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ON A STRONGLY NONEXPANSIVE SEQUENCE IN HILBERT
SPACES

KOJI AOYAMA, YASUNORI KIMURA, WATARU TAKAHASHI, AND MASASHI TOYODA

Abstract. In order to discuss some weak convergence theorems for nonexpan-
sive mappings, we introduce a notion of a sequence of nonexpansive mappings,
which is called a strongly nonexpansive sequence. We investigate some proper-
ties of such sequences and prove weak convergence theorems. Then we deal with
some applications for monotone operators.

1. Introduction

The purpose of this paper is to introduce a notion of a sequence of nonexpan-
sive mappings, which is called a strongly nonexpansive sequence, and to discuss its
properties and applications.

The notion of strong nonexpansiveness for a single mapping was introduced and
studied by Bruck and Reich [7]; see also Browder [3]. Every firmly nonexpansive
mapping [6], which is an important mapping in nonlinear analysis, is strongly nonex-
pansive. Strongly nonexpansive mappings have several nice properties, for example,
the composition of two such mappings is also strongly nonexpansive; see [7] for more
details.

On the other hand, in the study of approximating fixed points of nonexpansive
mappings, we often treat some kind of sequence of mappings. The property of such
sequences, as well as that of each mapping, is important in the study; see [1, 2].

This paper is constructed as follows: In §3, motivated by results mentioned above,
we discuss a strong nonexpansiveness for a sequence of nonexpansive mappings.
Roughly speaking, we see that the strong nonexpansiveness is preserved under the
composition, and that such a sequence can be constructed for an arbitrary sequence
of nonexpansive mappings. Then, in §4, we prove some weak convergence theorems
for a strongly nonexpansive sequence. Finally, in §5, we apply our results obtained
in §3 and §4 to some problems for monotone operators.

2. Preliminaries

Throughout this paper, N denotes the set of positive integers, H a real Hilbert
space with inner product 〈 · , · 〉 and norm ‖ · ‖, F (T ) the set of fixed points of a
mapping T : C → H, where C is a nonempty subset of H. Strong convergence of a
sequence {xn} to x is denoted by xn → x and weak convergence by xn ⇀ x.

Let C be a nonempty subset of H and T a mapping of C into H. A mapping
T is said to be nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C. It is known
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that if C is a closed convex subset of H and T is nonexpansive, then F (T ) is
closed and convex, and moreover, I − T is demiclosed, that is, u ∈ F (T ) whenever
‖xn − Txn‖ → 0 and xn ⇀ u. A mapping T is said to be strongly nonexpansive [7]
if T is nonexpansive and

lim
n→∞ ‖xn − yn − (Txn − Tyn)‖ = 0

whenever {xn} and {yn} are two sequences in C such that {xn − yn} is bounded
and ‖xn − yn‖−‖Txn − Tyn‖ → 0. A mapping T is said to be firmly nonexpansive
if

‖Tx− Ty‖2 ≤ ‖x− y‖2 − ‖x− y − (Tx− Ty)‖2

for all x, y ∈ C; see, for example, [9]. It is obvious that every firmly nonexpansive
mapping is strongly nonexpansive.

Let C be a nonempty closed convex subset of a Hilbert space H. The nearest
point projection of H onto C is denoted by PC , that is, ‖x− PCx‖ ≤ ‖x− y‖ for
all x ∈ H and y ∈ C. Such PC is called the metric projection of H onto C. We
know that the metric projection PC is firmly nonexpansive and

(2.1) 〈x− PCx, y − PCx〉 ≤ 0

holds for all x ∈ H and y ∈ C; see [9, 15].
Let α > 0 be a given constant. A mapping A : C → H is said to be α-inverse-

strongly-monotone if 〈x− y, Ax−Ay〉 ≥ α ‖Ax−Ay‖2 for all x, y ∈ C. It is known
that

(2.2) ‖Ax−Ay‖ ≤ 1
α
‖x− y‖

for all x, y ∈ C if A is α-inverse-strongly-monotone; see, for example, [5, 17].
Let B be a mapping of H into 2H , where 2H denotes the set of all subsets of H.

Such a mapping B is said to be a multi-valued mapping on H. The effective domain
of B is denoted by dom(B), that is, dom(B) = {x ∈ H : Bx 6= ∅}. A multi-valued
mapping B is said to be a monotone operator on H if 〈x− y, u− v〉 ≥ 0 for all
x, y ∈ dom(B), u ∈ Bx, and v ∈ By. A monotone operator B on H is said to be
maximal if its graph is not properly contained in the graph of any other monotone
operator B′ on H. It is known that, for a maximal monotone operator B on H and
r > 0, we may define a single-valued mapping (I+rB)−1 : H → dom(B); see [10], [4]
and [14]. Such a mapping (I + rB)−1 is called the resolvent of B for r.

Let B be a maximal monotone operator on H and B−10 = {x ∈ H : Bx 3 0}.
It is known that the resolvent (I + rB)−1 is firmly nonexpansive and B−10 =
F ((I + rB)−1) for all r > 0. It is also known that

(2.3)
x− Jλx

λ
∈ AJλx

and

(2.4) ‖Jλx− Jµx‖ ≤ |λ− µ|
λ

‖x− Jλx‖
hold for all λ, µ > 0 and x ∈ H, where Jλ = (I + λB)−1; see [9, 15, 8] for more
details.

We use the following lemmas:
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Lemma 2.1 ([18]). Let {an} and {bn} be two sequences of nonnegative real numbers.
If

∑∞
n=1 bn < ∞ and an+1 ≤ an + bn for every n ∈ N, then {an} is convergent.

Lemma 2.2 ( [17]). Let F be a nonempty closed convex subset of a Hilbert space H
and PF the metric projection of H onto F . Let {xn} be a sequence in H such that

‖xn+1 − u‖ ≤ ‖xn − u‖
for all u ∈ F and n ∈ N. Then {PF xn} converges strongly.

It is known that all Hilbert spaces satisfy Opial’s condition [11], that is,

lim inf
n→∞ ‖xn − u‖ < lim inf

n→∞ ‖xn − v‖
if xn ⇀ u and u 6= v. It is also known that

(2.5) λ(1− λ) ‖x− y‖2 = λ ‖x‖2 + (1− λ) ‖y‖2 − ‖λx + (1− λ)y‖2

holds for all x, y ∈ H and λ ∈ R; see, for instance, [16].

3. Strongly nonexpansive sequences

In this section, we introduce the definition of a strongly nonexpansive sequence.
Then we show several examples and investigate some properties of such sequences.

Let C be a nonempty subset of a Hilbert space H. A sequence {Tn} of mappings
of C into H is said to be a strongly nonexpansive sequence if each Tn is nonexpansive
and

lim
n→∞ ‖xn − yn − (Tnxn − Tnyn)‖ = 0

whenever {xn} and {yn} are two sequences in C such that {xn − yn} is bounded
and ‖xn − yn‖ − ‖Tnxn − Tnyn‖ → 0.

