TWIN POSITIVE SOLUTIONS FOR p-LAPLACIAN NONLINEAR NEUMANN PROBLEMS VIA VARIATIONAL AND DEGREE THEORETICAL METHODS

RAVI P. AGARWAL, MICHAEL E. FILIPPAKIS, DONAL O’REGAN, AND NIKOLAOS S. PAPAGEORGIOU

Abstract

We consider a nonlinear Neumann problem driven by the p-Laplacian and with a nonsmooth potential function (hemivariational inequality). Using a combination of variational and degree theoretic techniques, we show that the problem has two positive smooth solutions. We also show the equivalence of $W_{n}^{1, p}$ and C_{n}^{1} minimizers for a large class of locally Lipschitz functionals.

1. Introduction

Let $Z \subseteq \mathbb{R}^{\mathbb{N}}$ be a bounded domain with a C^{2}-boundary ∂Z. In this paper, we investigate the existence of multiple positive solutions for the nonlinear Neumann problem with a nonsmooth potential (hemivariational inequality):

$$
\left\{\begin{array}{c}
-\operatorname{div}\left(\|D x(z)\|^{p-2} D x(z)\right) \in \partial j(z, x(z)) \text { a.e. on } Z, \tag{1.1}\\
\frac{\partial x}{\partial n}=0 \text { on } \partial Z, \quad 2 \leq p<\infty .
\end{array}\right\}
$$

In this problem the potential function $j(z, x)$ is jointly measurable and $x \rightarrow j(z, x)$ is locally Lipschitz and in general nonsmooth. By $\partial j(z, x)$ we denote the generalized subdifferential of $j(z, \cdot)$ (see Section 2).

Recently there have been some results on the existence of multiple nontrivial solutions for the Neumann problems driven by the p-Laplacian. We mention the works of Binding-Drabek-Huang [5], Ricceri [25], Faraci [12], Anello [4], Wu-Tan [28] for problems with a smooth potential (i.e. $j(z, \cdot) \in C^{1}(\mathbb{R})$) and of Filippakis-GasinskiPapageorgiou [13], Motreanu-Papageorgiou [24] for problems with a nonsmooth potential (i.e. hemivariational inequalities). In the aforementioned works, the multiplicity results are obtained either by assuming certain symmetry structure on the potential function (see for example Anello [4], Ricceri [25], Filippakis-GasinskiPapageorgiou [13]) or by requiring that $N<p$ (low dimensional problems) in which case the Sobolev space is embedded compactly in $C(\bar{Z})$ (see Faraci [12], Wu-Tan [28]). In Motreanu-Papageorgiou [24], the multiplicity result is for problems with a potential which is strictly p-sublinear near infinity and strictly p-superlinear near zero and their approach is variational based on a nonsmooth version of the local linking theorem (see Gasinski-Papageorgiou [15]). None of these multiplicity results provides information about the sign of the solutions. Only Binding-Drabek-Huang [5] examine a particular kind of nonlinear eigenvalue problem and for certain values

[^0]of the parameter, they prove the existence of one or two positive solutions. Here the setting and the method of proof are different from those of Binding-DrabekHuang [5]. Our approach combines variational and degree theoretic arguments. For the degree theoretic methods, we employ the degree map for certain multivalued perturbations of $(S)_{+}$-operators (see Hu-Papageorgiou [17]). This degree map was also used recently by the authors to prove an existence theorem for p Laplacian Neumann hemivariational inequalities with an indefinite Euler functional (see Agarwal-Filippakis-O'Regan-Papageorgiou [1]).

2. Mathematical Background

In this section, for the convenience of the reader, we present some of the basic tools that are used in the analysis of problem (1.1).

Let X be a reflexive Banach space and X^{*} its topological dual. By $\langle\cdot, \cdot\rangle$ we denote the duality brackets for the pair $\left(X, X^{*}\right)$. Given a locally Lipschitz function $\varphi: X \rightarrow \mathbb{R}$, the generalized directional derivative $\varphi^{0}(x ; h)$ of φ at $x \in X$ in the direction h, is defined by

$$
\varphi^{0}(x ; h)=\limsup _{\substack{x_{\lambda}^{\prime} \rightarrow 0 \\ \lambda \downarrow 0}} \frac{\varphi\left(x^{\prime}+\lambda h\right)-\varphi\left(x^{\prime}\right)}{\lambda}
$$

It is easy to check that $\varphi^{0}(x, \cdot)$ is sublinear, continuous and so by the HahnBanach theorem it is the support function of a nonempty, w^{*}-compact and convex set $\partial \varphi(x) \subseteq X^{*}$, defined by

$$
\partial \varphi(x)=\left\{x^{*} \in X^{*}:\left\langle x^{*}, h\right\rangle \leq \varphi^{0}(x ; h) \text { for all } h \in X\right\}
$$

The multifunction $\partial \varphi: X \rightarrow 2^{X^{*} \backslash\{\emptyset\}}$ is called the "generalized subdifferential" of φ. If $\varphi: X \rightarrow \mathbb{R}$ is continuous convex, then it is well-known that φ is locally Lipschitz and the generalized subdifferential coincides with the subdifferential in the sense of convex analysis $\partial_{c} \varphi(x)$, defined by

$$
\partial_{c} \varphi(x)=\left\{x^{*} \in X^{*}:\left\langle x^{*}, h\right\rangle \leq \varphi(x+h)-\varphi(x) \text { for all } h \in X\right\}
$$

Also, if $\varphi \in C^{1}(X)$, then φ is locally Lipschitz and

$$
\partial \varphi(x)=\left\{\varphi^{\prime}(x)\right\}
$$

If $\varphi, \psi: X \rightarrow \mathbb{R}$ are both locally Lipschitz and $\lambda \in \mathbb{R}$, then

$$
\partial(\varphi+\psi)(x) \subseteq \partial \varphi(x)+\partial \psi(x) \text { and } \partial(\lambda \varphi)(x)=\lambda \partial \varphi(x) \text { for all } x \in X
$$

Given a locally Lipschitz function $\varphi: X \rightarrow \mathbb{R}$, a point $x \in X$ is a critical point of φ, if $0 \in \partial \varphi(x)$. It is easy to see that, if $x \in X$ is a local extremum of φ (i.e. a local minimum or a local maximum of φ), then $x \in X$ is a critical point of φ. For further details on these and related issues, we refer to Clarke [11].

If Y, V are Hausdorff topological spaces, a multifunction (set-valued function) $G: Y \rightarrow 2^{V} \backslash\{\emptyset\}$ is said to be upper semicontinuous (usc for short), if for every $C \subseteq V$ closed, the set

$$
G^{-}(C)=\{y \in Y: G(y) \cap C \neq 0\}
$$

is closed in Y. The generalized subdifferential $\partial \varphi: X \rightarrow 2^{X^{*}} \backslash\{\emptyset\}$ is usc from X with the norm topology into X^{*} with the weak topology (denoted by X_{w}^{*}). We say
that the multifunction $G: X \rightarrow 2^{X^{*}}$ belongs in the "class (P) ", if it has nonempty, closed and convex values, it is usc and for every bounded set $B \subseteq X$, we have that

$$
G(B)=\bigcup_{x \in B} G(x)
$$

is relatively compact in X^{*}.
Let $G: D \subseteq X \rightarrow 2^{X^{*}} \backslash\{\emptyset\}$ be an usc multifunction with closed and convex values. By virtue of a result of Cellina [9] (see also Hu-Papageorgiou [18], p.105), for every $\varepsilon>0$, we can find a continuous map $g_{\varepsilon}: D \rightarrow X^{*}$ such that

$$
\begin{aligned}
& \quad g_{\varepsilon}(x) \in G\left(\left(x+B_{\varepsilon}\right) \cap D\right)+B_{\varepsilon}^{*} \text { for all } x \in D \\
& \text { and } g_{\varepsilon}(D) \subseteq \overline{\operatorname{conv}} G(D)
\end{aligned}
$$

where $B_{\varepsilon}=\{x \in X:\|x\|<\varepsilon\}$ and $B_{\varepsilon}^{*}=\left\{x^{*} \in X^{*}:\left\|x^{*}\right\|<\varepsilon\right\}$. Note that, if G belongs in the class (P), then g_{ε} is compact.

Recall that a map $A: X \rightarrow X^{*}$ is said to be of type $(S)_{+}$, if $x_{n} \xrightarrow{w} x$ in X and $\limsup _{n \rightarrow \infty}\left\langle A\left(x_{n}\right), x_{n}-x\right\rangle \leq 0$, imply $x_{n} \rightarrow x$ in X.

From Troyanski's renorming theorem (see for example Gasinski-Papageorgiou [16], p.911), we know that we can equivalently renorm X so that both X and X^{*} are locally uniformly convex with Frechet differentiable norms. So, in what follows, we assume that both spaces X and X^{*} are locally uniformly convex.

Let U be a bounded open set in X and $A: \bar{U} \rightarrow X^{*}$ is a demicontinuous operator of type $(S)_{+}$. Let $\left\{X_{a}\right\}_{a \in J}$ be the collection of all finite dimensional subspaces of X and by A_{a} we denote the Galerkin approximation of A with respect to X_{a}, that is

$$
\left\langle A_{a}(x), y\right\rangle_{X_{a}}=\langle A(x), y\rangle \text { for all } x \in \bar{U} \cap X_{a} \text { and all } y \in X_{a} .
$$

Here by $\langle\cdot, \cdot\rangle_{X_{a}}$ we denote the duality brackets for the pair $\left(X_{a}^{*}, X_{a}\right)$.
If $0 \notin A(\partial U), d_{(S)_{+}}(A, U, 0)$ is defined by

$$
d_{(S)_{+}}(A, U, 0)=d_{B}\left(A, U \cap X_{a}, 0\right)
$$

for X_{a} large enough (in the sense of inclusion). Here d_{B} stands for the classical finite dimensional Brouwer's degree. For details on the degree map $d_{(S)_{+}}$we refer to Browder [7] and Skrypnik [26].

Note that, if $A: \bar{U} \rightarrow X^{*}$ is of type $(S)_{+}$and $g: \bar{U} \rightarrow X^{*}$ is compact, then $A+g: \bar{U} \rightarrow X^{*}$ is still an $(S)_{+}$-map. Suppose $G: \bar{U} \rightarrow 2^{X^{*}} \backslash\{\emptyset\}$ is a (P) multifunction and $0 \notin(A+G)(\partial U)$. Then $\widehat{d}(A+G, U, 0)$, is defined by

$$
\widehat{d}(A+G, U, 0)=d_{(S)_{+}}\left(A+g_{\varepsilon}, U, 0\right)
$$

for $\varepsilon>0$ small, where g_{ε} is a continuous ε-approximate selector of the multifunction G described earlier.

This degree map has all the usual properties such as, normalization, domain additivity, homotopy invariance, excision property and solution property. We need to elaborate further on the normalization and homotopy invariance properties.

Let $\mathcal{F}: X \rightarrow X^{*}$ be the duality map of X, i.e.

$$
\mathcal{F}(x)=\left\{x^{*} \in X^{*}:\left\langle x^{*}, x\right\rangle=\|x\|^{2}=\left\|x^{*}\right\|^{2}\right\}
$$

Since we have assumed that both X and X^{*} are uniformly convex, the duality map \mathcal{F} is a homeomorphism and it is also bounded (i.e. it maps bounded sets to bounded ones), maximal monotone and of type $(S)_{+}$(see Gasinski-Papageorgiou [16], p.316). The normalization property of the degree map \widehat{d}, has the form

$$
\widehat{d}\left(\mathcal{F}, U, x^{*}\right)=d_{(S)_{+}}\left(\mathcal{F}, U, x^{*}\right)=1 \text { provided } x^{*} \in \mathcal{F}(U) .
$$

To formulate the homotopy invariance property, we need to specify the admissible homotopies for the maps A and G.
Definition 2.1. (a) A one-parameter family $\left\{A_{t}\right\}_{t \in[0,1]}$ of maps $A_{t}: \bar{U} \rightarrow X^{*}$ is said to be an " $(S)_{+}$-homotopy", if for any $\left\{x_{n}\right\}_{n \geq 1} \subseteq \bar{U}$ such that $x_{n} \xrightarrow{w} x$ in X and for any $\left\{t_{n}\right\}_{n \geq 1} \subseteq[0,1]$ with $t_{n} \rightarrow t$, for which

$$
\limsup _{n \rightarrow \infty}\left\langle A_{t_{n}}\left(x_{n}\right), x_{n}-x\right\rangle \leq 0,
$$

one has that $x_{n} \rightarrow x$ in X and $A_{t_{n}}\left(x_{n}\right) \xrightarrow{w} A_{t}(x)$ in X^{*}.
(b) A one-parameter family $\left\{G_{t}\right\}_{t \in[0,1]}$ of multifunctions $G_{t}: \bar{U} \rightarrow 2^{X^{*}} \backslash\{\emptyset\}$ is said to be a "homotopy of class (P) ", if $(t, x) \rightarrow G(t, x)$ is usc from $[0,1] \times \bar{U}$ into $2^{X^{*}} \backslash\{\emptyset\}$ with closed convex values and

$$
\bigcup\left\{G_{t}(x): t \in[0,1], x \in \bar{U}\right\} \text { is compact in } X^{*} .
$$

With these as admissible homotopies, the homotopy invariance property for the degree map \widehat{d}, reads as follows:
"If $\left\{A_{t}\right\}_{t \in[0,1]}$ is an $(S)_{+}$-homotopy with A_{t} bounded for every $t \in[0,1],\left\{G_{t}\right\}_{t \in[0,1]}$ is a homotopy of class (P) and $x^{*}:[0,1] \rightarrow X^{*}$ is a continuous map such that $x_{t}^{*} \notin\left(A_{t}+G_{t}\right)(\partial U)$ for all $t \in[0,1]$, then $\widehat{d}\left(A_{t}+G_{t}, U, x_{t}^{*}\right)$ is independent of $t \in[0,1]$ ".

