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TWIN POSITIVE SOLUTIONS FOR p-LAPLACIAN NONLINEAR
NEUMANN PROBLEMS VIA VARIATIONAL AND DEGREE

THEORETICAL METHODS

RAVI P. AGARWAL, MICHAEL E. FILIPPAKIS, DONAL O’REGAN,
AND NIKOLAOS S. PAPAGEORGIOU

Abstract. We consider a nonlinear Neumann problem driven by the p-Laplacian
and with a nonsmooth potential function (hemivariational inequality). Using a
combination of variational and degree theoretic techniques, we show that the
problem has two positive smooth solutions. We also show the equivalence of
W 1,p

n and C1
n minimizers for a large class of locally Lipschitz functionals.

1. Introduction

Let Z ⊆ RN be a bounded domain with a C2-boundary ∂Z. In this paper, we
investigate the existence of multiple positive solutions for the nonlinear Neumann
problem with a nonsmooth potential (hemivariational inequality):

(1.1)




−div(‖Dx(z)‖p−2Dx(z)) ∈ ∂j(z, x(z)) a.e. on Z,

∂x

∂n
= 0 on ∂Z, 2 ≤ p < ∞.





In this problem the potential function j(z, x) is jointly measurable and x → j(z, x)
is locally Lipschitz and in general nonsmooth. By ∂j(z, x) we denote the generalized
subdifferential of j(z, ·) (see Section 2).

Recently there have been some results on the existence of multiple nontrivial solu-
tions for the Neumann problems driven by the p-Laplacian. We mention the works
of Binding-Drabek-Huang [5], Ricceri [25], Faraci [12], Anello [4], Wu-Tan [28] for
problems with a smooth potential (i.e. j(z, ·) ∈ C1(R)) and of Filippakis-Gasinski-
Papageorgiou [13], Motreanu-Papageorgiou [24] for problems with a nonsmooth po-
tential (i.e. hemivariational inequalities). In the aforementioned works, the mul-
tiplicity results are obtained either by assuming certain symmetry structure on
the potential function (see for example Anello [4], Ricceri [25], Filippakis-Gasinski-
Papageorgiou [13]) or by requiring that N < p (low dimensional problems) in which
case the Sobolev space is embedded compactly in C(Z) (see Faraci [12], Wu-Tan
[28]). In Motreanu-Papageorgiou [24], the multiplicity result is for problems with
a potential which is strictly p-sublinear near infinity and strictly p-superlinear near
zero and their approach is variational based on a nonsmooth version of the local
linking theorem (see Gasinski-Papageorgiou [15]). None of these multiplicity results
provides information about the sign of the solutions. Only Binding-Drabek-Huang
[5] examine a particular kind of nonlinear eigenvalue problem and for certain values
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of the parameter, they prove the existence of one or two positive solutions. Here
the setting and the method of proof are different from those of Binding-Drabek-
Huang [5]. Our approach combines variational and degree theoretic arguments.
For the degree theoretic methods, we employ the degree map for certain multi-
valued perturbations of (S)+-operators (see Hu-Papageorgiou [17]). This degree
map was also used recently by the authors to prove an existence theorem for p-
Laplacian Neumann hemivariational inequalities with an indefinite Euler functional
(see Agarwal-Filippakis-O’Regan-Papageorgiou [1]).

2. Mathematical Background

In this section, for the convenience of the reader, we present some of the basic
tools that are used in the analysis of problem (1.1).

Let X be a reflexive Banach space and X∗ its topological dual. By 〈·, ·〉 we
denote the duality brackets for the pair (X, X∗). Given a locally Lipschitz function
ϕ : X → R, the generalized directional derivative ϕ0(x;h) of ϕ at x ∈ X in the
direction h, is defined by

ϕ0(x;h) = lim sup
x′→x
λ↓0

ϕ(x′ + λh)− ϕ(x′)
λ

.

It is easy to check that ϕ0(x, ·) is sublinear, continuous and so by the Hahn-
Banach theorem it is the support function of a nonempty, w∗-compact and convex
set ∂ϕ(x) ⊆ X∗, defined by

∂ϕ(x) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ ϕ0(x;h) for all h ∈ X}.
The multifunction ∂ϕ : X → 2X∗\{∅} is called the “generalized subdifferential”

of ϕ. If ϕ : X → R is continuous convex, then it is well-known that ϕ is locally
Lipschitz and the generalized subdifferential coincides with the subdifferential in
the sense of convex analysis ∂cϕ(x), defined by

∂cϕ(x) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ ϕ(x + h)− ϕ(x) for all h ∈ X}.
Also, if ϕ ∈ C1(X), then ϕ is locally Lipschitz and

∂ϕ(x) = {ϕ′(x)}.
If ϕ,ψ : X → R are both locally Lipschitz and λ ∈ R, then

∂(ϕ + ψ)(x) ⊆ ∂ϕ(x) + ∂ψ(x) and ∂(λϕ)(x) = λ∂ϕ(x) for all x ∈ X.

Given a locally Lipschitz function ϕ : X → R, a point x ∈ X is a critical point
of ϕ, if 0 ∈ ∂ϕ(x). It is easy to see that, if x ∈ X is a local extremum of ϕ (i.e. a
local minimum or a local maximum of ϕ), then x ∈ X is a critical point of ϕ. For
further details on these and related issues, we refer to Clarke [11].

If Y, V are Hausdorff topological spaces, a multifunction (set-valued function)
G : Y → 2V \ {∅} is said to be upper semicontinuous (usc for short), if for every
C ⊆ V closed, the set

G−(C) = {y ∈ Y : G(y) ∩ C 6= 0}
is closed in Y. The generalized subdifferential ∂ϕ : X → 2X∗\{∅} is usc from X
with the norm topology into X∗ with the weak topology (denoted by X∗

w). We say
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that the multifunction G : X → 2X∗
belongs in the ”class (P )”, if it has nonempty,

closed and convex values, it is usc and for every bounded set B ⊆ X, we have that

G(B) =
⋃

x∈B

G(x)

is relatively compact in X∗.
Let G : D ⊆ X → 2X∗\{∅} be an usc multifunction with closed and convex

values. By virtue of a result of Cellina [9] (see also Hu-Papageorgiou [18], p.105),
for every ε > 0, we can find a continuous map gε : D → X∗ such that

gε(x) ∈ G((x + Bε) ∩D) + B∗
ε for all x ∈ D

and gε(D) ⊆ convG(D),

where Bε = {x ∈ X : ‖x‖ < ε} and B∗
ε = {x∗ ∈ X∗ : ‖x∗‖ < ε}. Note that, if G

belongs in the class (P ), then gε is compact.
Recall that a map A : X → X∗ is said to be of type (S)+, if xn

w→ x in X and
lim sup

n→∞
〈A(xn), xn − x〉 ≤ 0, imply xn → x in X.

From Troyanski’s renorming theorem (see for example Gasinski-Papageorgiou
[16], p.911), we know that we can equivalently renorm X so that both X and X∗
are locally uniformly convex with Frechet differentiable norms. So, in what follows,
we assume that both spaces X and X∗ are locally uniformly convex.

Let U be a bounded open set in X and A : U → X∗ is a demicontinuous operator
of type (S)+. Let {Xa}a∈J be the collection of all finite dimensional subspaces of X
and by Aa we denote the Galerkin approximation of A with respect to Xa, that is

〈Aa(x), y〉Xa = 〈A(x), y〉 for all x ∈ U ∩Xa and all y ∈ Xa.

Here by 〈·, ·〉Xa we denote the duality brackets for the pair (X∗
a , Xa).

