abstract monotone
map. We prove that the abstract monotone mappings as well as their abstract en-
largements are sequentially outer semicontinuous, extending to our general context
a well known fact concerning maximal monotone operators and their enlargements.

Some of the classical facts, however, cannot be extended to the abstract setting.
For example, it is known that a maximal monotone operator cannot be inner semi-
continuous at a point x in the interior of its domain, unless Tx is a singleton (see,
e.g., [9, Lemma 1.30] or [3, Theorem 4.6.3]). Hence, a maximal monotone operator
cannot be continuous (i.e., outer- and inner- semicontinuous) in the interior of its
domain unless it is point-to-point. However, we show in Example 3.6 an abstract
maximal monotone map which is (not point-to-point and) continuous at every point
in the interior of its domain. This example is particularly relevant because every
lower semicontinuous function defined on a compact set is abstract-convex for this
choice of H. Therefore, our approach may open the way for using the main ideas
of convex analysis for the examination of arbitrary lower semicontinuous functions
defined in a bounded set. Another example of a classical fact that cannot be ex-
tended to the abstract setting is the maximality of the subdifferential of a proper,
lower semicontinuous and convex function. We show this in Example 3.1.

Our second aim is the representation of both the abstract subgradients and the
abstract ε-subgradients. This question is relevent because the abstract versions of
the subdifferential and the ε-subdifferential might be very large. For obtaining such
a representation, we work with the “affine” counterparts of the subdifferential and
the ε-subdifferential. We recall the concept of maximal element in this setting and
establish conditions under which maximal elements exist.

The paper is organized as follows. Section 2 gives some preliminary material on
abstract convexity. In Section 3 we recall the definition of abstract monotonicity
and introduce the concept of enlargement of an abstract monotone map. Classi-
cal examples of enlargements are also extended to our framework. Under basic
assumptions (which hold in the classical setting) we prove that abstract monotone
maps and their enlargements are sequentially outer semicontinuous. Approximate
abstract subdifferentials is the subject of Section 4, in which we study maximal ele-
ments of the “affine” counterparts of the abstract ε-subdifferential (see Proposition
4.2). In Proposition 4.3 we relate specific elements of the support set with maximal
elements of the “affine” counterparts of the abstract ε-subdifferential. Finally, we
compare our results with those in classical convex analysis and illustrate both the
properties and the results with examples.

2. Basic notation and definitions

We use the following notation: R = (−∞,+∞) is the real line and R+∞ =
R ∪ {+∞}. Let X be an arbitrary set. For given f, g : X → R+∞, the inequality
f ≤ g means that f(x) ≤ g(x) for all x ∈ X. Most definitions and known statements
related to abstract convexity can be found in [16, 21, 14]. Recall that a lower
semicontinuous function defined in a Banach space with values in R+∞ is convex if
and only if it is the upper envelope of its affine minorants. In abstract convexity,
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we keep the idea of upper envelope, and replace the set of linear functions by more
general sets.

Namely, we consider a set L of functions l : X → R+∞, which will play the role
of the linear functions. Our set H is the set of L-affine functions, defined as

(2.1) H := {hl,γ : X → R+∞ : hl,γ(·) := l(·)− γ, ∀ (l, γ) ∈ L× R}.
We may also denote the L-affine function hl,γ simply as (l, γ). For this identifica-
tion to be unique, the set of abstract linear functions should verify the following
assumption.

(A0) Consider the function 1 : X → R defined by 1(x) = 1 for all x ∈ X. For all
l ∈ L and all 0 6= c ∈ R we have l − c1 6∈ L.

We assume from now on that (A0) holds for L. With the only exception of
Example 4.5, we will assume l(x) ∈ R for every (x, l) ∈ X × L.

The support set of f : X → R+∞ with respect to H is defined as

supp(f,H) := {h ∈ H : h ≤ f}.
Denote by dom f := {x ∈ X : f(x) < +∞}. A function f is called abstract convex
with respect to H (or H-convex, for short) at a point x ∈ X if there exists a set
U ⊂ supp(f,H) such that f(x) = sup{h(x) : h ∈ U}. If f is H-convex at each point
x ∈ Z, where Z ⊂ X then f is called H-convex on Z.

Note that the set supp(f,H) might be very large, because it contains all func-
tions h′ such that h′ ≤ h with h ∈ supp(f,H). Sets with this property are called
downward sets. It is therefore convenient to find simple representations of the sup-
port set. In order to obtain these representations we need to recall the concepts of
abstract subdifferential of f and its associated affine set Df .

Let f : X → R+∞ and x0 ∈ X such that f(x0) ∈ R. The abstract subdifferential
(or L-subdifferential) of f at the point x0 [16, page 281] is defined as

(2.2) ∂Lf(x0) := {l ∈ L : l(x0) ∈ R and l(x)− l(x0) ≤ f(x)−f(x0) for all x ∈ X}.
When f(x0) 6∈ R we define ∂Lf(x0) := ∅.

More generally, we will consider in our study the abstract subdifferential with
respect to a subset Z ⊂ X containing the point x0 such that f(x0) ∈ R:
(2.3)

∂L,Zf(x0) := {l ∈ L : l(x0) ∈ R and l(x)− l(x0) ≤ f(x)− f(x0) for all x ∈ Z}.
The abstract subdifferential is a subset of L, its counterpart in the set H has been
introduced in [16, Section 8.2.3] and it is defined as:

(2.4) DL,Zf(x0) := {h ∈ H : h(x) = l(x)− l(x0), l ∈ ∂L,Zf(x0)}.
Since there will be no ambiguity regarding the choice of L and Z, we simply denote
DL,Zf by Df . Let us also recall the definition of the abstract ε-subdifferential
∂L,Z,(·)f : X × R+ ⇒ L, given in [16, Definition 7.8]:

(2.5) ∂L,Z,εf(x0)

:= {l ∈ L : l(x0) ∈ R and l(x)− l(x0) ≤ f(x)− f(x0) + ε for all x ∈ Z},
where x0 ∈ Z and ε ≥ 0. Its affine counterpart is defined as

(2.6) Dεf(x0) := {h ∈ H : h(x) = l(x)− l(x0), l ∈ ∂L,Z,εf(x0)}.
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3. Abstract monotonicity

Let X be a Banach space and X∗ its dual. Recall that a point-to-set mapping
T : X ⇒ X∗ is said to be monotone when for every pair of elements (v, x), (u, y)
such that v ∈ Tx and u ∈ Ty, we have that

0 ≤ 〈v − u, x− y〉.
We extend now this concept to our setting.