Example 3.1. Let T : C → H be a strongly nonexpansive mapping. Put Tn = T
for n ∈ N. Then it is obvious that {Tn} is a strongly nonexpansive sequence.

Example 3.2. Let {Tn} be a sequence of firmly nonexpansive mappings of C into
H. Then it is clear that {Tn} is a strongly nonexpansive sequence. In particular, if
B is a maximal monotone operator on H, then {(I + rnB)−1} is a strongly nonex-
pansive sequence, where {rn} is a sequence of positive real numbers. Furthermore,
a sequence {PCn} of metric projections is a strongly nonexpansive sequence, where
{Cn} is a sequence of nonempty closed convex subset of H.

Example 3.3. Let A be an α-inverse-strongly-monotone mapping of C into H. It
is known that

‖(I − λA)x− (I − λA)y‖2

≤ ‖x− y‖2 − λ(2α− λ) ‖Ax−Ay‖2

= ‖x− y‖2 − 2α− λ

λ
‖x− y − ((I − λA)x− (I − λA)y)‖2

(3.1)

holds for all x, y ∈ C and λ > 0. This shows that a mapping I−λA is nonexpansive
for all λ ∈ (0, 2α]. Let {λn} be a sequence of real numbers such that 0 < infn∈N λn ≤
supn∈N λn < 2α. Then the inequality (3.1) also implies that {I−λnA} is a strongly
nonexpansive sequence.
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Let {Tn} be a sequence of mappings of C into H. A sequence {zn} in C is said
to be an approximate fixed point sequence of {Tn} if ‖zn − Tnzn‖ → 0. The set of
all bounded approximate fixed point sequences of {Tn} is denoted by F̃ ({Tn}), that
is,

F̃ ({Tn}) =
{
{zn} : sup

n∈N
‖zn‖ < ∞, ‖zn − Tnzn‖ → 0, zn ∈ C for all n ∈ N

}
.

Clearly, if {Tn} has a common fixed point, then all bounded sequences in the com-
mon fixed point set are approximate fixed point sequences of {Tn}.

The composition of two strongly nonexpansive sequences is a strongly nonexpan-
sive sequence as follows:

Theorem 3.4. Let C and D be nonempty subsets of a Hilbert space H. Let {Sn}
be a sequence of mappings of D into H and {Tn} a sequence of mappings of C
into H. Suppose that both {Sn} and {Tn} are strongly nonexpansive sequences and
Tn(C) ⊂ D for each n ∈ N. Then {SnTn} is a strongly nonexpansive sequence.

Proof. Let {xn} and {yn} be two sequences in C such that {xn − yn} is bounded
and

(3.2) ‖xn − yn‖ − ‖SnTnxn − SnTnyn‖ → 0.

From the assumption that each Sn and Tn are nonexpansive, we have

0 ≤ ‖xn − yn‖ − ‖Tnxn − Tnyn‖ ≤ ‖xn − yn‖ − ‖SnTnxn − SnTnyn‖
for every n ∈ N. Therefore, from (3.2), we see that

‖xn − yn‖ − ‖Tnxn − Tnyn‖ → 0.

Since {Tn} is a strongly nonexpansive sequence, we obtain

(3.3) ‖xn − yn − (Tnxn − Tnyn)‖ → 0.

Clearly we have

0 ≤ ‖Tnxn − Tnyn‖ − ‖SnTnxn − SnTnyn‖
≤ ‖xn − yn‖ − ‖SnTnxn − SnTnyn‖ .

It follows from (3.2) that

‖Tnxn − Tnyn‖ − ‖SnTnxn − SnTnyn‖ → 0.

Since {Tnxn − Tnyn} is bounded and {Sn} is a strongly nonexpansive sequence, we
obtain

(3.4) ‖Tnxn − Tnyn − (SnTnxn − SnTnyn)‖ → 0.

Therefore, from (3.3) and (3.4), we have

‖xn − yn − (SnTnxn − SnTnyn)‖
≤ ‖xn − yn − (Tnxn − Tnyn)‖+ ‖Tnxn − Tnyn − (SnTnxn − SnTnyn)‖ → 0

as n →∞. This completes the proof. ¤
Remark 3.5. Bruck and Reich [7] showed that the composition of two strongly
nonexpansive mappings is strongly nonexpansive; see [7, Proposition 1.1].
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In order to examine a property of approximate fixed point sequences under com-
position, we need the following lemma:

Lemma 3.6. Let C and D be nonempty subsets of a Hilbert space H. Let {Sn} be
a sequence of nonexpansive mappings of C into H and {Tn} a sequence of mappings
of D into H. If Tn(D) ⊂ C for every n ∈ N, then F̃ ({Sn})∩F̃ ({Tn}) ⊂ F̃ ({SnTn}).
Proof. Suppose that F̃ ({Sn}) ∩ F̃ ({Tn}) is nonempty. Let {wn} ∈ F̃ ({Sn}) ∩
F̃ ({Tn}) be fixed. Note that wn ∈ C ∩ D for every n ∈ N. Since each Sn is
nonexpansive, it follows that

‖wn − SnTnwn‖ ≤ ‖wn − Snwn‖+ ‖Snwn − SnTnwn‖
≤ ‖wn − Snwn‖+ ‖wn − Tnwn‖ → 0.

Therefore {wn} ∈ F̃ ({SnTn}). ¤
Theorem 3.7. Let C and D be nonempty subsets of a Hilbert space H. Let {Sn}
be a strongly nonexpansive sequence of mappings of C into H and {Tn} a sequence
of nonexpansive mappings of D into H. Suppose that

F̃ = F̃ ({Sn}) ∩ F̃ ({Tn}) 6= ∅
and Tn(D) ⊂ C for every n ∈ N. Then F̃ = F̃ ({SnTn}).
Proof. By assumption and Lemma 3.6, we see that ∅ 6= F̃ ⊂ F̃ ({SnTn}). Thus we
have only to show F̃ ⊃ F̃ ({SnTn}). Let {zn} ∈ F̃ ({SnTn}) and {wn} ∈ F̃ be fixed.
Since both Sn and Tn are nonexpansive, it follows that

‖Tnzn − Tnwn‖ ≤ ‖zn − wn‖
≤ ‖zn − SnTnzn‖+ ‖SnTnzn − SnTnwn‖

+ ‖SnTnwn − Snwn‖+ ‖Snwn − wn‖
≤ ‖SnTnzn − SnTnwn‖+ βn,

where βn = ‖zn − SnTnzn‖+ ‖Tnwn − wn‖+ ‖Snwn − wn‖. This implies that

0 ≤ ‖Tnzn − Tnwn‖ − ‖SnTnzn − SnTnwn‖ ≤ βn → 0.

Since {Tnzn−Tnwn} is bounded in C and {Sn} is a strongly nonexpansive sequence,
it follows that

‖Tnzn − Tnwn − (SnTnzn − SnTnwn)‖ → 0.