Finally let us recall some basic facts about the spectrum of the negative p Laplacian with Neumann boundary conditions. Let $m \in L^{\infty}(Z)_{+}, m \neq 0$ and consider the following nonlinear weighted (with weight m) eigenvalue problem:

$$
\left\{\begin{array}{c}
-\operatorname{div}\left(\|D x(z)\|^{p-2} D x(z)\right)=\widehat{\lambda} m(z)|x(z)|^{p-2} x(z) \text { a.e. on } Z, \tag{2.1}\\
\frac{\partial x}{\partial n}=0 \text { on } \partial Z, 1<p<\infty, \widehat{\lambda} \in \mathbb{R} .
\end{array}\right\}
$$

A $\hat{\lambda} \in \mathbb{R}$ for which problem (2.1) has a nontrivial solution, is said to be an eigenvalue of $\left(-\triangle_{p}, W^{1, p}(Z), m\right)$ and the nontrivial solution is an eigenfunction corresponding to the eigenvalue $\widehat{\lambda}$. It is easy to see that a necessary condition for $\widehat{\lambda}$ to be an eigenvalue, is that $\widehat{\lambda} \geq 0$. Moreover, zero is an eigenvalue with corresponding eigenspace \mathbb{R} (the space of constant functions). The eigenvalue $\widehat{\lambda}_{0}(m)=0$, is isolated and admits the following variational characterization

$$
\begin{equation*}
0=\widehat{\lambda}_{0}(m)=\inf \left[\frac{\|D x\|_{p}^{p}}{\int_{Z} m|x|^{p} d z}: x \in W^{1, p}(Z), x \neq 0\right] \tag{2.2}
\end{equation*}
$$

Clearly constant functions realize the infimum in (2.2). In addition to $\widehat{\lambda}_{0}(m)=$ 0 , the Lusternik-Schnirelmann theory, gives a whole strictly increasing sequence $\left\{\widehat{\lambda}_{k}=\widehat{\lambda}_{k}(m)\right\}_{k \geq 1} \subseteq \mathbb{R}_{+}$of eigenvalues such that $\widehat{\lambda}_{k} \rightarrow+\infty$ as $k \rightarrow \infty$. These are
the so-called "LS-eigenvalues". If $p=2$ (linear eigenvalue problem), then these are all the eigenvalues. If $p \neq 2$ (nonlinear eigenvalue problem), we do not know if this is the case.

Nevertheless since $\widehat{\lambda}_{0}(m)=0$ is isolated and the set of eigenvalues is closed, we can define

$$
\widehat{\lambda}_{1}^{*}=\inf [\widehat{\lambda}: \widehat{\lambda} \text { is an eigenvalue, } \widehat{\lambda}>0]>0 .
$$

This is the second eigenvalue of $\left(-\triangle_{p}, W^{1, p}(Z), m\right)$ and $\widehat{\lambda}_{1}^{*}=\widehat{\lambda}_{1}$. For details see Le [22] and Gasinski-Papageorgiou [16]. If $m \equiv 1$, we write $\widehat{\lambda}_{k}=\lambda_{k}$ for all $k \geq 0$.

3. Auxiliary Results

It is well-known (see Amann [3]), that if H is a Hilbert space, $\varphi \in C^{1}(H), \nabla \varphi$ is a compact vector field and $x_{0} \in H$ is an isolated local minimizer of φ, then we can find $r>0$ small such that $d_{L S}\left(\nabla \varphi, B_{r}\left(x_{0}\right), 0\right)=1$. Here $d_{L S}$ denotes the Leray-Schauder degree. This result was extended to the \widehat{d}-degree map by Aizicovici-PapageorgiouStaicu [2].

Let X be a reflexive Banach space which is embedded compactly and densely into $L^{p}(Z)$. Then $L^{p^{\prime}}(Z)=L^{p}(Z)^{*}\left(\frac{1}{p}+\frac{1}{p^{\prime}}=1\right)$ is embedded compactly and densely into X^{*}. Suppose that $\theta \in C^{1}(X)$ and $A=\theta^{\prime}: X \rightarrow X^{*}$ is a bounded $(S)_{+}$-map.

Also we consider a function $j_{0}: Z \times \mathbb{R} \rightarrow \mathbb{R}$ satisfying:
$\underline{\left(H_{0}\right)} \quad$ (i) for all $x \in \mathbb{R}, z \rightarrow j_{0}(z, x)$ is measurable;
(ii) for almost all $z \in Z, x \rightarrow j_{0}(z, x)$ is locally Lipschitz;
(iii) for almost all $z \in Z$, all $x \in \mathbb{R}$ and all $u \in \partial j(z, x)$, we have

$$
|u| \leq a(z)+c|x|^{p-1} \text { with } a \in L^{\infty}(Z)_{+}, c>0 .
$$

We define the integral functional $\widehat{J}_{0}: L^{p}(Z) \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\widehat{J}_{0}(x)=\int_{Z} j_{0}(z, x(z)) d z \text { for all } x \in L^{p}(Z) \tag{3.1}
\end{equation*}
$$

Hypotheses $\left(H_{0}\right)$ imply that \widehat{J}_{0} is Lipschitz continuous on bounded sets, hence locally Lipschitz (see Clarke [11], p.83). A fortiori then, $J_{0}=\left.\widehat{J}_{0}\right|_{X}$ is locally Lipschitz too. Moreover, we have

$$
\partial J_{0}(x)=\partial \widehat{J}_{0}(x) \subseteq L^{p^{\prime}}(Z)
$$

and $\partial J_{0}(x)=N_{0}(x)=\left\{u \in L^{p^{\prime}}(Z): u(z) \in \partial j_{0}(z, x(z))\right.$ a.e. on $\left.Z\right\}$ for all $x \in X$ (see Clarke [11], pp. 47 and 83). Exploiting the compact embedding of $L^{p^{\prime}}(Z)$ into X^{*}, we can verify that $x \rightarrow N_{0}(x)$ is a multifunction of type (P). Hence we can define the \widehat{d}-degree of the map $x \rightarrow A(x)+N_{0}(x)$. The next theorem extends the above mentioned result of Amann [3] to the degree map \widehat{d}.

Theorem 3.1. If X is a reflexive Banach space which is embedded compactly and densely in $L^{p}(Z)(1<p<\infty), U \subseteq X$ is a nonempty open set, $\varphi=\theta+J_{0}: X \rightarrow \mathbb{R}$ is locally Lipschitz with $\theta \in C^{1}(X), A=\theta^{\prime}: X \rightarrow X^{*}$ is bounded and of type $(S)_{+}$-type, $J_{0}=\left.\widehat{J}_{0}\right|_{X}$ with \widehat{J}_{0} as in (3.1), $x_{0} \in U, \xi, \mu, r \in \mathbb{R}, \xi<\mu$ and $r>0$ satisfy
(i) $x_{0} \in V=\{\varphi \leq \mu\} \cap U$ and $\{\varphi \leq \mu\} \cap \bar{U}$ is bounded subset of U;
(ii) If $x \in\{\varphi \leq \xi\} \cap U$, then $t x_{0}+(1-t) x \in V$ for all $t \in[0,1]$;
(iii) $0 \notin \partial \varphi(x)$ for all $x \in\{\xi \leq \varphi \leq \mu\} \cap \bar{U}$, then $\widehat{d}(\partial \varphi, V, 0)=\widehat{d}\left(A+N_{0}, V, 0\right)=1$.

In our analysis of problem (1.1) we will use the following two spaces:

$$
\begin{aligned}
& \qquad \begin{aligned}
W_{n}^{1, p}(Z) & =\left\{x \in W^{1, p}(Z): x=\lim _{k \rightarrow \infty} x_{k} \text { in } W^{1, p}(Z),\right. \\
x_{k} & \left.\in C^{\infty}(\bar{Z}), \frac{\partial x_{k}}{\partial n}=0 \text { on } \partial Z\right\} \\
\text { and } C_{n}^{1}(\bar{Z}) & =\left\{x \in C^{1}(\bar{Z}): \frac{\partial x}{\partial n}=0 \text { on } \partial Z\right\} .
\end{aligned} .
\end{aligned}
$$

Both are ordered Banach spaces with order cones given by

$$
\begin{aligned}
W_{+} & =\left\{x \in W_{n}^{1, p}(Z): x(z) \geq 0 \text { a.e. on } Z\right\} \\
\text { and } C_{+} & =\left\{x \in C_{n}^{1}(\bar{Z}): x(z) \geq 0 \text { for all } z \in \bar{Z}\right\} .
\end{aligned}
$$

Note that $\operatorname{int} C_{+} \neq \emptyset$ and in fact

$$
\operatorname{int} C_{+}=\left\{x \in C_{+}: x(z)>0 \text { for all } z \in \bar{Z}\right\}
$$

We introduce the operator $A: W_{n}^{1, p}(Z) \rightarrow W_{n}^{1, p}(Z)^{*}$ defined by

$$
\langle A(x), y\rangle=\int_{Z}\|D x\|^{p-2}(D x, D y)_{\mathbb{R}^{\mathbb{N}}} d z \text { for all } x, y \in W_{n}^{1, p}(Z)
$$

The next three propositions were proved in [1]. For easy reference, we have included the results here.

Proposition 3.2. $A: W_{n}^{1, p}(Z) \rightarrow W_{n}^{1, p}(Z)^{*}$ is bounded demicontinuous monotone and of type $(S)_{+}$.

Remark 3.3. Since A is demicontinuous monotone, it is maximal monotone (see Gasinski-Papageorgiou [16], p.310).

Proposition 3.4. If $m, m^{\prime} \in L^{\infty}(Z)_{+}, m \neq 0$ and $m(z)<m^{\prime}(z)$ for a.a. $z \in Z$, then $\widehat{\lambda}_{1}\left(m^{\prime}\right)<\widehat{\lambda}_{1}(m)$.

