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OPTIMALITY CONDITIONS AND DUALITY IN NONSMOOTH
MULTIOBJECTIVE OPTIMIZATION

IZHAR AHMAD AND SARITA SHARMA

Abstract. In this paper, a new class of generalized (F, ρ, σ)−type I functions
are introduced for a nonsmooth multiobjective optimization problem. Based
upon these generalized functions, Karush-Kuhn-Tucker type sufficient optimality
conditions are derived for a feasible point to be an efficient or properly efficient
solution. Appropriate duality theorems are also proved for a general Mond-Weir
type dual.

1. Introduction

Multiobjective optimization is a useful mathematical model in order to investigate
real-world problems with conflicting objectives, arising from economics, engineering
and human decision making. Various optimality conditions and approaches to du-
ality for the multiobjective optimization problems may be found in the literature.
The case involving nonlinear functions has been of much interest in the recent past
and many contributions have been made to this development.

It is well known that convexity plays a vital role in many aspects of mathematical
programming including sufficient optimality conditions and duality theorems, but
does no longer suffice. To relax convexity assumptions imposed on sufficient opti-
mality conditions and duality theorems, various generalized convexity notions have
been proposed. One of the useful generalizations is (F, ρ)-convexity was introduced
by Preda [13] as an extension of F -convexity [7], and ρ - convexity [15], and he used
this concept to obtain duality results for efficient solutions. Recently, Aghezzaf [1]
and Ahmad [3] obtained sufficiency and duality theorems for efficient and properly
efficient solutions under generalized (F, ρ)−convexity.

Hanson and Mond [8] introduced two new classes of functions, called type I
and type II functions for scalar optimization problem, which were further general-
ized to pseudo-type I and quasi-type I by Rueda and Hanson [14]. Other classes
of generalized type I functions have been introduced in [2, 6, 9]. Zhao [16] gave
optimality conditions and duality results in nondifferentiable scalar optimization
assuming Clarke [4] generalized subgradients under type I functions. Recently, Kuk
and Tanino [10] established sufficient optimality conditions and duality theorems
under generalized type I functions in terms of Clarke subgradients.
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In the present paper, we consider a nonsmooth multiobjective optimization prob-
lem and define a new class of generalized (F, ρ, σ) - type I functions in order to
establish the Karush-Kuhn-Tucker type sufficient optimality conditions for a fea-
sible point to be efficient or properly efficient. Moreover, weak, strong and strict
converse duality theorems are obtained for a general Mond-Weir type dual.

2. Definitions and preliminaries

Following conventions of vectors in Rn will be followed throughout the paper:
x = y ⇐⇒ xi = yi, i = 1, 2, . . . , n; x ≥ y ⇐⇒ xi = yi, i = 1, 2, . . . , n, but x 6=
y; x > y ⇐⇒ xi > yi, i = 1, 2, . . . , n. Let K = {1, 2, . . . , k}, and M = {1, 2, . . . , m}
be index sets.

A function f : Rn −→ R is said to be locally Lipschitz at x̄ ∈ Rn, if there exist
scalars δ > 0 and ε > 0 such that

| f(x1)− f(x2) | 5 δ ‖ x1 − x2 ‖, for all x1, x2 ∈ x̄ + εB,

where x̄ + εB is the open ball of radius ε about x̄.

The generalized directional derivative [4] of a locally Lipschitz function f at x in
the direction v, denoted by f0(x; v), is as follows :

f0(x; v) = lim sup
y → x
t ↓ 0

[
f(y + tv)− f(y)

t

]
.

The Clarke generalized gradient [4] of f at x is denoted by

∂f(x) =
{
ξ : f0(x; v) = ξT v, for all v ∈ Rn

}
.

The function f at x is regular in the sense of Clarke [4], if f0(x; v) = f ′(x; v),
where f ′(x; v) is the directional derivative

f ′(x; v) = lim
t↓0

[
f(x + tv)− f(x)

t

]
.

We now consider the following multiobjective optimization problem :

Minimize f(x) = [f1(x), f2(x), . . . , fk(x)](MP)

subject to x ∈ X = {x ∈ S : gj(x) 5 0, j ∈ M},
where S is a non-empty open convex subset of Rn, and fi : S → R, i ∈ K and
gj : S → R, j ∈ M , are locally Lipschitz functions.

The following two definitions are from Geoffrion [5].