Let X be a Haussdorf topological vector space. Assume that the set of elementary
functions L is such that l(x) ∈ R for all (x, l) ∈ X × L, a point-to-set mapping
T : X ⇒ L is said to be L-monotone when for every pair of elements (l, x), (l′, x′)
such that l ∈ Tx and l′ ∈ Tx′, we have that

(3.1) 0 ≤ l(x) + l′(x′)− l(x′)− l′(x).

This definition was introduced in [10, 11], where the stronger concept of L-cyclical
monotonicity was studied. Namely, a point-to-set mapping T : X ⇒ L is said to be
L-cyclically monotone when for every finite collection of elements (l1, x1), . . . ,(lm,xm)
such that lk ∈ Txk for all k = 1, . . . , m we have

m∑

k=1

[lk(xk)− lk(xk+1)] ≥ 0,

where xm+1 := x1. It is immediate to check that the abstract subdifferential is
L-cyclically monotone and in particular (take m = 2 in the expression above) L-
monotone. Call D(T ) := {x ∈ X : Tx 6= ∅}.

Recall that the graph of a point-to-set map F : A ⇒ B is defined as G(F ) :=
{(a, b) ∈ A×B : b ∈ F (a)}. We give now the definition of L-maximal monotonicity.

As in the classical setting, we say that a point-to-set mapping T : X ⇒ L is L-
maximal monotone when, for every other L-monotone map T ′ with G(T ′) ⊃ G(T ),
we must have T = T ′.

Recall that the subdifferential of a proper, convex and lower semicontinuous func-
tion in a Banach space is maximal monotone. Another classical fact is that the
subdifferential is not empty at points in the interior of the domain of f . Both
properties may no longer be true for abstract subdifferentials, as is shown in the
following example.

Example 3.1. Let X be a Banach space and take the set L as in [16, Equation
7.3.13]:

lv,c(x) :=

{
c if v(x) > 1,

0 if v(x) ≤ 1,

where v ∈ X∗ and c ≥ 0. So that the set H of L-affine functions becomes

jv,c,c′(x) :=

{
c if v(x) > 1,

c′ if v(x) ≤ 1,

where v ∈ X∗ and c, c′ ∈ R and c′ ≤ c.
Recall that a function f : X → R+∞ is quasiconvex when for every a ∈ R the

level sets {x ∈ X : f(x) ≤ a} are convex. The following facts were established in
[16, Proposition 7.41(1) and Proposition 7.45]. Let R+ := {t ∈ R : t ≥ 0}.
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(a) A function q : X → R+ ∪ {+∞} is H-convex if and only if q is lower
semicontinuous, quasiconvex and q(0) = inf{q(x) : x ∈ X}.

(b) The L-subdifferential of q at x0 is empty if x0 is not a local minimizer of q.
Let X := R and take q = | · |. Then q is H-convex by (a). Part (b) readily implies
that D(∂Lq) ⊂ {0} and therefore D(∂Lq) does not contain the set int dom q = X.
Let us show now that ∂Lq is not maximal.

By (b) we have that G(∂Lq) = {0} × ∂Lq(0). It can be proved that

∂Lq(0) = {(0, c) : c ≥ 0} ∪ {(α, c) : 0 6= α, 0 ≤ c ≤ 1
|α|}.

As we see from the equality above, (x0, v) = (0, (2, 2)) 6∈ G(∂Lq). On the other
hand, (x0, v) = (0, (2, 2)) is L-monotonically related with G(∂Lq). Indeed, take
x = x′ = 0 in inequality (3.1). The definition of lv,c implies that every term in
the right hand side of (3.1) is equal to zero, so the inequality holds. Therefore the
L-subdifferential is not maximal.

Analysis of monotone maps is closely connected with the specific properties of
the scalar product of the space. The role of the scalar product is now taken by the
coupling function φ : X × L → R defined as φ(x, l) := l(x).

Let H be the set of L-affine functions defined in (2.1). We will consider the
following set of assumptions:

(A1) The topology in H contains the one induced by the pointwise convergence.
In other words, we assume that the topology in H is either stronger or it
coincides with the one given by the pointwise convergence. We also assume
that L is closed in H (with the induced topology).

(A2) Every l ∈ L is lower semicontinuous.
(A3) The coupling function φ is upper semicontinuous, i.e., given a directed set

I and a net {(li, xi)}i∈I ∈ L×X, we have

lim sup
i∈I

li(xi) ≤ l(x),

whenever the net (li, xi) converges to (l, x). We denote as ((A3)s) the se-
quential statement of (A3), i.e., when the coupling function φ is assumed to
be sequentially-upper semicontinuous, or, in other words, when the nets are
replaced by sequences.

Remark 3.1. Note that (A2) and (A3) imply that all elements of L (and, hence of
H) are continuous.

Remark 3.2. Assumptions (A1) − (A2) hold for the classical case, i.e., when X is
a Banach space and L = X∗, the topological dual of X endowed with the weak∗
topology. Condition (A3) may not hold in the classical case, this is because weak∗
convergent nets may not be eventually bounded. However, (A3)s (with a weak∗-
strong convergent sequence {(vn, xn)}n∈N instead of a weak∗-strong convergent net
{(li, xi)} ⊂ X∗ × X) holds. When the strong topology is considered both in X
and X∗, condition (A3) (which in this situation is equivalent to (A3)s) holds. In
particular, (A3) holds when X is finite dimensional. Assumptions (A1)− (A3) hold
for Examples 4.1 and 4.2 below.



110 REGINA SANDRA BURACHIK AND ALEX RUBINOV

3.1. Abstract enlargements. In order to define an enlargement of an L monotone
map, we will represent abstract monotone maps by means of abstract convex func-
tions defined in the cartesian product X×L. Note that the linear functions defined
in the product X ×L are of the form (u, y) ∈ L×X with (u, y)(x, v) = u(x)+ v(y).
We say that h : X ×L → R+∞ is (L,X)-convex (or dual-abstract convex) whenever

h(x, v) := sup{u(x) + v(y)− c : ((u, y), c) ∈ supp(h,L×X)}.
Inspired in [12], we say that an L monotone map T is represented by a dual-abstract
convex function h when

(R1) h(x, v) ≥ v(x) for every (x, v) ∈ X × L,
(R2) h(x, v) = v(x) if and only if (x, v) ∈ G(T ).

Representability of monotone maps in the classical sense has been recently studied
in [12]. The example below extends well known facts (see [6]) from the classical
setting, without any additional assumption on L or X. Given an H-convex function
f : X → R+∞, its Fenchel-Moreau conjugate f∗ : L → R+∞ is defined as

f∗(l) := sup
x∈X

{l(x)− f(x)}.