Therefore we obtain that

‖zn − Tnzn‖ = ‖zn − SnTnzn + SnTnzn − SnTnwn − (Tnzn − Tnwn)

+ SnTnwn − Snwn + Snwn − wn + wn − Tnwn‖
≤ ‖zn − SnTnzn‖+ ‖SnTnzn − SnTnwn − (Tnzn − Tnwn)‖

+ ‖SnTnwn − Snwn‖+ ‖Snwn − wn‖+ ‖wn − Tnwn‖
≤ ‖zn − SnTnzn‖+ ‖SnTnzn − SnTnwn − (Tnzn − Tnwn)‖

+ ‖Tnwn − wn‖+ ‖Snwn − wn‖+ ‖wn − Tnwn‖ → 0

as n →∞. Thus {zn} ∈ F̃ ({Tn}). From this fact, we also obtain

‖zn − Snzn‖ ≤ ‖zn − SnTnzn‖+ ‖SnTnzn − Snzn‖
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≤ ‖zn − SnTnzn‖+ ‖Tnzn − zn‖ → 0

as n →∞. Thus {zn} ∈ F̃ ({Sn}) and hence F̃ ({SnTn}) ⊂ F̃ . ¤
Using Theorem 3.7, we directly obtain the following:

Corollary 3.8. Let C and D be nonempty subsets of a Hilbert space H. Let {Sn}
be a strongly nonexpansive sequence of mappings of D into H and {Tn} a sequence
of nonexpansive mappings of C into H. Suppose that

F =
∞⋂

n=1

F (Sn) ∩
∞⋂

n=1

F (Tn) 6= ∅

and Tn(D) ⊂ C for every n ∈ N. Then F̃ ({SnTn}) = F̃ ({Sn}) ∩ F̃ ({Tn}) 6= ∅.
Proof. Let {wn} be a bounded sequence in F . Then it is clear that {wn} ∈ F̃ ({Sn})∩
F̃ ({Tn}) 6= ∅. Therefore we obtain the conclusion from Theorem 3.7. ¤

As a special case of Corollary 3.8, we get an improvement of [7, Lemma 2.1].

Corollary 3.9. Let C and D be nonempty subsets of a Hilbert space H. Let S be
a strongly nonexpansive mapping of C into H and T a nonexpansive mapping of D
into H. Suppose that F (S)∩F (T ) 6= ∅ and T (D) ⊂ C. Then F (S)∩F (T ) = F (ST ).

As in the proof of Theorem 3.7, we obtain the following:

Theorem 3.10. Let C and D be nonempty subsets of a Hilbert space H. Let {Sn}
be a strongly nonexpansive sequence of mappings of C into H and {Tn} a sequence
of nonexpansive mappings of D into H. Suppose that

F̃ = F̃ ({Sn}) ∩ F̃ ({Tn}) 6= ∅
and Sn(C) ⊂ D for every n ∈ N. Then F̃ = F̃ ({TnSn}).

For the remainder of this section we observe some properties concerning the
convex combination of sequences of mappings.

Theorem 3.11. Let C be a nonempty subset of a Hilbert space H. Let {Sn} be
a strongly nonexpansive sequence of mappings of C into H and {Tn} a sequence
of nonexpansive mappings of C into H. Let {λn} be a sequence in [0, 1] such that
lim infn→∞ λn > 0. Let {Un} be a sequence of mappings of C into H defined by
Un = λnSn +(1−λn)Tn for n ∈ N. Then {Un} is a strongly nonexpansive sequence.

Proof. Let {xn} and {yn} be two sequences in C such that {xn − yn} is bounded
and

(3.5) ‖xn − yn‖ − ‖Unxn − Unyn‖ → 0.

Since each Sn and Tn are nonexpansive, we have

‖Unxn − Unyn‖ = ‖λn(Snxn − Snyn) + (1− λn)(Tnxn − Tnyn)‖
≤ λn ‖Snxn − Snyn‖+ (1− λn) ‖Tnxn − Tnyn‖
≤ λn ‖Snxn − Snyn‖+ (1− λn) ‖xn − yn‖
≤ ‖xn − yn‖ .



STRONGLY NONEXPANSIVE SEQUENCE 477

This yields that

0 ≤ λn(‖xn − yn‖ − ‖Snxn − Snyn‖) ≤ ‖xn − yn‖ − ‖Unxn − Unyn‖
for every n ∈ N. Therefore it follows from (3.5) that

(3.6) ‖xn − yn‖ − ‖Snxn − Snyn‖ → 0.

Since {Sn} is a strongly nonexpansive sequence, we have

(3.7) ‖xn − yn − (Snxn − Snyn)‖ → 0.

On the other hand, from (2.5), we have

λn(1− λn) ‖Snxn − Snyn − (Tnxn − Tnyn)‖2

= λn ‖Snxn − Snyn‖2 + (1− λn) ‖Tnxn − Tnyn‖2

− ‖λn(Snxn − Snyn) + (1− λn)(Tnxn − Tnyn)‖2

= λn ‖Snxn − Snyn‖2 + (1− λn) ‖Tnxn − Tnyn‖2 − ‖Unxn − Unyn‖2

≤ λn ‖Snxn − Snyn‖2 + (1− λn) ‖xn − yn‖2 − ‖Unxn − Unyn‖2

= λn(‖Snxn − Snyn‖2 − ‖xn − yn‖2) + ‖xn − yn‖2 − ‖Unxn − Unyn‖2 .

Since both {Snxn − Snyn} and {Unxn − Unyn} are bounded, it follows from (3.5)
and (3.6) that

λn(1− λn) ‖Snxn − Snyn − (Tnxn − Tnyn)‖2 → 0.

Thus, by lim infn→∞ λn > 0, we get

(1− λn) ‖Snxn − Snyn − (Tnxn − Tnyn)‖ → 0.

From this fact combined with (3.7), it follows that

‖xn − yn − (Unxn − Unyn)‖
= ‖xn − yn − (Snxn − Snyn) + (1− λn)(Snxn − Snyn − (Tnxn − Tnyn))‖
≤ ‖xn − yn − (Snxn − Snyn)‖

+ (1− λn) ‖Snxn − Snyn − (Tnxn − Tnyn)‖ → 0.

This completes the proof. ¤
Remark 3.12. It is known that the convex combination of a nonexpansive map-
ping and a strongly nonexpansive mapping is strongly nonexpansive in a uniformly
convex Banach space; see [7, Theorem 1.3].

It is obvious that the identity mapping I is strongly nonexpansive. Therefore we
immediately deduce from Theorem 3.11 the following result, which provides us to
construct a strongly nonexpansive sequence from a given sequence of nonexpansive
mappings.