If 0 /∈ A(∂U), d(S)+(A,U, 0) is defined by

d(S)+(A,U, 0) = dB(A,U ∩Xa, 0)

for Xa large enough (in the sense of inclusion). Here dB stands for the classical
finite dimensional Brouwer’s degree. For details on the degree map d(S)+ we refer
to Browder [7] and Skrypnik [26].

Note that, if A : U → X∗ is of type (S)+ and g : U → X∗ is compact, then
A + g : U → X∗ is still an (S)+-map. Suppose G : U → 2X∗\{∅} is a (P )-
multifunction and 0 /∈ (A + G)(∂U). Then d̂(A + G,U, 0), is defined by

d̂(A + G,U, 0) = d(S)+(A + gε, U, 0)

for ε > 0 small, where gε is a continuous ε-approximate selector of the multifunction
G described earlier.

This degree map has all the usual properties such as, normalization, domain
additivity, homotopy invariance, excision property and solution property. We need
to elaborate further on the normalization and homotopy invariance properties.

Let F : X → X∗ be the duality map of X, i.e.

F(x) = {x∗ ∈ X∗ : 〈x∗, x〉 = ‖x‖2 = ‖x∗‖2}.
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Since we have assumed that both X and X∗ are uniformly convex, the duality
map F is a homeomorphism and it is also bounded (i.e. it maps bounded sets to
bounded ones), maximal monotone and of type (S)+ (see Gasinski-Papageorgiou
[16], p.316). The normalization property of the degree map d̂, has the form

d̂(F , U, x∗) = d(S)+(F , U, x∗) = 1 provided x∗ ∈ F(U).

To formulate the homotopy invariance property, we need to specify the admissible
homotopies for the maps A and G.

Definition 2.1. (a) A one-parameter family {At}t∈[0,1] of maps At : U → X∗ is
said to be an “(S)+-homotopy”, if for any {xn}n≥1 ⊆ U such that xn

w→ x in X
and for any {tn}n≥1 ⊆ [0, 1] with tn → t, for which

lim sup
n→∞

〈Atn(xn), xn − x〉 ≤ 0,

one has that xn → x in X and Atn(xn) w→ At(x) in X∗.
(b) A one-parameter family {Gt}t∈[0,1] of multifunctions Gt : U → 2X∗\{∅} is

said to be a “homotopy of class (P )”, if (t, x) → G(t, x) is usc from [0, 1] × U into
2X∗\{∅} with closed convex values and

⋃
{Gt(x) : t ∈ [0, 1], x ∈ U} is compact in X∗.

With these as admissible homotopies, the homotopy invariance property for the
degree map d̂, reads as follows:

“If {At}t∈[0,1] is an (S)+-homotopy with At bounded for every t ∈ [0, 1], {Gt}t∈[0,1]

is a homotopy of class (P ) and x∗ : [0, 1] → X∗ is a continuous map such that
x∗t /∈ (At + Gt)(∂U) for all t ∈ [0, 1], then d̂(At + Gt, U, x∗t ) is independent of
t ∈ [0, 1]”.

Finally let us recall some basic facts about the spectrum of the negative p-
Laplacian with Neumann boundary conditions. Let m ∈ L∞(Z)+, m 6= 0 and
consider the following nonlinear weighted (with weight m) eigenvalue problem:

(2.1)




− div(‖Dx(z)‖p−2Dx(z)) = λ̂m(z)|x(z)|p−2x(z) a.e. on Z,

∂x

∂n
= 0 on ∂Z, 1 < p < ∞, λ̂ ∈ R.





A λ̂ ∈ R for which problem (2.1) has a nontrivial solution, is said to be an
eigenvalue of (−4p,W

1,p(Z),m) and the nontrivial solution is an eigenfunction
corresponding to the eigenvalue λ̂. It is easy to see that a necessary condition for λ̂

to be an eigenvalue, is that λ̂ ≥ 0. Moreover, zero is an eigenvalue with corresponding
eigenspace R (the space of constant functions). The eigenvalue λ̂0(m) = 0, is isolated
and admits the following variational characterization

(2.2) 0 = λ̂0(m) = inf
[ ‖Dx‖p

p∫
Z m|x|pdz

: x ∈ W 1,p(Z), x 6= 0
]
.

Clearly constant functions realize the infimum in (2.2). In addition to λ̂0(m) =
0, the Lusternik-Schnirelmann theory, gives a whole strictly increasing sequence
{λ̂k = λ̂k(m)}k≥1 ⊆ R+ of eigenvalues such that λ̂k → +∞ as k → ∞. These are
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the so-called “LS-eigenvalues”. If p = 2 (linear eigenvalue problem), then these are
all the eigenvalues. If p 6= 2 (nonlinear eigenvalue problem), we do not know if this
is the case.

Nevertheless since λ̂0(m) = 0 is isolated and the set of eigenvalues is closed, we
can define

λ̂∗1 = inf[λ̂ : λ̂ is an eigenvalue, λ̂ > 0] > 0.

This is the second eigenvalue of (−4p,W
1,p(Z),m) and λ̂∗1 = λ̂1. For details see

Le [22] and Gasinski-Papageorgiou [16]. If m ≡ 1, we write λ̂k = λk for all k ≥ 0.

3. Auxiliary Results

It is well-known (see Amann [3]), that if H is a Hilbert space, ϕ ∈ C1(H), ∇ϕ is a
compact vector field and x0 ∈ H is an isolated local minimizer of ϕ, then we can find
r > 0 small such that dLS(∇ϕ,Br(x0), 0) = 1. Here dLS denotes the Leray-Schauder
degree. This result was extended to the d̂-degree map by Aizicovici-Papageorgiou-
Staicu [2].

Let X be a reflexive Banach space which is embedded compactly and densely
into Lp(Z). Then Lp′(Z) = Lp(Z)∗ (1

p + 1
p′ = 1) is embedded compactly and densely

into X∗. Suppose that θ ∈ C1(X) and A = θ′ : X → X∗ is a bounded (S)+-map.
Also we consider a function j0 : Z × R→ R satisfying:

(H0) (i) for all x ∈ R, z → j0(z, x) is measurable;
(ii) for almost all z ∈ Z, x → j0(z, x) is locally Lipschitz;
(iii) for almost all z ∈ Z, all x ∈ R and all u ∈ ∂j(z, x), we have

|u| ≤ a(z) + c|x|p−1 with a ∈ L∞(Z)+, c > 0.

We define the integral functional Ĵ0 : Lp(Z) → R by

(3.1) Ĵ0(x) =
∫

Z
j0(z, x(z))dz for all x ∈ Lp(Z).

Hypotheses (H0) imply that Ĵ0 is Lipschitz continuous on bounded sets, hence lo-
cally Lipschitz (see Clarke [11], p.83). A fortiori then, J0 = Ĵ0|X is locally Lipschitz
too. Moreover, we have

∂J0(x) = ∂Ĵ0(x) ⊆ Lp′(Z)

and ∂J0(x) = N0(x) = {u ∈ Lp′(Z) : u(z) ∈ ∂j0(z, x(z)) a.e. on Z} for all x ∈ X

(see Clarke [11], pp.47 and 83). Exploiting the compact embedding of Lp′(Z) into
X∗, we can verify that x → N0(x) is a multifunction of type (P ). Hence we can
define the d̂-degree of the map x → A(x) + N0(x). The next theorem extends the
above mentioned result of Amann [3] to the degree map d̂.

