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STRONG CONVERGENCE THEOREMS OF BLOCK ITERATIVE
METHODS FOR A FINITE FAMILY OF RELATIVELY
NONEXPANSIVE MAPPINGS IN BANACH SPACES

SOMYOT PLUBTIENG∗ AND KASAMSUK UNGCHITTRAKOOL∗∗

Abstract. In this paper, we establish strong convergence theorems of block-
iterative methods for a finite family of relatively nonexpansive mappings in a
Banach space by using the hybrid method in mathematical programming. Our
results extend and improve the recent ones announced by Matsushita and Taka-
hashi [S. Matsushita, W. Takahashi, A strong convergence theorem for relatively
nonexpansive mappings in a Banach space, J. Approx. Theory 134 (2005) 257-
266.], Matinez-Yanes and Xu [C. Martinez-Yanes, H.K. Xu, Strong convergence
of the CQ method for fixed point iteration processes, Nonlinear Anal. 64 (2006)
2400-2411.], and many others.

1. Introduction

Let H be a Hilbert space and let {Ωi}m
i=1 be a family of closed convex subsets of H

with F :=
⋂m

i=1 Ωi 6= ∅. Then the problem of image recovery is to find an element
of F by using the metric projection Pi from H onto Ωi for each i = 1, 2, . . . , m,
where

Pi(x) = arg min
y∈Ωi

‖y − x‖
for all x ∈ H. This problem is connected with the convex feasibility problem. In
fact, if {fi}m

i=1 is a family of continuous convex functions from H into R, then the
convex feasibility problem is to find an element of the feasible set

m⋂

i=1

{x ∈ H : fi(x) 6 0}.

We know that each Pi is a nonexpansive retraction from H onto Ci, that is

‖Pix− Piy‖ 6 ‖x− y‖
for all x, y ∈ H and P 2

i = Pi. Further, it holds that F =
⋂m

i=1 F (Pi), where F (Pi)
denotes the set of all fixed points of Pi, i = 1, 2, . . . , m. Thus the problem of image
recovery in the setting of Hilbert spaces is a common fixed point problem for a
family of nonexpansive mappings.

Two classical iteration processes are often used to approximate a fixed point of
a nonexpansive mapping. The first one is introduced in 1953 by Mann [17] which
is well-known as Mann’s iteration process and is defined as follows:
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(1.1)

{
x0 ∈ C chosen arbitrarily,

xn+1 = αnxn + (1− αn)Txn, n > 0,

where the sequence {αn} is chosen in [0, 1]. Fourteen years later, Halpern [13]
proposed the new innovation of iteration process which resemble in Mann’s iteration
(1.1). It is defined by

(1.2)

{
u ∈ C chosen arbitrarily,

xn+1 = αnu + (1− αn)Txn, n > 0.

For finding a solution of the image recovery problem, block-iterative projection
algorithm is the one well-known method which was proposed by Aharoni and Censor
[1] in finite-dimensional spaces; see also [5, 6, 9, 11] and the references therein. This
is an iterative procedure, which generates a sequence {xn} by the rule x1 = x ∈ H
and

(1.3) xn+1 =
m∑

i=1

ξ(i)
n (αixn + (1− αi)Pixn) (n = 1, 2, . . .),

where {ξ(i)
n }m

i=1 ⊂ [0, 1] (n ∈ N) with
∑m

i=1 ξ
(i)
n = 1 (n ∈ N) and {αi}m

i=1 ⊂ (−1, 1).
In particular, Butnariu and Censor [6] studied the strong convergence of the process
(1.3) to an element of F .

In general not much has been known regarding the convergence of the iteration
processes (1.1) and (1.2) unless the underlying space E has elegant properties which
we briefly mention here.

Reich [22] proved that if E is a uniformly convex Banach space with a Fréchet
differentiable norm and if {αn} is chosen such that

∑∞
n=0 αn(1 − αn) = ∞, then

the sequence {xn} defined by (1.1) converges weakly to a fixed point of T . However
we note that Mann’s iteration process (1.1) has only weak convergence even in a
Hilbert space [12].

In both Hilbert spaces [13, 16, 29] and uniformly smooth Banach spaces [23,
26, 31] the iteration process (1.2) has been proved to be strongly convergent if the
sequence {αn} satisfies the following conditions:

(i) αn → 0;

(ii)
∞∑

n=0

αn = ∞ and;

(iii) either
∞∑

n=0

|αn − αn+1| < ∞ or lim
n→∞

αn

αn+1
= 1.

By the restriction of condition (ii), it is widely believed that the Halpern’s iteration
process (1.2) to have slow convergence though the rate of convergence has not be
determined. Halpern [13] proved that conditions (i) and (ii) are necessary in the
strong convergence of (1.2) for a nonexpansive mapping T on a closed convex subset
C of a Hilbert space H. Moreover, Wittmann [29] showed that (1.2) converges
strongly to PF (T )u when {αn} satisfies (i), (ii) and

∑∞
n=0 |αn − αn+1| < ∞ where

PF (T )(·) is the metric projection onto F (T ).
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Some attempts to modify the Mann iteration method so that strong convergence
is guaranteed have recently been made. Nakajo and Takahashi [21] proposed the
following modification of the Mann iteration method for a single nonexpansive map-
ping T in a Hilbert space H:

(1.4)





x0 = x ∈ C,

yn = αnxn + (1− αn)Txn,

Cn = {z ∈ C : ‖z − yn‖ 6 ‖z − xn‖},
Qn = {z ∈ C : 〈xn − z, x− xn〉 > 0},
xn+1 = PCn∩Qnx, n = 0, 1, 2, ...,

where PK denotes the metric projection from H onto a closed convex subset K of
H. They proved that if the sequence {αn} is bounded away from one, then {xn}
defined by (1.4) converges strongly to PF (T )x.

Recently, Martinez-Yanes and Xu [18] has adapted Nakajo and Takahashi’s [21]
idea to modify the process (1.2) for a single nonexpansive mapping T in a Hilbert
space H:
(1.5)




x0 = x ∈ C,

yn = αnx0 + (1− αn)Txn,

Cn = {v ∈ C : ‖yn − v‖2 6 ‖xn − v‖2 + αn(‖x0‖2 + 2 〈xn − x0, v〉)},
Qn = {v ∈ C : 〈xn − v, x0 − xn〉 > 0},
xn+1 = PCn∩Qnx0.

where PK denotes the metric projection from H onto a closed convex subset K of
H. They proved that if {αn} ⊂ (0, 1) and limn→∞ αn = 0, then the sequence {xn}
generated by (1.5) converges strongly to PF (T )x.

As we all know that if C is a nonempty closed convex subset of a Hilbert space
H and x ∈ H is an arbitrary point, there exists a unique z ∈ C such that

‖x− z‖ = min
y∈C

‖x− y‖.

