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STRONG CONVERGENCE OF AVERAGED APPROXIMANTS
FOR ASYMPTOTICALLY PSEUDOCONTRACTIVE MAPPINGS

IN BANACH SPACES

JEN-CHIH YAO∗ AND LU-CHUAN ZENG∗∗

Abstract. Let D be a nonempty closed convex subset of a real Banach space
E which is both uniformly convex and q-uniformly smooth. Let T : D → D be a
uniformly L-Lipschitzian, asymptotically nonexpansive-type and asymptotically
pseudocontractive mapping with a sequence {kn} ⊂ [1,∞) , limn→∞ kn = 1. As-
sume that the set F (T ) of fixed points of T is nonempty. Then F (T ) is a sunny
nonexpansive retract of D. If U is the sunny nonexpansive retraction of D onto
F (T ), w is any given point of D and {an} is a real sequence in (0, 1] satisfying
some restrictions, then the sequence {xn} in D defined by

xn = anw + (1− an)
1

n + 1

nX
j=0

[(1− aj)I + ajT
j ]xn, ∀n ≥ 0

converges strongly to Uw. No boundedness assumption is made on the set D.

1. Introduction

Let E be a real Banach space with dual E∗. Given a gauge function Φ : [0,∞) →
[0,∞), the mapping JΦ : E → 2E∗ defined by

JΦ(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖‖x∗‖, ‖x∗‖ = Φ(‖x‖)}
is said to be the generalized duality mapping with gauge fuction Φ. In particular,
if Φ(t) = t, ∀t ≥ 0, the duality mapping J = JΦ is called the normalized duality
mapping. For q > 1, let Φ(t) = tq−1 be a gauge function. We define the generalized
duality mapping Jq : E → 2E∗ by

Jq(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖‖x∗‖, ‖x∗‖ = ‖x‖q−1}
and observe that for q = 2, J2 = J (the normalized duality mapping). It is well
known that if E is smooth, then JΦ is single-valued. In the sequel, we shall denote
the single-valued generalized duality mapping and single-valued normalized duality
mapping by Jq and J , respectively.

Let D be a nonempty subset of E. A mapping T : D → D is said to be nonexpan-
sive if for all x, y ∈ D we have ‖Tx−Ty‖ ≤ ‖x− y‖. It is said to be asymptotically
nonexpansive if there exists a sequence {kn} with kn ≥ 1 and lim kn = 1 such that
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‖Tnx−Tny‖ ≤ kn‖x−y‖ for all integers n ≥ 0 and all x, y ∈ K. Clearly every non-
expansive mapping is asymptotically nonexpansive with a sequence kn = 1 ∀n ≥ 0.
Conversely, Gobel and Kirk [5] gave an example that asymptotically nonexpan-
sive mappings are not nonexpansive and proved that if D is a nonempty bounded
closed convex subset of a uniformly convex Banach space, then every asymptotically
nonexpansive selfmapping of D has a fixed point.

An important class of nonlinear mappings generalizing the class of asymptotically
nonexpansive mappings has been introduced by Schu [13] in 1991. Let D be a
nonempty subset of a real Banach space E. A mapping T : D → Dis said to be
asymptotically pseudocontracitve if there is a sequence {kn} ⊂ (0,∞) with lim kn =
1 and for any x, y ∈ D there exists j(x− y) ∈ J(x− y) such that

〈Tnx− Tny, j(x− y)〉 ≤ kn‖x− y‖2

for all integers n ≥ 0. T is called uniformly L-Lipschitzian if there is L > 0 such
that

‖Tnx− Tny‖ ≤ L‖x− y‖
for all x, y ∈ D and for each integer n ≥ 1. Also recall ([6]; see also [19]) that a
mapping T : D → D is said to be asymptotically nonexpansive-type if

lim supn→∞{sup
y∈D

(‖Tnx− Tny‖ − ‖x− y‖)} ≤ 0

for each x ∈ D. It is clear that every asymptotically nonexpansive selfmapping of
D is both asymptotically pseudocontractive and asymptotically nonexpansive-type.