Corollary 3.13. Let C be a nonempty subset of a Hilbert space H. Let {Tn} be a
sequences of nonexpansive mappings of C into H. Let {λn} be a sequence in [0, 1]
such that lim infn→∞ λn > 0. Let {Un} be a sequence of mappings of C into H
defined by Un = λnI + (1− λn)Tn for n ∈ N, where I is the identity mapping on C.
Then {Un} is a strongly nonexpansive sequence.
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We examine some properties of approximate fixed point sequences under convex
combinations.

Lemma 3.14. Let C be a nonempty subset of a Hilbert space H. Let {Sn} and
{Tn} be two sequences of mappings of C into H. Let {λn} be a bounded sequence
of real numbers and {Un} a sequence of mappings of C into H defined by Un =
λnSn + (1− λn)Tn for n ∈ N. Suppose that

F̃ = F̃ ({Sn}) ∩ F̃ ({Tn}) 6= ∅.
Then F̃ ⊂ F̃ ({Un}).
Proof. Let {wn} ∈ F̃ be given. Then it is easily shown that

‖wn − Unwn‖ = ‖λn(wn − Snwn) + (1− λn)(wn − Tnwn)‖
≤ |λn| ‖wn − Snwn‖+ |1− λn| ‖wn − Tnwn‖ → 0

as n →∞. Thus {wn} ∈ F̃ ({Un}). ¤

Theorem 3.15. Let C be a nonempty subset of a Hilbert space H. Let {Sn} be
a strongly nonexpansive sequence of mappings of C into H and {Tn} a sequence
of nonexpansive mappings of C into H. Let {λn} be a sequence in [0, 1] such that
0 < lim infn→∞ λn ≤ lim supn→∞ λn < 1. Let {Un} be a sequence of mappings of C
into H defined by Un = λnSn + (1− λn)Tn for n ∈ N. Suppose that

F̃ = F̃ ({Sn}) ∩ F̃ ({Tn}) 6= ∅.
Then F̃ = F̃ ({Un}).
Proof. From the consequence of Lemma 3.14, we have F̃ ⊂ F̃ ({Un}) and hence
F̃ ({Un}) 6= ∅. We have only to show that F̃ ⊃ F̃ ({Un}). Let {zn} ∈ F̃ ({Un}) and
{wn} ∈ F̃ be fixed. Since both Sn and Tn are nonexpansive, we have

‖zn − wn‖ = ‖zn − Unzn + Unzn − Unwn + Unwn − wn‖
≤ ‖zn − Unzn‖+ λn ‖Snzn − Snwn‖

+ (1− λn) ‖Tnzn − Tnwn‖+ ‖Unwn − wn‖
≤ ‖zn − Unzn‖+ λn ‖Snzn − Snwn‖

+ (1− λn) ‖zn − wn‖+ ‖Unwn − wn‖ .

Therefore it follows that

0 ≤ λn(‖zn − wn‖ − ‖Snzn − Snwn‖) ≤ ‖zn − Unzn‖+ ‖Unwn − wn‖ → 0.

Taking into account lim infn→∞ λn > 0, we have

‖zn − wn‖ − ‖Snzn − Snwn‖ → 0.

Since {zn − wn} is bounded and {Sn} is a strongly nonexpansive sequence, we
conclude that

‖zn − Snzn‖ = ‖zn − wn − (Snzn − Snwn) + wn − Snwn‖
≤ ‖zn − wn − (Snzn − Snwn)‖+ ‖wn − Snwn‖ → 0
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as n →∞. This means that {zn} ∈ F̃ ({Sn}), and moreover,

(1− λn) ‖zn − Tnzn‖ = ‖λn(Snzn − zn) + zn − Unzn‖
≤ λn ‖Snzn − zn‖+ ‖zn − Unzn‖ → 0.

Taking into account lim infn→∞(1 − λn) > 0, we have ‖zn − Tnzn‖ → 0. Thus
{zn} ∈ F̃ ({Tn}). This completes the proof. ¤

Theorem 3.15 yields the following:

Corollary 3.16. Suppose that C, {Sn}, {Tn}, {λn}, and {Un} are the same as in
Theorem 3.15. Suppose that

F =
∞⋂

n=1

F (Sn) ∩
∞⋂

n=1

F (Tn) 6= ∅.

Then F̃ ({Un}) = F̃ ({Sn}) ∩ F̃ ({Tn}) 6= ∅.
Proof. By assumption, we may choose a point w ∈ F . Let {wn} be a sequence in
C defined by wn = w for n ∈ N. Then we see that {wn} ∈ F̃ ({Sn}) ∩ F̃ ({Tn}) 6= ∅.
Theorem 3.15 implies that F̃ ({Un}) = F̃ ({Sn}) ∩ F̃ ({Tn}). ¤

4. Weak Convergence Theorems

In this section, we discuss weak convergence theorems for a strongly nonexpansive
sequence. In the following lemma, we do not need to assume the existence of a
common fixed point of a given sequence of mappings.

Lemma 4.1. Let C be a nonempty closed convex subset of a Hilbert space H. Let
{Tn} be a strongly nonexpansive sequence of self mappings of C such that F (Tn)
is nonempty for every n ∈ N. Suppose that there exists a nonempty closed convex
subset C0 of C such that the following two conditions hold:

(1)
∑∞

n=1 ‖Tnz − z‖ < ∞ for any z ∈ C0;
(2) if for a weakly convergent sequence {ui} in C with ui ⇀ u there is a subse-

quence {Tni} of {Tn} such that {ui} ∈ F̃ ({Tni}), then u ∈ C0.
Let {xn} be a sequence defined by x1 = x ∈ C and xn+1 = Tnxn for n ∈ N. Then
{xn} converges weakly to some point in C0.

Proof. Let z ∈ C0 be fixed. Since each Tn is nonexpansive, it follows that
‖xn+1 − z‖ ≤ ‖Tnxn − Tnz‖+ ‖Tnz − z‖

≤ ‖xn − z‖+ ‖Tnz − z‖(4.1)

for every n ∈ N. Thus the condition (1) and Lemma 2.1 imply that {‖xn − z‖} is
convergent and hence both {xn} and {xn−z} are bounded. It also follows from (4.1)
that

0 ≤ ‖xn − z‖ − ‖Tnxn − Tnz‖ ≤ ‖xn − z‖ − ‖xn+1 − z‖+ ‖Tnz − z‖ .

Therefore we obtain ‖xn − z‖ − ‖Tnxn − Tnz‖ → 0. Since {Tn} is a strongly non-
expansive sequence, we have

(4.2) lim
n→∞ ‖xn − Tnxn‖ = 0.
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Since {xn} is bounded, we see that {xn} has a weakly convergent subsequence. We
show that the set of weak subsequential limits of {xn} is a singleton. Suppose that
xni ⇀ v, xmi ⇀ w and v 6= w. Note that v, w ∈ C0 by the condition (2) and (4.2).
Also note that both {‖xn − v‖} and {‖xn − w‖} are convergent. Thus, by Opial’s
condition, we have

lim
n→∞ ‖xn − v‖ = lim inf

i→∞
‖xni − v‖

< lim inf
i→∞

‖xni − w‖ = lim
n→∞ ‖xn − w‖ = lim inf

i→∞
‖xmi − w‖

< lim inf
i→∞

‖xmi − v‖ = lim
n→∞ ‖xn − v‖ .