Example 3.2. Let f be an H-convex function. The abstract subdifferential of f
is represented by the dual-abstract convex function βf (x, v) = f(x) + f∗(v), and
every L-maximal monotone map is represented by its Fitzpatrick function [13]

(3.2) ϕT (x, v) := sup
(y,u)∈G(T )

{u(x) + v(y)− u(y)}.

The first assertion follows from Equation (7.2.10) and Proposition 7.7 in [16]. We
proceed to establish the second one. Note that the Fitzpatrick function is (L,X)-
convex by definition. In order to check (R1), fix (x, v) ∈ X × L. If (x, v) 6∈ G(T ),
then by maximality there exists (y, u) ∈ G(T ) such that

0 > v(x) + u(y)− u(x)− v(y).

Therefore,

ϕT (x, v) = sup
(y′,u′)∈G(T )

{u′(x) + v(y′)− u′(y′)}

≥ u(x) + v(y)− u(y) = [u(x) + v(y)− u(y)− v(x)] + v(x) > v(x).

Assume now that (x, v) ∈ G(T ). The argument of the supremum in (3.2) can be
expressed as

[u(x) + v(y)− u(y)− v(x)] + v(x) ≤ v(x),

where we used monotonocity of T . So ϕT (x, v) ≤ v(x). On the other hand, if we
take (y′, u′) = (x, v) ∈ G(T ) in the argument of the supremum we get

ϕT (x, v) ≥ v(x) + v(x)− v(x) = v(x),

so ϕT (x, v) = v(x) when (x, v) ∈ G(T ). Conversely, assume that ϕT (x, v) = v(x).
By definition,

ϕT (x, v) = sup
(y′,u′)∈G(T )

[u′(x) + v(y′)− u′(y′)− v(x)] + v(x),
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so the equality ϕT (x, v) = v(x) yields [u′(x) + v(y′) − u′(y′) − v(x)] ≤ 0 for every
(y′, u′) ∈ G(T ). By maximality we must have (x, v) ∈ G(T ). This proves (R2).

As we gather from the example above, we can study L-maximal monotone maps
through their (L,X)-convex representations. Moreover, we can use the (L,X)-
convex representations for defining their enlargements.

Given a fixed L monotone map T : X ⇒ L, we say that E : R+ ×X ⇒ L is an
L-enlargement of T when it verifies the following property:

(E1) There exists a dual-abstract convex function h which represents T and such
that

(3.3) E(ε, x) = {v ∈ L : h(x, v) ≤ ε + v(x)}.
This condition can be interpreted as follows. If h represents T , then it represents
their enlargements by the rule given in (3.3). By (R1)− (R2) we have that T (x) =
E(0, x).

Example 3.3. The most important example of enlargement in the literature is the
ε-subdifferential, which is an enlargement of the subdifferential defined in [7]. It is a
well-known fact that the classical ε-subdifferential verifies (E1) with h = βf defined
in Example 3.2. The fact that these properties can be extended to the abstract
ε-subdifferential has been proved in Proposition 7.10 in [16]. In particular, when
ε = 0 we have ∂Lf(x) = {v ∈ L : βf (x, v) ≤ v(x)}.
Example 3.4. Fix an L-maximal monotone operator T . Define BT : R+×X → L
in the following way.

BT (ε, x)(3.4)

:= {l ∈ L : l′(y′) + l(x)− l(y′)− l′(x) ≥ −ε, for all (y′, l′) ∈ G(T )}
= {l ∈ L : ϕT (x, l) ≤ ε + l(x)}.

This enlargement is an extension to the abstract setting of the one introduced in
[4] and further studied in [3, 5, 6]. In the particular case in which T = ∂Lf (see
(2.3) for Z = X) we have ∂L,εf(x) ⊂ BT (ε, x), where the enlargement ∂L,(·)f(·) is
given in (2.5). This fact is well-known for the classical case (see [4]) and for our
general framework the proof follows the same steps. Indeed, the inclusion ∂L,εf(x) ⊂
B∂Lf (ε, x) is a consequence of condition (E1) and the fact that ϕ∂Lf ≤ βf . Let us
check the latter inequality:

ϕ∂Lf (x, v) = sup
y′, u′∈∂Lf(y′)

{u′(x) + v(y′)− u′(y′)}

≤ sup
y′, u′∈∂Lf(y′)

v(y′)− f(y′) + f(x)

= f∗(v) + f(x) = βf (x, v),

where we used the fact that f(x)− f(y′) ≥ u′(x)− u′(y′) in the inequality and the
definition of f∗ in the second equality.

Remark 3.3. Under assumptions (A1) and (A2), a representation h of T is lower
semicontinuous. Indeed, it is enough to check that the (L,X)-linear functions (u, y)
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are lower semicontinuous. Let {(xi, vi)}i∈I be a net converging to (x, v). Then,

lim inf
i

(u, y)(xi, vi) = lim inf
i

u(xi) + vi(y)

≥ lim inf
i

u(xi) + lim inf
i

vi(y)

≥ u(x) + lim inf
i

vi(y)

= u(x) + v(y) =(u, y) (x, v),

where we used (A2) in the second inequality and (A1) in the second equality.

Example 3.1 suggests that maximality is no longer a property associated with
abstract subdifferentials. We establish below a condition under which maximality
holds.

Proposition 3.1. Let f be H-convex and such that both f and f∗ are continuous.
Assume that the set D(∂Lf) is dense on dom f and that the set R(∂Lf) := {v ∈ L :
∃x ∈ X such that v ∈ ∂Lf(x)} is dense on dom f∗. Then ∂Lf is maximal.

Proof. We mentioned in Example 3.2 that the abstract subdifferential of f is rep-
resented by the (L,X)-convex function βf (x, v) = f(x) + f∗(v). Take now a pair
(x′, v′) which is L-monotonically related with G(∂Lf). So for every (x, v) ∈ G(∂Lf)
we have

v′(x′) ≥ v′(x) + v(x′)− v(x) = v′(x) + v(x′)− f(x)− f∗(v),

where we used condition (R2) for βf in the equality. We can rewrite the inequality
above as

v′(x′) ≥ [v′(x)− f(x)] + [x′(v)− f∗(v)].
Taking now supremum over the domain and range of ∂Lf , and using the density
and continuity assumptions, we get

v′(x′) ≥ f∗(v′) + f∗∗(x′).

By Theorem 7.1 in [16] we have that every H-convex function verifies f = f∗∗ so we
obtain v′(x′) ≥ f∗(v′) + f(x′) = βf (x′, v′). Since we always have βf (x′, v′) ≥ v′(x′)
we conclude that v′(x′) = βf (x′, v′), which together with (R2) yields (x′, v′) ∈
G(∂Lf) and hence ∂Lf is maximal. ¤
Remark 3.4. In connection with Proposition 3.1, we point out that the question
of the density of dom ∂Lf has been intensively studied in the literature (see, e.g.
[1, 14, 22]).