Definition 2.1. A point x̄ ∈ X is said to be an efficient solution of (MP ) if there
exists no x ∈ X such that f(x) ≤ f(x̄).
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Definition 2.2. An efficient solution x̄ is said to be a properly efficient solution of
(MP ) if there exists a scalar N > 0 such that for each i, fi(x) < fi(x̄) and x ∈ X
imply that

fi(x̄)− fi(x)
fj(x)− fj(x̄)

5 N

for at least one j satisfying fj(x̄) < fj(x).

Definition 2.3. A functional F : S × S × Rn −→ R is said to be sublinear in its
third component, if for all x, x̄ ∈ S,

(i) F (x, x̄; a + b) 5 F (x, x̄; a) + F (x, x̄; b), for all a, b ∈ Rn,
(ii) F (x, x̄;αa) = αF (x, x̄; a), ∀ α ∈ R, α = 0, and for all a ∈ Rn.

From (ii), it is clear that F (x, x̄; 0) = 0.

We next introduce generalized (F, ρ, σ)−type I functions.

Let F be a sublinear functional, and let the functions f and g be locally Lipschitz
at a given point x̄ ∈ S. Let ρi ∈ R, i ∈ K, σj ∈ R, j ∈ M, and d(·, ·) : S × S → R.

Definition 2.4. (f, g) is said to be (F, ρ, σ)-type I at x̄ ∈ S, if for all x ∈ X, we
have

fi(x)− fi(x̄) = F (x, x̄; ξi) + ρid
2(x, x̄), for all ξi ∈ ∂fi(x̄), i ∈ K,(2.1)

−gj(x̄) = F (x, x̄; ζj) + σjd
2(x, x̄), for all ζj ∈ ∂gj(x̄), j ∈ M.

If in the above definition, (2.1) is a strict inequality, then we say that (f, g) is
(F, ρ, σ)-semistrictly-type I at x̄.

Remark 2.5. If ρi = 0, F (x, x̄; ξi) = ξT
i η(x, x̄), i ∈ K, and σj = 0, F (x, x̄; ζj) =

ζT
j η(x, x̄), j ∈ M , for a certain mapping η : X × S → Rn, then above definition

reduces to one of type I functions defined in [10].

Example 2.6. Consider the following multiobjective optimization problem:

Minimize f(x) = [f1(x), f2(x)]

subject to g(x) 5 0, x ∈ S,

where f = (f1, f2) : S → R2, and g : S → R are given by

f1(x) =
{

x3 + x ; −1 5 x < 0,
3x ; 0 5 x 5 1,

f2(x) =
{

x2 ; −1 5 x < 0,
x ; 0 5 x 5 1,

and
g(x) = |x| − 1 5 0.

The feasible region is X = {x : −1 5 x 5 1}.
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The Clarke generalized gradients of f1, f2, and g at x̄ = 0 are

∂f1(0) = {ξ1 : 1 5 ξ1 5 3}, ∂f2(0) = {ξ2 : 0 5 ξ2 5 1},
and

∂g(0) = {ζ : −1 5 ζ 5 1}.
It can be easily seen that (f, g) is (F, ρ, σ)-type I at x̄ = 0 ∈ S, for the sublinear

functional F (x, x̄; a) = aT (x3 + x̄), d(x, x̄) =
√

x + x̄− 2, ρ = 2, and σ = 3. But
(f, g) is not type I [10] as can be verified by taking ρ = 0, and σ = 0.

Definition 2.7. (f, g) is said to be (F, ρ, σ)-quasi-type I at x̄ ∈ S, if for all x ∈ X,
we have

fi(x) 5 fi(x̄) =⇒ F (x, x̄; ξi) 5 −ρid
2(x, x̄), for all ξi ∈ ∂fi(x̄), i ∈ K,

−gj(x̄) 5 0 =⇒ F (x, x̄; ζj) 5 −σjd
2(x, x̄), for all ζj ∈ ∂gj(x̄), j ∈ M.

Definition 2.8. (f, g) is said to be (F, ρ, σ)-pseudo-type I at x̄ ∈ S, if for all x ∈ X,
we have

F (x, x̄; ξi) = −ρid
2(x, x̄) =⇒ fi(x) = fi(x̄), for all ξi ∈ ∂fi(x̄), i ∈ K,

F (x, x̄; ζj) = −σjd
2(x, x̄) =⇒ −gj(x̄) = 0, for all ζj ∈ ∂gj(x̄), j ∈ M.