This is a contradiction. Hence v = w. This means that {xn} converges weakly to
some point in C0. ¤

A sufficient condition of the conditions (1) and (2) in Lemma 4.1 is stated as
follows:

Lemma 4.2. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let {Tn} be a sequence of mappings of C into H such that

⋂∞
n=1 F (Tn) is

nonempty. Suppose that for any nonempty bounded closed convex subset D of C
and for any increasing sequence {ni} in N there exist a subsequence {Tnij

} of {Tni}
and a nonexpansive mapping T of C into H such that

(4.3) F (T ) =
∞⋂

n=1

F (Tn) and lim
j→∞

sup
y∈D

∥∥∥Ty − Tnij
y
∥∥∥ = 0.

Define C0 =
⋂∞

n=1 F (Tn). Then the conditions (1) and (2) in Lemma 4.1 hold.

Proof. It is clear that C0 is nonempty closed convex subset of C and ‖Tnz − z‖ =
‖z − z‖ = 0 for all z ∈ C0. Therefore the condition (1) holds. Let {ui} be a sequence
in C such that ui ⇀ u. Suppose that there is a subsequence {Tni} of {Tn} such
that

(4.4) lim
i→∞

‖ui − Tniui‖ = 0.

Since {ui} is bounded, there is a bounded closed convex subset D of C such that
ui ∈ D for all i ∈ N. By assumption, for D and {ni}, there exist a subsequence
{Tnij

} of {Tni} and a nonexpansive mapping T of C into H such that (4.3) is
satisfied. It is obvious that∥∥∥unij

− Tunij

∥∥∥ ≤
∥∥∥unij

− Tnij
unij

∥∥∥ +
∥∥∥Tnij

unij
− Tunij

∥∥∥

≤
∥∥∥unij

− Tnij
unij

∥∥∥ + sup
y∈D

∥∥∥Tnij
y − Ty

∥∥∥

for every j ∈ N. Thus it follows from (4.3) and (4.4) that
∥∥∥unij

− Tunij

∥∥∥ → 0. Since
I − T is demiclosed and unij

⇀ u, we conclude that u ∈ F (T ) =
⋂∞

n=1 F (Tn) = C0.
This completes the proof. ¤

Using Lemma 4.1 combined with Lemma 4.2, we obtain the following:
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Theorem 4.3. Let C be a nonempty closed convex subset of a Hilbert space H.
Let {Tn} be a strongly nonexpansive sequence of self mappings of C such that⋂∞

n=1 F (Tn) is nonempty. Suppose that, for any nonempty bounded closed convex
subset D of C and for any increasing sequence {ni} of N, there exist a subsequence
{Tnij

} of {Tni} and a nonexpansive mapping T of C into H such that

F (T ) =
∞⋂

n=1

F (Tn) and lim
j→∞

sup
y∈D

∥∥∥Ty − Tnij
y
∥∥∥ = 0.

Let {xn} be a sequence defined by x1 = x ∈ C and xn+1 = Tnxn for n ∈ N.
Then {xn} converges weakly to some point v ∈ ⋂∞

n=1 F (Tn), and moreover, v =
limn→∞ Pxn, where P is the metric projection of H onto

⋂∞
n=1 F (Tn).

Proof. From Lemmas 4.1 and 4.2, we deduce that {xn} converges weakly to some
point v ∈ ⋂∞

n=1 F (Tn). We have only to show that v = limn→∞ Pxn. Since each Tn

is nonexpansive, it is clear that

‖xn+1 − u‖ = ‖Tnxn − Tnu‖ ≤ ‖xn − u‖
for all u ∈ ⋂∞

n=1 F (Tn) and n ∈ N. Therefore Lemma 2.2 implies that {Pxn}
converges strongly to some point w ∈ ⋂∞

n=1 F (Tn). On the other hand, since v ∈⋂∞
n=1 F (Tn) and P is the metric projection onto

⋂∞
n=1 F (Tn), it follows from (2.1)

that
〈xn − Pxn, v − Pxn〉 ≤ 0

for every n ∈ N. Taking the limit as n → ∞, we obtain 〈v − w, v − w〉 ≤ 0.
Consequently, we conclude that w = v. This completes our proof. ¤

5. Applications to problems for monotone operators

In this section, we apply our results obtained in §3 and §4 to some problems for
monotone operators. We discuss the following three problems:

(1) The problem of finding a common zero of a finite family of monotone oper-
ators.

(2) The problem of finding a solution of a variational inequality problem for a
monotone operator.

(3) The problem of finding a zero of the sum of two monotone operators.

We first consider an iterative scheme for a finite number of maximal monotone
operators, which converges weakly to a common zero point. The following lemma
is a well-known result; see [13].

Lemma 5.1. Let B be a maximal monotone operator on a Hilbert space H, {un}
a weakly convergent sequence of H with a limit u ∈ H, and {rn} a positive real
sequence such that infn∈N rn > 0. Suppose that {un} ∈ F̃ ({(I + rnB)−1}), that is,

lim
n→∞ ‖un − (I + rnB)−1un‖ = 0.

Then, u ∈ B−10.
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Proof. Put Jrn = (I+rnB)−1 for n ∈ N. It follows from (2.3) that (un−Jrnun)/rn ∈
BJrnun for every n ∈ N. Since B is a monotone operator,〈

x− Jrnun, y − un − Jrnun

rn

〉
≥ 0

for all x ∈ dom(B), y ∈ Bx, and n ∈ N. By assumption, we see that Jrnun ⇀ u
and ‖(un − Jrnun)/rn‖ → 0. Therefore 〈x− u, y − 0〉 ≥ 0 for all x ∈ dom(B) and
y ∈ Bx. Thus the maximality of B implies that 0 ∈ Bu. ¤

For our result, we need the following lemma.

Lemma 5.2. Let {xn} be a sequence of a Hausdorff topological space X and m ∈ N.
Suppose that, for each k ∈ {0, 1, 2, . . . , m − 1}, a subsequence {xmi−k}∞i=1 of {xn}
is a convergent sequence. If, in addition, a subsequence {x(m+1)i}∞i=1 is convergent,
then {xn} is also a convergent sequence.