This idea leads to the definition of the metric projection PC from H onto C. It is well
known that PC is also nonexpansive. This fact actually characterizes Hilbert spaces.
It is not available in more general Banach space. Some attempts to generalize
the metric projection from Hilbert spaces to Banach spaces appear in 1996, Alber
[2] introduced another generalization of the metric projection operator in Hilbert
spaces to that in Banach spaces, which is called the generalized projection; see
also Kamimura and Takahashi [15]. This projection is known to be the Bregman
projection with respect to the Bregman function ‖ · ‖2.

The ideas to generalize the process (1.4) from Hilbert spaces to Banach spaces
have recently been made. By using available properties on uniformly convex and
uniformly smooth Banach space, Matsushita and Takahashi [20] presented their
ideas as the following method for a single relatively nonexpansive mapping T in a
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Banach space E:

(1.6)





x0 = x ∈ C

yn = J−1(αnJxn + (1− αn)JTxn),
Hn = {z ∈ C : φ(z, yn) 6 φ(z, xn)},
Wn = {z ∈ C : 〈xn − z, Jx− Jxn〉 > 0},
xn+1 = ΠHn∩Wnx, n = 0, 1, 2, ...,

where J is the duality mapping on E, and ΠF (T )(·) is the generalized projection
from C onto F (T ).

On the other hand, Censor and Reich [7] introduced a convex combination which
is based on Bregman distance [4] and studied some iterative schemes for finding a
common asymptotic fixed point of a family of operators in finite dimensional spaces.
Let C be a nonempty closed convex subset of a smooth, strictly convex, and reflexive
Banach space E, let J be the duality mapping from E into E∗, and let {Ti}m

i=1 be
a finite family of relatively nonexpansive mappings from C into itself such that the
set of all common fixed points of {Ti}m

i=1 is nonempty. Motivated by the convex
combination based on Bregman distances [4] due to Censor and Reich [7], we define
an operator Gn : C → E (n ∈ N) by

Gn := J−1

(
m∑

i=1

ξ(i)
n (β(i)

n J + (1− β(i)
n )JTi)

)

where {ξ(i)
n }, {β(i)

n } ⊂ [0, 1] with
∑m

i=1 ξ
(i)
n = 1 (n ∈ N). Such a mapping Gn is

called a block mapping defined by T1, T2, . . . , Tm, {ξ(i)
n } and {β(i)

n }.
Inspired and motivated by these facts, we purpose for the paper to improve and

generalize the processes (1.5) and (1.6) to the new general processes by using the
block iterative methods for a finite family of relatively nonexpansive mappings in
Banach spaces. Let C be a closed convex subset of a Banach space E and {Ti}m

i=1 be
a finite family of relatively nonexpansive mappings such that F :=

⋂m
i=1 F (Ti) 6= ∅.

Define {xn} in the two following ways:

(1.7)





x0 = x ∈ C

yn = J−1(αnJxn + (1− αn)JGnxn),
Hn = {z ∈ C : φ(z, yn) 6 φ(z, xn)},
Wn = {z ∈ C : 〈xn − z, Jx− Jxn〉 > 0},
xn+1 = ΠHn∩Wnx, n = 0, 1, 2, ...,

and
(1.8)




x0 = x ∈ C

yn = J−1(αnJx0 + (1− αn)JGnxn),
Hn = {z ∈ C : φ(z, yn) 6 φ(z, xn) + αn(‖x0‖2 + 2 〈z, Jxn − Jx〉)},
Wn = {z ∈ C : 〈xn − z, Jx− Jxn〉 > 0},
xn+1 = ΠHn∩Wnx, n = 0, 1, 2, ...,
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where {αn}, {β(i)
n }m

i=1, and {ξ(i)
n }m

i=1 are sequences in [0, 1] with
∑m

i=1 ξ
(i)
n = 1 for

all n ∈ N ∪ {0}.
We shall prove that both iterations (1.7) and (1.8) converge strongly to a common

fixed point of a finite family of relatively nonexpansive mappings Ti, i = 1, 2, . . . , m

provided that {αn}, {β(i)
n }, and {ξ(i)

n } satisfy some appropriate conditions. Our
results extend and improve the corresponding ones announced by Nakajo and Taka-
hashi [21], Martinez-Yanes and Xu [18] and Matsushita and Takahashi [20].

Throughout the paper, we will use the notation:

(1) → for strong convergence and ⇀ for weak convergence.

(2) ωw(xn) = {x : ∃xnr ⇀ x} denotes the weak ω-limit set of {xn}.

2. Preliminaries

Let E be a real Banach space with norm ‖·‖ and let E∗ be the dual of E. Denote
by 〈·, ·〉 the duality product. The normalized duality mapping J from E to E∗ is
defined by

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}
for x ∈ E.

A Banach space E is said to be strictly convex if ‖x+y
2 ‖ < 1 for all x, y ∈ E with

‖x‖ = ‖y‖ = 1 and x 6= y. It is also said to be uniformly convex if limn→∞ ‖xn −
yn‖ = 0 for any two sequences {xn}, {yn} in E such that ‖xn‖ = ‖yn‖ = 1 and
limn→∞ ‖xn+yn

2 ‖ = 1. Let U = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. Then
the Banach space E is said to be smooth provided

lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x, y ∈ U . It is also said to be uniformly smooth if the limit is attained
uniformly for x, y ∈ U . It is well known that `p and Lp (1 < p < ∞) are uniformly
convex and uniformly smooth; see Cioranescu [8] or Diestel [10]. We know that if
E is smooth, then the duality mapping J is single valued. It is also known that
if E is uniformly smooth, then J is uniformly norm-to-norm continuous on each
bounded subset of E. Some properties of the duality mapping have been given in
[8, 24, 27, 28]. A Banach space E is said to have the Kadec-Klee property if a
sequence {xn} of E satisfying that xn ⇀ x ∈ E and ‖xn‖ → ‖x‖, then xn → x.
It is known that if E is uniformly convex, then E has the Kadec-Klee property;
see [8, 27, 28] for more details. Let E be a smooth Banach space. The function
φ : E × E → R is defined by

φ(y, x) = ‖y‖2 − 2 〈y, Jx〉+ ‖x‖2

for all x, y ∈ E. It is obvious from the definition of the function φ that

(1) (‖y‖ − ‖x‖)2 6 φ(y, x) 6 (‖y‖+ ‖x‖)2,
(2) φ(x, y) = φ(x, z) + φ(z, y) + 2 〈x− z, Jz − Jy〉,
(3) φ(x, y) = 〈x, Jx− Jy〉+ 〈y − x, Jy〉 6 ‖x‖‖Jx− Jy‖+ ‖y − x‖‖y‖,
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for all x, y, z ∈ E. Following Alber [2], we define the generalized projection from E
onto C by

ΠC(x) = arg min
y∈C

φ(y, x)

for all x ∈ E; see also Kamimura and Takahashi [15]. If E is a Hilbert space, then
φ(y, x) = ‖y−x‖2 for all x, y ∈ E, and hence ΠC is reduced to the metric projection
PC . It should be noted that the mapping φ is known to be the Bregman distance
[4] corresponding to the Bregman function ‖ · ‖2, and hence the projection ΠC is
the Bregman projection corresponding to φ.