Theorem 3.1. If X is a reflexive Banach space which is embedded compactly and
densely in Lp(Z) (1 < p < ∞), U ⊆ X is a nonempty open set, ϕ = θ+J0 : X → R
is locally Lipschitz with θ ∈ C1(X), A = θ′ : X → X∗ is bounded and of type
(S)+-type, J0 = Ĵ0|X with Ĵ0 as in (3.1), x0 ∈ U, ξ, µ, r ∈ R, ξ < µ and r > 0
satisfy

(i) x0 ∈ V = {ϕ ≤ µ} ∩ U and {ϕ ≤ µ} ∩ U is bounded subset of U ;
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(ii) If x ∈ {ϕ ≤ ξ} ∩ U, then tx0 + (1− t)x ∈ V for all t ∈ [0, 1];
(iii) 0 /∈ ∂ϕ(x) for all x ∈ {ξ ≤ ϕ ≤ µ} ∩ U,

then d̂(∂ϕ, V, 0) = d̂(A + N0, V, 0) = 1.

In our analysis of problem (1.1) we will use the following two spaces:

W 1,p
n (Z) = {x ∈ W 1,p(Z) : x = lim

k→∞
xk in W 1,p(Z),

xk ∈ C∞(Z),
∂xk

∂n
= 0 on ∂Z}

and C1
n(Z) = {x ∈ C1(Z) :

∂x

∂n
= 0 on ∂Z}.

Both are ordered Banach spaces with order cones given by

W+ = {x ∈ W 1,p
n (Z) : x(z) ≥ 0 a.e. on Z}

and C+ = {x ∈ C1
n(Z) : x(z) ≥ 0 for all z ∈ Z}.

Note that intC+ 6= ∅ and in fact

intC+ = {x ∈ C+ : x(z) > 0 for all z ∈ Z}.
We introduce the operator A : W 1,p

n (Z) → W 1,p
n (Z)∗ defined by

〈A(x), y〉 =
∫

Z
‖Dx‖p−2(Dx, Dy)RNdz for all x, y ∈ W 1,p

n (Z).

The next three propositions were proved in [1]. For easy reference, we have
included the results here.

Proposition 3.2. A : W 1,p
n (Z) → W 1,p

n (Z)∗ is bounded demicontinuous monotone
and of type (S)+.

Remark 3.3. Since A is demicontinuous monotone, it is maximal monotone (see
Gasinski-Papageorgiou [16], p.310).

Proposition 3.4. If m,m′ ∈ L∞(Z)+, m 6= 0 and m(z) < m′(z) for a.a. z ∈ Z,

then λ̂1(m′) < λ̂1(m).

Proposition 3.5. If θ ∈ L∞(Z), θ(z) ≤ 0 a.e. on Z and θ 6= 0, then there exists
ξ0 > 0 such that

‖Dx‖p
p −

∫

Z
θ(z)|x(z)|pdz ≥ ξ0‖x‖p for all x ∈ W 1,p(Z).

The next result is of independent interest and is related to earlier results obtained
by Brezis-Nirenberg [6], Garcia Azorero-Manfredi-Peral Alonso [14] and Kyritsi-
Papageorgiou [20]. In Brezis-Nirenberg [6] p = 2 (semilinear case) and in Garcia
Azorero-Manfredi-Peral Alonso [14] p 6= 2 (nonlinear case). In both works the po-
tential is smooth and the boundary condition is Dirichlet. In Kyritsi-Papageorgiou
[20], p ≥ 2, the potential is nonsmooth and the boundary condition is Dirichlet (see
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also Gasinski-Papageorgiou [15], p.655). We introduce the following hypotheses:

(H1) ĵ : Z × R→ R is a function such that
(i) for all x ∈ R, z → ĵ(z, x) is measurable;
(ii) for almost all z ∈ Z, x → ĵ(z, x) is locally Lipschitz;
(iii) for almost all z ∈ Z, all x ∈ R and all u ∈ ∂j(z, x), we have

|u| ≤ â(z) + ĉ|x|r−1,

with â ∈ L∞(Z)+, ĉ > 0 and 1 < r < p∗ =

{
Np

N−p if p < N

+∞ if p ≥ N
.

We consider the locally Lipschitz functional

ϕ̂(x) =
1
p
‖Dx‖p

p −
∫

Z
ĵ(z, x(z))dz for all x ∈ W 1,p

n (Z).

Proposition 3.6. If x0 ∈ W 1,p
n (Z) is a local C1

n(Z)-minimizer of ϕ̂, i.e. there exists
r > 0 such that

ϕ̂(x0) ≤ ϕ̂(x0 + h) for all h ∈ C1
n(Z), ‖h‖C1

n(Z) ≤ r,

then x0 ∈ C1
n(Z) and it is a local W 1,p

n (Z)-minimizer of ϕ̂, i.e. there exists r′ > 0
such that

ϕ̂(x0) ≤ ϕ̂(x0 + h) for all h ∈ W 1,p
n (Z), ‖h‖ ≤ r′.

Proof. Take h ∈ C1
n(Z). Then for λ > 0 small, we have

ϕ̂(x0) ≤ ϕ̂(x0 + λh)

⇒0 ≤ ϕ̂0(x0;h).(3.2)

Since C1
n(Z) is dense in W 1,p

n (Z) and ϕ̂0(x0; ·) is continuous on W 1,p
n (Z), from

(3.2) we infer that

0 ≤ ϕ̂0(x0;h) for all h ∈ W 1,p
n (Z),

⇒0 ∈ ∂ϕ̂(x0).(3.3)

From (3.3) it follows that

(3.4) A(x0) = u0,

with u0 ∈ Lr′(Z) (1
r + 1

r′ = 1), u0(z) ∈ ∂ĵ(z, x0(z)) a.e. on Z. From the rep-
resentation theorem for the elements of W−1,p′(Z) = W 1,p

0 (Z)∗ (see for example
Gasinski-Papageorgiou [16], p.212), we know that

(3.5) −div(‖Dx0‖p−2Dx0) ∈ W−1,p′(Z).

We act on (3.4) with v ∈ C1
c (Z). Then

(3.6) 〈A(x0), v〉 =
∫

Z
‖Dx0‖p−2(Dx0, Dv)RNdz =

∫

Z
u0vdz.
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If by 〈·, ·〉0 we denote the duality brackets for the pair (W 1,p
0 (Z),W−1,p′(Z))

(1
p + 1

p′ = 1), then from the definition of the weak (distributional) derivative (3.5)
and (3.6), we have

(3.7) 〈−div(‖Dx0‖p−2Dx0), v〉0 =
∫

Z
u0vdz = 〈u0, v〉.

Since v ∈ C1
c (Z) is arbitrary and C1

c (Z) is dense in W 1,p
0 (Z), from (3.7) we infer

that
−div(‖Dx0(z)‖p−2Dx0(z)) = u0(z) a.e. on Z.

Moreover, as in [1] (see the proof of Proposition 3.8), using the nonlinear Green’s
identity (see Kenmochi [19] and Casas-Fernandez [8]), we also obtain

(3.8)
∂x0

∂n
= 0 in W

− 1
p′ ,p

′
(∂Z).

Invoking Theorem 7.1 p.286, of Ladyzhenskaya-Uraltseva [21], we have x0 ∈
L∞(Z) and then Theorem 2 of Lieberman [23] can be used to conclude that x0 ∈
C1,β

n (Z) for some 0 < β < 1. So (3.8) can be interpreted in the pointwise sense.
Hence x0 ∈ C1

n(Z).
Now suppose that x0 is not a local W 1,p

n (Z) minimizer of ϕ̂. Because ϕ̂ is weakly
lower semicontinuous on W 1,p

n (Z) and the closed ε-ball Bε = {h ∈ W 1,p
n (Z) : ‖h‖ ≤

ε} is w-compact, by the Weierstrass theorem, for any ε > 0 we can find hε ∈ Bε

such that

(3.9) ϕ̂(x0 + hε) = min[ϕ̂(x0 + h) : h ∈ Bε] < ϕ̂(x0).