The iterative approximation problems for nonexpansive mappings, asymptotically
nonexpansive (-type) mappings and asymptotically pseudocontracitive mappings
were studied extensively by many authors; for example, Gobel and Kirk [5], Kirk
[6], Rhoads [12], Liu [7], Schu [13], Xu [18], [19], Xu and Roach [20], Chang [4],
Shimizu and Takahashi [14], Shioji and Takahasi [15], Moore and Nnoli [8] and
Zeng [22], [23] in the setting of Hilbert spaces or uniformly convex Banach spaces.

In 2000, Chang [4] proved the following strong convergence theorem of modi-
fied Ishikawa iterative sequences with errors for asymptotically pseudocontractive
mappings.

Theorem 1.1 ([4]). Let E be a real uniformly smooth Banach space, D be a
nonempty bounded closed convex subset of E, T : D → D be an asymptotically
pseudocontractive mapping with a sequence {kn} ⊂ (0,∞) with limn→∞ kn = 1 and
let F (T ) 6= ∅. Let {αn}, {βn}, {γn}and {δn} be four sequences in [0, 1] satisfying the
following conditions:

(i) αn + γn ≤ 1, βn + δn ≤ 1;
(ii) αn → 0, βn → 0, δn → 0(n →∞);

(iii)
∞∑

n=0
αn = ∞,

∞∑
n=0

γn < 0.

Let x0 ∈ D be any given point and let {xn}, {yn} be the modified Ishikawa iterative
sequence with errors defined by{

xn+1 = (1− αn − γn)xn + αnTnyn + γnun

yn = (1− βn − δn)xn + βnTnxn + δnvn
for all n ≥ 0.
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(1) If {xn} converges strongly to a fixed point q of T in D, then there exists a
nondecreasing function φ : [0,∞) → [0,∞) , φ(0) = 0 such that for all n ≥ 0,

(1.1) 〈Tnyn − q, J(yn − q)〉 ≤ kn‖yn − q‖2 − φ(‖yn − q‖).
(2) Conversely, if there is a strictly increasing function φ : [0,∞) → [0,∞),

φ(0) = 0 satisfying condition (1.1), then xn → q ∈ F (T ).

On the other hand, a mapping T : D → D is called pseudocontractive if for each
x, y ∈ D there exists j(x− y) ∈ J(x− y) such that 〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2,
where I denotes the identity operator.

Recently using an idea of Browder [2], Shimizu and Takahashi [14] proved that
in Hilbert spaces,the approximation sequence

xn = anw + (1− an)
1
n

n∑

j=1

T jxn for n = 1, 2, 3, ...

for an asymptotically nonexpansive mapping T with a sequence {kn} converges
strongly to the element ofF (T ) nearest to w (where an = bn−1

bn−1+a , 0 < a < 1, bn =
1
n

∑n
j=1(1 + |1 − kj | + e−j)). Shioji and Takahashi [15] extended this result to

uniformly convex Banach spaces with uniformly Gateaux differentiable norms.
In 2001 by the techniques of [14] and [15], Moore and Nnoli [8] established the

following strong convergence theorem of averaged approximants for Lipschitzian
pseudocontractive self-mappings.

Theorem 1.2 ([8]). Let D be a nonempty bounded closed convex subset of a real
Banach space which is both uniformly convex and q-uniformly smooth. Let T be
pseudocontractive and Lipschitzian and let U be the sunny nonexpansive retraction
from D onto F (T ).Let {an} be a real sequence satisfying the conditions:

(i) 0 < an ≤ 1;
(ii) lim

n→∞ an = 0;

(iii) lim
n→∞

bn−1
an

= 0 where bn = 1
n+1

n∑
j=0

kj and kn = [1 + aq
n(1 + L)q]

1
q , n ≥ 0.

Let w be an element of D and let xn be the unique point of D which conforms to

xn = anw + (1− an)
1

n + 1

n∑

j=0

[(1− aj)I + ajT ]xn

for n ≥ N0 (where N0 is a sufficiently large natural number). Then {xn} converges
strongly to Uw.