This section collects some definitions and lemmas which will be used in the proofs
for the main results in the next section. Some of them are known; others are not
hard to derive.

Remark 2.1. If E is a strictly convex and smooth Banach space, then for x, y ∈ E,
φ(y, x) = 0 if and only if x = y. It is sufficient to show that if φ(y, x) = 0 then
x = y. From (1), we have ‖x‖ = ‖y‖. This implies 〈y, Jx〉 = ‖y‖2 = ‖Jx‖2. From
the definition of J , we have Jx = Jy. Since J is one-to-one, we have x = y; see
[8, 27, 28] for more details.

Lemma 2.2 (Kamimura and Takahashi [15]). Let E be a uniformly convex and
smooth Banach space and let {yn}, {zn} be two sequences of E. If φ(yn, zn) → 0
and either {yn} or {zn} is bounded, then yn − zn → 0.

Let C be a nonempty closed convex subset of a smooth, strictly convex, and
reflexive Banach space E, let T be a mapping from C into itself, and let F (T ) be
the set of all fixed points of T . Then a point p ∈ C is said to be an asymptotic fixed
point of T (see Reich [25]) if there exists a sequence {xn} in C converging weakly to
p and limn→∞ ‖xn − Txn‖ = 0. We denote the set of all asymptotic fixed points of
T by F̂ (T ) and we say that T is a relatively nonexpansive mapping if the following
conditions are satisfied:

(R1) F (T ) is nonempty;

(R2) φ(u, Tx) 6 φ(u, x) for all u ∈ F (T ) and x ∈ C;

(R3) F̂ (T ) = F (T ).

Some examples of relatively nonexpansive mappings are listed below; see Reich [25]
and Matsushita and Takahashi [19] for more details.

(1) If Ω is a nonempty closed convex subset of a Hilbert space H and T is
nonexpansive mapping from Ω into itself such that F (T ) is nonempty, then
T is a relatively nonexpansive mapping from Ω into itself.

(2) If E is a uniformly smooth and strictly convex Banach space and A ⊂ E×E∗
is a maximal monotone operator such that A−1(0) is nonempty, then the
resolvent Jr = (J + rA)−1J (r > 0) is a relatively nonexpansive mapping
from E onto D(A) and F (Jr) = A−1(0).

(3) If ΠΩ is the generalized projection from a smooth, strictly convex, and
reflexive Banach space E onto a nonempty closed convex subset C of E, then
ΠΩ is a relatively nonexpansive mapping from E onto Ω and F (ΠΩ) = Ω.
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(4) If {Ωi}m
i=1 is a finite family of closed convex subset of a uniformly convex

and uniformly smooth Banach space E such that
⋂m

i=1 Ωi is nonempty and
T = ΠΩ1ΠΩ2 · · ·ΠΩm is the composition of the generalized projections ΠΩi

from E onto Ωi, i = 1, 2, . . . , m, then T is a relatively nonexpansive mapping
from E into itself and F (T ) =

⋂m
i=1 Ωi.

Lemma 2.3 (Alber [2], Alber and Reich [3], Kamimura and Takahashi [15]). Let
C be a nonempty closed convex subset of a smooth Banach space E, let x ∈ E, and
let x0 ∈ C. Then, x0 = ΠCx if and only if 〈x0 − y, Jx− Jx0〉 > 0 for all y ∈ C.

Lemma 2.4 (Alber [2], Alber and Reich [3], Kamimura and Takahashi [15]). Let E
be a reflexive, strictly convex and smooth Banach space, let C be a nonempty closed
convex subset of E and let x ∈ E. Then φ(y, ΠCx) + φ(ΠCx, x) 6 φ(y, x) for all
y ∈ C.

Lemma 2.5. Let X be a uniformly convex Banach space and Br(0) = {x ∈ E :
‖x‖ 6 r} be a closed ball of X. Then there exists a continuous strictly increasing
convex function g : [0,∞) → [0,∞) with g(0) = 0 such that

∥∥∥∥∥
m∑

i=1

ξ(i)xi

∥∥∥∥∥
2

6
m∑

i=1

ξ(i)‖xi‖2 − ξ(j)ξ(k)g(‖xj − xk‖), for any j, k ∈ {1, 2, . . . , m},

where {xi}m
i=1 ⊂ Br(0) and {ξ(i)}m

i=1 ⊂ [0, 1] with
∑m

i=1 ξ(i) = 1.

Proof. It sufficient to show that

(2.1)

∥∥∥∥∥
m∑

i=1

ξ(i)xi

∥∥∥∥∥
2

6
m∑

i=1

ξ(i)‖xi‖2 − ξ(1)ξ(2)g(‖x1 − x2‖).

It is obvious that (2.1) holds for m = 1, 2 (see [30] for more details.). Next, assume
that (2.1) is true for m− 1. It remains to show that (2.1) holds for m. We observe
that

∥∥∥∥∥
m∑

i=1

ξ(i)xi

∥∥∥∥∥
2

=

∥∥∥∥∥ξ(m)xm + (1− ξ(m))

(
m−1∑

i=1

ξ(i)

1− ξ(m)
xi

)∥∥∥∥∥

2

6 ξ(m)‖xm‖2 + (1− ξ(m))

∥∥∥∥∥
m−1∑

i=1

ξ(i)

1− ξ(m)
xi

∥∥∥∥∥

2

6 ξ(m)‖xm‖2 + (1− ξ(m))

(
m−1∑

i=1

ξ(i)

1− ξ(m)
‖xi‖2 − ξ(1)ξ(2)

(1− ξ(m))2
g(‖x1 − x2‖)

)

=
m∑

i=1

ξ(i)‖xi‖2 − ξ(1)ξ(2)

(1− ξ(m))
g(‖x1 − x2‖)

6
m∑

i=1

ξ(i)‖xi‖2 − ξ(1)ξ(2)g(‖x1 − x2‖).

This completes the proof. ¤
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Lemma 2.6. Let E be a uniformly convex and uniformly smooth Banach space.
Let C be a closed convex subset of E and let w, x, y, z ∈ E. Let a ∈ R. Then the
set K := {v ∈ C : φ(v, y) 6 φ(v, x) + 〈v, Jz − Jw〉+ a} is closed and convex.

Proof. As a matter of fact, the defining inequality in K is equivalent to the inequality

〈v, 2(Jx− Jy)− (Jz − Jw)〉 6 ‖x‖2 − ‖y‖2 + a.