Applying the nonsmooth Lagrange multiplier rule of Clarke [10], we can find
λε < 0 such that

λεη
′
ε(hε) ∈ ∂ϕ̂(x0 + hε),

where ηε(h) = 1
p(‖h‖p − εp) (the constraint function). So

(3.10) A(x0 + hε)− uε = λεA(hε) + λεKp(hε),

with uε ∈ Lr′(Z), uε(z) ∈ ∂ĵ(z, (x0 + hε)(z)) a.e. on Z and Kp : Lp(Z) → Lp′(Z) is
the bounded, continuous map defined by Kp(x)(·) = |x(·)|p−2x(·) for all x ∈ Lp(Z).

From (3.10) and (3.4), we have

(3.11) A(x0 + hε)−A(x0)− λεA(hε) = uε − u0 + λεKp(hε)

⇒ −4p(x0 + hε)(z) +4px0(z) + λp4phε(z)

= uε(z)− u0(z) + λε|hε(z)|p−2hε(z) a.e. on Z (as before).

We introduce the map H : Z × RN → RN defined by

H(z, ξ) = ‖Dx0(z) + ξ‖p−2(Dx0(z) + ξ)− ‖Dx0(z)‖p−2Dx0(z)− λε‖ξ‖p−2ξ.

Clearly H(z, ξ) is a Caratheodory function (i.e. measurable in z ∈ Z and con-
tinuous in ξ ∈ RN) and it has a (p − 1)-polynomial growth in ξ ∈ RN. We rewrite
(3.11) as

(3.12) −div H(z, Dhε(z)) = uε(z)− u0(z) + λε|hε(z)|p−2hε(z) a.e. on Z.
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As before, using the nonlinear Green’s identity and (3.10), (3.12), we obtain

∂hε

∂n
(z) = 0 for all z ∈ ∂Z.

Since p ≥ 2 and λε ≤ 0

(3.13) (H(z, ξ), ξ)RN ≥ c1‖ξ‖p for a.a. z ∈ Z, all ξ ∈ RN and some c1 > 0.

Then because of (3.12), (3.13), Theorem 7.1 p.286 of Ladyzhenskaya-Uraltseva
[21] and Theorem 2 of Lieberman [23], we can find β0 ∈ (0, 1) and M0 > 0, both
independent of ε ∈ (0, 1] and λε such that

hε ∈ C1,β0
n (Z) and ‖hε‖C

1,β0
n (Z)

≤ M0 for all ε ∈ (0, 1].

Let ε ↓ 0 and set hn = hεn . Recalling that C1,β0
n (Z) is embedded compactly in

C1
n(Z), we may assume that

hn → ĥ in C1
n(Z) as n →∞.

On the other hand
hn → 0 in C1

n(Z) as n →∞.

So ĥ = 0. Then for n ≥ 1 large, we have

‖hn‖C1
n(Z) ≤ r

⇒ϕ̂(x0) ≤ ϕ̂(x0 + hn),

which contradicts (3.9). This completes the proof of the proposition ¤

4. Multiple Positive Solutions

The hypotheses on the nonsmooth potential function j(z, x) are the following:

(Hj) j : Z × R → R is a function such that j(z, 0) = 0, ∂j(z, 0) ⊆ R+ a.e. on Z
and

(i) for all x ∈ R, z → j(z, x) is measurable;
(ii) for almost all z ∈ Z, all x → j(z, x) is locally Lipschitz;
(iii) for every r > 0, there exists ar ∈ L∞(Z)+ such that for a.a. z ∈ Z,

all |x| ≤ r and all u ∈ ∂j(z, x), we have |u| ≤ ar(z);
(iv) there exists θ ∈ L∞(Z), θ(z) ≤ 0 a.e. on Z, θ 6= 0 such that

lim sup
x→+∞

u

xp−1
≤ θ(z)

uniformly for a.a. z ∈ Z, all u ∈ ∂j(z, x);
(v) there exist functions η1, η2 ∈ L∞(Z)+ such that η1 6= 0, η1(z) ≤

η2(z) < λ1 a.e. on Z

η1(z) ≤ lim inf
x→0+

u

xp−1
≤ lim sup

x→0+

u

xp−1
≤ η2(z)

uniformly for a.a. z ∈ Z and all u ∈ ∂j(z, x);
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(vi) there exist v, M, c > 0 such that∫

Z
j(z, v)dz > 0

∂j(z, x) ⊆ R+ for a.a. z ∈ Z, all x ≥ M

and − cxp−1 ≤ u for a.a. z ∈ Z, all x ≥ 0 and all u ∈ ∂j(z, x).

Remark 4.1. Note that hypotheses H(j)(iv), (v), (vi) all concern j(z, x) for x ≥ 0,
so we may as well assume without any loss of generality that j(z, x) = 0 for a.a.
z ∈ Z, all x ≤ 0. Evidently hypotheses H(j)(iv) and (v) are nonresonance conditions
at +∞ and at 0+ with respect to the first two eigenvalues λ0 = 0 < λ1. More
precisely, near +∞ we allow partial interaction (nonuniform nonresonance) with
λ0 = 0 from the left, of the generalized slopes { u

xp−1 : u ∈ ∂j(z, x)}, while near 0+,
the generalized slopes remain in the spectral [λ0 = 0, λ1], allowing partial interaction
(nonuniform nonresonance) with λ0 = 0, while we avoid completely λ1 > 0 (uniform
nonresonance). Note that as the variable x ∈ R+ moves from 0+ to +∞, the
generalized slopes cross the principal eigenvalue (crossing nonlinearity).

In what follows A : W 1,p
n (Z) → W 1,p

n (Z)∗ is the nonlinear, maximal monotone,
(S)+-operator introduced in Section 3 and N : W 1,p

n (Z) → 2Lp′ (Z)\{∅} is the mul-
tifunction defined by

N(x) = {u ∈ Lp′(Z) : u(z) ∈ ∂j(z, x(z)) a.e. on Z}.
As in [1] (see Proposition 3.2 and Corollary 3.3), we can prove the following

result.

Proposition 4.2. If hypotheses H(j)(i), (ii), (iii) hold, then N : W 1,p
n (Z) →

2W 1,p
n (Z)∗\{∅} is a multifunction of type (P ).

Also let ϕ : W 1,p
n (Z) → R be the Euler functional for problem (1.1) defined by

ϕ(x) =
1
p
‖Dx‖p

p −
∫

Z
j(z, x(z))dz for all x ∈ W 1,p

n (Z).

We know that ϕ is locally Lipschitz.
In the next proposition, using a variational argument, we establish the existence

of a positive solution for problem (1.1).

Proposition 4.3. If hypotheses H(j) hold, then problem (1.1) has a solution x0 ∈
intC+ which is a local minimizer of ϕ.

Proof. By virtue of hypothesis H(j)(iv), given ε > 0, we can find M1 = M1(ε) > 0
such that for almost all z ∈ Z, all x ≥ M1 and all u ∈ ∂j(z, x), we have

(4.1) u ≤ (θ(z) + ε)xp−1.

Also because of hypothesis H(j)(iii) and since j(z, x) = 0 for a.a. z ∈ Z and all
x ≤ 0, we have

(4.2) |u| ≤ aM1(z) for a.a. z ∈ Z, all x ≤ M1 and all u ∈ ∂j(z, x).