Let D be a nonempty closed convex subset of a real Banach space E which is
both uniformly convex and q-uniformly smooth. In this paper the techniques of
Shimizu and Takahashi [14], Shioji and Takahashi [15] and Moore and Nnoli [8]
are extended to develop the iteration proecss for finding fixed points of uniformly
L-Lipschitzian, asymptotically nonexpansive-type and asymptotically pseudocon-
tractive selfmappings of D. Our theorems improve several important known results
in [4, 5, 6, 7, 8, 12, 13, 14, 15, 18, 19, 20, 22, 23].
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2. Preliminaries

Let E be a real Banach space. The modulus of smoothness of E is the functionρE :
[0,∞) → [0,∞) defined by

ρE(τ) = sup
{

1
2
(‖x + y‖+ ‖x− y‖)− 1 : ‖x‖ ≤ 1, ‖y‖ ≤ τ

}
.

E is uniformly smooth if and only if limτ→0(ρE(τ)/τ) = 0. Let q > 1. E is called
q-uniformly smooth (or to have a modulus of smoothness of power type q > 1) if
there exists a constant c > 0 such that ρE(τ) ≤ cτ q. Hilbert spaces, Lp (or lp)
spaces, 1 < p < ∞ and the Sobolev spaces W p

m, 1 < p < ∞ are q-uniformly smooth.
Hilbert spaces are 2-uniformly smooth while

Lp (or lp) or W p
m is

{
p− uniformly smooth if 1 < p ≤ 2,
2− uniformly smooth if p ≥ 2.

Theorem 2.1 ([18], p. 1130). Let q > 1 and let E be a real smooth Banach space.
Then the following are equivalent:

(1) E is q-uniformly smooth;

(2) There exists a constant cq > 0 such that for all x, y ∈ E

(2.1) ‖x + y‖q ≤ ‖x‖q + q〈y, Jq(x)〉+ cq‖y‖q;

(3) There exists a constant dq such that for all x, y ∈ E and t ∈ [0, 1]

‖(1− t)x + ty‖q ≥ (1− t)‖x‖q + t‖y‖q − ωq(t)dq‖x− y‖q

where ωq(t) = tq(1− t) + t(1− t)q.

Recall that E is said to be uniformly convex if for each ε > 0 there exists δ > 0
such that ‖(x + y)/2‖ ≤ 1− δ for each x, y ∈ B1 with ‖x− y‖ ≥ ε where B1 = {x ∈
E : ‖x‖ ≤ 1}.

In the sequel we shall also need the following definitions and results. Let µ be
a continuous linear functional on l∞ and let (a0, a1, ...) ∈ l∞. We write µn(an)
instead of µ((a0, a1, ...)). We call µ a Banach limit (see e.g., [1]) when µ satisfies
‖µ‖ = µn(1) = 1 and µn(an+1) = µn(an) for each n ≥ 0. For a Banach limit ,we
know (see e.g., [15]) that

(2.2) liminfn→∞an ≤ µn(an) ≤ limsupn→∞an ∀(a0, a1, ...) ∈ l∞.

Lemma 2.2 (Reich [10], [11]; see also Takahashi and Jeong [16]). Let D be a
nonempty closed convex subset of a uniformly convex Banach space E. Let {xn} be
a bounded sequence in E. Let µ be a Banach limit and let g be a real-valued function
on D defined by

g(y) = µn(‖xn − y‖2) for each y ∈ D.

Then g is continuous, convex and lim‖y‖→∞ g(y) = ∞. Moreover, for each R > 0
and ε > 0 there exists δ > 0 such that

g

(
y + z

2

)
≤ 1

2
(g(y) + g(z))− δ

for all y, z ∈K∩BR with ‖y − z‖ ≥ ε.
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Lemma 2.3 (Takahashi and Ueda [17]). Let D be a nonempty convex subset of
a Banach spaceE whose norm is uniformly Gateaux differentiable. Let {xn} be a
bounded sequence of D. Let z be a point of D and let µ be a Banach limit. Then

µn(‖xn − z‖2) = min
y∈D

µn(‖xn − y‖2) ⇐⇒ µn(〈y − z, Jq(xn − z)〉) ≤ 0, ∀y ∈ D.

Lemma 2.4 (Bruck [3]; see also Reich [9]). Let D be a nonempty convex subset of
a smooth Banach space. Let K be a nonempty subset of D and let U be a retraction
from D into K. Then U is sunny nonexpansive if and only if ∀x ∈ D and y ∈ K,

〈x− Ux, J(y − Ux)〉 ≤ 0.