This inequality is affine in v and hence the set K is closed and convex. ¤

3. Main result

In this section, we prove strong convergence theorems for finding a common fixed
point of a finite family of relatively nonexpansive mappings in Banach spaces by
using the hybrid method in mathematical programming.

Let E be a smooth, strictly convex, and reflexive Banach space and let C be a
nonempty closed convex subset of E. Let {Ti}m

i=1 be a finite family of relatively
nonexpansive mappings from C into itself such that

⋂m
i=1 F (Ti) is nonempty and

define G : C → E by

(3.1) G := J−1

(
m∑

i=1

ξ(i)(β(i)J + (1− β(i))JTi)

)

where {ξ(i)}m
i=1, {β(i)}m

i=1 ⊂ [0, 1] with
∑m

i=1 ξ(i) = 1. The mapping G is called a
block mapping defined by {Ti}m

i=1, {ξ(i)}m
i=1 and {β(i)}m

i=1.

Lemma 3.1. Let E be a smooth, strictly convex, and reflexive Banach space and
let C be a nonempty closed convex subset of E. Let {Ti}m

i=1 be a finite family of
relatively nonexpansive mappings from C into itself such that F :=

⋂m
i=1 F (Ti) is

nonempty and let G be the block mapping defined by (3.1), where {ξ(i)}m
i=1, {β(i)}m

i=1 ⊂
[0, 1] with

∑m
i=1 ξ(i) = 1. Then

φ(u,Gx) 6 φ(u, x)

for all u ∈ F and x ∈ C.

Proof. Let u ∈ F . By the convexity of ‖ · ‖2, we observe that

φ(u,Gx) = ‖u‖2 − 2 〈u, JGx〉+ ‖Gx‖2

= ‖u‖2 − 2

〈
u,

m∑

i=1

ξ(i)(β(i)Jx + (1− β(i))JTix)

〉

+

∥∥∥∥∥
m∑

i=1

ξ(i)(β(i)Jx + (1− β(i))JTix)

∥∥∥∥∥
2

6
m∑

i=1

ξ(i)

(
‖u‖2− 2

〈
u, β(i)Jx + (1− β(i))JTix

〉
+

∥∥∥β(i)Jx + (1− β(i))JTix
∥∥∥

2
)

6
m∑

i=1

ξ(i)
(
β(i)φ(u, x) + (1− β(i))φ(u, Tix)

)
6 φ(u, x)

for all x ∈ C. ¤
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Applying (3.1), we can define a sequence of mappings Gn : C → E by

(3.2) Gn := J−1

(
m∑

i=1

ξ(i)
n (β(i)

n J + (1− β(i)
n )JTi)

)
,

for any n ∈ N ∪ {0}, where {ξ(i)
n }m

i=1, {β(i)
n }m

i=1 ⊂ [0, 1] with
∑m

i=1 ξ
(i)
n = 1. For any

n ∈ N∪ {0} the mapping Gn is called a block mapping defined by {Ti}m
i=1, {ξ(i)

n }m
i=1

and {β(i)
n }m

i=1.

Theorem 3.2. Let E be a uniformly convex and uniformly smooth Banach space,
and let C be a nonempty closed convex subset of E. Let {Ti}m

i=1 be a finite family
of relatively nonexpansive mappings from C into itself such that F :=

⋂m
i=1 F (Ti) is

nonempty. Let {xn} be a sequence defined by

(3.3)





x0 = x ∈ C,

yn = J−1(αnJxn + (1− αn)JGnxn),
Hn = {z ∈ C : φ(z, yn) 6 φ(z, xn)},
Wn = {z ∈ C : 〈xn − z, Jx− Jxn〉 > 0},
xn+1 = ΠHn∩Wnx, n = 0, 1, 2, ...,

where {αn} ⊂ [0, 1], {β(i)
n } ⊂ [0, 1] and {ξ(i)

n } ⊂ [0, 1] satisfy the following condi-
tions:

(i) 0 6 αn < 1 for all n ∈ N ∪ {0} and lim supn→∞ αn < 1,

(ii) lim infn→∞ β
(i)
n (1− β

(i)
n ) > 0 for all i = 1, 2, . . . , m,

(iii) lim infn→∞ ξ
(i)
n > 0 for all i = 1, 2, 3, . . . , m and

∑m
i=1 ξ

(i)
n = 1 for all n ∈

N ∪ {0}.
Then the sequence {xn} converges strongly to ΠF x, where ΠF is the generalized
projection from C onto F .

Proof. From the definitions of Hn and Wn, it is obvious Hn and Wn are closed and
convex for each n ∈ N ∪ {0}.

Next, we show that F ⊂ Hn ∩ Wn for each n ∈ N ∪ {0}. Let u ∈ F and let
n ∈ N ∪ {0}. Then, by Lemma 3.1, we have

(3.4) φ(u,Gnxn) 6 φ(u, xn)

for all n ∈ N ∪ {0}, and then

φ(u, yn) = φ(u, J−1(αnJxn + (1− αn)JGnxn))
= ‖u‖2 − 2 〈u, αnJxn + (1− αn)JGnxn〉+ ‖αnJxn + (1− αn)JGnxn‖2

6 ‖u‖2 − 2αn 〈u, Jxn〉 − 2(1− αn) 〈u, JGnxn〉+ αn‖xn‖2 + (1− αn)‖Gnxn‖2

= αn(‖u‖2 − 2 〈u, Jxn〉+ ‖xn‖2) + (1− αn)(‖u‖2 − 2 〈u, JGnxn〉+ ‖Gnxn‖2)
= αnφ(u, xn) + (1− αn)φ(u,Gnxn) 6 αnφ(u, xn) + (1− αn)φ(u, xn)
= φ(u, xn).

Thus, we have u ∈ Hn. Therefore we obtain F ⊂ Hn for each n ∈ N∪{0}. We note
by [20, Proposion 2.4] that each F (Ti) is closed and convex and so is F . Using the



440 S. PLUBTIENG AND K. UNGCHITTRAKOOL

same argument presented in the proof of [20, Theorem 3.1; pp. 261-262] we have
that F ⊂ Hn ∩Wn for each n ∈ N ∪ {0}, {xn} is well defined and bounded, and

lim
n→∞ ‖xn+1 − yn‖ = lim

n→∞ ‖xn+1 − xn‖ = 0.

Since J is uniformly norm-to-norm continuous on bounded sets, we have

(3.5) lim
n→∞ ‖Jxn+1 − Jyn‖ = lim

n→∞ ‖Jxn+1 − Jxn‖ = 0.