From (4.1) and (4.2), we see that, if x+ = max{x, 0}, then

(4.3) u ≤ (θ(z) + ε)(x+)p−1 + âε(z) for a.a. z ∈ Z, all x ∈ R, all u ∈ ∂j(z, x)
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and with âε ∈ L∞(Z)+. Let N0 ⊆ Z be the Lebesgue-null set such that for all
z ∈ Z\N0, the function x → j(z, x) is locally Lipschitz (see hypothesis H(j)(ii)).
By Rademacher’s theorem x → j(z, x) is differentiable almost everywhere on R.
Moreover, if z ∈ Z\N0 and r ∈ R is a point of differentiability of j(z, ·), we have

d

dr
j(z, r) ∈ ∂j(z, r) (see Clarke [11],p.32).

Integrating over [0, x], x > 0 and using (4.3), we obtain

(4.4) j(z, x) ≤ 1
p
(θ(z) + ε)(x+)p + aε(z)x+ for all z ∈ Z\N0, all x ∈ R.

Let x ∈ W+. Then

ϕ(x) =
1
p
‖Dx‖p

p −
∫

Z
j(z, x(z))dz(4.5)

≥ 1
p
‖Dx‖p

p −
1
p

∫

Z
θ|x|pdz − ε

p
‖x‖p

p − c2‖x‖
for some c2 > 0 (see (4.4))

≥ ξ0 − ε

p
‖x‖p − c2‖x‖.

We choose 0 < ε < ξ0. Then from (4.5) it follows that ϕ|W+ is coercive. In
addition, we can easily check that ϕ is weakly lower semicontinuous. So by virtue
of the Weierstrass theorem, we can find x0 ∈ W+ such that

−∞ < m+ = inf
W+

ϕ = ϕ(x0).

Let c > 0 be as in hypothesis H(j)(vi). Then

ϕ(c) = −
∫

Z
j(z, c)dz < 0,(4.6)

⇒m+ = ϕ(x0) < 0, i.e. x0 6= 0.(4.7)

Also from the optimality condition of Clarke [11], we have

(4.8) 0 ∈ ∂ϕ+(x0) + NW+(x0),

where NW+(x0) is the normal cone to W+ at x0. Recall that

(4.9) NW+(x0) = {x∗ ∈ W 1,p
n (Z)∗ : 〈x∗, w − x0〉 ≤ 0 for all w ∈ W+}.

From (4.8), we see that we can find x∗ ∈ ∂ϕ(x0) such that

−x∗ ∈ NW+(x0).

We know that x∗ = A(x0)− u0 with u0 ∈ N(x0) and so

−A(x0) + u0 ∈ NW+(x0),

⇒0 ≤ 〈A(x0)− u0, w − x0〉 for all w ∈ W+ (see (4.9)).(4.10)

Fix ε > 0 and v ∈ W 1,p
n (Z), otherwise arbitrary and let

w = (x0 + εv)+ = (x0 + εv) + (x0 + εv)− ∈ W+.
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Using this as a test function in (4.10), we obtain

0 ≤ 〈A(x0)− u0, εv + (x0 + εv)−〉
⇒ − 〈A(x0)− u0, (x0 + εv)−〉 ≤ ε〈A(x0)− u0, v〉.(4.11)

We set Z−ε = {z ∈ Z : (x0 + εv)(z) < 0}. We know that

(4.12) D(x0 + εv)−(z) =

{
−D(x0 + εv)(z) for a.a. z ∈ Z−ε
0 for a.a. z ∈ Z\Z−ε

.

Then

(4.13) − 〈A(x0), (x0 + εv)−〉+
∫

Z
u0(x0 + εv)−dz

= −
∫

Z
‖Dx0‖p−2(Dx0, D(x0 + εv)−)RNdz +

∫

Z
u0(x0 + εv)−dz.

Using (4.12), we have

−
∫

Z
‖Dx0‖p−2(Dx0, D(x0 + εv)−)RNdz(4.14)

=
∫

Z−ε
‖Dx0‖p−2(Dx0, D(x0 + εv))RNdz

≥ ε

∫

Z−ε
‖Dx0‖p−2(Dx0, Dv)RNdz.

Moreover,∫

Z
u0(x0 + εv)−dz = −

∫

Z−ε
u0(x0 + εv)dz(4.15)

= −
∫

Z−ε ∩{x0=0}
u0εvdz −

∫

Z−ε ∩{x0>0}
u0(x0 + εv)dz

(recall x0 ∈ W+).

Recalling the definition of the set Z−ε , we see that v(z) < 0 a.e. on Z−ε ∩{x0 = 0}.
Also by hypothesis ∂j(z, 0) ⊆ R+ for a.a. z ∈ Z. Therefore u0(z) ≥ 0 a.e. on
Z−ε ∩ {x0 = 0}. It follows then that

(4.16) −
∫

Z−ε ∩{x0=0}
u0εv0dz ≥ 0.

Also

−
∫

Z−ε ∩{x0>0}
u0(x0 + εv)dz(4.17)

= −
∫

Z−ε ∩{0<x0<M}
u0(x0 + εv)dz −

∫

Z−ε ∩{x0≥M}
u0(x0 + εv)dz

≥ −
∫

Z−ε ∩{0<x0<M}
u0(x0 + εv)dz (see hypothesis H(j)(vi))

≥
∫

Z−ε ∩{0<x0<M}
aM (z)(x0 + εv)dz (see hypothesis H(j)(iii))
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≥ ε

∫

Z−ε ∩{0<x0<M}
aMvdz.

We use (4.16) and (4.17) in (4.15). Then

(4.18)
∫

Z
u0(x0 + εv)−dz ≥ ε

∫

Z−ε ∩{0<x0<M}
aM0vdz.

We return to (4.13) and we use (4.14) and (4.18). We obtain

− 〈A(x0), (x0 + εv)−〉+
∫

Z
u0(x0 + εv)−dz

≥ ε

∫

Z−ε
‖Dx0‖p−2(Dx0, Dv)RNdz + ε

∫

Z−ε ∩{0<x0<M}
aM0vdz

⇒ 〈A(x0)− u0, v〉 ≥
∫

Z−ε
‖Dx0‖p−2(Dx0, Dv)RNdz +

∫

Z−ε ∩{0<x0<M}
aM0vdz

(see (4.11)).

From Stampacchia’s theorem (see for example Gasinksi-Papageorgiou [16],
pp. 195–196), we know that

Dx0(z) = 0 a.e. on {x0 = 0}.
Hence

(4.19) 〈A(x0)− u0, v〉

≥
∫

Z−ε ∩{0<x0}
‖Dx0‖p−2(Dx0, Dv)RNdz +

∫

Z−ε ∩{0<x0<M}
aMvdz.

Note that, if by | · |N we denote the Lebesgue measure on RN, then

|Z−ε ∩ {0 < x0 < M}|N ≤ |Z−ε ∩ {0 < x0}|N → 0 as ε ↓ 0.

So, if in (4.19) we pass to the limit as ε ↓ 0, then

〈A(x0)− u0, v〉 ≥ 0.

Recall that v ∈ W 1,p
n (Z) was arbitrary. It follows that

(4.20) A(x0) = u0, u0 ∈ N(x0).

Then as in [1] using the nonlinear Green’s identity, from (4.20) we obtain

(4.21) −div(‖Dx0(z)‖p−2Dx0(z)) = u0(z) a.e. on Z,
∂x0

∂n
= 0 on ∂Z.