Proof. Fix m ∈ N and suppose that

lim
i→∞

xmi−0 = z0, lim
i→∞

xmi−1 = z1, lim
i→∞

xmi−2 = z2, . . . , lim
i→∞

xmi−(m−1) = zm−1,

and limi→∞ x(m+1)i = z. Then, it is sufficient to show that z = zk for all k ∈
{0, 1, 2, . . . , m− 1}. Fix k ∈ {0, 1, 2, . . . , m− 1} and let {yi} be a sequence defined
by

yi = x(m+1)(mi−k) for all i ∈ N.
Then, obviously {yi} is a subsequence of {x(m+1)i}∞i=1 and hence limi→∞ yi = z.
Further, since

yi = x(m+1)(mi−k) = xm(mi+i−k)−k

for all i ∈ N, {yi} is also a subsequence of {xmi−k}∞i=1. Thus we have that
limi→∞ yi = zk. Since X is Hausdorff, a limit of a sequence is unique. There-
fore we obtain that z = zk for each k ∈ {0, 1, 2, . . . , m − 1} and we conclude the
desired result. ¤

In particular, we obtain the following corollary, which is the case that m = 3 in
the previous lemma.

Corollary 5.3. Let {xn} be a sequence of a Hausdorff topological space. Suppose
that {x3i−2}, {x3i−1}, and {x3i} are convergent subsequences of {xn}. If, in addi-
tion, a subsequence {x4i} is convergent, then {xn} is also a convergent sequence.

Now we obtain a weak convergence theorem for a finite family of maximal mono-
tone operators as follows.

Theorem 5.4. Let {B0, B1, . . . , BN−1} be a finite family of maximal monotone
operators on a Hilbert space H such that C0 =

⋂N−1
k=0 B−1

k 0 is nonempty, where N
is a positive integer. Let {rn} be a positive real sequence such that infn∈N rn > 0.
Let {xn} be a sequence defined by x1 = x ∈ H and

xn+1 =
(
I + rnBc(n)

)−1
xn

for every n ∈ N, where c(n) = n mod N for n ∈ N. Then {xn} converges weakly to
some point in C0.
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Proof. For the sake of simplicity, we will prove only the case that N = 3, that is,
{xn} is generated by three maximal monotone operators {B0, B1, B2}. For more
general cases, the proof is left for the readers since the method of the proof is similar
to this spacial case.

Let Qn = (I + r3n−2B1)−1, Rn = (I + r3n−1B2)−1 and Sn = (I + r3nB0)−1 for
n ∈ N. First, we show subsequences {x3n−2}, {x3n−1}, and {x3n} converges weakly
to z2 ∈ C0, z1 ∈ C0, and z0 ∈ C0, respectively. Let vn = x3n−2 and Tn = SnRnQn

for every n ∈ N. Then, from the definition of the iterative sequence {xn}, we have
v1 = x1 ∈ H and

vn+1 = x3(n+1)−2 = x3n+1

= Snx3n = SnRnx3n−1 = SnRnQnx3n−2

= SnRnQnvn = Tnvn

for n ∈ N. Since Qn, Rn, and Sn are all firmly nonexpansive, Example 3.2 shows that
{Qn}, {Rn}, and {Sn} are strongly nonexpansive sequences. Thus, by Theorem 3.4,
{Tn} is also a strongly nonexpansive sequence. Since F (Qn) ∩ F (Rn) ∩ F (Sn) =
B−1

1 0 ∩B−1
2 0 ∩B−1

0 0 6= ∅, by Corollary 3.9 we have

F (Tn) = F (SnRnQn) = F (Sn) ∩ F (RnQn) = F (Sn) ∩ F (Rn) ∩ F (Qn)

= B−1
1 0 ∩B−1

2 0 ∩B−1
0 0 = C0

for every n ∈ N. It is obvious that {Tn} and C0 satisfy the condition (1) in
Lemma 4.1. For (2), let {ui} be a weakly convergent sequence of H with a limit
u ∈ H and {Tni} a subsequence of {Tn} such that {ui} ∈ F̃ ({Tni}). Then, since

∞⋂

i=1

F (Sni) ∩
∞⋂

i=1

F (Rni) ∩
∞⋂

i=1

F (Qni) = B−1
1 0 ∩B−1

2 0 ∩B−1
0 0 = C0 6= ∅,

by Corollary 3.8 we have

{ui} ∈ F̃ ({Tni}) = F̃ ({SniRniQni})
= F̃ ({Sni}) ∩ F̃ ({RniQni})
= F̃ ({Sni}) ∩ F̃ ({Rni}) ∩ F̃ ({Qni}).

It follows from Lemma 5.1 that u ∈ B−1
1 0 ∩ B−1

2 0 ∩ B−1
0 0 = C0, and therefore the

condition (2) in Lemma 4.1 is satisfied. Hence we have {vn} = {x3n−2} converges
weakly to z2 ∈ C0. In the same way, we also have that {x3n−1} and {x3n} converge
weakly to z1 ∈ C0 and z0 ∈ C0, respectively.

Let yn = x4n for every n ∈ N and let us show that {yn} also converges weakly.
From the definition of {xn}, we have y1 = x4 = S1R1Q1x1 ∈ H and

y2 = Q3S2R2Q2y1, y3 = R4Q4S3R3y2, y4 = S5R5Q5S4y3,

y5 = Q7S6R6Q6y4, y6 = R8Q8S7R7y5, y7 = S9R9Q9S8y6, . . . .

Thus, letting

Un =





Q4(n+2)/3−1S4(n+2)/3−2R4(n+2)/3−2Q4(n+2)/3−2, (n mod 3 = 1)
R4(n+1)/3−0Q4(n+1)/3−0S4(n+1)/3−1R4(n+1)/3−1, (n mod 3 = 2)
S4(n+0)/3+1R4(n+0)/3+1Q4(n+0)/3+1S4(n+0)/3+0, (n mod 3 = 0)
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for every n ∈ N, we have yn+1 = Unyn for n ∈ N. By a similar way to that shown
above, we can easily verify that {Un} is a strongly nonexpansive sequence. Also,
using Corollary 3.9 repeatedly, we have

F (Un) = B−1
1 0 ∩B−1

2 0 ∩B−1
0 0 = C0

for n ∈ N. Thus we obtain that {Un} and C0 satisfy the condition (1) in Lemma 4.1.
For (2), let {ui} be a weakly convergent sequence of H with a limit u ∈ H and {Uni}
a subsequence of {Un} such that {ui} ∈ F̃ ({Uni}). Then, the subsequence {ni} of
N must contain infinitely many elements of at least one of subsequences {3n − 2},
{3n − 1}, and {3n} of N. Suppose that a sequence {ni} contains infinitely many
elements of {3n−2}. Then, we may take a subsequence {nij} of {ni} which consists
of only elements of {3n− 2}. Since nij mod 3 = 1 for every j ∈ N, it follows that

Unij
= Q4(nij

+2)/3−1S4(nij
+2)/3−2R4(nij

+2)/3−2Q4(nij
+2)/3−2

= Qmj−1Smj−2Rmj−2Qmj−2

where mj = 4(nij + 2)/3 for j ∈ N. Obviously, the subsequence {uij} of {ui}
converges weakly to u. It is also clear that {uij} ∈ F̃ ({Unij

}) and

∞⋂

j=1

F (Qmj−1) ∩
∞⋂

j=1

F (Smj−2) ∩
∞⋂

j=1

F (Rmj−2) ∩
∞⋂

j=1

F (Qmj−2)

= B−1
1 0 ∩B−1

0 0 ∩B−1
2 0 ∩B−1

1 0 = C0 6= ∅.
Then, Corollary 3.8 implies that

{uij} ∈ F̃ ({Unij
})

= F̃ ({Qmj−1Smj−2Rmj−2Qmj−2})
= F̃ ({Qmj−1}) ∩ F̃ ({Smj−2}) ∩ F̃ ({Rmj−2}) ∩ F̃ ({Qmj−2}).