Lemma 2.5. Let D be a nonempty subset of a q-uniformly smooth Banach space E.
Let T : D → D be uniformly L-Lipschitzian and asymptotically pseudocontractive
with a sequence {kn} ⊂ [1,∞), limn→∞ kn = 1,and let {an} be a real sequence in
(0, 1] with limn→∞ an = 0.For each n ≥ 1, define Sn = (1− an)I + anTn. Then for
each n ≥ 1,

‖Snx− Sny‖ ≤ κn‖x− y‖ ∀x, y ∈ D,

where κn = [1 + aq
ncq(L + supn≥1 kn)q]

1
q + an(kn − 1)∀n ≥ 1 and cq is the constant

appearing in (2.1).

Proof. Define
An = I − an(knI − Tn) ∀n ≥ 1.

Since T : D → D is asymptotically pseudocontractive, for each x, y ∈ D,

〈Tnx− Tny, Jq(x− y)〉 ≤ kn‖x− y‖q

that is,
〈(knI − Tn)x− (knI − Tn)y, Jq(x− y)〉 ≥ 0.

Utilizing Theorem 2.1(2), we deduce that for each x, y ∈ D

‖Anx−Any‖q = ‖x− y − an[(knI − Tn)x− (knI − Tn)y]‖q

≤ ‖x− y‖q − qan〈(knI − Tn)x− (knI − Tn)y, Jq(x− y)〉
+cqa

q
n‖(knI − Tn)x− (knI − Tn)y‖q

≤ ‖x− y‖q + cqa
q
n(kn‖x− y‖+ ‖Tnx− Tny‖)q

≤ ‖x− y‖q + aq
ncq(kn + L)q‖x− y‖q

≤ [1 + aq
ncq(L + supn≥1 kn)q]‖x− y‖q.

This implies that

(2.3) ‖Anx−Any‖ ≤ [1 + aq
ncq(L + sup

n≥1
kn)q]

1
q ‖x− y‖.

Observe that
Sn = (1− an)I + anTn = I − an(I − Tn)

= I − an(knI − Tn) + an(kn − 1)I
= An + an(kn − 1)I.

Hence, it follows from (2.3) that for each n ≥ 1

‖Snx− Sny‖ = ‖Anx−Any + an(kn − 1)(x− y)‖
≤ ‖Anx−Any‖+ an(kn − 1)‖x− y‖
≤ [1 + aq

ncq(L + supn≥1 kn)q]
1
n ‖x− y‖+ an(kn − 1)‖x− y‖

= κn‖x− y‖
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where κn = [1 + aq
ncq(L + supn≥1 kn)q]

1
q + an(kn − 1). ¤

3. Main Results

In order to prove the main results in this paper, we also need the following
lemmas.

Lemma 3.1. Let D be a nonempty closed convex subset of a real Banach space
E which is both uniformly convex and q-uniformly smooth. Let T : D → D be
a uniformly L-Lipschitzian, asymptotically nonexpansive-type and asymptotically
pseudocontractive mapping with a sequence {kn} ⊂ [1,∞) , lim

n→∞ kn = 1.

Assume that F (T ) 6= ∅. Let {an} be a real sequence in (0, 1] satisfying the fol-
lowing conditions:

(i) lim
n→∞ an = 0;

(ii) lim
n→∞

bn−1
an

= 0 where bn = 1
n+1

n∑
j=0

κj for each n ≥ 0 and {κn} is the sequence

appearing in Lemma 2.5.

Let w be any given point in D. Then the following hold;

(1) For each n ≥ N0 (where N0 is a sufficiently large nonegative integer) there
exists exactly one xn ∈ D such that

(3.1) xn = anw + (1− an)
1

n + 1

n∑

j=0

Sjxn,

where Sn = (1− an)I + anTn for each n ≥ 0.

(2) If µ is a Banach limit and {xn} is a bounded sequence such that ‖Txn−xn‖ →
0 as n →∞, then for each subsequence {xni} of {xn}, there exists a unique element
x∗ ∈ D satisfying

(3.2) µi(‖xni − x∗‖2) = min
y∈D

µi(‖xni − y‖2)

and the point x∗ is a fixed point of T .