As before nonlinear regularity theory implies that x0 ∈ C+. From (4.21) and hy-
pothesis H(j)(vi), we have

div(‖Dx0(z)‖p−2Dx0(z)) ≤ cx0(z)p−1 a.e. on Z.

Invoking the nonlinear strong maximum principle of Vazquez [27], we infer that
x0 ∈ intC+. So x0 ∈ intC+ is a local C1

n(Z)-minimizer of ϕ. By Proposition 3.6 it
is also a local W 1,p

n (Z)-minimizer of ϕ. ¤
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Let ε ∈ (0, 1) and consider the functional ϕε : W 1,p
n (Z) → R defined by

ϕε(x) =
1
p
‖Dx‖p

p +
ε

p
‖x‖p

p −
∫

Z
j(z, x(z))dz − ε

p
‖x+‖p

p

for all x ∈ W 1,p
n (Z).

Recall that x+ = max{x, 0} ∈ W 1,p
n (Z). Since x0 ∈ intC+, we can find r1 > 0

such that
ϕε|

B
C1

n(Z)
r1

(x0)
= ϕ|

B
C1

n(Z)
r1

(x0)
,

where B
C1

n(Z)
r1 (x0) = {x ∈ C1

n(Z) : ‖x− x0‖C1
n(Z) < r1}. This means that

x0 is a local C1
n(Z)-minimizer of ϕε (see Proposition 4.2),

⇒x0 is a local W 1,p
n (Z)-minimizer of ϕε (see Proposition 3.6),

⇒0 ∈ ∂ϕε(x0).

Without loss of generality, we may assume that x0 is an isolated local minimizer
(and critical point) of the functional ϕε. Indeed, if this is not the case, we can find
{xn}n≥1 ⊆ W 1,p

n (Z) distinct from x0 such that

(4.22) 0 ∈ ∂ϕε(xn) for all n ≥ 1 and xn → x0 in W 1,p
n (Z) as n →∞.

Let Kp,K
+
p : Lp(Z) → Lp′(Z) be the bounded continuous maps defined by

Kp(x)(·) = |x(·)|p−2x(·) and K+
p (x)(·) = (x+(·))p−1.

Then from the inclusion in (4.22)

(4.23) A(xn) + εKp(xn) = un + εK+
p (xn) with un ∈ N(xn), n ≥ 1.

On (4.23) we act with the test function −x−n ∈ W 1,p
n (Z) and obtain

‖Dx−n ‖p
p + ε‖x−n ‖p

p = 0,

⇒ε‖x−n ‖p = 0, i.e. xn ≥ 0 for all n ≥ 1.

So (4.23) becomes
A(xn) = un, n ≥ 1.

From this as in the proof of Proposition 4.2, we infer that xn ∈ intC+, n ≥ 1. So

ϕε(xn) = ϕ(xn) and ∂ϕε(xn) = ∂ϕ(xn) for all n ≥ 1,

⇒{xn}n≥1 is a sequence of nontrivial distinct critical points of ϕ,

⇒{xn}n≥1 is a sequence of distinct positive solutions of (1.1) and so we are done.

Therefore, without any loss of generality, we may assume that x0 ∈ intC+ is an
isolated local minimizer (and critical point) of ϕε.

We know that

∂ϕε(x) = A(x) + εKp(x)−N(x)− εK+
p (x).

Note that due to the compact embedding of W 1,p
0 (Z) into Lp(Z), we see that

Kp|W 1,p
0 (Z)

and K+
p |W 1,p

0 (Z)
are both completely continuous (hence compact too,

see Gasinski-Papageorgiou [16], p.268) and so x → A(x) + εKp(x) − εK+
p is an
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(S)+-map. From Proposition 4.2, we know that N is a multifunction of type (P ).
Therefore we can speak about the d̂-degree of ∂ϕε.

Proposition 4.4. If hypotheses H(j) hold and x0 ∈ intC+ is as in Proposition 4.3,
then we can find r > 0 such that

d̂(∂ϕε, Br(x0), 0) = 1.

Proof. As we already noted above, we may assume that x0 ∈ intC+ is an isolated
local minimizer (and critical point) of ϕε. Therefore there exists r0 > 0 such that

(4.24) ϕε(x0) < ϕε(y) and 0 /∈ ∂ϕε(y) for all y ∈ Br0(x0)\{y0},
where Br0(x0) = {x ∈ W 1,p

n (Z) : ‖x− x0‖ ≤ r0}.
Claim. For all 0 < r < r0, we have

(4.25) inf[ϕε(x) : x ∈ Br0(x0)\Br(x0)] > ϕε(x0).

Suppose that the Claim is not true. Then there exists r ∈ (0, r0) and a sequence
{xn}n≥1 ⊆ Br0(x0)\Br(x0) such that

(4.26) ϕε(xn) ↓ ϕε(x0) as n →∞.

Clearly {xn}n≥1 ⊆ W 1,p
n (Z) is bounded. So we may assume that

xn
w→ y in W 1,p

n (Z), xn → y in Lp(Z), xn(z) → y(z) a.e. on Z,

and |xn(z)| ≤ k(z) for a.a. z ∈ Z, all n ≥ 1, with k ∈ Lp(Z)+.

The functional ϕε is weakly lower semicontinuous. Hence

ϕε(y) ≤ lim
n→∞ϕε(xn) = ϕε(x0) (see (4.26)).

Since y ∈ Br(x0), from (4.24) we infer that y = x0.
Using the nonsmooth mean value theorem (see Clarke [11], p.41), we can find

w∗n ∈ ∂ϕε(tnxn + (1− tn)
xn + x0

2
), tn ∈ (0, 1) n ≥ 1

such that
ϕε(xn)− ϕε(

xn + x0

2
) = 〈w∗n,

xn − x0

2
〉 n ≥ 1.

We know that

w∗n =A(tnxn + (1− tn)
xn + x0

2
) + εKp(tnxn + (1− tn)

xn + x0

2
)− un

−εK+
p (tnxn + (1− tn)

xn + x0

2
)

with un ∈ N(tnxn + (1− tn)
xn + x0

2
).

Therefore

(4.27) ϕε(xn)− ϕε(
xn + x0

2
) =

1
2
〈A(tnxn + (1− tn)

xn + x0

2
), xn − x0〉

+
ε

2

∫

Z
|λnxn + (1− λn)

xn + x0

2
|p−2(λnxn + (1− λn)

xn + x0

2
)(xn − x0)dz
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− 1
2

∫

Z
un(xn − x0)dz

− ε

2

∫

Z
|(tnxn + (1− tn)

xn + x0

2
)+|p−2(tnxn + (1− tn)

xn + x0

2
)+(xn − x0)dz.

Recall that ϕε(xn) → ϕε(x0) (see (4.26)) and because xn+x0
2

w→ x0 in W 1,p
n (Z)

and ϕε is weakly lower semicontinuous, we have

ϕε(x0) ≤ lim inf
n→∞ ϕε(

xn + x0

2
).

So, if in (4.27) we pass to the limit as n →∞, then

(4.28) lim sup
n→∞

〈A(tnxn + (1− tn)
xn + x0

2
), xn − x0〉 ≤ 0

We may assume that tn → t ∈ [0, 1] and so

tnxn + (1− tn)
xn + x0

2
w→ x0 in W 1,p

n (Z).

From (4.28), we have

lim sup
n→∞

〈A(tnxn + (1− tn)
xn + x0

2
), tnxn + (1− tn)

xn + x0

2
− x0〉 ≤ 0.

Since A is of type (S)+ (see Proposition 3.2), it follows that

(4.29) tnxn + (1− tn)
xn + x0

2
→ x0 in W 1,p

n (Z).