3.2. Outer semicontinuity. Continuity properties of point-to-set maps are ana-
lyzed by studying the topological properties of their graphs. Recall that a point-to-
set map is outer semicontinuous when its graph is closed with respect to the product
topology. Maximal monotone (in the classical sense) maps (and therefore subdif-
ferentials of proper lower semicontinuous convex functions) are sequentially outer
semicontinuous with respect to the strong topology in X and the weak∗ topology in
X∗ (sequentially stands for the fact that the limit is taken over sequences instead
of nets). The same property is shared by every enlargement (in the sense of [3–6])
of T . As a consequence, when X is finite dimensional, both the graph of T and the
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graph of its enlargements are closed with respect to the product topology. We point
out that closedness of the graph of T in the product topology (with respect to the
strong topology in X and the weak∗-topology in X∗) may not hold in general (see
[2]).

Our aim is to extend these outer semicontinuity properties to our setting. More
precisely, we will prove that our basic assumptions (A1)− (A3) yield outer semicon-
tinuity of L-monotone maps and their abstract enlargements.

Theorem 3.1. Assume that (A1)−(A3) hold. Let T be a representable L-monotone
mapping and consider E an enlargement of T verifying condition (E1). Then T
and E are outer-semicontinuous. If (A3)s holds, then T and E are sequentially
outer-semicontinuous. Consequently, L-maximal monotone mappings are outer-
semicontinuous.

Proof. A consequence of condition (E1) and the properties of h is that {0}×G(T ) =
G(E) ∩ {0} × (X × L). Hence it is enough to prove that G(E) = {(x, l, ε) ∈
R+×L×X : l ∈ E(ε, x))} is closed. Let {(xi, li, εi)}i∈I ⊂ G(E) be a net converging
to (x, l, ε). We must prove that l ∈ E(ε, x). In other words, we want to show that
h(x, l) ≤ ε + l(x), where h represents T and verifies (3.3). From Remark 3.3 we
have that h is lower semicontinuous. Hence

h(x, l) ≤ lim inf
i∈I

h(xi, li) ≤ lim inf
i∈I

εi + li(xi)

≤ lim sup
i∈I

εi + li(xi)

≤ lim sup
i∈I

εi + lim sup
i∈I

li(xi)

≤ ε + l(x),

where we used (E1) in the second inequality and (A3) in the last one. The statement
on sequential outer-semicontinuity is proved in the same way, but using sequences
instead of nets. The last statement of the theorem follows from the fact that every
L-maximal monotone operator is representable (see Example 3.2). ¤
Corollary 3.1. Assume that f is H-convex. Let the point-to-set mappings ∂L,Zf(·)
and ∂L,Z,(·)f(·) be given by (2.3) and (2.5), respectively. Under assumptions (A1)−
(A3), their graphs are closed with respect to the product topology. If (A3)s holds,
then ∂L,Zf(·) and ∂L,Z,(·)f(·) are sequentially outer-semicontinuous.

Proof. We know that T := ∂L,Zf(·) is L-monotone and representable by h = βf .
We can now appy Theorem 3.1. ¤
Remark 3.5. By Remark 3.2, we see that the sequential statement in Theorem 3.1
recovers the classical result on sequential outer semicontinuity for maximal mono-
tone mappings, while Corollary 3.1 recovers the sequential outer semicontinuity of
subdifferentials and their enlargements ∂L,Z,(·)f(·) and B∂Lf (·, ·).

The following example uses a set L as in Example 7.5 of [16].

Example 3.5. Let X = R and take Z := [−1, 1]. Consider the set of functions

L := {l(x) = ax2 + bx : a ≤ 0, b ∈ R}.
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We identify the function l(x) = ax2 + bx with the pair (a, b). We define T : Z ⇒ L
as

Tx := {(a, b) ∈ L : x ∈ Arg max
t∈[−1,1]

at2 + bt}.

Is is clear that D(T ) = Z because (0, 0) ∈ Tx for all x ∈ [−1, 1]. The operator T
is onto, because for every (a, b) ∈ L the function t 7→ at2 + bT is continuous over
the compact set [−1, 1], so there always exists x ∈ [−1, 1] such that (a, b) ∈ Tx.
We claim that T is the subdifferential of any function U which is constant over Z.
Indeed, by definition of T we have that (a, b) = l ∈ T (t0) if and only if 0 ≥ l(x)−l(t0)
for every x ∈ [−1, 1], which is equivalent to 0 = U(x)−U(t0) ≥ l(x)− l(t0) for every
x ∈ [−1, 1], i.e., l ∈ ∂L,ZU(t0). Note also that any constant function U on [−1, 1] is
H convex, because at every point t ∈ [−1, 1] we can represent U(t) as the supremum
of concave parabolas. The function U∗ is continuous, to check this see formula for
βU at the end of this example. Because U and U∗ are continuous, D(T ) = Z and T
is onto, Proposition 3.1 implies that T = ∂LU is maximal. It is also easy to check
that Tx is a closed cone for every x ∈ [−1, 1]. In the figure, we depicted Tx for an
x ∈ (−1, 1) and T (0).

−1 1

T (0)

x

2x

Tx

More precisely, we have

(3.5) Tx =





{λ(−1, 2x) : λ ≥ 0} if x ∈ (−1, 1),
{λ(0, 1) : λ ≥ 0} ∪ {β(−1, 2) : β ≥ 0} if x = 1,

{λ(0,−1) : λ ≥ 0} ∪ {β(−1,−2) : β ≥ 0} if x = −1.

Computation of the sets T (1) and T (−1) as well as the inclusions {λ(−1, 2x) : λ ≥
0} ⊂ Tx for all x ∈ (−1, 1) are straightforward from the definition of T . Let us check
the inclusion Tx ⊂ {λ(−1, 2x) : λ ≥ 0} for x ∈ (−1, 1). Fix (a, b) ∈ Tx. Because
(0, 0) always belongs to the set on the right-hand side, we can assume (a, b) 6= (0, 0).
Using the fact that x ∈ (−1, 1), we must have a < 0. By definition of T we must
have that q(t) := at2 + bt attains its unique maximum at the point x ∈ (−1, 1).
This yields x = −b

2a . So we must have (a, b) = −a(−1, 2x) as we wanted.
Let us look now at the enlargements of T . Since T = ∂L,ZU we have the enlarge-

ment given by Example 3.3, which is the ε-subdifferential of U . Since U is constant
we see that (a, b) ∈ ∂ε,L,ZU(x0) if and only if for every y ∈ [−1, 1]