Proof. (1) For each n ≥ 0, we define Tn : D → D by

Tnx = anw + (1− an)
1

n + 1

n∑

j=0

Sjx ∀x ∈ D.
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Observe that for each u, v ∈ D

‖Tnu− Tnv‖ =

∥∥∥∥∥∥
anw + (1− an) 1

n+1

n∑

j=0

Sju− anw − (1− an)
1

n + 1

n∑

j=0

Sjv

∥∥∥∥∥∥

= (1− an) 1
n+1

∥∥∥∥∥∥

n∑

j=0

Sju−
n∑

j=0

Sjv

∥∥∥∥∥∥

≤ (1− an) 1
n+1‖

n∑

j=0

κj‖u− v‖

= (1− an)bn‖u− v‖.
Condition (ii) implies that

lim
n→∞

bn − 1
an

= 0 < 1 = lim
n→∞ bn,

and hence there exist nonnegative integers N1, N2 ≥ 0 such that
bn − 1

an
<

1
2

∀n ≥ N1 and
1
2

< bn ∀n ≥ n2.

Put N0 = max{N1, N2}. Then we get bn−1
an

< bn ∀n ≥ N0; i.e., (1− an)bn < 1 ∀n ≥
N0. Thus for each n ≥ N0, Tn : D → D is contractive. By the Banach Contraction
Principle, for each n ≥ N0 there exists a unique xn ∈ D such that Tnxn = xn. This
establishes (3.1).

(2) Next we set xn = w for n = 0, 1, ...., N0 − 1. From Lemma 2.2, it is easy
to see that there exists a unique element x∗ ∈ D satisfying (3.2). Now we claim
that limn→∞ Tnx∗ = x∗. Indeed suppose that limn→∞ Tnx∗ 6= x∗. Then there is
ε > 0 such that for each m ≥ 1, there exists l ≥ m such that ‖T lx∗ − x∗‖ ≥ ε.
Since F (T ) 6= ∅ and {xn} is bounded, it follows from the uniformly L-Lipschitzian
continuity of T that both {Tmx∗} and {Tmxn : m,n ≥ 0} are bounded. Putting

sup{‖Tmx∗‖ : m ≥ 0} = R > 0,

then T lx∗, x∗ ∈ D ∩ BR. By Lemma 2.2, we conclude that there exists δ > 0 such
that

µi(‖xni −
T lx∗ + x∗

2
‖2)

≤ 1
2
[µi(‖xni − T lx∗‖2) + µi(‖xni − x∗‖2)]− δ(3.3)

≤ 1
2
[µi(‖xni − T lxni‖+ ‖T lxni − T lx∗‖)2 + mui(‖xni − x∗‖)]− δ.

Again set M = sup{‖Tmxn − Tmx∗‖ + ‖xn − x∗‖ : m,n ≥ 0}. Note that ‖Txn −
xn‖ → 0(n →∞) implies that

‖xni − T lxni‖ ≤ ‖xni − Txni‖+ ‖Txni − T 2xni‖+ · · ·+ ‖T l−1xni − T lxni‖
≤ ‖xni − Txni‖+ L‖xni − Txni‖+ · · ·+ L‖xni − Txni‖
≤ l ·max{1, L} · ‖xni − Txni‖ → 0 (i →∞).
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Hence, it follows from (2.2) that

(3.4) µi(‖xni − T lxni‖) = µi(‖xni − Txni‖2) = 0.

Since T : D → D is asymptotically nonexpansive-type, we have

limsupl→∞{sup
i≥0

(‖T lxni − T lx∗‖ − ‖xni − x∗‖)}

≤ limsupl→∞{sup
y∈D

(‖T ly − T lx∗‖ − ‖y − x∗‖)}

≤ 0 <
2δ

M + 1
.

Thus there exists l0 ≥ 1 such that for all l ≥ l0

‖T lxni − T lx∗‖ − ‖xni − x∗‖ <
2δ

M + 1
for i = 0, 1, 2, ...