Proposition 3.5. If $\theta \in L^{\infty}(Z), \theta(z) \leq 0$ a.e. on Z and $\theta \neq 0$, then there exists $\xi_{0}>0$ such that

$$
\|D x\|_{p}^{p}-\int_{Z} \theta(z)|x(z)|^{p} d z \geq \xi_{0}\|x\|^{p} \text { for all } x \in W^{1, p}(Z)
$$

The next result is of independent interest and is related to earlier results obtained by Brezis-Nirenberg [6], Garcia Azorero-Manfredi-Peral Alonso [14] and KyritsiPapageorgiou [20]. In Brezis-Nirenberg [6] $p=2$ (semilinear case) and in Garcia Azorero-Manfredi-Peral Alonso [14] $p \neq 2$ (nonlinear case). In both works the potential is smooth and the boundary condition is Dirichlet. In Kyritsi-Papageorgiou [20], $p \geq 2$, the potential is nonsmooth and the boundary condition is Dirichlet (see
also Gasinski-Papageorgiou [15], p.655). We introduce the following hypotheses:
$\left(H_{1}\right) \hat{j}: Z \times \mathbb{R} \rightarrow \mathbb{R}$ is a function such that
(i) for all $x \in \mathbb{R}, z \rightarrow \widehat{j}(z, x)$ is measurable;
(ii) for almost all $z \in Z, x \rightarrow \widehat{j}(z, x)$ is locally Lipschitz;
(iii) for almost all $z \in Z$, all $x \in \mathbb{R}$ and all $u \in \partial j(z, x)$, we have

$$
|u| \leq \widehat{a}(z)+\widehat{c}|x|^{r-1},
$$

$$
\text { with } \widehat{a} \in L^{\infty}(Z)_{+}, \widehat{c}>0 \text { and } 1<r<p^{*}=\left\{\begin{array}{ll}
\frac{N p}{N-p} & \text { if } p<N \\
+\infty & \text { if } p \geq N
\end{array} .\right.
$$

We consider the locally Lipschitz functional

$$
\widehat{\varphi}(x)=\frac{1}{p}\|D x\|_{p}^{p}-\int_{Z} \widehat{j}(z, x(z)) d z \text { for all } x \in W_{n}^{1, p}(Z)
$$

Proposition 3.6. If $x_{0} \in W_{n}^{1, p}(Z)$ is a local $C_{n}^{1}(\bar{Z})$-minimizer of $\widehat{\varphi}$, i.e. there exists $r>0$ such that

$$
\widehat{\varphi}\left(x_{0}\right) \leq \widehat{\varphi}\left(x_{0}+h\right) \text { for all } h \in C_{n}^{1}(\bar{Z}),\|h\|_{C_{n}^{1}(\bar{Z})} \leq r,
$$

then $x_{0} \in C_{n}^{1}(\bar{Z})$ and it is a local $W_{n}^{1, p}(Z)$-minimizer of $\hat{\varphi}$, i.e. there exists $r^{\prime}>0$ such that

$$
\widehat{\varphi}\left(x_{0}\right) \leq \widehat{\varphi}\left(x_{0}+h\right) \text { for all } h \in W_{n}^{1, p}(Z),\|h\| \leq r^{\prime} .
$$

Proof. Take $h \in C_{n}^{1}(\bar{Z})$. Then for $\lambda>0$ small, we have

$$
\begin{align*}
& \widehat{\varphi}\left(x_{0}\right) \leq \widehat{\varphi}\left(x_{0}+\lambda h\right) \\
\Rightarrow & 0 \leq \widehat{\varphi}^{0}\left(x_{0} ; h\right) . \tag{3.2}
\end{align*}
$$

Since $C_{n}^{1}(\bar{Z})$ is dense in $W_{n}^{1, p}(Z)$ and $\widehat{\varphi}^{0}\left(x_{0} ; \cdot\right)$ is continuous on $W_{n}^{1, p}(Z)$, from (3.2) we infer that

$$
\begin{align*}
0 & \leq \widehat{\varphi}^{0}\left(x_{0} ; h\right) \text { for all } h \in W_{n}^{1, p}(Z), \\
\Rightarrow 0 & \in \partial \widehat{\varphi}\left(x_{0}\right) . \tag{3.3}
\end{align*}
$$

From (3.3) it follows that

$$
\begin{equation*}
A\left(x_{0}\right)=u_{0}, \tag{3.4}
\end{equation*}
$$

with $u_{0} \in L^{r^{\prime}}(Z)\left(\frac{1}{r}+\frac{1}{r^{\prime}}=1\right), u_{0}(z) \in \partial \widehat{j}\left(z, x_{0}(z)\right)$ a.e. on Z. From the representation theorem for the elements of $W^{-1, p^{\prime}}(Z)=W_{0}^{1, p}(Z)^{*}$ (see for example Gasinski-Papageorgiou [16], p.212), we know that

$$
\begin{equation*}
-\operatorname{div}\left(\left\|D x_{0}\right\|^{p-2} D x_{0}\right) \in W^{-1, p^{\prime}}(Z) \tag{3.5}
\end{equation*}
$$

We act on (3.4) with $v \in C_{c}^{1}(Z)$. Then

$$
\begin{equation*}
\left\langle A\left(x_{0}\right), v\right\rangle=\int_{Z}\left\|D x_{0}\right\|^{p-2}\left(D x_{0}, D v\right)_{\mathbb{R}^{\mathbb{N}}} d z=\int_{Z} u_{0} v d z \tag{3.6}
\end{equation*}
$$

If by $\langle\cdot, \cdot\rangle_{0}$ we denote the duality brackets for the pair $\left(W_{0}^{1, p}(Z), W^{-1, p^{\prime}}(Z)\right)$ $\left(\frac{1}{p}+\frac{1}{p^{\prime}}=1\right)$, then from the definition of the weak (distributional) derivative (3.5) and (3.6), we have

$$
\begin{equation*}
\left\langle-\operatorname{div}\left(\left\|D x_{0}\right\|^{p-2} D x_{0}\right), v\right\rangle_{0}=\int_{Z} u_{0} v d z=\left\langle u_{0}, v\right\rangle . \tag{3.7}
\end{equation*}
$$

Since $v \in C_{c}^{1}(Z)$ is arbitrary and $C_{c}^{1}(Z)$ is dense in $W_{0}^{1, p}(Z)$, from (3.7) we infer that

$$
-\operatorname{div}\left(\left\|D x_{0}(z)\right\|^{p-2} D x_{0}(z)\right)=u_{0}(z) \text { a.e. on } Z .
$$

Moreover, as in [1] (see the proof of Proposition 3.8), using the nonlinear Green's identity (see Kenmochi [19] and Casas-Fernandez [8]), we also obtain

$$
\begin{equation*}
\frac{\partial x_{0}}{\partial n}=0 \text { in } W^{-\frac{1}{p^{\prime}, p^{\prime}}}(\partial Z) . \tag{3.8}
\end{equation*}
$$

Invoking Theorem 7.1 p.286, of Ladyzhenskaya-Uraltseva [21], we have $x_{0} \in$ $L^{\infty}(Z)$ and then Theorem 2 of Lieberman [23] can be used to conclude that $x_{0} \in$ $C_{n}^{1, \beta}(\bar{Z})$ for some $0<\beta<1$. So (3.8) can be interpreted in the pointwise sense. Hence $x_{0} \in C_{n}^{1}(\bar{Z})$.

Now suppose that x_{0} is not a local $W_{n}^{1, p}(Z)$ minimizer of $\widehat{\varphi}$. Because $\widehat{\varphi}$ is weakly lower semicontinuous on $W_{n}^{1, p}(Z)$ and the closed ε-ball $\bar{B}_{\varepsilon}=\left\{h \in W_{n}^{1, p}(Z):\|h\| \leq\right.$ $\varepsilon\}$ is w-compact, by the Weierstrass theorem, for any $\varepsilon>0$ we can find $h_{\varepsilon} \in \bar{B}_{\varepsilon}$ such that

$$
\begin{equation*}
\widehat{\varphi}\left(x_{0}+h_{\varepsilon}\right)=\min \left[\widehat{\varphi}\left(x_{0}+h\right): h \in \bar{B}_{\varepsilon}\right]<\widehat{\varphi}\left(x_{0}\right) . \tag{3.9}
\end{equation*}
$$

Applying the nonsmooth Lagrange multiplier rule of Clarke [10], we can find $\lambda_{\varepsilon}<0$ such that

$$
\lambda_{\varepsilon} \eta_{\varepsilon}^{\prime}\left(h_{\varepsilon}\right) \in \partial \widehat{\varphi}\left(x_{0}+h_{\varepsilon}\right),
$$

where $\eta_{\varepsilon}(h)=\frac{1}{p}\left(\|h\|^{p}-\varepsilon^{p}\right)$ (the constraint function). So

$$
\begin{equation*}
A\left(x_{0}+h_{\varepsilon}\right)-u_{\varepsilon}=\lambda_{\varepsilon} A\left(h_{\varepsilon}\right)+\lambda_{\varepsilon} K_{p}\left(h_{\varepsilon}\right), \tag{3.10}
\end{equation*}
$$

with $u_{\varepsilon} \in L^{r^{\prime}}(Z), u_{\varepsilon}(z) \in \partial \widehat{j}\left(z,\left(x_{0}+h_{\varepsilon}\right)(z)\right)$ a.e. on Z and $K_{p}: L^{p}(Z) \rightarrow L^{p^{\prime}}(Z)$ is the bounded, continuous map defined by $K_{p}(x)(\cdot)=|x(\cdot)|^{p-2} x(\cdot)$ for all $x \in L^{p}(Z)$.

From (3.10) and (3.4), we have

$$
\begin{align*}
A\left(x_{0}+h_{\varepsilon}\right)- & A\left(x_{0}\right)-\lambda_{\varepsilon} A\left(h_{\varepsilon}\right)=u_{\varepsilon}-u_{0}+\lambda_{\varepsilon} K_{p}\left(h_{\varepsilon}\right) \tag{3.11}\\
\Rightarrow & -\triangle_{p}\left(x_{0}+h_{\varepsilon}\right)(z)+\triangle_{p} x_{0}(z)+\lambda_{p} \triangle_{p} h_{\varepsilon}(z) \\
& =u_{\varepsilon}(z)-u_{0}(z)+\lambda_{\varepsilon}\left|h_{\varepsilon}(z)\right|^{p-2} h_{\varepsilon}(z) \text { a.e. on } Z \text { (as before). }
\end{align*}
$$

We introduce the map $H: Z \times \mathbb{R}^{\mathbb{N}} \rightarrow \mathbb{R}^{\mathbb{N}}$ defined by

$$
H(z, \xi)=\left\|D x_{0}(z)+\xi\right\|^{p-2}\left(D x_{0}(z)+\xi\right)-\left\|D x_{0}(z)\right\|^{p-2} D x_{0}(z)-\lambda_{\varepsilon}\|\xi\|^{p-2} \xi .
$$

Clearly $H(z, \xi)$ is a Caratheodory function (i.e. measurable in $z \in Z$ and continuous in $\xi \in \mathbb{R}^{\mathbb{N}}$) and it has a ($p-1$)-polynomial growth in $\xi \in \mathbb{R}^{\mathbb{N}}$. We rewrite (3.11) as

$$
\begin{equation*}
-\operatorname{div} H\left(z, D h_{\varepsilon}(z)\right)=u_{\varepsilon}(z)-u_{0}(z)+\lambda_{\varepsilon}\left|h_{\varepsilon}(z)\right|^{p-2} h_{\varepsilon}(z) \text { a.e. on } Z . \tag{3.12}
\end{equation*}
$$

As before, using the nonlinear Green's identity and (3.10), (3.12), we obtain

$$
\frac{\partial h_{\varepsilon}}{\partial n}(z)=0 \text { for all } z \in \partial Z
$$

Since $p \geq 2$ and $\lambda_{\varepsilon} \leq 0$

$$
\begin{equation*}
(H(z, \xi), \xi)_{\mathbb{R}^{\mathbb{N}}} \geq c_{1}\|\xi\|^{p} \text { for a.a. } z \in Z, \text { all } \xi \in \mathbb{R}^{\mathbb{N}} \text { and some } c_{1}>0 \tag{3.13}
\end{equation*}
$$

Then because of (3.12), (3.13), Theorem 7.1 p. 286 of Ladyzhenskaya-Uraltseva [21] and Theorem 2 of Lieberman [23], we can find $\beta_{0} \in(0,1)$ and $M_{0}>0$, both independent of $\varepsilon \in(0,1]$ and λ_{ε} such that

$$
h_{\varepsilon} \in C_{n}^{1, \beta_{0}}(\bar{Z}) \text { and }\left\|h_{\varepsilon}\right\|_{C_{n}^{1, \beta_{0}}(\bar{Z})} \leq M_{0} \text { for all } \varepsilon \in(0,1]
$$

Let $\varepsilon \downarrow 0$ and set $h_{n}=h_{\varepsilon_{n}}$. Recalling that $C_{n}^{1, \beta_{0}}(\bar{Z})$ is embedded compactly in $C_{n}^{1}(\bar{Z})$, we may assume that

$$
h_{n} \rightarrow \widehat{h} \text { in } C_{n}^{1}(\bar{Z}) \text { as } n \rightarrow \infty
$$

On the other hand

$$
h_{n} \rightarrow 0 \text { in } C_{n}^{1}(\bar{Z}) \text { as } n \rightarrow \infty
$$