0 = U(y)− U(x0) ≥ ay2 + by − ax2
0 − bx0 − ε.
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In other words, (a, b) ∈ ∂ε,L,ZU(x0) if and only if x0 verifies

(3.6) ax2
0 + bx0 ≥ ay2 + by − ε, ∀ y ∈ [−1, 1],

which means that x0 is an ε-maximum of q(t) = at2 + bt.
The other enlargement is the one induced by the Fitzpatrick function (see Ex-

ample 3.4). We claim that both enlargements coincide. Indeed, in view Example
3.4, it is enough to check that BT (ε, x0) ⊂ ∂ε,L,ZU(x0). In fact, the latter inclu-
sion is a consequence of the fact that (0, 0) ∈ Ty′ for every y′ ∈ [−1, 1] in (3.4).
Therefore, both representing functions βU and ϕT given in Examples 3.2 and 3.4
coincide. Indeed, choosing the constant function U to be identically equal to zero
we get βU (x, (a, b)) = U(x) + U∗(a, b) = supt∈[−1,1] at2 + bt. Using (3.5) it can be
verified that the Fitzpatrick function associated with T is

ϕT (x, (a, b)) =





a− b if b ≤ 2a, a ≤ 0,
−b2

4a if 2a ≤ b ≤ −2a, a < 0,

a + b if b ≥ −2a, a ≤ 0,

which coincides with βU (x, (a, b)).

3.3. Inner semicontinuity. Let A,B be topological Haussdorff spaces. A point-
to-set map F : A ⇒ B is said to be inner semicontinuous at x̄ ∈ D(F ) when, for
every open set D ⊂ B such that D ∩ F (x̄) 6= ∅, there exists a neighborhood U of x̄
such that D ∩F (x) 6= ∅ for every x ∈ U . For metric spaces the latter definition can
be stated in terms of sequences in the following way: F is inner semicontinuous at
x̄ when for every y ∈ F (x̄) and f or every sequence {xk} ⊂ D(F ) converging to x̄
there exists a sequence {yk} such that yk ∈ F (xk) for all k and {yk} converges to y.

We mentioned before that a maximal monotone operator (in the classical sense)
T : X ⇒ X∗ defined in a separable (i.e., X has a denumerable dense subset) space
X is inner semicontinuous at x̄ if and only if T x̄ is a singleton. Hence full continuity
(i.e., outer- and inner- semicontinuity) of set-valued maximal monotone operators
is a rare event in the classical setting, unless we are dealing with a point-to-point
mapping. This fact may no longer be true in the abstract setting, as the next
example shows.

Example 3.6. Let us consider again the L-monotone operator T of Example 3.5.
This T is maximal and clearly not point-to-point since Tx is a cone for every
x ∈ (−1, 1). On the other hand, we can easily check that T is inner-semicontinuous
at every point x ∈ (−1, 1). Fix (a, b) ∈ Tx. If a = 0, the fact that x ∈ (−1, 1)
again forces b = 0. Given a sequence {xk} ⊂ D(F ) converging to x̄ we can always
take yk := (0, 0) ∈ Txk so yk trivially converges to (a, b) = (0, 0). Assume now that
a < 0. So we must have x = −b

2a . Consider a sequence {xk} converging to x. We can
assume that {xk} ⊂ (−1, 1). By (3.5) we have that Txk = {λ(−1, 2xk) : λ ≥ 0}. Let
us choose λk := −a. Then lk := (−a)(−1, 2xk) ∈ Txk and converges to (a,−2xa) =
(a, b). So T is inner-semicontinuous at every point x ∈ (−1, 1). Let us check that T
is not inner-semicontinuous at x = 1 or x = −1. Take (0, 1) ∈ T (1) and the sequence
un := 1 − 1

n → 1. Since un ∈ (−1, 1) we have that Tun = {λ(−1, 2un) : λ ≥ 0}. If
T would be inner-semicontinuous at x = 1 we would be able to choose λn ≥ 0 such
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that
λn(−1, 2un) → (0, 1).

Which yields the contradicting facts λn → 0 and 2λn(1 − 1
n) → 1. The lack of

semicontinuity at x = −1 is proved in a similar manner. Altogether, we have that
T is continuous in the interior of its domain. Moreover, we can actually prove that
T is Lipschitz continuous in (−1, 1). Here the Lipschitz property is defined using
the following distance between the cones K1,K2 (see [15]):

δ(K1,K2) := max{ sup
z∈K1∩S

dist(z, K2), sup
z∈K2∩S

dist(z, K1)},

where S denotes the unit sphere. We will use this formula for K1 = Tx and
K2 = Tx′, with x, x′ ∈ (−1, 1), in order to estimate the distance between Tx and
Tx′. First note that K1 ∩ S is the unique point z1 := 1√

1+4x2
(−1, 2x). In the

same way K2 ∩ S is the unique point z2 := 1√
1+4x′2

(−1, 2x′). So the above formula
simplifies to

δ(Tx, Tx′) = max{dist(z1,K2), dist(z2,K1)}.
Note that

dist(z1,K2) = min
λ≥0

√
(

−1√
1 + 4x2

+ λ)2 + (
2x√

1 + 4x2
− 2λx′)2.

Direct calculation shows that dist(z1,K2) =
√

1− (1+4xx′)2
(1+4x2)(1+4x′2)

. Since this ex-
pression is symmetric with respect to x and x′ we get

δ(Tx, Tx′) =

√
1− (1 + 4xx′)2

(1 + 4x2)(1 + 4x′2)
=

2|x− x′|√
(1 + 4x2)(1 + 4x′2)

≤ 2|x− x′|,

which establishes the desired Lipschitzianity.

4. Approximate subdifferentials

Denote by H the set of all L-affine functions. Fix a subset Z ⊂ X and x0 ∈ Z.
The set of L-subdifferentials of f may be very large, so it is useful to identify special
members of it, and relate them with special members of the support set on Z. In [16,
Proposition 7.1] it is proved that there exists a bijective correspondence between
the set of L-subdifferentials of f at x0 and the set

(4.1) Sf (x0) := {h ∈ supp(f,H, Z) : h(x0) = f(x0)}.
Remark 4.1. The set Sf (x0) is nonempty if and only if f is H-convex at x0 and the
supremum sup{h(x0) : h ∈ supp(f,H, Z)} is attained (see [16, page 279]).

The result in [16, Proposition 7.1] allows to determine whether the abstract sub-
differential is or not empty. In some cases, as for instance the one in [16, Example
8.3], the abstract subdifferential at a given point is empty, and hence we are forced
to look at the abstract ε-subdifferentials of f at x0 with respect to the set Z. Note
also that every H-convex function on Z has approximate subdifferentials (for a proof
of this fact, see page 286 in [16]). Our first result extends [16, Proposition 7.1] to
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the framework of abstract ε-subdifferentials. The natural replacement for the set
defined in (4.1) is

Sεf(x0) := {h ∈ supp(f,H, Z) : h(x0) = f(x0)− ε}.
Note that, when ε = 0, we recover the set Sf (x0).