However, note that

(4.30) ‖tnxn + (1− tn)
xn + x0

2
− x0‖ = (1 + tn)‖xn − x0

2
‖ ≥ r

2
,

which of course contradicts (4.29). Therefore the Claim is true and (4.25) holds.
Set

(4.31) µ = inf[ϕε(x) : x ∈ Br0(x0)\B r0
2

(x0)]− ϕε(x0).

Because of (4.25), µ > 0. Also we set

(4.32) V = {x ∈ B r0
2

(x0) : ϕε(x)− ϕε(x0) < µ}.
Clearly the set V is open and x0 ∈ V . Let r ∈ (0, r0

2 ) be such that Br(x0) ⊆ V.
Then we can apply Theorem 3.1 with the following data

U = Br0(x0), ϕ = ϕε − ϕε(x0), x0, µ > 0 as above

and 0 < ξ < inf[ϕε(x) : x ∈ Br0(x0)−Br(x0)]− ϕε(x0) (see (4.25)).

Indeed, note that because r < r0
2 , from (4.31) and (4.32), we have

{x ∈ Br0(x0) : ϕε(x)− ϕε(x0) ≤ ξ} ⊆ Br(x0) ⊆ Br(x0) ⊆ V.

Also, because of (4.24)

0 /∈ ∂ϕε(x) for all x ∈ Br0(x0) satisfying ξ ≤ ϕε(x)− ϕε(x0) ≤ µ.

Therefore Theorem 3.1 can be applied and we have

d̂(∂ϕε, V, 0) = 1.
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From the previous considerations, we have

0 /∈ ∂ϕε(V \Br(x0)).

Then, the excision property of the d̂-degree map, implies

d̂(∂ϕε, Br(x0), 0) = 1. ¤

Next we compute the d̂-degree of ∂ϕε for large balls.

Proposition 4.5. If hypotheses H(j) hold, then there exists R0 > 0 such that for
all R ≥ R0

d̂(∂ϕε, BR, 0) = 1 (BR = {x ∈ W 1,p
n (Z) : ‖x‖ < R}).

Proof. We consider the admissible homotopy h1 : [0, 1]×W 1,p
n (Z) → 2W 1,p

n (Z)∗\{∅}
defined by

h1(t, x) = A(x) + εKp(x)− tN(x)− tεK+
p (x).

Claim. We can find R0 > 0 such that 0 /∈ h1(t, x) for all t ∈ [0, 1] and all ‖x‖ ≥ R0.

We proceed by a contradiction argument. So suppose that the Claim is not true.
We can find {tn}n≥1 ⊆ [0, 1] and {xn}n≥1 ⊆ W 1,p

n (Z) such that

(4.33) tn → t in [0, 1], ‖xn‖ → ∞ and 0 ∈ h1(tn, xn) for all n ≥ 1.

From the inclusion in (4.33), we have

(4.34) A(xn) + εKp(xn) = tnun + tnεK+
p (xn) with un ∈ N(xn), n ≥ 1.

Let yn = xn
‖xn‖ , n ≥ 1. We may assume that

yn
w→ y in W 1,p

n (Z), yn → y in Lp(Z), yn(z) → y(z) a.e. on Z

and |yn(z)| ≤ k(z) for a.a. z ∈ Z, all n ≥ 1, with k ∈ Lp(Z)+.

We divide (4.34) by ‖xn‖p−1. Then

(4.35) A(yn) + εKp(yn) = tn
un

‖xn‖p−1
+ tnεK+

p (yn) n ≥ 1.

Note that hypotheses H(j)(iii), (iv), (vi), imply

|u| ≤ ã(z) + c̃|x|p−1 for a.a. z ∈ Z, all x ∈ R and all u ∈ ∂j(z, x),

with ã ∈ L∞(Z)+, c̃ > 0. So it follows that

{hn =
un

‖xn‖p−1
}n≥1 ⊆ Lp′(Z) is bounded.

Hence we may assume that
hn

w→ h in Lp′(Z).
Arguing as in the proof of Proposition 3.7 in [1], we show that

h(z) = g(z)y+(z)p−1

with g ∈ L∞(Z), −c ≤ g(z) ≤ θ(z) a.e. on Z, c > 0 as in hypothesis H(j)(vi).
Moreover, acting on (4.35) with yn − y and passing to the limit, we have

lim
n→∞〈A(yn), yn − y〉 = 0,
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⇒yn → y in W 1,p
n (Z) (see Proposition 3.2), hence ‖y‖ = 1.

So, if we pass to the limit as n →∞ in (4.35), then

(4.36) A(y) + εKp(y) = t(g + ε)K+
p (y).

On (4.36), we act with the test function −y− ∈ W 1,p
n (Z). Then

ε‖y−‖p = 0, i.e. y− = 0 and so y ≥ 0, y 6= 0.

Hence (4.36) becomes

(4.37) A(y) + εKp(y) = t(g + ε)Kp(y).

We act with y ∈ W 1,p
n (Z) and so

‖Dy‖p
p + ε‖y‖p

p ≤ tε‖y‖p
p ≤ ε‖y‖p

p (since g ≤ 0,t ∈ [0, 1]),(4.38)

⇒‖Dy‖p = 0,

⇒y = ξ ∈ R, ξ > 0 (since y ≥ 0, y 6= 0).

If t = 0, then from (4.38) we have

ε‖y‖p = 0, i.e. y = 0, a contradiction.

If 0 < t ≤ 1, then from (4.37) we have

0 ≤ tξp(
∫

Z
g(z)dz + ε|Z|N ).

Choosing ε > 0 small, we have
∫
Z g(z)dz + ε|Z|N < 0, a contradiction. This proves

the Claim.
The Claim permits the use of the homotopy invariance property. Hence

(4.39) d̂(∂ϕε, BR, 0) = d(S)+(A + εKp, BR, 0) for all R ≥ R0.

But from the proof of Proposition 3.7 in [1], we have

(4.40) d(S)+(A + εKp, BR, 0) = 1 for all R > 0.

From (4.39) and (4.40), we conclude that

d̂(∂ϕε, BR, 0) = 1 for all R ≥ R0. ¤
Next we perform a similar computation for small balls.

Proposition 4.6. If hypotheses H(j) hold, then there exists ρ0 > 0 such that for
all 0 < ρ ≤ ρ0

d̂(∂ϕε, Bρ, 0) = 1 (Bρ = {x ∈ W 1,p
n (Z) : ‖x‖ < ρ})

Proof. We fix η ∈ L∞(Z)+ such that

η1(z) ≤ η(z) ≤ η2(z) a.e. on and essinf
Z

η ≥ γ > 0.

We consider the admissible homotopy h2 : [0, 1]×W 1,p
n (z) → 2W 1,p

n (Z)\{∅} defined
by

h2(t, x) = A(x) + εKp(x)− (1− t)ηK+
p (x)− tN(x)− tεK+

p (x).

Claim. We can find ρ0 > 0 such that 0 /∈ h2(t, x) for all t ∈ [0, 1] and all 0 <
‖x‖ ≤ ρ0.
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We argue indirectly. So suppose that the Claim is not true. We can find
{tn}n≥1 ⊆ [0, 1] and {xn}n≥1 ⊆ W 1,p

n (Z) such that

(4.41) tn → t ∈ [0, 1], ‖xn‖ → 0 and 0 ∈ h2(tn, xn) for all n ≥ 1.

The inclusion in (4.41) implies that

(4.42) A(xn)+εKp(xn) = (1− tn)ηK+
p (xn)+ tnun + tnεK+

p (xn) with un ∈ N(xn).