So $\widehat{h}=0$. Then for $n \geq 1$ large, we have

$$
\begin{aligned}
&\left\|h_{n}\right\|_{C_{n}^{1}(\bar{Z})} \leq r \\
& \Rightarrow \widehat{\varphi}\left(x_{0}\right) \leq \widehat{\varphi}\left(x_{0}+h_{n}\right)
\end{aligned}
$$

which contradicts (3.9). This completes the proof of the proposition

4. Multiple Positive Solutions

The hypotheses on the nonsmooth potential function $j(z, x)$ are the following:
$\underline{(H j)} j: Z \times \mathbb{R} \rightarrow \mathbb{R}$ is a function such that $j(z, 0)=0, \partial j(z, 0) \subseteq \mathbb{R}_{+}$a.e. on Z and
(i) for all $x \in \mathbb{R}, z \rightarrow j(z, x)$ is measurable;
(ii) for almost all $z \in Z$, all $x \rightarrow j(z, x)$ is locally Lipschitz;
(iii) for every $r>0$, there exists $a_{r} \in L^{\infty}(Z)_{+}$such that for a.a. $z \in Z$, all $|x| \leq r$ and all $u \in \partial j(z, x)$, we have $|u| \leq a_{r}(z)$;
(iv) there exists $\theta \in L^{\infty}(Z), \theta(z) \leq 0$ a.e. on $Z, \theta \neq 0$ such that

$$
\limsup _{x \rightarrow+\infty} \frac{u}{x^{p-1}} \leq \theta(z)
$$

uniformly for a.a. $z \in Z$, all $u \in \partial j(z, x)$;
(v) there exist functions $\eta_{1}, \eta_{2} \in L^{\infty}(Z)_{+}$such that $\eta_{1} \neq 0, \eta_{1}(z) \leq$ $\eta_{2}(z)<\lambda_{1}$ a.e. on Z

$$
\eta_{1}(z) \leq \liminf _{x \rightarrow 0^{+}} \frac{u}{x^{p-1}} \leq \limsup _{x \rightarrow 0^{+}} \frac{u}{x^{p-1}} \leq \eta_{2}(z)
$$

uniformly for a.a. $z \in Z$ and all $u \in \partial j(z, x)$;
(vi) there exist $\bar{v}, \bar{M}, \bar{c}>0$ such that

$$
\begin{aligned}
& \int_{Z} j(z, \bar{v}) d z>0 \\
& \partial j(z, x) \subseteq \mathbb{R}_{+} \text {for a.a. } z \in Z, \text { all } x \geq \bar{M}
\end{aligned}
$$

$$
\text { and }-\bar{c} x^{p-1} \leq u \text { for a.a. } z \in Z \text {, all } x \geq 0 \text { and all } u \in \partial j(z, x) .
$$

Remark 4.1. Note that hypotheses $H(j)(i v),(v),(v i)$ all concern $j(z, x)$ for $x \geq 0$, so we may as well assume without any loss of generality that $j(z, x)=0$ for a.a. $z \in Z$, all $x \leq 0$. Evidently hypotheses $H(j)(i v)$ and (v) are nonresonance conditions at $+\infty$ and at 0^{+}with respect to the first two eigenvalues $\lambda_{0}=0<\lambda_{1}$. More precisely, near $+\infty$ we allow partial interaction (nonuniform nonresonance) with $\lambda_{0}=0$ from the left, of the generalized slopes $\left\{\frac{u}{x^{p-1}}: u \in \partial j(z, x)\right\}$, while near 0^{+}, the generalized slopes remain in the spectral $\left[\lambda_{0}=0, \lambda_{1}\right]$, allowing partial interaction (nonuniform nonresonance) with $\lambda_{0}=0$, while we avoid completely $\lambda_{1}>0$ (uniform nonresonance). Note that as the variable $x \in \mathbb{R}_{+}$moves from 0^{+}to $+\infty$, the generalized slopes cross the principal eigenvalue (crossing nonlinearity).

In what follows $A: W_{n}^{1, p}(Z) \rightarrow W_{n}^{1, p}(Z)^{*}$ is the nonlinear, maximal monotone, $(S)_{+}$-operator introduced in Section 3 and $N: W_{n}^{1, p}(Z) \rightarrow 2^{L^{p^{\prime}}(Z)} \backslash\{\emptyset\}$ is the multifunction defined by

$$
N(x)=\left\{u \in L^{p^{\prime}}(Z): u(z) \in \partial j(z, x(z)) \text { a.e. on } Z\right\} .
$$

As in [1] (see Proposition 3.2 and Corollary 3.3), we can prove the following result.
Proposition 4.2. If hypotheses $H(j)(i),(i i),(i i i)$ hold, then $N: W_{n}^{1, p}(Z) \rightarrow$ $2^{W_{n}^{1, p}(Z)^{*}} \backslash\{\emptyset\}$ is a multifunction of type (P).

Also let $\varphi: W_{n}^{1, p}(Z) \rightarrow \mathbb{R}$ be the Euler functional for problem (1.1) defined by

$$
\varphi(x)=\frac{1}{p}\|D x\|_{p}^{p}-\int_{Z} j(z, x(z)) d z \text { for all } x \in W_{n}^{1, p}(Z) .
$$

We know that φ is locally Lipschitz.
In the next proposition, using a variational argument, we establish the existence of a positive solution for problem (1.1).
Proposition 4.3. If hypotheses $H(j)$ hold, then problem (1.1) has a solution $x_{0} \in$ $\operatorname{int} C_{+}$which is a local minimizer of φ.
Proof. By virtue of hypothesis $H(j)(i v)$, given $\varepsilon>0$, we can find $M_{1}=M_{1}(\varepsilon)>0$ such that for almost all $z \in Z$, all $x \geq M_{1}$ and all $u \in \partial j(z, x)$, we have

$$
\begin{equation*}
u \leq(\theta(z)+\varepsilon) x^{p-1} . \tag{4.1}
\end{equation*}
$$

Also because of hypothesis $H(j)(i i i)$ and since $j(z, x)=0$ for a.a. $z \in Z$ and all $x \leq 0$, we have

$$
\begin{equation*}
|u| \leq a_{M_{1}}(z) \text { for a.a. } z \in Z, \text { all } x \leq M_{1} \text { and all } u \in \partial j(z, x) . \tag{4.2}
\end{equation*}
$$

From (4.1) and (4.2), we see that, if $x^{+}=\max \{x, 0\}$, then

$$
\begin{equation*}
u \leq(\theta(z)+\varepsilon)\left(x^{+}\right)^{p-1}+\widehat{a}_{\varepsilon}(z) \text { for a.a. } z \in Z, \text { all } x \in \mathbb{R}, \text { all } u \in \partial j(z, x) \tag{4.3}
\end{equation*}
$$

and with $\widehat{a}_{\varepsilon} \in L^{\infty}(Z)_{+}$. Let $N_{0} \subseteq Z$ be the Lebesgue-null set such that for all $z \in Z \backslash N_{0}$, the function $x \rightarrow j(z, x)$ is locally Lipschitz (see hypothesis $\left.H(j)(i i)\right)$. By Rademacher's theorem $x \rightarrow j(z, x)$ is differentiable almost everywhere on \mathbb{R}. Moreover, if $z \in Z \backslash N_{0}$ and $r \in \mathbb{R}$ is a point of differentiability of $j(z, \cdot)$, we have

$$
\frac{d}{d r} j(z, r) \in \partial j(z, r) \text { (see Clarke [11],p.32). }
$$

Integrating over $[0, x], x>0$ and using (4.3), we obtain

$$
\begin{equation*}
j(z, x) \leq \frac{1}{p}(\theta(z)+\varepsilon)\left(x^{+}\right)^{p}+a_{\varepsilon}(z) x^{+} \text {for all } z \in Z \backslash N_{0}, \text { all } x \in \mathbb{R} \tag{4.4}
\end{equation*}
$$

Let $x \in W_{+}$. Then

$$
\begin{align*}
\varphi(x) & =\frac{1}{p}\|D x\|_{p}^{p}-\int_{Z} j(z, x(z)) d z \tag{4.5}\\
& \geq \frac{1}{p}\|D x\|_{p}^{p}-\frac{1}{p} \int_{Z} \theta|x|^{p} d z-\frac{\varepsilon}{p}\|x\|_{p}^{p}-c_{2}\|x\|
\end{align*}
$$

for some $c_{2}>0($ see (4.4))

$$
\geq \frac{\xi_{0}-\varepsilon}{p}\|x\|^{p}-c_{2}\|x\|
$$

We choose $0<\varepsilon<\xi_{0}$. Then from (4.5) it follows that $\left.\varphi\right|_{W_{+}}$is coercive. In addition, we can easily check that φ is weakly lower semicontinuous. So by virtue of the Weierstrass theorem, we can find $x_{0} \in W_{+}$such that

$$
-\infty<m_{+}=\inf _{W_{+}} \varphi=\varphi\left(x_{0}\right)
$$

Let $\bar{c}>0$ be as in hypothesis $H(j)(v i)$. Then

$$
\begin{gather*}
\varphi(\bar{c})=-\int_{Z} j(z, \bar{c}) d z<0 \tag{4.6}\\
\Rightarrow m_{+}=\varphi\left(x_{0}\right)<0, \text { i.e. } x_{0} \neq 0 \tag{4.7}
\end{gather*}
$$

Also from the optimality condition of Clarke [11], we have

$$
\begin{equation*}
0 \in \partial \varphi_{+}\left(x_{0}\right)+N_{W_{+}}\left(x_{0}\right) \tag{4.8}
\end{equation*}
$$

where $N_{W_{+}}\left(x_{0}\right)$ is the normal cone to W_{+}at x_{0}. Recall that

$$
\begin{equation*}
N_{W_{+}}\left(x_{0}\right)=\left\{x^{*} \in W_{n}^{1, p}(Z)^{*}:\left\langle x^{*}, w-x_{0}\right\rangle \leq 0 \text { for all } w \in W_{+}\right\} \tag{4.9}
\end{equation*}
$$

From (4.8), we see that we can find $x^{*} \in \partial \varphi\left(x_{0}\right)$ such that

$$
-x^{*} \in N_{W_{+}}\left(x_{0}\right)
$$

We know that $x^{*}=A\left(x_{0}\right)-u_{0}$ with $u_{0} \in N\left(x_{0}\right)$ and so

$$
\begin{align*}
& -A\left(x_{0}\right)+u_{0} \in N_{W_{+}}\left(x_{0}\right) \\
\Rightarrow & 0 \leq\left\langle A\left(x_{0}\right)-u_{0}, w-x_{0}\right\rangle \text { for all } w \in W_{+}(\text {see }(4.9)) \tag{4.10}
\end{align*}
$$

Fix $\varepsilon>0$ and $v \in W_{n}^{1, p}(Z)$, otherwise arbitrary and let

$$
w=\left(x_{0}+\varepsilon v\right)^{+}=\left(x_{0}+\varepsilon v\right)+\left(x_{0}+\varepsilon v\right)^{-} \in W_{+} .
$$

Using this as a test function in (4.10), we obtain

$$
\begin{align*}
& 0 \leq\left\langle A\left(x_{0}\right)-u_{0}, \varepsilon v+\left(x_{0}+\varepsilon v\right)^{-}\right\rangle \\
\Rightarrow & -\left\langle A\left(x_{0}\right)-u_{0},\left(x_{0}+\varepsilon v\right)^{-}\right\rangle \leq \varepsilon\left\langle A\left(x_{0}\right)-u_{0}, v\right\rangle \tag{4.11}
\end{align*}
$$

We set $Z_{\varepsilon}^{-}=\left\{z \in Z:\left(x_{0}+\varepsilon v\right)(z)<0\right\}$. We know that

$$
D\left(x_{0}+\varepsilon v\right)^{-}(z)=\left\{\begin{array}{ll}
-D\left(x_{0}+\varepsilon v\right)(z) & \text { for a.a. } z \in Z_{\varepsilon}^{-} \tag{4.12}\\
0 & \text { for a.a. } z \in Z \backslash Z_{\varepsilon}^{-}
\end{array} .\right.
$$

Then

$$
\begin{align*}
-\left\langle A\left(x_{0}\right)\right. & \left.,\left(x_{0}+\varepsilon v\right)^{-}\right\rangle+\int_{Z} u_{0}\left(x_{0}+\varepsilon v\right)^{-} d z \tag{4.13}\\
& =-\int_{Z}\left\|D x_{0}\right\|^{p-2}\left(D x_{0}, D\left(x_{0}+\varepsilon v\right)^{-}\right)_{\mathbb{R}^{\mathbb{N}}} d z+\int_{Z} u_{0}\left(x_{0}+\varepsilon v\right)^{-} d z
\end{align*}
$$

Using (4.12), we have

$$
\begin{align*}
& -\int_{Z}\left\|D x_{0}\right\|^{p-2}\left(D x_{0}, D\left(x_{0}+\varepsilon v\right)^{-}\right)_{\mathbb{R}^{\mathbb{N}}} d z \tag{4.14}\\
& =\int_{Z_{\varepsilon}^{-}}\left\|D x_{0}\right\|^{p-2}\left(D x_{0}, D\left(x_{0}+\varepsilon v\right)\right)_{\mathbb{R}^{\mathbb{N}}} d z \\
& \geq \varepsilon \int_{Z_{\varepsilon}^{-}}\left\|D x_{0}\right\|^{p-2}\left(D x_{0}, D v\right)_{\mathbb{R}^{\mathbb{N}}} d z
\end{align*}
$$