This implies that for all l ≥ l0

‖T lxni − T lx∗‖2 − ‖xni − x∗‖2 < 2δ

and hence
‖T lxni − T lx∗‖2 = ‖T lxni − T lx∗‖2 − ‖xni − x∗‖2 + ‖xni − x∗‖2

< 2δ + ‖xni − x∗‖2

for i = 0, 1, 2, .... So for the above δ > 0, we deduce that for sufficiently large l

(3.5) µi(‖T lxni − T lx∗‖2) < µi(‖xni − x∗‖2) + 2δ.

It follows from (3.4) and (3.5) that

µi(‖xni − T lxni‖+ ‖T lxni − T lx∗‖)2
= µi(‖xni − T lxni‖2) + 2µi(‖xni − T lxni‖ · ‖T lxni − T lx∗‖)

+ µi(‖T lxni − T lx∗‖2)(3.6)

≤ µi(‖xni − T lxni‖2) + 2M · µi(‖xni − T lxni‖) + µi(‖T lxni − T lx∗‖2)

< µi(‖xni − x∗‖2) + 2δ.

Substituting (3.6) into (3.3), we get

µi(‖xni −
T lx∗ + x∗

2
‖2)

≤ 1
2
[µi(‖xni − T lxni‖+ ‖T lxni − T lx∗‖)2 + µi(‖xni − x∗‖2)]− δ

<
1
2
[µi(‖xni − x∗‖2) + 2δ + µi(‖xni − x∗‖2)]− δ

= µi(‖xni − x∗‖2)

for sufficiently large l, which is a contradiction to the uniqueness of x∗. ¤
Lemma 3.2. Let D, T, {κn}, {an}, {bn}, ω and {xn} be as in Lemma 3.1. Let xn =
ω for n = 0, 1, ....N0 − 1. Then for all n ≥ N0 and x∗ ∈ F (T )

〈xn − ω, Jq(xn − x∗)〉 ≤
(

bn − 1
an

)
‖xn − x∗‖q.
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Proof. Let n ≥ N0 and let x∗ ∈ F (T ). Then we derive for all n ≥ 0

Snx∗ = (1− an)x∗ + anTnx∗ = x∗.

From (3.1) we get

an(xn − ω) = (1− an)
1

n + 1

n∑

j=0

Sjxn − (1− an)xn.

Observe that

〈xn − ω, Jq(xn − x∗)〉 =
(

1− an

an

) 〈
1

n + 1

n∑

j=0

Sjxn − xn, Jq(xn − x∗)

〉

=
(

1− an

an

) 〈
1

n + 1

n∑

j=0

Sjxn − 1
n + 1

n∑

j=0

Sjx
∗, Jq(xn − x∗)

〉

+
(

1− an

an

)
〈x∗ − xn, Jq(xn − x∗)〉

≤
(

1− an

an

) 
 1

n + 1

n∑

j=0

κj‖xn − x∗‖q − ‖xn − x∗‖q




≤ bn − 1
an

‖xn − x∗‖q.

¤

Lemma 3.3. Let D, T{κn}, {an}, {bn}, ω and {xn} be as in Lemma 3.1. Let xn =
ω for n = 0, 1, 2, ..., N0 − 1. Then each subsequence {xnj} of {xn} contains a
subsequence converging strongly to an element of F (T ).

Proof. Let {xnj} be a subsequence of {xn} and let µ be a Banach limit. By Lemma
3.1, there exists x∗ ∈ F (T ) satisfying (3.2). By Lemma 3.2, we obtain

(3.7) µi(〈xni − ω, Jq(xni − x∗)〉) ≤
(

bni − 1
ani

)
µi(‖xni − x∗‖q).

Subtracting µi(‖xni − x∗‖q) from both sides of (3.7), we get

µi(‖xni − x∗‖q) ≤

 1

1− ( bni−1

ani

) · µi(〈ω − x∗, Jq(xni − x∗))〉

 ≤ 0

by Lemma 2.3. From (1.2) it follows that liminfi→∞‖xni−x∗‖q ≤ µi(‖xni−x∗‖q) ≤
0. This implies that there exists a subsequence of {xni} converging strongly to
x∗. ¤

Theorem 3.4. Let D be a nonempty closed convex subset of a real Banach space E
which is both uniformly convex and q-uniformly smooth. Let T : D → D be a uni-
formly L-Lipschitzian, asymptotically nonexpansive-type and asymptotically pseu-
docontarctive mapping with a sequence {kn} ⊂ [1,∞) , limn→∞ kn = 1. Assume that
F (T ) 6= ∅. Let {an} be a real sequence in (0, 1] satisfying the following conditions:
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(i) lim
n→∞ an = 0;

(ii) lim
n→∞

bn−1
an

= 0 where bn = 1
n+1

n∑
j=0

κj for each n ≥ 0 and {κn} is the sequence

appearing in Lemma 2.5.