It follows from Lemma 5.1 that u ∈ B−1
1 0 ∩ B−1

2 0 ∩ B−1
0 0 = C0. In other cases

that {ni} contains infinitely many elements of {3n − 1} or {3n}, using a similar
method to that mentioned above, we can also obtain that u ∈ C0. Therefore the
condition (2) in Lemma 4.1 is satisfied and hence we obtain {yn} = {x4n} converges
weakly to z ∈ C0. Then, using Corollary 5.3, we have that {xn} converges weakly
to z ∈ C0, which completes the proof. ¤

The following corollary is a generalization of the result obtained by Xu and
Ori [19].

Corollary 5.5. Let C be a nonempty closed convex subset of a Hilbert space H
and let {T0, T1, . . . , TN−1} be a finite family of nonexpansive self mapping of C such
that C0 =

⋂N−1
k=0 F (Tk) 6= ∅, where N is a positive integer. Let {xn} be a sequence

defined by x1 = x ∈ C and

xn+1 = tnxn + (1− tn)Tc(n)xn+1

for every n ∈ N, where c(n) = n mod N and 0 < tn ≤ supk∈N tk < 1 for n ∈ N.
Then {xn} converges weakly to some point in C0.
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Proof. Let Bk = I−TkPC for k = 0, 1, . . . , N −1, where PC is the metric projection
onto C. Then the iterative scheme given in this theorem is equivalent that x1 =
x ∈ C and

xn+1 =
(

I +
(

1
tn
− 1

)
Bc(n)

)−1

xn

for n ∈ N. Since Tk and PC are nonexpansive, so is TkPC . Thus Bk is a monotone
operator on H whose zero is a fixed point of Tk for k = 0, 1, . . . , N − 1. So we have

N−1⋂

k=0

B−1
k 0 =

N−1⋂

k=0

F (Tk) = C0.

Moreover, since Bk is a single-valued continuous monotone operator defined on the
whole space H, it is maximal monotone for each k = 0, 1, . . . , N − 1. On the other
hand, the condition 0 < tn ≤ supk∈N tk < 1 guarantees that

inf
n∈N

(
1
tn
− 1

)
> 0.

Therefore, using Theorem 5.4, we obtain that {xn} converges weakly to a point of
C0, which completes the proof. ¤
Remark 5.6. We can replace the function c appearing in Theorem 5.4 and Corol-
lary 5.5 to a more general one which is called an admissible function. The exact
definition is as follows: Let M be a subset of N. We say that a function c of
N into M is admissible [3] if for each k ∈ M , there exists m(k) ∈ N such that
k ∈ {c(n), c(n + 1), c(n + 2), . . . , c(n + m(k))} for every n ∈ N. If M is a finite
subset of N, then c is admissible if and only if there exists m0 ∈ N such that

{c(n), c(n + 1), c(n + 2), . . . , c(n + m0)} = M

for every n ∈ N.

Next we consider variational inequality problems for monotone operators. In
particular, we treat the case that its feasible set is approximated by a sequence of
closed convex sets. Such a problem, for example, has been discussed in [20]. Let
C be a nonempty closed convex subset of a Hilbert space H and A a mapping of
C into H. Then the variational inequality problem for A is formulated as follows:
Find x ∈ C such that 〈y − x,Ax〉 ≥ 0 for all y ∈ C. In this case such a point x
is a solution of this problem and the solution set is denoted by VI(C, A), that is,
VI(C, A) = {x ∈ C : 〈y − x,Ax〉 ≥ 0 for all y ∈ C}. By (2.1), it is known that

(5.1) VI(C, A) = F (PC(I − λA))

for all λ > 0, where PC is the metric projection of H onto C and I is the identity
mapping on C.

Using Lemma 4.1, we obtain the following:

Theorem 5.7. Let A be an α-inverse-strongly-monotone mapping of a Hilbert space
H into itself, where α > 0. For every n ∈ N, let Cn be a closed convex sub-
set of H such that VI(Cn, A) 6= ∅. Let C be a closed convex subset of H such
that VI(C, A) 6= ∅. Assume that

∑∞
n=1 ‖PCny − PCy‖ < ∞ for all y ∈ H and

limn→∞ sup{‖PCnz − PCz‖ : ‖z‖ ≤ r} = 0 for all r > 0. Let {λn} be a sequence of



486 K. AOYAMA, Y. KIMURA, W. TAKAHASHI, AND M. TOYODA

positive numbers such that 0 < infn∈N λn ≤ supn∈N λn < 2α and
∑∞

n=1 |λn−λ| < ∞
for some λ > 0. Let {xn} be a sequence in H defined by x1 = x ∈ H and
xn+1 = PCn(xn − λnAxn) for every n ∈ N. Then {xn} converges weakly to some
point v ∈ VI(C, A).

Proof. Put Tn = PCn(I−λnA) for n ∈ N and T = PC(I−λA), where I is the identity
mapping on C. We obtain that {I − λnA} and {PCn} are strongly nonexpansive
sequences; see Examples 3.2 and 3.3. Thus, by Theorem 3.4, {Tn} is a strongly
nonexpansive sequence. We also know that T is a nonexpansive mapping by the
nonexpansiveness of PC and I−λA. By (5.1), F (Tn) = VI(Cn, A) for all n ∈ N and
F (T ) = VI(C, A).

Put C0 = F (T ). We show that C0 satisfies (1) in Lemma 4.1. Let z ∈ F (T ).
Since PCn is nonexpansive, it follows that

‖Tnz − z‖ ≤ ‖PCn(I − λnA)z − PCn(I − λA)z‖+ ‖PCn(I − λA)z − PC(I − λA)z‖
≤ ‖(I − λnA)z − (I − λA)z‖+ ‖PCny − PCy‖
= |λn − λ| ‖Az‖+ ‖PCny − PCy‖

for every n ∈ N, where y = (I − λA)z. Therefore we have
∞∑

n=1

‖Tnz − z‖ ≤ ‖Az‖
∞∑

n=1

|λn − λ|+
∞∑

n=1

‖PCny − PCy‖ < ∞.