Moreover,

$$
\begin{align*}
& \int_{Z} u_{0}\left(x_{0}+\varepsilon v\right)^{-} d z=-\int_{Z_{\varepsilon}^{-}} u_{0}\left(x_{0}+\varepsilon v\right) d z \tag{4.15}\\
&=-\int_{Z_{\varepsilon}^{-} \cap\left\{x_{0}=0\right\}} u_{0} \varepsilon v d z-\int_{Z_{\varepsilon}^{-} \cap\left\{x_{0}>0\right\}} u_{0}\left(x_{0}+\varepsilon v\right) d z \\
&\text { (recall } \left.x_{0} \in W_{+}\right) .
\end{align*}
$$

Recalling the definition of the set Z_{ε}^{-}, we see that $v(z)<0$ a.e. on $Z_{\varepsilon}^{-} \cap\left\{x_{0}=0\right\}$. Also by hypothesis $\partial j(z, 0) \subseteq \mathbb{R}_{+}$for a.a. $z \in Z$. Therefore $u_{0}(z) \geq 0$ a.e. on $Z_{\varepsilon}^{-} \cap\left\{x_{0}=0\right\}$. It follows then that

$$
\begin{equation*}
-\int_{Z_{\varepsilon}^{-} \cap\left\{x_{0}=0\right\}} u_{0} \varepsilon v_{0} d z \geq 0 \tag{4.16}
\end{equation*}
$$

Also

$$
\begin{align*}
& -\int_{Z_{\varepsilon}^{-} \cap\left\{x_{0}>0\right\}} u_{0}\left(x_{0}+\varepsilon v\right) d z \tag{4.17}\\
& =-\int_{Z_{\varepsilon}^{-} \cap\left\{0<x_{0}<\bar{M}\right\}} u_{0}\left(x_{0}+\varepsilon v\right) d z-\int_{Z_{\varepsilon}^{-} \cap\left\{x_{0} \geq \bar{M}\right\}} u_{0}\left(x_{0}+\varepsilon v\right) d z \\
& \left.\geq-\int_{Z_{\varepsilon}^{-} \cap\left\{0<x_{0}<\bar{M}\right\}} u_{0}\left(x_{0}+\varepsilon v\right) d z \text { (see hypothesis } H(j)(v i)\right) \\
& \left.\geq \int_{Z_{\varepsilon}^{-} \cap\left\{0<x_{0}<\bar{M}\right\}} a \bar{M}(z)\left(x_{0}+\varepsilon v\right) d z \text { (see hypothesis } H(j)(i i i)\right)
\end{align*}
$$

$$
\geq \varepsilon \int_{Z_{\varepsilon}^{-} \cap\left\{0<x_{0}<\bar{M}\right\}} a_{\bar{M}} v d z .
$$

We use (4.16) and (4.17) in (4.15). Then

$$
\begin{equation*}
\int_{Z} u_{0}\left(x_{0}+\varepsilon v\right)^{-} d z \geq \varepsilon \int_{Z_{\varepsilon}^{-} \cap\left\{0<x_{0}<\bar{M}\right\}} a_{M_{0}} v d z \tag{4.18}
\end{equation*}
$$

We return to (4.13) and we use (4.14) and (4.18). We obtain

$$
\begin{align*}
& -\left\langle A\left(x_{0}\right),\left(x_{0}+\varepsilon v\right)^{-}\right\rangle+\int_{Z} u_{0}\left(x_{0}+\varepsilon v\right)^{-} d z \\
& \quad \geq \varepsilon \int_{Z_{\varepsilon}^{-}}\left\|D x_{0}\right\|^{p-2}\left(D x_{0}, D v\right)_{\mathbb{R}^{\mathbb{N}}} d z+\varepsilon \int_{Z_{\varepsilon}^{-} \cap\left\{0<x_{0}<\bar{M}\right\}} a_{M_{0}} v d z \\
& \quad \Rightarrow\left\langle A\left(x_{0}\right)-u_{0}, v\right\rangle \geq \int_{Z_{\varepsilon}^{-}}\left\|D x_{0}\right\|^{p-2}\left(D x_{0}, D v\right)_{\mathbb{R}^{\mathbb{N}}} d z+\int_{Z_{\varepsilon}^{-} \cap\left\{0<x_{0}<\bar{M}\right\}} a_{M_{0}} v d z \tag{4.11}
\end{align*}
$$

From Stampacchia's theorem (see for example Gasinksi-Papageorgiou [16], pp. 195-196), we know that

$$
D x_{0}(z)=0 \text { a.e. on }\left\{x_{0}=0\right\} .
$$

Hence

$$
\begin{align*}
\left\langle A\left(x_{0}\right)-\right. & \left.u_{0}, v\right\rangle \tag{4.19}\\
& \geq \int_{Z_{\varepsilon}^{-} \cap\left\{0<x_{0}\right\}}\left\|D x_{0}\right\|^{p-2}\left(D x_{0}, D v\right)_{\mathbb{R}^{\mathbb{N}}} d z+\int_{Z_{\varepsilon}^{-} \cap\left\{0<x_{0}<\bar{M}\right\}} a_{M} v d z .
\end{align*}
$$

Note that, if by $|\cdot|_{N}$ we denote the Lebesgue measure on $\mathbb{R}^{\mathbb{N}}$, then

$$
\left|Z_{\varepsilon}^{-} \cap\left\{0<x_{0}<\bar{M}\right\}\right|_{N} \leq\left|Z_{\varepsilon}^{-} \cap\left\{0<x_{0}\right\}\right|_{N} \rightarrow 0 \text { as } \varepsilon \downarrow 0 .
$$

So, if in (4.19) we pass to the limit as $\varepsilon \downarrow 0$, then

$$
\left\langle A\left(x_{0}\right)-u_{0}, v\right\rangle \geq 0
$$

Recall that $v \in W_{n}^{1, p}(Z)$ was arbitrary. It follows that

$$
\begin{equation*}
A\left(x_{0}\right)=u_{0}, \quad u_{0} \in N\left(x_{0}\right) \tag{4.20}
\end{equation*}
$$

Then as in [1] using the nonlinear Green's identity, from (4.20) we obtain
(4.21) $\quad-\operatorname{div}\left(\left\|D x_{0}(z)\right\|^{p-2} D x_{0}(z)\right)=u_{0}(z)$ a.e. on $Z, \quad \frac{\partial x_{0}}{\partial n}=0$ on ∂Z.

As before nonlinear regularity theory implies that $x_{0} \in C_{+}$. From (4.21) and hypothesis $H(j)(v i)$, we have

$$
\operatorname{div}\left(\left\|D x_{0}(z)\right\|^{p-2} D x_{0}(z)\right) \leq \bar{c} x_{0}(z)^{p-1} \text { a.e. on } Z .
$$

Invoking the nonlinear strong maximum principle of Vazquez [27], we infer that $x_{0} \in \operatorname{int} C_{+}$. So $x_{0} \in \operatorname{int} C_{+}$is a local $C_{n}^{1}(\bar{Z})$-minimizer of φ. By Proposition 3.6 it is also a local $W_{n}^{1, p}(Z)$-minimizer of φ.

Let $\varepsilon \in(0,1)$ and consider the functional $\varphi_{\varepsilon}: W_{n}^{1, p}(Z) \rightarrow \mathbb{R}$ defined by

$$
\varphi_{\varepsilon}(x)=\frac{1}{p}\|D x\|_{p}^{p}+\frac{\varepsilon}{p}\|x\|_{p}^{p}-\int_{Z} j(z, x(z)) d z-\frac{\varepsilon}{p}\left\|x^{+}\right\|_{p}^{p}
$$

for all $x \in W_{n}^{1, p}(Z)$.
Recall that $x^{+}=\max \{x, 0\} \in W_{n}^{1, p}(Z)$. Since $x_{0} \in \operatorname{int} C_{+}$, we can find $r_{1}>0$ such that

$$
\left.\varphi_{\varepsilon}\right|_{B_{r_{1}}^{C 1}(\bar{Z})\left(x_{0}\right)}=\left.\varphi\right|_{B_{r_{1}}^{C_{1}^{1}(\bar{Z})}{ }_{\left(x_{0}\right)},}
$$

where $B_{r_{1}}^{C_{n}^{1}(\bar{Z})}\left(x_{0}\right)=\left\{x \in C_{n}^{1}(\bar{Z}):\left\|x-x_{0}\right\|_{C_{n}^{1}(\bar{Z})}<r_{1}\right\}$. This means that
x_{0} is a local $C_{n}^{1}(\bar{Z})$-minimizer of φ_{ε} (see Proposition 4.2), $\Rightarrow x_{0}$ is a local $W_{n}^{1, p}(Z)$-minimizer of φ_{ε} (see Proposition 3.6), $\Rightarrow 0 \in \partial \varphi_{\varepsilon}\left(x_{0}\right)$.
Without loss of generality, we may assume that x_{0} is an isolated local minimizer (and critical point) of the functional φ_{ε}. Indeed, if this is not the case, we can find $\left\{x_{n}\right\}_{n \geq 1} \subseteq W_{n}^{1, p}(Z)$ distinct from x_{0} such that

$$
\begin{equation*}
0 \in \partial \varphi_{\varepsilon}\left(x_{n}\right) \text { for all } n \geq 1 \text { and } x_{n} \rightarrow x_{0} \text { in } W_{n}^{1, p}(Z) \text { as } n \rightarrow \infty . \tag{4.22}
\end{equation*}
$$

Let $K_{p}, K_{p}^{+}: L^{p}(Z) \rightarrow L^{p^{\prime}}(Z)$ be the bounded continuous maps defined by

$$
K_{p}(x)(\cdot)=|x(\cdot)|^{p-2} x(\cdot) \text { and } K_{p}^{+}(x)(\cdot)=\left(x^{+}(\cdot)\right)^{p-1} .
$$

Then from the inclusion in (4.22)

$$
\begin{equation*}
A\left(x_{n}\right)+\varepsilon K_{p}\left(x_{n}\right)=u_{n}+\varepsilon K_{p}^{+}\left(x_{n}\right) \text { with } u_{n} \in N\left(x_{n}\right), \quad n \geq 1 . \tag{4.23}
\end{equation*}
$$

On (4.23) we act with the test function $-x_{n}^{-} \in W_{n}^{1, p}(Z)$ and obtain

$$
\begin{aligned}
& \left\|D x_{n}^{-}\right\|_{p}^{p}+\varepsilon\left\|x_{n}^{-}\right\|_{p}^{p}=0 \\
\Rightarrow & \varepsilon\left\|x_{n}^{-}\right\|^{p}=0, \text { i.e. } x_{n} \geq 0 \text { for all } n \geq 1 .
\end{aligned}
$$

So (4.23) becomes

$$
A\left(x_{n}\right)=u_{n}, \quad n \geq 1 .
$$

From this as in the proof of Proposition 4.2, we infer that $x_{n} \in \operatorname{int} C_{+}, n \geq 1$. So

$$
\varphi_{\varepsilon}\left(x_{n}\right)=\varphi\left(x_{n}\right) \text { and } \partial \varphi_{\varepsilon}\left(x_{n}\right)=\partial \varphi\left(x_{n}\right) \text { for all } n \geq 1,
$$

$\Rightarrow\left\{x_{n}\right\}_{n \geq 1}$ is a sequence of nontrivial distinct critical points of φ,
$\Rightarrow\left\{x_{n}\right\}_{n \geq 1}$ is a sequence of distinct positive solutions of (1.1) and so we are done.
Therefore, without any loss of generality, we may assume that $x_{0} \in \operatorname{int} C_{+}$is an isolated local minimizer (and critical point) of φ_{ε}.

We know that

$$
\partial \varphi_{\varepsilon}(x)=A(x)+\varepsilon K_{p}(x)-N(x)-\varepsilon K_{p}^{+}(x) .
$$

Note that due to the compact embedding of $W_{0}^{1, p}(Z)$ into $L^{p}(Z)$, we see that $\left.K_{p}\right|_{W_{0}^{1, p}(Z)}$ and $\left.K_{p}^{+}\right|_{W_{0}^{1, p}(Z)}$ are both completely continuous (hence compact too, see Gasinski-Papageorgiou [16], p.268) and so $x \rightarrow A(x)+\varepsilon K_{p}(x)-\varepsilon K_{p}^{+}$is an
$(S)_{+}$-map. From Proposition 4.2 , we know that N is a multifunction of type (P). Therefore we can speak about the \widehat{d}-degree of $\partial \varphi_{\varepsilon}$.