Since ‖Jxn+1 − Jyn‖ = ‖Jxn+1 − αnJxn − (1 − αn)JGnxn‖ > (1 − αn)‖Jxn+1 −
JGnxn‖ − αn‖Jxn − Jxn+1‖ for each n ∈ N ∪ {0}, we get that

‖Jxn+1 − JGnxn‖ 6 1
1− αn

(‖Jxn+1 − Jyn‖+ αn‖Jxn − Jxn+1‖)

6 1
1− αn

(‖Jxn+1 − Jyn‖+ ‖Jxn − Jxn+1‖).

From (3.5) and lim supn→∞ αn < 1, we have limn→∞ ‖Jxn+1 − JGnxn‖ = 0. Since
J−1 is also uniformly norm-to-norm continuous on bounded sets, we obtain

lim
n→∞ ‖xn+1 −Gnxn‖ = lim

n→∞ ‖J
−1(Jxn+1)− J−1(JGnxn)‖ = 0.

From ‖xn−Gnxn‖ 6 ‖xn−xn+1‖+‖xn+1−Gnxn‖ we have limn→∞ ‖xn−Gnxn‖ = 0.
Next, we show that ‖xn−Tixn‖ → 0 for all i = 1, 2, . . . , m. Since {xn} is bounded

and φ(p, Tixn) 6 φ(p, xn) for all i = 1, 2, . . . , m, where p ∈ F . We also obtain that
{Jxn} and {JTixn} are bounded for all i = 1, 2, . . . , m. Then there exists r > 0
such that {Jxn}, {JTixn} ⊂ Br(0) for all i = 1, 2, . . . , m. Therefore Lemma 2.5 is
applicable and we observe that

φ(p,Gnxn) = ‖p‖2 − 2

〈
p,

m∑

i=1

ξ(i)
n (β(i)

n Jxn + (1− β(i)
n )JTixn)

〉

+

∥∥∥∥∥
m∑

i=1

ξ(i)
n (β(i)

n Jxn + (1− β(i)
n )JTixn)

∥∥∥∥∥
2

6 ‖p‖2 − 2
m∑

i=1

ξ(i)
n

〈
p, β(i)

n Jxn + (1− β(i)
n )JTixn

〉

+
m∑

i=1

ξ(i)
n ‖β(i)

n Jxn + (1− β(i)
n )JTixn‖2

=
m∑

i=1

ξ(i)
n

(
‖p‖2 − 2

〈
p, β(i)

n Jxn + (1− β(i)
n )JTixn

〉

+‖β(i)
n Jxn + (1− β(i)

n )JTixn‖2
)

6
m∑

i=1

ξ(i)
n (‖p‖2 − 2β(i)

n 〈p, Jxn〉 − 2(1− β(i)
n ) 〈p, JTixn〉

+β(i)
n ‖xn‖2 + (1− β(i)

n )‖Tixn‖2 − β(i)
n (1− β(i)

n )g(‖Jxn − JTixn‖))
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6
m∑

i=1

ξ(i)
n

(
β(i)

n φ(p, xn) + (1− β(i)
n )φ(p, Tixn)

−β(i)
n (1− β(i)

n )g(‖Jxn − JTixn‖)
)

6 φ(p, xn)−
m∑

i=1

ξ(i)
n β(i)

n (1− β(i)
n )g(‖Jxn − JTixn‖),

that is

(3.6)
m∑

i=1

ξ(i)
n β(i)

n (1− β(i)
n )g(‖Jxn − JTixn‖) 6 φ(p, xn)− φ(p,Gnxn),

where g : [0,∞) → [0,∞) is a continuous strictly increasing convex function with
g(0) = 0 in Lemma 2.5.

Let {‖xnl
−Tixnl

‖} be any subsequence of {‖xn−Tixn‖}. Since {xnl
} is bounded,

there exists a subsequence {xnr} of {xnl
} such that

lim
r→∞φ(p, xnr) = lim sup

l→∞
φ(p, xnl

) := a,

where p ∈ F . By (2), we have

φ(p, xnr) = φ(p,Gnrxnr) + φ(Gnrxnr , xnr) + 2 〈p−Gnrxnr , JGnrxnr − Jxnr〉
6 φ(p,Gnrxnr) + φ(Gnrxnr , xnr) + M‖JGnrxnr − Jxnr‖,

where M = supn 2‖p−Gnxn‖. Since

lim
r→∞φ(Gnrxnr , xnr) = 0 = lim

r→∞ ‖JGnrxnr − Jxnr‖,
it follows that

a = lim inf
r→∞ φ(p, xnr) 6 lim inf

r→∞ φ(p,Gnrxnr).

By (3.4), we have

lim sup
r→∞

φ(p,Gnrxnr) 6 lim sup
r→∞

φ(p, xnr) = a

and hence limr→∞ φ(p, xnr) = a = limr→∞ φ(p,Gnrxnr). By (3.6), we observe that
m∑

i=1

ξ(i)
nr

β(i)
nr

(1− β(i)
nr

)g(‖Jxnr − JTixnr‖) 6 φ(p, xnr)− φ(p,Gnrxnr) → 0

as r → ∞. Since lim infn→∞ ξ
(i)
n > 0 and lim infn→∞ β

(i)
n (1 − β

(i)
n ) > 0 for all i ∈

{1, 2, . . . , m}, it follows that limr→∞ g(‖Jxnr−JTixnr‖) = 0 for all i ∈ {1, 2, . . . , m}.
By the properties of the mapping g, we have limr→∞ ‖Jxnr − JTixnr‖ = 0 for all
i ∈ {1, 2, . . . , m}. Since J−1 is also uniformly norm-to-norm continuous on bounded
sets, we obtain

lim
r→∞ ‖xnr − Tixnr‖ = lim

r→∞ ‖J
−1(Jxnr)− J−1(JTixnr)‖ = 0

and then limn→∞ ‖xn − Tixn‖ = 0 for all i ∈ {1, 2, . . . , m}. Then ωw(xn) ⊂⋂m
i=1 F̂ (Ti) =

⋂m
i=1 F (Ti) = F .

Finally, we show that xn → ΠF x. Using the same argument as in the proof of
[20, Theorem 3.1; pp. 262-263], we have {xn} converges strongly to ΠF x. ¤
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In the following theorem we deal with the strong convergence of the sequence
{xn} by changing the conditions of {ξ(i)

n }m
i=1 and {β(i)

n }m
i=1.