Proposition 4.1. Let f : X → R+∞, Z ⊂ X and fix x0 ∈ Z, l ∈ L and ε ≥ 0.
Define c := l(x0)− f(x0) + ε and h(x) := l(x)− c. Then, the following statements
are equivalent;

(a) l ∈ ∂L,Z,εf(x0).
(b) h ∈ Sεf(x0).

Items (a) or (b) are true for ε = 0 if and only if f is H-convex at x0 and the
supremum sup{h(x0) : h ∈ supp(f,H, Z)} is attained.

Proof. First note that h(x0) = f(x0)− ε. So

h ∈ Sεf(x0) ⇔ h(x) ≤ f(x) ∀x ∈ Z

⇔ l(x)− l(x0) + f(x0)− ε ≤ f(x) ∀x ∈ Z

⇔ l(x)− l(x0) ≤ f(x)− f(x0) + ε ∀x ∈ Z

⇔ l ∈ ∂L,Z,εf(x0).

The last statement of the proposition follows from Remark 4.1. ¤

Example 4.1. Let X = R and Z = [−1, 1] and L as in Example 3.5. So H :=
{ax2 + bx + c : a ≤ 0 , b, c ∈ R} is the associated set of affine functions. Consider
the funcion f(x) = −|x|. Note that f is H-convex on Z, and ∂L,Zf(x) 6= ∅ for
every x 6= 0. This claim is true because for every fixed Z 3 x 6= 0 we can define
hx = (ax, bx, cx) := ( −1

2|x| , 0, −|x|2 ), and it is easy to check that hx(t) ≤ f(t) for all
t ∈ Z as well as the equality hx(x) = f(x). So for every Z 3 x 6= 0 we have
f(x) = max{h(x) : h ≤ f}, the fact that the maximum is attained at hx implies
that ∂L,Zf(x) 6= ∅ for every Z 3 x 6= 0. At x = 0 we have that f(0) = sup{hx(0) :
x ∈ Z, x 6= 0} = sup{−|x|2 : x ∈ Z, x 6= 0} = 0. So f is H-convex on Z. It can also
be seen that ∂L,Zf(0) = ∅. In fact, ∂L,Z′f(0) = ∅ for every Z ′ ⊂ R which has 0 as
an interior point. Given ε > 0, the abstract ε-subdifferential at 0 is the set of l ∈ L
such that

ε ≥ |x|+ ax2 + bx,

for all x ∈ [−1, 1]. Call M(a, b) := max{supx∈(−1,0) ax2 + (b− 1)x, supx∈(0,1) ax2 +
(b + 1)x}. Note that M(a, b) > 0 for every (a, b) ∈ R− × R. It is direct from the
definition that (a, b) ∈ ∂L,Z,εf(0) if and only if ε ≥ M(a, b). In this case, the “⇔”
correspondence used in the proof of Proposition 4.1 relates (a, b) ∈ ∂L,Z,εf(0) with
Sεf(0) 3 h(x) = ax2 + bx− ε ≤ ax2 + bx−M(a, b).

The next example is taken from [16, Example 7.6].

Example 4.2. Let X be a Banach space, Z a subset of X and fix x0 ∈ Z. Let

L := {a‖x− x0‖ : a ≤ 0}.
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Given f : Z → R define

β(f, x0) := inf
x∈Z, x 6=x0

f(x)− f(x0)
‖x− x0‖ .

Assume f is Lipschitz on Z with the Lipschitz constant

β(f) := sup
x,y∈Z, x 6=y

|f(x)− f(y)|
‖x− y‖ .

It is clear from the above definitions that β(f) ≥ β(f, x0) ≥ −β(f) > −∞. Iden-
tifying every l ∈ L with the coefficient a such that l(x) = a‖x − x0‖, it is easy to
check that, when f is Lipschitz, the set ∂L,Zf(x0) is not empty and

∂L,Zf(x0) = {a ∈ R : a ≤ min{0, β(f, x0)}}.
Fix now ε ≥ 0. Then a ∈ ∂L,Z,εf(x0) if and only if a ≤ 0 and

a‖x− x0‖ ≤ f(x)− f(x0) + ε,

for all x ∈ Z. Therefore,

a ≤ f(x)− f(x0)
‖x− x0‖ +

ε

‖x− x0‖ .

Which yields

a ≤ inf
x∈Z, x 6=x0

f(x)− f(x0)
‖x− x0‖ +

ε

‖x− x0‖ =: βε(f, x0).

Hence we have

∂L,Z,εf(x0) = (−∞,min{0, βε(f, x0)}] ⊃ (−∞,min{0, β(f, x0)}] = ∂L,Zf(x0).

When x0 is a minimizer of f at Z, then β(f, x0) ≥ 0 and hence the L-subdifferential
at x0 (as well as every ε-subdifferential) will coincide with the whole set L. Other-
wise, there exists x̂ ∈ Z such that f(x̂) − f(x0) < 0 and choosing ε > 0 such that
ε < f(x0)− f(x̂) we will have β(f, x0) ≤ βε(f, x0) < 0 and in this case

∂L,Z,εf(x0) = (−∞, βε(f, x0)] ⊃ (−∞, β(f, x0)] = ∂L,Zf(x0).

The correspondence defined in Proposition 4.1 sends a ∈ ∂L,Z,εf(x0) to h(x) =
a‖x− x0‖+ f(x0)− ε ≤ βε(f, x0)‖x− x0‖+ f(x0)− ε.

4.1. Maximal Elements. For X ⊃ Z, let L ⊂ RX be a set of elementary functions
defined on X and H be the corresponding set of L-affine functions as in (2.1). Given
a subset U of functions defined on Z, we say that g ∈ U is a maximal element of
the set U when

g′ ∈ U, g′(x) ≥ g(x) for all x ∈ Z =⇒ g′ = g.

Proposition 8.4 in [16] establishes a bijection between maximal elements of
supp(f,H, Z) and maximal elements of Df(x0). Inspired by this result, we will
establish a similar connection between maximal elements of Sεf(x0) and maximal
elements of the set Dεf(x0) given in (2.6).

A careful inspection of Proposition 8.4 in [16] shows that maximal elements
in Df(x0) are in bijective correspondence with those maximal elements h ∈
supp(f,H, Z) which verify h(x0) = f(x0). In other words, there is a one-to-one
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correspondence between maximal elements of the sets Sf (x0) and Df(x0). With
this stronger statement in mind, our next result becomes Proposition 8.4 in [16]
when ε = 0.