Proposition 4.4. If hypotheses $H(j)$ hold and $x_{0} \in \operatorname{int} C_{+}$is as in Proposition 4.3, then we can find $r>0$ such that

$$
\widehat{d}\left(\partial \varphi_{\varepsilon}, B_{r}\left(x_{0}\right), 0\right)=1
$$

Proof. As we already noted above, we may assume that $x_{0} \in \operatorname{int} C_{+}$is an isolated local minimizer (and critical point) of φ_{ε}. Therefore there exists $r_{0}>0$ such that

$$
\begin{equation*}
\varphi_{\varepsilon}\left(x_{0}\right)<\varphi_{\varepsilon}(y) \text { and } 0 \notin \partial \varphi_{\varepsilon}(y) \text { for all } y \in \bar{B}_{r_{0}}\left(x_{0}\right) \backslash\left\{y_{0}\right\} \tag{4.24}
\end{equation*}
$$

where $\bar{B}_{r_{0}}\left(x_{0}\right)=\left\{x \in W_{n}^{1, p}(Z):\left\|x-x_{0}\right\| \leq r_{0}\right\}$.
Claim. For all $0<r<r_{0}$, we have

$$
\begin{equation*}
\inf \left[\varphi_{\varepsilon}(x): x \in \bar{B}_{r_{0}}\left(x_{0}\right) \backslash B_{r}\left(x_{0}\right)\right]>\varphi_{\varepsilon}\left(x_{0}\right) \tag{4.25}
\end{equation*}
$$

Suppose that the Claim is not true. Then there exists $r \in\left(0, r_{0}\right)$ and a sequence $\left\{x_{n}\right\}_{n \geq 1} \subseteq \bar{B}_{r_{0}}\left(x_{0}\right) \backslash B_{r}\left(x_{0}\right)$ such that

$$
\begin{equation*}
\varphi_{\varepsilon}\left(x_{n}\right) \downarrow \varphi_{\varepsilon}\left(x_{0}\right) \text { as } n \rightarrow \infty \tag{4.26}
\end{equation*}
$$

Clearly $\left\{x_{n}\right\}_{n \geq 1} \subseteq W_{n}^{1, p}(Z)$ is bounded. So we may assume that

$$
x_{n} \xrightarrow{w} y \text { in } W_{n}^{1, p}(Z), x_{n} \rightarrow y \text { in } L^{p}(Z), x_{n}(z) \rightarrow y(z) \text { a.e. on } Z,
$$ and $\left|x_{n}(z)\right| \leq k(z)$ for a.a. $z \in Z$, all $n \geq 1$, with $k \in L^{p}(Z)_{+}$.

The functional φ_{ε} is weakly lower semicontinuous. Hence

$$
\varphi_{\varepsilon}(y) \leq \lim _{n \rightarrow \infty} \varphi_{\varepsilon}\left(x_{n}\right)=\varphi_{\varepsilon}\left(x_{0}\right)(\operatorname{see}(4.26))
$$

Since $y \in \bar{B}_{r}\left(x_{0}\right)$, from (4.24) we infer that $y=x_{0}$.
Using the nonsmooth mean value theorem (see Clarke [11], p.41), we can find

$$
w_{n}^{*} \in \partial \varphi_{\varepsilon}\left(t_{n} x_{n}+\left(1-t_{n}\right) \frac{x_{n}+x_{0}}{2}\right), \quad t_{n} \in(0,1) n \geq 1
$$

such that

$$
\varphi_{\varepsilon}\left(x_{n}\right)-\varphi_{\varepsilon}\left(\frac{x_{n}+x_{0}}{2}\right)=\left\langle w_{n}^{*}, \frac{x_{n}-x_{0}}{2}\right\rangle n \geq 1
$$

We know that

$$
\begin{aligned}
& w_{n}^{*}=A\left(t_{n} x_{n}+\left(1-t_{n}\right) \frac{x_{n}+x_{0}}{2}\right)+\varepsilon K_{p}\left(t_{n} x_{n}+\left(1-t_{n}\right) \frac{x_{n}+x_{0}}{2}\right)-u_{n} \\
& \quad-\varepsilon K_{p}^{+}\left(t_{n} x_{n}+\left(1-t_{n}\right) \frac{x_{n}+x_{0}}{2}\right) \\
& \text { with } u_{n} \in N\left(t_{n} x_{n}+\left(1-t_{n}\right) \frac{x_{n}+x_{0}}{2}\right) .
\end{aligned}
$$

Therefore

$$
\begin{align*}
& \varphi_{\varepsilon}\left(x_{n}\right)-\varphi_{\varepsilon}\left(\frac{x_{n}+x_{0}}{2}\right)=\frac{1}{2}\left\langle A\left(t_{n} x_{n}+\left(1-t_{n}\right) \frac{x_{n}+x_{0}}{2}\right), x_{n}-x_{0}\right\rangle \tag{4.27}\\
+ & \frac{\varepsilon}{2} \int_{Z}\left|\lambda_{n} x_{n}+\left(1-\lambda_{n}\right) \frac{x_{n}+x_{0}}{2}\right|^{p-2}\left(\lambda_{n} x_{n}+\left(1-\lambda_{n}\right) \frac{x_{n}+x_{0}}{2}\right)\left(x_{n}-x_{0}\right) d z
\end{align*}
$$

$$
\begin{gathered}
-\frac{1}{2} \int_{Z} u_{n}\left(x_{n}-x_{0}\right) d z \\
-\frac{\varepsilon}{2} \int_{Z}\left|\left(t_{n} x_{n}+\left(1-t_{n}\right) \frac{x_{n}+x_{0}}{2}\right)^{+}\right|^{p-2}\left(t_{n} x_{n}+\left(1-t_{n}\right) \frac{x_{n}+x_{0}}{2}\right)^{+}\left(x_{n}-x_{0}\right) d z
\end{gathered}
$$

Recall that $\varphi_{\varepsilon}\left(x_{n}\right) \rightarrow \varphi_{\varepsilon}\left(x_{0}\right)$ (see (4.26)) and because $\frac{x_{n}+x_{0}}{2} \xrightarrow{w} x_{0}$ in $W_{n}^{1, p}(Z)$ and φ_{ε} is weakly lower semicontinuous, we have

$$
\varphi_{\varepsilon}\left(x_{0}\right) \leq \liminf _{n \rightarrow \infty} \varphi_{\varepsilon}\left(\frac{x_{n}+x_{0}}{2}\right)
$$

So, if in (4.27) we pass to the limit as $n \rightarrow \infty$, then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle A\left(t_{n} x_{n}+\left(1-t_{n}\right) \frac{x_{n}+x_{0}}{2}\right), x_{n}-x_{0}\right\rangle \leq 0 \tag{4.28}
\end{equation*}
$$

We may assume that $t_{n} \rightarrow t \in[0,1]$ and so

$$
t_{n} x_{n}+\left(1-t_{n}\right) \frac{x_{n}+x_{0}}{2} \xrightarrow{w} x_{0} \text { in } W_{n}^{1, p}(Z)
$$

From (4.28), we have

$$
\limsup _{n \rightarrow \infty}\left\langle A\left(t_{n} x_{n}+\left(1-t_{n}\right) \frac{x_{n}+x_{0}}{2}\right), t_{n} x_{n}+\left(1-t_{n}\right) \frac{x_{n}+x_{0}}{2}-x_{0}\right\rangle \leq 0
$$

Since A is of type $(S)_{+}$(see Proposition 3.2), it follows that

$$
\begin{equation*}
t_{n} x_{n}+\left(1-t_{n}\right) \frac{x_{n}+x_{0}}{2} \rightarrow x_{0} \text { in } W_{n}^{1, p}(Z) \tag{4.29}
\end{equation*}
$$

However, note that

$$
\begin{equation*}
\left\|t_{n} x_{n}+\left(1-t_{n}\right) \frac{x_{n}+x_{0}}{2}-x_{0}\right\|=\left(1+t_{n}\right)\left\|\frac{x_{n}-x_{0}}{2}\right\| \geq \frac{r}{2} \tag{4.30}
\end{equation*}
$$

which of course contradicts (4.29). Therefore the Claim is true and (4.25) holds.
Set

$$
\begin{equation*}
\mu=\inf \left[\varphi_{\varepsilon}(x): x \in \bar{B}_{r_{0}}\left(x_{0}\right) \backslash B_{\frac{r_{0}}{2}}\left(x_{0}\right)\right]-\varphi_{\varepsilon}\left(x_{0}\right) \tag{4.31}
\end{equation*}
$$

Because of (4.25), $\mu>0$. Also we set

$$
\begin{equation*}
V=\left\{x \in B_{\frac{r_{0}}{2}}\left(x_{0}\right): \varphi_{\varepsilon}(x)-\varphi_{\varepsilon}\left(x_{0}\right)<\mu\right\} . \tag{4.32}
\end{equation*}
$$

Clearly the set V is open and $x_{0} \in V$. Let $r \in\left(0, \frac{r_{0}}{2}\right)$ be such that $\bar{B}_{r}\left(x_{0}\right) \subseteq V$. Then we can apply Theorem 3.1 with the following data

$$
\begin{aligned}
& \quad U=B_{r_{0}}\left(x_{0}\right), \quad \varphi=\varphi_{\varepsilon}-\varphi_{\varepsilon}\left(x_{0}\right), \quad x_{0}, \quad \mu>0 \text { as above } \\
& \text { and } 0<\xi<\inf \left[\varphi_{\varepsilon}(x): x \in B_{r_{0}}\left(x_{0}\right)-B_{r}\left(x_{0}\right)\right]-\varphi_{\varepsilon}\left(x_{0}\right)(\text { see }(4.25)) .
\end{aligned}
$$

Indeed, note that because $r<\frac{r_{0}}{2}$, from (4.31) and (4.32), we have

$$
\left\{x \in B_{r_{0}}\left(x_{0}\right): \varphi_{\varepsilon}(x)-\varphi_{\varepsilon}\left(x_{0}\right) \leq \xi\right\} \subseteq B_{r}\left(x_{0}\right) \subseteq \bar{B}_{r}\left(x_{0}\right) \subseteq V .
$$

Also, because of (4.24)

$$
0 \notin \partial \varphi_{\varepsilon}(x) \text { for all } x \in \bar{B}_{r_{0}}\left(x_{0}\right) \text { satisfying } \xi \leq \varphi_{\varepsilon}(x)-\varphi_{\varepsilon}\left(x_{0}\right) \leq \mu
$$

Therefore Theorem 3.1 can be applied and we have

$$
\widehat{d}\left(\partial \varphi_{\varepsilon}, V, 0\right)=1
$$

From the previous considerations, we have

$$
0 \notin \partial \varphi_{\varepsilon}\left(\bar{V} \backslash B_{r}\left(x_{0}\right)\right) .
$$

Then, the excision property of the \widehat{d}-degree map, implies

$$
\widehat{d}\left(\partial \varphi_{\varepsilon}, B_{r}\left(x_{0}\right), 0\right)=1 .
$$

Next we compute the \widehat{d}-degree of $\partial \varphi_{\varepsilon}$ for large balls.
Proposition 4.5. If hypotheses $H(j)$ hold, then there exists $R_{0}>0$ such that for all $R \geq R_{0}$

$$
\widehat{d}\left(\partial \varphi_{\varepsilon}, B_{R}, 0\right)=1\left(B_{R}=\left\{x \in W_{n}^{1, p}(Z):\|x\|<R\right\}\right) .
$$

Proof. We consider the admissible homotopy $h_{1}:[0,1] \times W_{n}^{1, p}(Z) \rightarrow 2^{W_{n}^{1, p}(Z)^{*}} \backslash\{\emptyset\}$ defined by

$$
h_{1}(t, x)=A(x)+\varepsilon K_{p}(x)-t N(x)-t \varepsilon K_{p}^{+}(x) .
$$

Claim. We can find $R_{0}>0$ such that $0 \notin h_{1}(t, x)$ for all $t \in[0,1]$ and all $\|x\| \geq R_{0}$.
We proceed by a contradiction argument. So suppose that the Claim is not true. We can find $\left\{t_{n}\right\}_{n \geq 1} \subseteq[0,1]$ and $\left\{x_{n}\right\}_{n \geq 1} \subseteq W_{n}^{1, p}(Z)$ such that

$$
\begin{equation*}
t_{n} \rightarrow t \text { in }[0,1],\left\|x_{n}\right\| \rightarrow \infty \text { and } 0 \in h_{1}\left(t_{n}, x_{n}\right) \text { for all } n \geq 1 \tag{4.33}
\end{equation*}
$$