Theorem 3.3. Let E be a uniformly convex and uniformly smooth Banach space,
and let C be a nonempty closed convex subset of E. Let {Ti}m

i=1 be a finite family
of relatively nonexpansive mappings from C into itself such that F :=

⋂m
i=1 F (Ti) is

nonempty. Let a sequence {xn} defined by

(3.7)





x0 = x ∈ C,

yn = J−1(αnJxn + (1− αn)JGnxn),
Hn = {z ∈ C : φ(z, yn) 6 φ(z, xn)},
Wn = {z ∈ C : 〈xn − z, Jx− Jxn〉 > 0},
xn+1 = ΠHn∩Wnx, n = 0, 1, 2, ...,

where {αn} ⊂ [0, 1], {β(i)
n } ⊂ [0, 1] and {ξ(i)

n } ⊂ [0, 1] satisfy the following condi-
tions:

(i) 0 6 αn < 1 for all n ∈ N ∪ {0} and lim supn→∞ αn < 1,

(ii) β
(i)
n =: βn for all i = 1, 2, . . . , m and limn→∞ βn = 0,

(iii) lim infn→∞ ξ
(i)
n ξ

(j)
n > 0 for all i 6= j, i, j = 1, 2, 3, . . . , m and

∑m
i=1 ξ

(i)
n = 1

for all n ∈ N ∪ {0}.

Then the sequence {xn} converges strongly to ΠF x, where ΠF is the generalized
projection from C onto F .

Proof. From the definition of Hn and Wn, it is obvious Hn and Wn are closed and
convex for each n ∈ N ∪ {0}.

Next, we show that F ⊂ Hn ∩ Wn for each n ∈ N ∪ {0}. Let u ∈ F and let
n ∈ N ∪ {0}. Then, as in the proof of Theorem 3.2, we have

(3.8) φ(u,Gnxn) 6 φ(u, xn)

for all n ∈ N∪{0}, and then φ(u, yn) 6 φ(u, xn). Thus, we have u ∈ Hn. Therefore
we obtain F ⊂ Hn for each n ∈ N ∪ {0}. We note by [20, Proposion 2.4] that each
F (Ti) is closed and convex and so is F . Using the same argument presented in the
proof of [20, Theorem 3.1; pp. 261-262] we have F ⊂ Hn∩Wn for each n ∈ N∪{0},
{xn} is well defined and bounded, and

lim
n→∞ ‖xn+1 − yn‖ = lim

n→∞ ‖xn+1 − xn‖ = 0.

Since J is uniformly norm-to-norm continuous on bounded sets, we have

(3.9) lim
n→∞ ‖Jxn+1 − Jyn‖ = lim

n→∞ ‖Jxn+1 − Jxn‖ = 0.

As in the proof of Theorem 3.2, we also have that

‖Jxn+1 − JGnxn‖ 6 1
1− αn

(‖Jxn+1 − Jyn‖+ αn‖Jxn − Jxn+1‖)

6 1
1− αn

(‖Jxn+1 − Jyn‖+ ‖Jxn − Jxn+1‖).
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From (3.9) and lim supn→∞ αn < 1, we have limn→∞ ‖Jxn+1 − JGnxn‖ = 0. Since
J−1 is also uniformly norm-to-norm continuous on bounded sets, we obtain

lim
n→∞ ‖xn+1 −Gnxn‖ = lim

n→∞ ‖J
−1(Jxn+1)− J−1(JGnxn)‖ = 0.

From ‖xn−Gnxn‖ 6 ‖xn−xn+1‖+‖xn+1−Gnxn‖ we have limn→∞ ‖xn−Gnxn‖ = 0.
Next, we show that ‖xn−Tixn‖ → 0 for all i = 1, 2, . . . , m. Since {xn} is bounded

and φ(p, Tixn) 6 φ(p, xn) for all i = 1, 2, . . . , m, where p ∈ F . We also obtain that
{Jxn} and {JTixn} are bounded for all i = 1, 2, . . . , m. So, there exists r > 0
such that {Jxn}, {JTixn} ⊂ Br(0) for all i = 1, 2, . . . , m. Therefore Lemma 2.5 is
applicable and we observe that

φ(p,Gnxn) = ‖p‖2 − 2

〈
p,

m∑

i=1

ξ(i)
n (βnJxn + (1− βn)JTixn)

〉

+

∥∥∥∥∥
m∑

i=1

ξ(i)
n (βnJxn + (1− βn)JTixn)

∥∥∥∥∥
2

6 ‖p‖2 − 2
m∑

i=1

ξ(i)
n 〈p, βnJxn + (1− βn)JTixn〉

+
m∑

i=1

ξ(i)
n ‖βnJxn + (1− βn)JTixn‖2

−ξ(j)
n ξ(k)

n g((1− βn)‖JTjxn − JTkxn‖)

=
m∑

i=1

ξ(i)
n

(
‖p‖2 − 2 〈p, βnJxn + (1− βn)JTixn〉

+‖βnJxn + (1− βn)JTixn‖2
)

−ξ(j)
n ξ(k)

n g((1− βn)‖JTjxn − JTkxn‖)

6
m∑

i=1

ξ(i)
n

(
βnφ(p, xn) + (1− βn)φ(p, Tixn)

−ξ(j)
n ξ(k)

n g((1− βn)‖JTjxn − JTkxn‖)
)

6 φ(p, xn)− ξ(j)
n ξ(k)

n g((1− βn)‖JTjxn − JTkxn‖),
that is

(3.10) ξ(j)
n ξ(k)

n g((1− βn)‖JTjxn − JTkxn‖) 6 φ(p, xn)− φ(p,Gnxn),

where g : [0,∞) → [0,∞) is a continuous strictly increasing convex function with
g(0) = 0 in Lemma 2.5.

Let {‖Tjxnl
− Tkxnl

‖} be any subsequence of {‖Tjxn − Tkxn‖}. Since {xnl
} is

bounded, there exists {xnr} a subsequence of {xnl
} such that

lim
r→∞φ(p, xnr) = lim sup

l→∞
φ(p, xnl

) := a
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where p ∈ F . As in the proof of Theorem 3.2, lim
r→∞φ(p, xnr) = a = lim

r→∞φ(p,Gnrxnr).

By (3.10), we observe that

ξ(j)
nr

ξ(k)
nr

g((1− βnr)‖JTjxnr − JTkxnr‖) 6 φ(p, xnr)− φ(p,Gnrxnr) → 0

as r →∞. Since lim infn→∞ ξ
(j)
n ξ

(k)
n > 0, it follows that limr→∞ g((1−βnr)‖JTjxnr−

JTkxnr‖) = 0. By the properties of the mapping g, we have limr→∞(1−βnr)‖JTjxnr

−JTkxnr‖ = 0 and then limr→∞ ‖JTjxnr−JTkxnr‖ = 0. Since J−1 is also uniformly
norm-to-norm continuous on bounded sets, we obtain

lim
r→∞ ‖Tjxnr − Tkxnr‖ = lim

r→∞ ‖J
−1(JTjxnr)− J−1(JTkxnr)‖ = 0

and then limn→∞ ‖Tjxn − Tkxn‖ = 0 for all j 6= k. Next, we observe from βn → 0
and (3) that

φ(Tjxn, Gnxn) = ‖Tjxn‖2 − 2

〈
Tjxn,

m∑

i=1

ξ(i)
n (βnJxn + (1− βn)JTixn)

〉

+

∥∥∥∥∥
m∑

i=1

ξ(i)
n (βnJxn + (1− βn)JTixn)

∥∥∥∥∥
2

6
m∑

i=1

ξ(i)
n

(
‖Tjxn‖2 − 2 〈Tjxn, βnJxn + (1− βn)JTixn〉

+ ‖βnJxn + (1− βn)JTixn‖2
)

6
m∑

i=1

ξ(i)
n (βnφ(Tjxn, xn) + (1− βn)φ(Tjxn, Tixn)) → 0

as n →∞.