Proposition 4.2. Let f : X → R+∞, Z ⊂ X and fix x0 ∈ Z, l ∈ L and ε ≥ 0. The
following statements are equivalent;

(a) h(·) := l(·)− l(x0) is a maximal element of Dεf(x0).
(b) h′(·) := l(·)− (l(x0)− f(x0) + ε) is a maximal element of Sεf(x0).

Proof. Note that h′ = h + (f(x0)− ε) , it is immediate to see that h ∈ Dεf(x0) ⇔
h′ ∈ Sεf(x0). Hence Sεf(x0) = Dεf(x0)+(f(x0)− ε) and the conclusion follows. ¤

Let us look now at the maximal elements of the previous examples.

Example 4.3. Consider again Example 4.1 and fix ε > 0. We have that
(a, b) ∈ ∂L,Z,εf(0) is maximal if and only if M(a, b) = ε. Indeed, assume first that
(a, b) ∈ R− × R is such that M(a, b) = ε and take (a′, b′) ∈ ∂L,Z,εf(0) such that

(4.2) a′x2 + b′x ≥ ax2 + bx, for all x ∈ [−1, 1].

Since (a′, b′) ∈ ∂L,Z,εf(0) we must have M(a′, b′) ≤ ε = M(a, b). On the other hand,
(4.2) yields M(a, b) ≤ M(a′, b′). Hence we must have M(a, b) = M(a′, b′). From
this fact and (4.2) for the sequences {1/n}, {−1/n} ∈ [−1, 1] we see that b′ = b and
a′ ≥ a. Using the compacity of [−1, 1] and the continuity of the functions involved
in the definition of M , it is possible to prove that a′ = a. Hence (a, b) is maximal.
Conversely, assume (a, b) ∈ ∂L,Z,εf(0) is maximal. We know that ε ≥ M(a, b) and
we must show that ε = M(a, b). Assume that ε > M(a, b). It is possible to find
δ > 0 such that ε > M(a + δ, b) > M(a, b). The fact that (a + δ)x2 + bx 	 ax2 + bx
for all x ∈ [−1, 1]\{0} contradicts the maximality of (a, b). For an example, assume
that ε = 2. In this case (0,−1) ∈ ∂L,Z,εf(0) and M(a, b) = 2. So (0,−1) is a
maximal element, and generates the element h(x) = −x ∈ Dεf(x0). By Proposition
4.2, h corresponds to the maximal element h′(x) = −x− ε ∈ Sεf(x0).

Example 4.4. Consider now Example 4.2. Let f(x) = −‖x‖2 and take x0 = 0.
Note that β(f, 0) = infx∈Z, x 6=0−‖x‖ and βε(f, 0) = infx∈Z, x 6=0−‖x‖+ε/‖x‖. Hence
when Z is unbounded, then both limiting values are −∞ and hence both sets
∂L,Zf(0) and ∂L,Z,εf(0) are empty. Let B(0, 1) denote the unit ball of X and take
Z = B(0, 1). In this case we have that f is H-convex at 0 (but f is not H-convex
at Z 3 x 6= 0) and the supremum is attained. We have that β(f, 0) = −1 and
βε(f, 0) = ε − 1. So in order to have ∂L,Z,εf(0) $ L we consider ε < 1. Since
l(0) = 0 we have that Dεf(0) = ∂L,Z,εf(0). Because the set of linear functions
is totally ordered the maximal element of ∂L,Z,εf(0) is in fact a maximum and
it is lM (x) = βε(f, 0)‖x‖ = (ε − 1)‖x‖. The corresponding element in Sεf(0) is
h′(x) = (ε− 1)‖x‖ − ε.

The following example is inspired in [8].

Example 4.5. Let Z = C be a cone in a vector space X with the order relation
≥K introduced by a convex cone K ⊃ C. For y ∈ C, y 6= 0 define the function
ly : C → R+∞ by ly(x) = sup{α > 0 : αy ≤K x} with the convention sup ∅ = 0. (If
X = Rn and C = K = Rn

+ then ly(x) = mini:yi>0
xi
yi

.) Let L = {ly : y ∈ C}∪{0}. It
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is known [8] that a function f : C → R+∞ is H-convex if and only if f is increasing
with respect to ≥K and the restriction of f on the ray {αx : α ≥ 0} for each x ∈ C
is a convex and lower semicontinuous function of one variable (these functions are
called ICAR: increasing convex along-rays). Let f be an ICAR function and x0 ∈ C
be a point such that x0 ∈ dom f . Then it can be proved (see [8]) that

(i) The function fx0(α) := f(αx0) is convex and 1 ∈ dom fx0 .
(ii) The (classical convex) subdifferential ∂fx0(1) of fx0 is not empty. and it

coincides with a closed segment, denote it by [a, b].

A function f : C → R+∞ is called strictly increasing at a point x ∈ C if (y ∈ C, x <K

y) =⇒ f(x) < f(y). It has been proved in [8] that for the abstract subdifferential
it holds

(4.3) ∂L,Cf(x0) ⊃ {τ lx0 : τ ∈ ∂fx0(1)}.
If f is strictly increasing at x0, then equality holds in (4.3). Assume that f is
strictly increasing at x0. Then fx0 is also strictly increasing and hence we must
have b ≥ a > 0 in item (ii). Altogether, we get ∂L,Cf(x0) = {τ lx0 : a ≤ τ ≤ b}.
Since lx0 is nonnegative it follows that b lx0 is the maximal element of ∂L,Cf(x0)
and each element of ∂L,Cf(x0) is majorized by this maximal element. We have also

Df(x0) = {h ∈ H : h(x) = τ lx0(x)− τ lx0(x0) : τ ∈ ∂fx0(1)}
= {h ∈ H : h(x) = τ(lx0(x)− 1) : τ ∈ ∂fx0(1)}.

Note that the function lx0 is positively homogeneous. Then for x = λx0, λ > 0 and
τ ∈ [a, b] we have h(λx0) = τλlx0(x0)−τ = τ(λ−1). Thus h(λx0) < 0 for λ < 1 and
h(λx0) > 0 for λ > 1, so h has both positive and negative values. This implies that
every element of Df (x0) is maximal. Indeed, let h ∈ Df(x0) and let h′ ∈ Df(x0) be
an element such that h′ ≥ h. Then there exist τ ∈ ∂fx0(1) and τ ′ ∈ ∂fx0(1) such
that h(x) = τ(lx0(x)−1) and h′(x) = τ ′(lx0(x)−1). In particular h(λx0) = τ(λ−1)
and h′(λx0) = τ ′(λ− 1). The inequality h′(λx0) ≥ h(λx0) is possible for all λ > 0 if
and only if τ = τ ′. Hence h′ = h, so h is a maximal element of Df(x0). Combining
this fact with [16, Proposition 8.4] or Proposition 4.2 for the choice ε = 0 we
conclude that every element h(·) = l(·)− l(x0) ∈ Df(x0) is in correspondence with
the maximal element h′(·) = l(·)− l(x0) + f(x0) ∈ supp(f,H, C).