From the inclusion in (4.33), we have

$$
\begin{equation*}
A\left(x_{n}\right)+\varepsilon K_{p}\left(x_{n}\right)=t_{n} u_{n}+t_{n} \varepsilon K_{p}^{+}\left(x_{n}\right) \text { with } u_{n} \in N\left(x_{n}\right), n \geq 1 . \tag{4.34}
\end{equation*}
$$

Let $y_{n}=\frac{x_{n}}{\left\|x_{n}\right\|}, \quad n \geq 1$. We may assume that

$$
y_{n} \xrightarrow{w} y \text { in } W_{n}^{1, p}(Z), y_{n} \rightarrow y \text { in } L^{p}(Z), y_{n}(z) \rightarrow y(z) \text { a.e. on } Z
$$

and $\left|y_{n}(z)\right| \leq k(z)$ for a.a. $z \in Z$, all $n \geq 1$, with $k \in L^{p}(Z)_{+}$.
We divide (4.34) by $\left\|x_{n}\right\|^{p-1}$. Then

$$
\begin{equation*}
A\left(y_{n}\right)+\varepsilon K_{p}\left(y_{n}\right)=t_{n} \frac{u_{n}}{\left\|x_{n}\right\|^{p-1}}+t_{n} \varepsilon K_{p}^{+}\left(y_{n}\right) \quad n \geq 1 . \tag{4.35}
\end{equation*}
$$

Note that hypotheses $H(j)(i i i),(i v),(v i)$, imply

$$
|u| \leq \widetilde{a}(z)+\widetilde{c}|x|^{p-1} \text { for a.a. } z \in Z, \text { all } x \in \mathbb{R} \text { and all } u \in \partial j(z, x),
$$

with $\widetilde{a} \in L^{\infty}(Z)_{+}, \widetilde{c}>0$. So it follows that

$$
\left\{h_{n}=\frac{u_{n}}{\left\|x_{n}\right\|^{p-1}}\right\}_{n \geq 1} \subseteq L^{p^{\prime}}(Z) \text { is bounded. }
$$

Hence we may assume that

$$
h_{n} \xrightarrow{w} h \text { in } L^{p^{\prime}}(Z) .
$$

Arguing as in the proof of Proposition 3.7 in [1], we show that

$$
h(z)=g(z) y^{+}(z)^{p-1}
$$

with $g \in L^{\infty}(Z),-\bar{c} \leq g(z) \leq \theta(z)$ a.e. on $Z, \bar{c}>0$ as in hypothesis $H(j)(v i)$.
Moreover, acting on (4.35) with $y_{n}-y$ and passing to the limit, we have

$$
\lim _{n \rightarrow \infty}\left\langle A\left(y_{n}\right), y_{n}-y\right\rangle=0,
$$

$$
\Rightarrow y_{n} \rightarrow y \text { in } W_{n}^{1, p}(Z) \text { (see Proposition } 3.2 \text {), hence }\|y\|=1
$$

So, if we pass to the limit as $n \rightarrow \infty$ in (4.35), then

$$
\begin{equation*}
A(y)+\varepsilon K_{p}(y)=t(g+\varepsilon) K_{p}^{+}(y) . \tag{4.36}
\end{equation*}
$$

On (4.36), we act with the test function $-y^{-} \in W_{n}^{1, p}(Z)$. Then

$$
\varepsilon\left\|y^{-}\right\|^{p}=0, \text { i.e. } y^{-}=0 \text { and so } y \geq 0, y \neq 0 .
$$

Hence (4.36) becomes

$$
\begin{equation*}
A(y)+\varepsilon K_{p}(y)=t(g+\varepsilon) K_{p}(y) . \tag{4.37}
\end{equation*}
$$

We act with $y \in W_{n}^{1, p}(Z)$ and so

$$
\begin{align*}
& \|D y\|_{p}^{p}+\varepsilon\|y\|_{p}^{p} \leq t \varepsilon\|y\|_{p}^{p} \leq \varepsilon\|y\|_{p}^{p}(\text { since } g \leq 0, t \in[0,1]), \tag{4.38}\\
\Rightarrow & \|D y\|_{p}=0 \\
\Rightarrow & y=\xi \in \mathbb{R}, \xi>0(\text { since } y \geq 0, y \neq 0) .
\end{align*}
$$

If $t=0$, then from (4.38) we have

$$
\varepsilon\|y\|^{p}=0 \text {, i.e. } y=0, \text { a contradiction. }
$$

If $0<t \leq 1$, then from (4.37) we have

$$
0 \leq t \xi^{p}\left(\int_{Z} g(z) d z+\varepsilon|Z|_{N}\right) .
$$

Choosing $\varepsilon>0$ small, we have $\int_{Z} g(z) d z+\varepsilon|Z|_{N}<0$, a contradiction. This proves the Claim.

The Claim permits the use of the homotopy invariance property. Hence

$$
\begin{equation*}
\widehat{d}\left(\partial \varphi_{\varepsilon}, B_{R}, 0\right)=d_{(S)_{+}}\left(A+\varepsilon K_{p}, B_{R}, 0\right) \text { for all } R \geq R_{0} . \tag{4.39}
\end{equation*}
$$

But from the proof of Proposition 3.7 in [1], we have

$$
\begin{equation*}
d_{(S)_{+}}\left(A+\varepsilon K_{p}, B_{R}, 0\right)=1 \text { for all } R>0 . \tag{4.40}
\end{equation*}
$$

From (4.39) and (4.40), we conclude that

$$
\widehat{d}\left(\partial \varphi_{\varepsilon}, B_{R}, 0\right)=1 \text { for all } R \geq R_{0} .
$$

Next we perform a similar computation for small balls.
Proposition 4.6. If hypotheses $H(j)$ hold, then there exists $\rho_{0}>0$ such that for all $0<\rho \leq \rho_{0}$

$$
\widehat{d}\left(\partial \varphi_{\varepsilon}, B_{\rho}, 0\right)=1 \quad\left(B_{\rho}=\left\{x \in W_{n}^{1, p}(Z):\|x\|<\rho\right\}\right)
$$

Proof. We fix $\eta \in L^{\infty}(Z)_{+}$such that

$$
\eta_{1}(z) \leq \eta(z) \leq \eta_{2}(z) \text { a.e. on and } \underset{Z}{\operatorname{essinf}} \eta \geq \gamma>0 .
$$

We consider the admissible homotopy $h_{2}:[0,1] \times W_{n}^{1, p}(z) \rightarrow 2^{W_{n}^{1, p}(Z)} \backslash\{\emptyset\}$ defined by

$$
h_{2}(t, x)=A(x)+\varepsilon K_{p}(x)-(1-t) \eta K_{p}^{+}(x)-t N(x)-t \varepsilon K_{p}^{+}(x) .
$$

Claim. We can find $\rho_{0}>0$ such that $0 \notin h_{2}(t, x)$ for all $t \in[0,1]$ and all $0<$ $\|x\| \leq \rho_{0}$.

We argue indirectly. So suppose that the Claim is not true. We can find $\left\{t_{n}\right\}_{n \geq 1} \subseteq[0,1]$ and $\left\{x_{n}\right\}_{n \geq 1} \subseteq W_{n}^{1, p}(Z)$ such that

$$
\begin{equation*}
t_{n} \rightarrow t \in[0,1], \quad\left\|x_{n}\right\| \rightarrow 0 \text { and } 0 \in h_{2}\left(t_{n}, x_{n}\right) \text { for all } n \geq 1 \tag{4.41}
\end{equation*}
$$

The inclusion in (4.41) implies that
(4.42) $A\left(x_{n}\right)+\varepsilon K_{p}\left(x_{n}\right)=\left(1-t_{n}\right) \eta K_{p}^{+}\left(x_{n}\right)+t_{n} u_{n}+t_{n} \varepsilon K_{p}^{+}\left(x_{n}\right)$ with $u_{n} \in N\left(x_{n}\right)$.

We set $y_{n}=\frac{x_{n}}{\left\|x_{n}\right\|}, n \geq 1$. Since $\left\|y_{n}\right\|=1$ for all $n \geq 1$, we may assume that

$$
y_{n} \xrightarrow{w} y \text { in } W_{n}^{1, p}(Z), y_{n} \rightarrow y \text { in } L^{p}(Z), y_{n}(z) \rightarrow y(z) \text { a.e. on } Z
$$

and $\left|y_{n}(z)\right| \leq k(z)$ for a.a. $z \in Z$, all $n \geq 1$, with $k \in L^{p}(Z)_{+}$.
From (4.42), we obtain

$$
\begin{equation*}
A\left(y_{n}\right)+\varepsilon K_{p}\left(y_{n}\right)=\left(1-t_{n}\right) \eta K_{p}^{+}\left(y_{n}\right)+t_{n} \frac{u_{n}}{\left\|x_{n}\right\|^{p-1}}+t_{n} \varepsilon K_{p}^{+}\left(y_{n}\right) \tag{4.43}
\end{equation*}
$$

Note that by virtue of hypothesis $H(j)(v)$, we can find $\widetilde{\eta} \in L^{\infty}(Z)_{+} \backslash\{\emptyset\}$ such that

$$
\begin{equation*}
|u| \leq \widetilde{\eta}(z)|x|^{p-1} \text { for a.a. } z \in Z, \text { all } x \leq \delta \text { and all } u \in \partial j(z, x) \tag{4.44}
\end{equation*}
$$

On the other hand from the proof of Proposition 4.5, we have

$$
|u| \leq \widetilde{a}(z)+\widetilde{c}|x|^{p-1} \text { for a.a. } z \in Z, \text { all } x \in \mathbb{R} \text { and all } u \in \partial j(z, x)
$$

with $\widetilde{a} \in L^{\infty}(Z)_{+}, \widetilde{c}>0$. Hence
(4.45) $|u| \leq\left(\frac{\widetilde{a}(z)}{\delta^{p-1}}+\widetilde{c}\right)|x|^{p-1}$ for a.a. $z \in Z$, all $x \geq \delta$ and all $u \in \partial j(z, x)$.

Combining (4.44) and (4.45), we infer that

$$
|u| \leq \bar{\eta}(z)|x|^{p-1} \text { for a.a. } z \in Z, \text { all } x \in \mathbb{R} \text { and all } u \in \partial j(z, x)
$$

with $\bar{\eta} \in L^{\infty}(Z)_{+}$. Therefore

$$
\begin{aligned}
& \left|u_{n}(z)\right| \leq \bar{\eta}(z)\left|x_{n}(z)\right|^{p-1} \text { a.e. on } Z \\
\Rightarrow & \left\{\frac{u_{n}}{\left\|x_{n}\right\|^{p-1}}\right\}_{n \geq 1} \subseteq L^{p^{\prime}}(Z) \text { is bounded. }
\end{aligned}
$$

So, we may assume that

$$
\widehat{h}_{n}=\frac{u_{n}}{\left\|x_{n}\right\|^{p-1}} \xrightarrow{w} \widehat{h} \text { in } L^{p^{\prime}}(Z) .
$$

Arguing as in the proof of Proposition 3.8 in [1], we show that

$$
\widehat{h}(z)=\widehat{g}(z) y^{+}(z)^{p-1} \text { a.e. on } Z
$$

with $\widehat{g} \in L^{\infty}(Z)_{+}, \eta_{1}(z) \leq \widehat{g}(z) \leq \eta_{2}(z)$ a.e. on Z. Moreover, as before, acting on (4.43) with $y_{n}-y$, passing to the limit as $n \rightarrow \infty$ and using the $(S)_{+}$-property of A, we obtain

$$
y_{n} \rightarrow y \text { in } W_{n}^{1, p}(Z), \quad\|y\|=1
$$

From (4.43), in the limit as $n \rightarrow \infty$, we have

$$
\begin{align*}
A(y)+\varepsilon K_{p}(y) & =(1-t) \eta K_{p}^{+}(y)+t(\widehat{g}+\varepsilon) K_{p}^{+}(y), \\
\Rightarrow A(y)+\varepsilon K_{p}(y) & =(\xi+t \varepsilon) K_{p}^{+}(y) \text { with } \xi=(1-t) \eta+t \widehat{g} \in L^{\infty}(Z)_{+} . \tag{4.46}
\end{align*}
$$

We act with the test function $-y^{-} \in W_{n}^{1, p}(Z)$. Then

$$
\begin{aligned}
& \varepsilon\left\|y^{-}\right\|^{p}=0 \\
\Rightarrow & y^{-}=0 \text { and so } y \geq 0, y \neq 0
\end{aligned}
$$

So (4.46) becomes

$$
A(y)=(\xi-(1-t) \varepsilon) K_{p}(y)
$$

As before, using the nonlinear Green's identity, we have

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(\|D y(z)\|^{p-2} D y(z)\right)=(\xi(z)-(1-t) \varepsilon)|y(z)|^{p-2} y(z) \text { a.e. on } Z \tag{4.47}\\
\quad \frac{\partial y}{\partial n}=0 \text { on } \partial Z
\end{array}\right\}
$$

Nonlinear regularity theory implies $y \in C_{+}$. We choose $\varepsilon<\gamma \leq \operatorname{essinf} \eta$. Then $\xi-(1-t) \varepsilon \geq 0, \xi-(1-t) \varepsilon \neq 0$ and so $\widehat{\lambda}_{0}(\xi-(1-t) \varepsilon)=0$. Moreover, Proposition 3.4 implies

$$
\begin{equation*}
\widehat{\lambda}_{1}(\xi-(1-t) \varepsilon) \geq \widehat{\lambda}_{1}(\xi)>\widehat{\lambda}_{1}\left(\lambda_{1}\right)=1 \tag{4.48}
\end{equation*}
$$

From (4.47) and (4.48), we infer that $y=0$, a contradiction to the fact that $\|y\|=1$. This proves the Claim.