Thus the condition (1) in Lemma 4.1 is satisfied.
Next we show that C0 satisfies (2) in Lemma 4.1. Suppose that {ui} is a sequence

in C such that {ui} converges weakly to some point u ∈ C and ui−Tniui → 0. It is
not hard to verify that {(I − λA)ui} is bounded, so that there is M > 0 such that
‖(I − λA)ui‖ ≤ M for every i ∈ N. Since each PCni

is nonexpansive, we have

‖ui − Tui‖ ≤ ‖ui − Tniui‖+ ‖Tniui − Tui‖
≤ ‖ui − Tniui‖+

∥∥∥PCni
(I − λniA)ui − PCni

(I − λA)ui

∥∥∥

+
∥∥∥PCni

(I − λA)ui − PC(I − λA)ui

∥∥∥
≤ ‖ui − Tniui‖+ ‖(I − λniA)ui − (I − λA)ui‖

+ sup{
∥∥∥PCni

y − PCy
∥∥∥ : ‖y‖ ≤ M}

= ‖ui − Tniui‖+ |λni − λ| ‖Aui‖+ sup{
∥∥∥PCni

y − PCy
∥∥∥ : ‖y‖ ≤ M}.

Since ui − Tniui → 0, λn → λ, {Aui} is bounded, and sup{
∥∥∥PCni

y − PCy
∥∥∥ : ‖y‖ ≤

M} → 0, it holds that ui − Tui → 0. Since I − T is demiclosed, we conclude that
u ∈ F (T ). Therefore, by Lemma 4.1, xn ⇀ v ∈ F (T ) = VI(C, A). ¤

Lastly, we consider the problem of finding a zero of the sum of two monotone
operators. Such a problem, for instance, was discussed by Passty [12]. To obtain
the next theorem, we need the following:
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Lemma 5.8. Let C be a nonempty subset of a Hilbert space H. Let A be a mapping
of C into H. Let B be a maximal monotone operator on H and Jr = (I + rB)−1

the resolvent of B for r > 0. Then F (Jr(I − rA)) = (A + B)−10 for all r > 0.

Proof. Let r > 0 be fixed. Then we have the following:

u ∈ F (Jr(I − rA)) ⇔ u = Jr(I − rA)u = (I + rB)−1(I − rA)u

⇔ (I + rB)u 3 (I − rA)u
⇔ rBu 3 −rAu

⇔ Bu 3 −Au

⇔ (A + B)u 3 0

⇔ u ∈ (A + B)−10.

This completes the proof. ¤
Using Theorem 4.3 with Lemma 5.8, we obtain the following:

Theorem 5.9. Let C be a nonempty closed convex subset of a Hilbert space H.
Let A be an α-inverse-strongly-monotone mapping of C into H, where α > 0 is a
constant. Let B be a maximal monotone operator on H and Jr = (I + rB)−1 the
resolvent of B for r > 0. Suppose that (A + B)−10 is nonempty and dom(B) ⊂
C. Let {rn} be a sequence of positive real numbers such that 0 < infn∈N rn ≤
supn∈N rn < 2α. Let {xn} be a sequence in C defined by x1 = x ∈ C and xn+1 =
Jrn(xn − rnAxn) for n ∈ N. Then {xn} converges weakly to some point v ∈ (A +
B)−10, and moreover, v = limn→∞ Pxn, where P is the metric projection of H onto
(A + B)−10.

Proof. Put Tn = Jrn(I − rnA) for n ∈ N. Then it follows from Lemma 5.8 that
F (Tn) = (A + B)−10 for every n ∈ N and hence

(5.2)
∞⋂

n=1

F (Tn) = (A + B)−10 6= ∅.

Since each Jrn is firmly nonexpansive, {Jrn} is a strongly nonexpansive sequence.
Example 3.3 shows that {I − rnA} is also a strongly nonexpansive sequence. Thus
Theorem 3.4 implies that {Tn} is a strongly nonexpansive sequence. Let D be
a nonempty bounded closed convex subset of C and {ni} a increasing sequence
in N. Since 0 < infn∈N rn ≤ rni ≤ supn∈N rn < 2α for every i, there exists a
subsequence {rnij

} of {rni} such that rnij
→ r ∈ [infn∈N rn, supn∈N rn]. Let T be a

self mapping of C defined by T = Jr(I − rA). It is clear from Lemma 5.8 and (5.2)
that F (T ) = (A + B)−10 =

⋂∞
n=1 F (Tn). From (2.4), it holds that

‖Js(I − sA)y − Jt(I − tA)y‖
≤ ‖Js(I − sA)y − Js(I − tA)y‖+ ‖Js(I − tA)y − Jt(I − tA)y‖

≤ ‖(I − sA)y − (I − tA)y‖+
|t− s|

t
‖(I − tA)y − Jt(I − tA)y‖

= |t− s|
(
‖Ay‖+

1
t
‖(I − tA)y − Jt(I − tA)y‖

)
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for all s, t > 0 and y ∈ C. Thus it follows that

(5.3)
∥∥∥Ty − Tnij

y
∥∥∥ ≤

∣∣∣r − rnij

∣∣∣
(
‖Ay‖+

1
r
‖(I − rA)y − Jr(I − rA)y‖

)

for all y ∈ C and j ∈ N. Since A is 1/α-Lipschitz continuous and Jr(I − rA) is
nonexpansive, we conclude that

(5.4) sup
y∈D

(
‖Ay‖+

1
r
‖(I − rA)y − Jr(I − rA)y‖

)
< ∞.

Consequently, from (5.3) and (5.4) we obtain

lim
j→∞

sup
y∈D

∥∥∥Ty − Tnij
y
∥∥∥ = 0.

Therefore Theorem 4.3 implies that {xn} converges weakly to some point v ∈ (A +
B)−10 and v = limn→∞ Pxn. ¤

In the preceding theorem, it is noticed that we do not need to assume either the
existence of a common zero of two monotone operators or that of a zero of each
monotone operator.

We apply Theorem 5.9 to a variational inequality problem for a monotone map-
ping. The direct consequence of Theorem 5.9 is the following corollary.

Corollary 5.10. Let C be a nonempty closed convex subset of a Hilbert space H.
Let A be an α-inverse-strongly-monotone mapping of C into H, where α > 0 is a
constant. Suppose that VI(C,A) is nonempty. Let {rn} be a sequence of positive
real numbers such that 0 < infn∈N rn ≤ supn∈N rn < 2α. Let {xn} be a sequence
in C defined by x1 = x ∈ C and xn+1 = PC(xn − rnAxn) for n ∈ N, where PC

is the metric projection H onto C. Then {xn} converges weakly to some point
v ∈ VI(C,A), and moreover, v = limn→∞ Pxn, where P is the metric projection of
H onto VI(C, A).

Proof. Let NC(x) be the normal cone of C at x ∈ C, that is, NC(x) = {z ∈
H : 〈y − x, z〉 ≤ 0 for all y ∈ C}. Define a multi-valued mapping B ⊂ H × H by
Bx = NC(x) for x ∈ C and Bx = ∅ for x /∈ C. It is known that B is a maximal
monotone operator and the resolvent of B is the metric projection PC . Also it is
not hard to check that (A + B)−10 = VI(C, A). Hence we deduce the conclusion
from Theorem 5.9. ¤
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