By Lemma 2.2, we have limn→∞ ‖Tjxn − Gnxn‖ = 0 for all j = 1, 2, . . . , m and
hence

‖Tjxn − xn‖ 6 ‖Tjxn −Gnxn‖+ ‖Gnxn − xn‖ → 0 as n →∞,

for all j = 1, 2, . . . , m. Then ωw(xn) ⊂ ⋂m
i=1 F̂ (Ti) =

⋂m
i=1 F (Ti) = F .

Finally, we show that xn → ΠF x. Using the same argument as in the proof of
[20, Theorem 3.1; pp. 262-263], we have {xn} converges strongly to ΠF x. ¤

If βn = 0 and T1 = T2 = . . . = Tm =: T for all n ∈ N ∪ {0}, then Theorem 3.3
reduces to the following corollary.

Corollary 3.4 (Matsushita and Takahashi [20, Theorem 4.1]). Let E be a uniformly
convex and uniformly smooth Banach space, let C be a nonempty closed convex
subset of E, let T be a relatively nonexpansive mapping from C into itself, and let
{αn} be sequence of real numbers such that 0 6 αn < 1 and lim supn→∞ αn < 1. If
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F (T ) is nonempty, then the sequence {xn} generated by




x0 = x ∈ C

yn = J−1(αnJxn + (1− αn)JTxn),
Hn = {z ∈ C : φ(z, yn) 6 φ(z, xn)},
Wn = {z ∈ C : 〈xn − z, Jx− Jxn〉 > 0},
xn+1 = ΠHn∩Wnx, n = 0, 1, 2, ...,

converges strongly to ΠF (T )x, where ΠF (T ) is the generalized projection from C onto
F (T ).

If E in Theorem 3.3 is a Hilbert space, then we have the following corollary.

Corollary 3.5. Let C be a nonempty closed convex subset of a Hilbert space H,
and let {Ti}m

i=1 be a finite family of nonexpansive mappings from C into itself such
that F :=

⋂m
i=1 F (Ti) is nonempty. Suppose that {xn} is given by





x0 = x ∈ C,

yn = αnxn + (1− αn)zn,

zn =
∑m

i=1 ξ
(i)
n (βnxn + (1− βn)Tixn),

Cn = {z ∈ C : ‖z − yn‖ 6 ‖z − xn‖},
Qn = {z ∈ C : 〈xn − z, x− xn〉 > 0},
xn+1 = PCn∩Qnx, n = 0, 1, 2, ...,

where {αn} ⊂ [0, 1], {βn} ⊂ [0, 1] and {ξ(i)
n } ⊂ [0, 1] satisfy the following conditions:

(i) 0 6 αn < 1 for all n ∈ N ∪ {0} and lim supn→∞ αn < 1,

(ii) limn→∞ βn = 0,

(iii) lim infn→∞ ξ
(i)
n ξ

(j)
n > 0 for all i 6= j, i, j = 1, 2, 3, . . . , m and

∑m
i=1 ξ

(i)
n = 1

for all n ∈ N ∪ {0}.

where PCn∩Qn is the metric projection from C onto Cn ∩Qn. Then {xn} converges
strongly to PF x, where PF is the metric projection from C onto F .

Proof. By the proof of [20, Theorem 4.1], we have each Ti is relatively nonexpansive
for all i = 1, 2, . . . , m. Using Theorem 3.3, we obtain the desired result. ¤

In the case that βn = 0 and T1 = T2 = . . . = Tm =: T for all n ∈ N ∪ {0},
Corollary 3.5 reduces to the following corollary.

Corollary 3.6 (Nakajo and Takahashi [21]). Let C be a nonempty closed convex
subset of a Hilbert space H and let T : C → C be a nonexpansive mapping such
that F (T ) is not empty. Assume that {αn} ⊂ [0, a] for some a ∈ [0, 1). Then the
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sequence {xn} generated by




x0 = x ∈ C,

yn = αnxn + (1− αn)Txn,

Cn = {z ∈ C : ‖z − yn‖ 6 ‖z − xn‖},
Qn = {z ∈ C : 〈xn − z, x− xn〉 > 0},
xn+1 = PCn∩Qnx, n = 0, 1, 2, ...,

converges in norm to the fixed point PF (T )(x0), where PF (T ) is the metric projection
from C onto F (T ).

Finally, we prove two strong convergence theorems of Halpern’s type for a finite
family of relatively nonexpansive mappings by using the hybrid method in mathe-
matical programming.

Theorem 3.7. Let E be a uniformly convex and uniformly smooth Banach space,
and let C be a nonempty closed convex subset of E. Let {Ti}m

i=1 be a finite family
of relatively nonexpansive mappings from C into itself such that F :=

⋂m
i=1 F (Ti) is

nonempty. Let a sequence {xn} defined by
(3.11)




x0 = x ∈ C,

yn = J−1(αnJx0 + (1− αn)JGnxn),
Hn = {z ∈ C : φ(z, yn) 6 φ(z, xn) + αn(‖x0‖2 + 2 〈z, Jxn − Jx〉)},
Wn = {z ∈ C : 〈xn − z, Jx− Jxn〉 > 0},
xn+1 = ΠHn∩Wnx, n = 0, 1, 2, ...,

where {αn} ⊂ [0, 1], {β(i)
n } ⊂ [0, 1] and {ξ(i)

n } ⊂ [0, 1] satisfy the following condi-
tions:

(i) limn→∞ αn = 0,

(ii) lim infn→∞ β
(i)
n (1− β

(i)
n ) > 0 for all i = 1, 2, . . . , m,

(iii) lim infn→∞ ξ
(i)
n > 0 for all i = 1, 2, 3, . . . , m and

∑m
i=1 ξ

(i)
n = 1 for all

n ∈ N ∪ {0}.
Then the sequence {xn} converges strongly to ΠF x, where ΠF is the generalized
projection from C onto F .

Proof. We first show that Hn and Wn are closed and convex for each n ∈ N ∪ {0}.
From the definition of Wn, it is obvious that Wn is closed and convex for each
n ∈ N ∪ {0}. By Lemma 2.6, Hn is also closed and convex for each n ∈ N ∪ {0}.