By homotopy invariance, we have

$$
\begin{equation*}
\widehat{d}\left(\partial \varphi_{\varepsilon}, B_{\rho}, 0\right)=\widehat{d}\left(A+\varepsilon K_{p}-\eta K_{p}^{+}, B_{\rho}, 0\right) \text { for all } 0<\rho \leq \rho_{0} \tag{4.49}
\end{equation*}
$$

We need to compute $\widehat{d}\left(A+\varepsilon K_{p}-\eta K_{p}^{+}, B_{\rho}, 0\right)$. To this end we consider the $(S)_{+-}$ homotopy $h_{3}:[0,1] \times W_{n}^{1, p}(Z) \rightarrow W_{n}^{1, p}(Z)^{*}$

$$
h_{3}(t, x)=A(x)+\varepsilon K_{p}(x)-t \eta K_{p}^{+}(x) .
$$

Suppose that for $t \in[0,1]$ and $x \neq 0$, we have

$$
\begin{align*}
& h_{3}(t, x)=0 \\
\Rightarrow & A(x)+\varepsilon K_{p}(x)=\operatorname{t\eta } K_{p}^{+}(x) . \tag{4.50}
\end{align*}
$$

We act on (4.50) with $-x^{-} \in W_{n}^{1, p}(Z)$. Then

$$
\begin{gathered}
\varepsilon\left\|x^{-}\right\|^{p}=0 \\
\Rightarrow x \geq 0, \quad x \neq 0 .
\end{gathered}
$$

So from (4.50) we have

$$
A(x)+\varepsilon K_{p}(x)=t \eta K_{p}(x)
$$

If $t=0$, then

$$
A(x)+\varepsilon K_{p}(x)=0
$$

$\Rightarrow x=0$, a contradiction.
If $0<t \leq 1$, then

$$
\begin{align*}
& A(x)=(t \eta-\varepsilon) K_{p}(x) \\
\Rightarrow & \left\{\begin{array}{l}
-\operatorname{div}\left(\|D x(z)\|^{p-2} D x(z)\right)=(t \eta(z)-\varepsilon)|x(z)|^{p-2} x(z) \text { a.e. on } Z, \\
\quad \frac{\partial y}{\partial n}=0
\end{array}\right. \tag{4.51}
\end{align*}
$$

Choose $0<\varepsilon<t \gamma$. Then $t \eta(\cdot)-\varepsilon \in L^{\infty}(Z)_{+}, t \eta-\varepsilon \neq 0$ and $\widehat{\lambda}_{0}(t \eta-\varepsilon)=0$. Also Proposition 3.4 implies

$$
\widehat{\lambda}_{1}(t \eta-\varepsilon)>\widehat{\lambda}_{1}\left(\lambda_{1}\right)=1
$$

Because of (4.51) we infer $y=0$, a contradiction. Therefore by homotopy invariance

$$
\begin{align*}
& d_{(S)_{+}}\left(A+\varepsilon K_{p}-\eta K_{p}^{+}, B_{\rho}, 0\right)=d_{(S)_{+}}\left(A+\varepsilon K_{p}, B_{\rho}, 0\right)=1 \text { for all } \rho>0, \tag{4.52}\\
\Rightarrow & \widehat{d}\left(\partial \varphi_{\varepsilon}, B_{\rho}, 0\right)=1 \text { for all } 0<\rho \leq \rho_{0}(\text { see }(4.49) \text { and }(4.52)) .
\end{align*}
$$

Now we are ready to prove the multiplicity result for the positive solutions of (1.1).

Theorem 4.7. If hypotheses $H(j)$ hold, then problem (1.1) has at least two solutions $x_{0}, \widehat{x} \in \operatorname{int} C_{+}$.

Proof. From Proposition 4.3 we already have one solution $x_{0} \in \operatorname{int} C_{+}$.
Let $0<\rho \leq \rho_{0}, R \geq R_{0}$ and $r>0$ be such that

$$
B_{r}\left(x_{0}\right) \cap B_{\rho}=\emptyset \text { and } \bar{B}_{r}\left(x_{0}\right) \subseteq B_{R}
$$

Then from Propositions 4.4, 4.5, 4.6 and the domain additivity and excision properties of the degree map, we have

$$
\begin{aligned}
& \widehat{d}\left(\partial \varphi_{\varepsilon}, B_{R}, 0\right)=\widehat{d}\left(\partial \varphi_{\varepsilon}, B_{\rho}, 0\right)+\widehat{d}\left(\partial \varphi_{\varepsilon}, B_{r}\left(x_{0}\right), 0\right)+\widehat{d}\left(\partial \varphi_{\varepsilon}, B_{R} \backslash\left(\overline{B_{r}\left(x_{0}\right) \cup B_{\rho}}\right), 0\right), \\
\Rightarrow & \widehat{d}\left(\partial \varphi_{\varepsilon}, B_{R} \backslash\left(\overline{B_{r}\left(x_{0}\right) \cap B_{\rho}}\right), 0\right)=-1
\end{aligned}
$$

By virtue of the solution property, we can find $\left.\widehat{x} \in B_{R} \backslash\left(\overline{B_{r}\left(x_{0}\right) \cap B_{\rho}}\right), 0\right)$, hence $\widehat{x} \neq x_{0}, \widehat{x} \neq 0$, such that

$$
\begin{equation*}
A(\widehat{x})+\varepsilon K_{p}(\widehat{x})=\widehat{u}+\varepsilon K_{p}^{+}(\widehat{x}) \text { with } \widehat{u} \in N(\widehat{x}) \tag{4.53}
\end{equation*}
$$

We act with the test function $-\widehat{x}^{-} \in W_{n}^{1, p}(Z)$. Recalling that $j(z, x)=0$ for a.a. $z \in Z$ and all $x \leq 0$, we obtain

$$
\varepsilon\|\widehat{x}\|^{p}=0, \text { i.e. } \widehat{x} \geq 0, \widehat{x} \neq 0
$$

So (4.53) becomes

$$
\begin{aligned}
& A(\widehat{x})=\widehat{u} \text { with } \widehat{u} \in N(\widehat{x}) \\
\Rightarrow & \left\{\begin{array}{l}
-\operatorname{div}\left(\|D \widehat{x}(z)\|^{p-2} D \widehat{x}(z)\right)=\widehat{u}(z) \text { a.e. on } Z, \\
\frac{\partial \widehat{x}}{\partial n}=0 \text { on } \partial Z .
\end{array}\right\}
\end{aligned}
$$

From nonlinear regularity theory and the nonlinear strong maximum principle of Vazquez [27], we conclude that $\widehat{x} \in \operatorname{int} C_{+}$.

References

[1] R. Agarwal, M. Filippakis, D. O'Regan, N. S. Papageorgiou, Solutions for nonlinear Neumann problems via degree theory for multivalued perturbations of $(S)_{+}-m a p s$, Adv.Diff.Eqns 11 (2006), 961-980.
[2] S. Aizicovici, N. S. Papageorgiou, V. Staicu, Degree Theory for Operators of Monotone Type and Nonlinear Elliptic Equations with Inequality Constraints, Memoirs of the AMS-in press.
[3] H. Amann, A note on degree theory for gradient mappings, Proc.AMS 85 (1982), 591-595.
[4] G. Anello, Existence of infinitely many weak solution for a Neumann problem, Nonlin. Anal. 57 (2004), 199-210.
[5] P. A. Binding, P. Drabek, Y. Huang, Existence of multiple solutions of critical quasilinear ellipitc Neumann problems, Nonlin. Anal. 42 (2000), 613-629.
[6] H. Brezis, L. Nirenberg, H^{1} versus C^{1} local minimizers, CRAS Paris 42 (1993), 465-472.
[7] F. Browder, Fixed point theory and nonlinear problems, Bull of the AMS 9 (1983), 1-39.
[8] E. Casas, L. Fernandez, A Green's formula for quasilinear ellipitc operators, J.Math.Anal.Appl. 142 (1989), 62-73.
[9] A. Cellina, Approximation of set-valued functions and fixed point theorems, Annali di Mat.Pura ed Appl. 82 (1969), 17-24.
[10] F. Clarke, A new approach to Lagrange multipliers, Math.Oper.Res. 1 (1976), 165-174.
[11] F. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York (1983).
[12] F. Faraci, Multiplicity results for a Neumann problem involving the p-Laplacian, J. Math. Anal. Appl. 277 (2003), 180-189.
[13] M. Filippakis, L. Gasinski, N. S. Papageorgiou, Multiplicity results for nonlinear Neumann problems, Canad.J.Math. 58 (2006), 64-92.
[14] J. Garcia Azorero, J. Manfredi, I. Peral ALonso, Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Commun.Contemp.Math 2 (2000), 385-404.
[15] L. Gasinski, N. S. Papageorgiou, Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems, Chapman and Hall/CRC Press, Boca Raton, (2005).
[16] L. Gasinski, N. S. Papageorgiou, Nonlinear Analysis, Chapman and Hall/CRC Press, Boca Raton, (2006).
[17] S. Hu, N. S. Papageorgiou, Generalizations of Browder's degree theory, Trans. of the AMS, 347 (1995), 233-259.
[18] S. Hu, N. S. Papageorgiou, Handbook of Multivalued Analysis. Volume I:Theory, Kluwer, Dordrecht (1997).
[19] N. Kenmochi, Pseudomonotone operators and nonlinear elliptic boundary value problems, J. Math. Soc. Japan, 27 (1975), 121-149.
[20] S. Kyritsi, N. S. Papageorgiou, Multiple solutions of constant sign for nonlinear nonsmooth eigenvalue problems near resonance, Calc.Var.PDEs, 20 (2004), 1-24.
[21] O. Ladyzhenskaya, N. Uraltseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York (1968).
[22] A. Le, Eigenvalue problems for the p-Laplacian, Nonlin.Anal., 64 (2006), 1057-1099.
[23] G. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlin.Anal., 12 (1988), 1203-1219.
[24] D. Motreanu, N. S. Papageorgiou, Existence and multiplicity of solutions for Neumann problems, J.Diff.Eqns, 232 (2007), 1-35.
[25] B. Ricceri, Infinitely many solutions of the Neumann problem for ellipitc equations involving the p-Laplacian, Bull. London Math. Soc., 33 (2001), 331-340.
[26] I. Skypnik, Nonlinear Ellipitc Boundary Value Problems, Teubner, Leipzig (1986).
[27] J. Vazquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (1984), 191-202.
[28] X. Wu, K.-K. Tan, On existence and multiplicity of solutions of Neumann boundary value problems for quasilinear elliptic equations, Nonlin.Anal., 65 (2006), 1334-1347.

Ravi P. Agarwal
Department of Mathematical Sciences, Florida Institute of Technology, Melbourne 32901-6975, FL, USA

E-mail address: agarwal@fit.edu
Michael E. Filippakis
Department of Mathematics, National Technical University, Zografou Campus, Athens 15780, Greece

E-mail address: mfilip@math.ntua.gr
Donal O'Regan
Department of Mathematics, National University of Ireland, Galway, IRELAND
E-mail address: donal.oregan@nuigalway.ie
Nikolaos S. Papageorgiou
Department of Mathematics, National Technical University, Zografou Campus, Athens 15780, Greece

E-mail address: npapg@math.ntua.gr

[^0]: 2000 Mathematics Subject Classification. 35J60, 35J70.
 Key words and phrases. p-Laplacian, Neumann problem, $(S)_{+}$-operator, degree map, local minimizer, nonlinear Green's identity, homotopy invariance property