We set yn = xn
‖xn‖ , n ≥ 1. Since ‖yn‖ = 1 for all n ≥ 1, we may assume that

yn
w→ y in W 1,p

n (Z), yn → y in Lp(Z), yn(z) → y(z) a.e. on Z

and |yn(z)| ≤ k(z) for a.a. z ∈ Z, all n ≥ 1, with k ∈ Lp(Z)+.

From (4.42), we obtain

(4.43) A(yn) + εKp(yn) = (1− tn)ηK+
p (yn) + tn

un

‖xn‖p−1
+ tnεK+

p (yn).

Note that by virtue of hypothesis H(j)(v), we can find η̃ ∈ L∞(Z)+\{∅} such that

(4.44) |u| ≤ η̃(z)|x|p−1 for a.a. z ∈ Z, all x ≤ δ and all u ∈ ∂j(z, x).

On the other hand from the proof of Proposition 4.5, we have

|u| ≤ ã(z) + c̃|x|p−1 for a.a. z ∈ Z, all x ∈ R and all u ∈ ∂j(z, x),

with ã ∈ L∞(Z)+, c̃ > 0. Hence

(4.45) |u| ≤ (
ã(z)
δp−1

+ c̃)|x|p−1 for a.a. z ∈ Z, all x ≥ δ and all u ∈ ∂j(z, x).

Combining (4.44) and (4.45), we infer that

|u| ≤ η(z)|x|p−1 for a.a. z ∈ Z, all x ∈ R and all u ∈ ∂j(z, x),

with η ∈ L∞(Z)+. Therefore

|un(z)| ≤ η(z)|xn(z)|p−1 a.e. on Z,

⇒{ un

‖xn‖p−1
}n≥1 ⊆ Lp′(Z) is bounded.

So, we may assume that

ĥn =
un

‖xn‖p−1

w→ ĥ in Lp′(Z).

Arguing as in the proof of Proposition 3.8 in [1], we show that

ĥ(z) = ĝ(z)y+(z)p−1 a.e. on Z,

with ĝ ∈ L∞(Z)+, η1(z) ≤ ĝ(z) ≤ η2(z) a.e. on Z. Moreover, as before, acting on
(4.43) with yn − y, passing to the limit as n → ∞ and using the (S)+-property of
A, we obtain

yn → y in W 1,p
n (Z), ‖y‖ = 1.

From (4.43), in the limit as n →∞, we have

A(y) + εKp(y) = (1− t)ηK+
p (y) + t(ĝ + ε)K+

p (y),

⇒A(y) + εKp(y) = (ξ + tε)K+
p (y) with ξ = (1− t)η + tĝ ∈ L∞(Z)+.(4.46)
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We act with the test function −y− ∈ W 1,p
n (Z). Then

ε‖y−‖p = 0

⇒y− = 0 and so y ≥ 0, y 6= 0.

So (4.46) becomes
A(y) = (ξ − (1− t)ε)Kp(y).

As before, using the nonlinear Green’s identity, we have

(4.47)




−div(‖Dy(z)‖p−2Dy(z)) = (ξ(z)− (1− t)ε)|y(z)|p−2y(z) a.e. on Z,

∂y

∂n
= 0 on ∂Z.





Nonlinear regularity theory implies y ∈ C+. We choose ε < γ ≤ essinf η. Then
ξ− (1− t)ε ≥ 0, ξ− (1− t)ε 6= 0 and so λ̂0(ξ− (1− t)ε) = 0. Moreover, Proposition
3.4 implies

(4.48) λ̂1(ξ − (1− t)ε) ≥ λ̂1(ξ) > λ̂1(λ1) = 1.

From (4.47) and (4.48), we infer that y = 0, a contradiction to the fact that ‖y‖ = 1.
This proves the Claim.

By homotopy invariance, we have

(4.49) d̂(∂ϕε, Bρ, 0) = d̂(A + εKp − ηK+
p , Bρ, 0) for all 0 < ρ ≤ ρ0.

We need to compute d̂(A + εKp − ηK+
p , Bρ, 0). To this end we consider the (S)+-

homotopy h3 : [0, 1]×W 1,p
n (Z) → W 1,p

n (Z)∗

h3(t, x) = A(x) + εKp(x)− tηK+
p (x).

Suppose that for t ∈ [0, 1] and x 6= 0, we have

h3(t, x) = 0,

⇒A(x) + εKp(x) = tηK+
p (x).(4.50)

We act on (4.50) with −x− ∈ W 1,p
n (Z). Then

ε‖x−‖p = 0
⇒x ≥ 0, x 6= 0.

So from (4.50) we have
A(x) + εKp(x) = tηKp(x).

If t = 0, then

A(x) + εKp(x) = 0,

⇒x = 0, a contradiction.

If 0 < t ≤ 1, then

A(x) = (tη − ε)Kp(x),

⇒



−div(‖Dx(z)‖p−2Dx(z)) = (tη(z)− ε)|x(z)|p−2x(z) a.e. on Z,

∂y

∂n
= 0.



(4.51)
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Choose 0 < ε < tγ. Then tη(·) − ε ∈ L∞(Z)+, tη − ε 6= 0 and λ̂0(tη − ε) = 0.
Also Proposition 3.4 implies

λ̂1(tη − ε) > λ̂1(λ1) = 1.

Because of (4.51) we infer y = 0, a contradiction. Therefore by homotopy invari-
ance

d(S)+(A + εKp − ηK+
p , Bρ, 0) = d(S)+(A + εKp, Bρ, 0) = 1 for all ρ > 0,(4.52)

⇒d̂(∂ϕε, Bρ, 0) = 1 for all 0 < ρ ≤ ρ0 (see (4.49) and (4.52)). ¤

Now we are ready to prove the multiplicity result for the positive solutions of
(1.1).

Theorem 4.7. If hypotheses H(j) hold, then problem (1.1) has at least two solu-
tions x0, x̂ ∈ intC+.

Proof. From Proposition 4.3 we already have one solution x0 ∈ intC+.
Let 0 < ρ ≤ ρ0, R ≥ R0 and r > 0 be such that

Br(x0) ∩Bρ = ∅ and Br(x0) ⊆ BR.

Then from Propositions 4.4, 4.5, 4.6 and the domain additivity and excision
properties of the degree map, we have

d̂(∂ϕε, BR, 0) = d̂(∂ϕε, Bρ, 0) + d̂(∂ϕε, Br(x0), 0) + d̂(∂ϕε, BR\(Br(x0) ∪Bρ), 0),

⇒d̂(∂ϕε, BR\(Br(x0) ∩Bρ), 0) = −1.

By virtue of the solution property, we can find x̂ ∈ BR\(Br(x0) ∩Bρ), 0), hence
x̂ 6= x0, x̂ 6= 0, such that

(4.53) A(x̂) + εKp(x̂) = û + εK+
p (x̂) with û ∈ N(x̂).

We act with the test function −x̂− ∈ W 1,p
n (Z). Recalling that j(z, x) = 0 for a.a.

z ∈ Z and all x ≤ 0, we obtain

ε‖x̂‖p = 0, i.e. x̂ ≥ 0, x̂ 6= 0.

So (4.53) becomes

A(x̂) = û with û ∈ N(x̂),

⇒



−div(‖Dx̂(z)‖p−2Dx̂(z)) = û(z) a.e. on Z,

∂x̂

∂n
= 0 on ∂Z.





From nonlinear regularity theory and the nonlinear strong maximum principle of
Vazquez [27], we conclude that x̂ ∈ intC+. ¤
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