Theorem 8.5 in [16] establishes conditions under which every maximal element
in the support set can be associated with a maximal element of Df(x0) for some
suitable x0 ∈ Z. We extend this result in the Proposition below.

Proposition 4.3. Let f be H-convex on Z. Assume that (l, c) ∈ supp(f,H, Z) is
a maximal element. Then,

(a) c = f∗(l).
(b) For every ε > 0 there exists x0 ∈ Z and ε̂ ∈ [0, ε) such that ĥ(x) := (l, l(x0))

is a maximal element of Dε̂f(x0). As a consequence, ĥ is a maximal element
of Df(x0).

(c) If there exists x0 ∈ Z such that c = l(x0)− f(x0) then we can take ε̂ = 0 in
(b). (this situation holds, for instance, when ∂Lf : Z ⇒ dom f∗ is onto).
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(d) There exists x0 ∈ Z such that ĥ(x) := (l, l(x0)) is a maximal element of
Dεf(x0) for the choice ε := f(x0) − l(x0) + c. As a consequence, ĥ is a
maximal element of Df(x0).

Proof. (a) Since supp(f,H, Z) = epi f∗ we know that f∗(l) ≤ c. Suppose that for
some b ∈ R we have f∗(l) < b < c. Then (l, b) ∈ epi f∗ = supp(f,H, Z) with (l, b)
strictly greater than (l, c), contradicting the maximality of (l, c). This completes
the proof of (a).

(b) By definition, we have f∗(l) = supx∈Z l(x)−f(x). Hence for every ε > 0, there
exists x0 ∈ Z such that c− ε < l(x0)− f(x0) ≤ c. Call ε̂ := c− l(x0)+ f(x0). So we
have ε̂ ∈ [0, ε). Let us prove now that ĥ = (l, l(x0)) is a maximal element of Dε̂f(x0).
Assume for this that h′ = (l′, l′(x0)) verifies h′ ≥ ĥ on Z with l′ ∈ ∂L,Z,εf(x0). Note
that l ∈ ∂L,Z,εf(x0). Indeed,

l(x)− l(x0) = l(x)− c + c− l(x0) = l(x)− c + ε̂− f(x0)(4.4)

≤ f(x)− f(x0) + ε̂,

where we used the assumption (l, c) ∈ supp(f,H, Z). On the other hand, the
inequality h′ ≥ ĥ on Z can be rewritten as l′(x) − l′(x0) + f(x0) ≥ l(x) − l(x0) +
f(x0) = l(x)− c + ε̂. Combining this with the fact that l′ ∈ ∂L,Z, ε̂f(x0) we get

f(x) + ε̂ ≥ l′(x)− l′(x0) + f(x0) ≥ l(x)− c + ε̂,

which gives
f(x) ≥ l′(x)− l′(x0) + f(x0)− ε̂ ≥ l(x)− c.

So the middle function of the expression above belongs to supp(f,H, Z) and by
maximality of (l, c) we must have l(x) − c = l′(x) − l′(x0) + f(x0) − ε̂. Using now
the definition of ε̂ we can rewrite the last equality as l(x) − l(x0) = l′(x) − l′(x0).
This proves the maximality of ĥ on the set Dε̂f(x0). Since Df(x0) ⊂ Dε̂f(x0) we
have in particular the maximality on Df(x0).

(c) If there exists x0 ∈ Z such that c = l(x0)− f(x0), then by item (a) we must
have f∗(l) = l(x0) − f(x0) ≥ l(x) − f(x) for all x ∈ Z. This yields l ∈ ∂L,Zf(x0)
and ĥ = (l, l(x0)) ∈ Df(x0). The maximality on the set Df(x0) is now established
in a way similar to item (b).

(d) We know that ε = f(x0) − l(x0) + c ≥ 0. If ε = 0, we are in case (c), so we
get the maximality of ĥ on the set Df(x0). If ε > 0, then we have

f(x) ≥ l(x)− c = l(x)− l(x0) + f(x0)− ε,

so we get l ∈ ∂L,Z,εf(x0) and hence (l, l(x0)) ∈ Dεf(x0). Assume l′ ∈ ∂L,Z,εf(x0) is
such that l′(x)−l′(x0) ≥ l(x)−l(x0) for all x ∈ Z. Again we can write l′(x)−l′(x0)+
f(x0) ≥ l(x)− l(x0) + f(x0) = l(x)− c + ε. Call v(x) := l′(x)− l′(x0) + f(x0)− ε.
Since l′ ∈ ∂L,Z,εf(x0) we have

f(x) + ε ≥ l′(x)− l′(x0) + f(x0) ≥ l(x)− c + ε.

So f(x) ≥ v(x) ≥ l(x)− c. Using again the maximality of (l, c) we get

v(x) = l′(x)− l′(x0) + f(x0)− ε = l(x)− c,

which yields l(x) − l(x0) = l′(x) − l′(x0) and therefore the maximality of ĥ is
established. ¤
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Our next corollary re-writes the above proposition for the classical case.

Corollary 4.1. Let f : X → R+∞ be convex and lower semicontinuous and denote
by A the set of affine functions. Fix (l, c) ∈ supp(f,A). The following statements
are equivalent.

(a) (l, c) is maximal in supp(f,A),
(b) f∗(l) = c,
(c) For every ε > 0 there exists xε ∈ Z such that l ∈ ∂Z,εf(xε) and l(·)− l(xε)

is maximal in Dε̂f(xε), where ε̂ := c− l(xε) + f(xε) ≤ ε.
Moreover, the supremum in f∗(l) is attained at some x0 ∈ Z if and only if l ∈
∂Zf(x0). In any case, we always have that l ∈ ∂Z,εf(x0) for ε := f(x0)− l(x0)+c ≥
0.

Proof. Part (a) implies (b) is Proposition 4.3(a). Part (b) implies (a) follows from
the fact that

(4.5) l′(x)− l(x) ≥ c′ − c for all x if and only if l′ = l and c′ = c.

Part (b) implies (c) was proved in Proposition 4.3(b). Part (c) implies (a) again
follows from (4.5). The first part of the last statement follows from Proposition
4.3(c), while the second part follows from Proposition 4.3(d). ¤
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