We claim that F ⊂ Hn for all n ∈ N∪ {0}. Let p ∈ F . By the same argument as
in the proof of Theorem 3.3, we have φ(p,Gnxn) 6 φ(p, xn). Then, by the convexity
of ‖ · ‖2, we have

φ(p, yn) = ‖p‖2 − 2 〈p, αnJx0 + (1− αn)JGnxn〉+ ‖αnJx0 + (1− αn)JGnxn‖2

6 ‖p‖2 − 2αn 〈p, Jx0〉 − 2(1− αn) 〈p, JGnxn〉
+αn‖x0‖2 + (1− αn)‖Gnxn‖2
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= αnφ(p, x0) + (1− αn)φ(p,Gnxn) 6 αnφ(p, x0) + (1− αn)φ(p, xn)
= φ(p, xn) + αn(φ(p, x0)− φ(p, xn))
= φ(p, xn) + αn(‖x0‖2 − ‖xn‖2 + 2 〈p, Jxn − Jx0〉)
6 φ(p, xn) + αn(‖x0‖2 + 2 〈p, Jxn − Jx0〉).

This implies that p ∈ Hn and hence F ⊂ Hn for all n ∈ N ∪ {0}. By the same
argument as in the proof of [20, Theorem 3.1, pp. 261-262], we obtain F ⊂ Hn∩Wn

for all n ∈ N ∪ {0}, {xn} is well defined and bounded, and ‖xn+1 − xn‖ → 0. Since
xn+1 = ΠHn∩Wnx ∈ Hn, we have

φ(xn+1, yn) 6 φ(xn+1, xn) + αn(‖x0‖2 + 2 〈xn+1, Jxn − Jx〉) → 0 as n →∞.

By Lemma 2.2, we have ‖xn+1 − yn‖ → 0 and then

‖yn − xn‖ 6 ‖yn − xn+1‖+ ‖xn+1 − xn‖ → 0.

We observe that

φ(Gnxn, xn) = φ(Gnxn, yn) + φ(yn, xn) + 2 〈Gnxn − yn, Jyn − Jxn〉
6 φ(Gnxn, yn) + φ(yn, xn) + 2‖Gnxn − yn‖‖Jyn − Jxn‖.

Further, from αn → 0, we have that

φ(Gnxn, yn) = ‖Gnxn‖2 − 2 〈Gnxn, αnJx0 + (1− αn)JGnxn〉
+‖αnJx0 + (1− αn)JGnxn‖2

6 ‖Gnxn‖2 − 2αn 〈Gnxn, Jx0〉 − 2(1− αn) 〈Gnxn, JGnxn〉
+αn‖x0‖2 + (1− αn)‖Gnxn‖2

= αnφ(Gnxn, x0) + (1− αn)φ(Gnxn, Gnxn)
= αnφ(Gnxn, x0) → 0.

Since limn→∞ φ(yn, xn) = 0 = limn→∞ ‖Gnxn − yn‖‖Jyn − Jxn‖, it follows that
limn→∞ φ(Gnxn, xn) = 0. Using Lemma 2.2 we have that ‖Gnxn − xn‖ → 0. By
the same argument as in the proof of Theorem 3.2, we have limn→∞ ‖xn−Tixn‖ = 0
for all i = {1, 2, . . . , m}. Using the same argument as in the last part of proof of
Theorem 3.2, we have {xn} converges strongly to ΠF x. ¤

In the following theorem we deal with the strong convergence of the sequence
{xn} by changing the conditions of {ξ(i)

n }m
i=1 and {β(i)

n }m
i=1.

Theorem 3.8. Let E be a uniformly convex and uniformly smooth Banach space,
and let C be a nonempty closed convex subset of E. Let {Ti}m

i=1 be a finite family
of relatively nonexpansive mappings from C into itself such that F :=

⋂m
i=1 F (Ti) is

nonempty. Let a sequence {xn} defined by
(3.12)




x0 = x ∈ C,

yn = J−1(αnJx0 + (1− αn)JGnxn),
Hn = {z ∈ C : φ(z, yn) 6 φ(z, xn) + αn(‖x0‖2 + 2 〈z, Jxn − Jx〉)},
Wn = {z ∈ C : 〈xn − z, Jx− Jxn〉 > 0},
xn+1 = ΠHn∩Wnx, n = 0, 1, 2, ...,
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where {αn} ⊂ [0, 1], {β(i)
n } ⊂ [0, 1] and {ξ(i)

n } ⊂ [0, 1] satisfy the following condi-
tions:

(i) limn→∞ αn = 0,

(ii) β
(i)
n =: βn for all i = 1, 2, . . . , m and limn→∞ βn = 0,

(iii) lim infn→∞ ξ
(i)
n ξ

(j)
n > 0 for all i 6= j, i, j = 1, 2, 3, . . . , m and

∑m
i=1 ξ

(i)
n = 1

for all n ∈ N ∪ {0}.

Then the sequence {xn} converges strongly to ΠF x, where ΠF is the generalized
projection from C onto F .

Proof. As in the proofs of Theorem 3.3 and Theorem 3.7, we have the desired
result. ¤

If βn = 0 and T1 = T2 = . . . = Tm =: T , then Theorem 3.8 reduces to the
following result.

Corollary 3.9. Let E be a uniformly convex and uniformly smooth Banach space,
let C be a nonempty closed convex subset of E, let T be a relatively nonexpansive
mapping from C into itself, and {αn} ⊂ [0, 1] is such that limn→∞ αn = 0. Suppose
that {xn} is given by





x0 = x ∈ C

yn = J−1(αnJx0 + (1− αn)JTxn),
Hn = {z ∈ C : φ(z, yn) 6 φ(z, xn) + αn(‖x0‖2 + 2 〈z, Jxn − Jx〉)},
Wn = {z ∈ C : 〈xn − z, Jx− Jxn〉 > 0},
xn+1 = ΠHn∩Wnx, n = 0, 1, 2, ...,

where J is the duality mapping on E. If F (T ) is nonempty, then {xn} converges
strongly to ΠF (T )x, where ΠF (T ) is the generalized projection from C onto F (T ).

If E in Corollary 3.9 is a Hilbert space, we have the following result.

Corollary 3.10 (Martinez-Yanes and Xu [18, Theorem 3.1]). Let H be a real Hilbert
space, C a closed convex subset of H and T : C → C a nonexpansive mapping.
Assume that {αn} ⊂ (0, 1) is such that limn→∞ αn = 0. If F (T ) 6= ∅, then the
sequence {xn} generated by





x0 = x ∈ C,

yn = αnx0 + (1− αn)Txn,

Cn = {v ∈ C : ‖yn − v‖2 6 ‖xn − v‖2 + αn(‖x0‖2 + 2 〈xn − x0, v〉)},
Qn = {v ∈ C : 〈xn − v, x0 − xn〉 > 0},
xn+1 = PCn∩Qnx0

converges strongly to PF (T )x.
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