Let w be any given point in D. For each n ≥ N0 (where N0 is a sufficiently
large nonnegative integer), xn is the unique point in D satisfying (3.1). For n =
0, 1, ..., N0 − 1, let xn = w. Then {xn} converges strongly to an element of F (T ) if
and only if {xn} is a bounded sequence such that ‖Txn − xn‖ → 0 as n →∞.

Proof. “Necessity”. Let xn → x∗ ∈ F (T ). Then {xn} is bounded. Moreover it is
easy to see that x∗ = limn→∞ xn = limn→∞ Txn = Tx∗.

“Sufficiency”. Suppose that {xn} is a bounded sequence such that ‖Txn−xn‖ →
0 as n → ∞. Then by Lemma 3.3, each subsequence {xni} of {xn} contains a
subsequence which converges strongly to an element of F (T ). Let {xni} and {xmj}
be two subsequences of {xn} converging strongly to the elements y and z of F (T ),
respectively. Now we claim that y = z. Indeed from Lemma 3.2, we have

〈xni − w, Jq(xni − z)〉 ≤
(

bni − 1
ani

)
‖xni − z‖q.

Passing to the limit and using condition (iii), we conclude that 〈y−w, Jq(y−z)〉 ≤
0. Similarly we also get 〈z − w, Jq(z − y)〉 ≤ 0. Thus, it follows immediately that
‖y − z‖q ≤ 0, i.e., y = z. This shows that {xn} converges strongly to an element of
F (T ). ¤
Theorem 3.5. Assume that all conditions in Theorem 3.4 are satisfied. If for each
w ∈ D, {xn} is the bounded sequence defined by (3.2) and satisfying ‖Txn−xn‖ → 0
as n →∞, then F (T ) is a sunny nonexpansive retract of D.

Proof. In view of Theorem 3.4, for each w ∈ D the sequence {xn} converges strongly
to an element of F (T ). Now we define a mapping U from D into F (T ) by

Uw = lim
n→∞xn, ∀w ∈ D.

By Lemma 3.2, we have

〈xn − w, Jq(xn − z)〉 ≤
(

bn − 1
an

)
‖xn − z‖q, ∀ n ≥ N0 and z ∈ F (T ).

Letting n → ∞, we obtain 〈w − Uw, Jq(z − Uw)〉 ≤ 0, ∀w ∈ D and z ∈ F (T ).
Therefore, by Lemma 2.4, U is a sunny nonexpansive retraction of D. ¤
Theorem 3.6. Assume that all conditions in Theorem 3.4 are satisfied. Let U be
the sunny nonexpansive retraction from D onto F (T ). If for any given w ∈ D, {xn}
is the bounded sequence defined by (3.2) and satisfying ‖Txn− xn‖ → 0 as n →∞,
then {xn} converges strongly to Uw.

Proof. By Theorem 3.4, for any given w ∈ D, the sequence {xn} converges strongly
to an element y of F (T ). Now,we claim that y = Uw. Indeed, by Lemma 3.2 we
have

〈xn − w, Jq(xn − Uw)〉 ≤
(

bn − 1
an

)
‖xn − Uw‖q, ∀ n ≥ N0.
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Letting n →∞, we obtain 〈y − w, Jq(y − Uw)〉 ≤ 0. Therefore, we have

〈y − Uw, Jq(y − Uw)〉+ 〈Uw − w, Jq(y − Uw)〉 = 〈y − w, Jq(y − Uw)〉 ≤ 0

and thus by Lemma 2.4,

‖y − Uw‖q ≤ 〈w − Uw, Jq(y − Uw)〉 ≤ 0.

This implies that y = Uw. ¤
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