Definition 2.9. (f, g) is said to be (F, ρ, σ)-quasipseudo-type I at x̄ ∈ S, if for all
x ∈ X, we have

fi(x) 5 fi(x̄) =⇒ F (x, x̄; ξi) 5 −ρid
2(x, x̄), for all ξi ∈ ∂fi(x̄), i ∈ K,

F (x, x̄, ζj) = −σjd
2(x, x̄) =⇒ −gj(x̄) = 0, for all ζj ∈ ∂gj(x̄), j ∈ M.(2.2)

If in the above definition, inequality (2.2) is satisfied as

F (x, x̄; ζj) = −σjd
2(x, x̄) =⇒ −gj(x̄) > 0, for all ζj ∈ ∂gj(x̄), j ∈ M,

then we say that (f, g) is (F, ρ, σ)-quasistrictly-pseudo-type I at x̄.

Definition 2.10. (f, g) is said to be (F, ρ, σ)-pseudoquasi-type I at x̄ ∈ S, if for all
x ∈ X, we have

F (x, x̄; ξi) = −ρid
2(x, x̄) =⇒ fi(x) = fi(x̄), for all ξi ∈ ∂fi(x̄), i ∈ K,(2.3)

−gj(x̄) 5 0 =⇒ F (x, x̄; ζj) 5 −σjd
2(x, x̄), for all ζj ∈ ∂gj(x̄), j ∈ M.

If in the above definition, inequality (2.3) is satisfied as

F (x, x̄; ξi) = −ρid
2(x, x̄) =⇒ fi(x) > fi(x̄), for all ξi ∈ ∂fi(x̄), i ∈ K,

or equivalently,

fi(x) 5 fi(x̄) =⇒ F (x, x̄; ξi) < −ρid
2(x, x̄), for all ξi ∈ ∂fi(x̄), i ∈ K,

then we say that (f, g) is (F, ρ, σ)-strictly-pseudoquasi-type I at x̄.
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3. Sufficiency

In this section, we obtain Karush-Kuhn-Tucker type sufficient optimality condi-
tions for a feasible point of (MP ) to be efficient or properly efficient. Let J(x̄) =
{j ∈ M : gj(x̄) = 0}, and gJ(x̄) denotes the vector of active constraints.

Theorem 3.1. Suppose that there exists a feasible solution x̄ of (MP ) and scalars

λi = 0, i ∈ K,
k∑

i=1
λi = 1 and µj = 0, j ∈ J(x̄) such that

0 ∈
k∑

i=1

λi∂fi(x̄) +
∑

j∈J(x̄)

µj∂gj(x̄).(3.1)

If (f, gJ) is (F, ρ, σ)−semistrictly-type I at x̄ and
k∑

i=1
λiρi +

∑
j∈J(x̄)

µjσj = 0, then

x̄ is an efficient solution of (MP ).

Proof. Condition (3.1) implies that there exist ξi ∈ ∂fi(x̄), i ∈ K, and ζj ∈ ∂gj(x̄), j ∈
J(x̄) satisfying

(3.2)
k∑

i=1

λiξi +
∑

j∈J(x̄)

µjζj = 0.

Now suppose that x̄ is not an efficient solution of (MP ), then there exists a
feasible solution x of (MP), and an index r such that

fr(x) < fr(x̄),

and
fi(x) 5 fi(x̄), for all i 6= r.

These two inequalities lead to
k∑

i=1

λifi(x) 5
k∑

i=1

λifi(x̄).

Also, we have − ∑
j∈J(x̄)

µjgj(x̄) = 0.

Since (f, gJ) is (F, ρ, σ)−semistrictly-type I at x̄, we have

(3.3) fi(x)− fi(x̄) > F (x, x̄; ξi) + ρid
2(x, x̄), for all ξi ∈ ∂fi(x̄), i ∈ K,

and

(3.4) − gj(x̄) = F (x, x̄; ζj) + σjd
2(x, x̄), for all ζj ∈ ∂gj(x̄), j ∈ J(x̄).

On summing the inequalities obtained on multiplying (3.3) by λi = 0, i ∈ K, and
(3.4) by µj = 0, j ∈ M , respectively, we get

0 =
k∑

i=1

λifi(x)−
k∑

i=1

λifi(x̄)
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> F (x, x̄;
k∑

i=1

λiξi) +
k∑

i=1

λiρid
2(x, x̄), for all ξi ∈ ∂fi(x̄),(3.5)

0 = −
∑

j∈J(x̄)

µjgj(x̄)

= F (x, x̄;
∑

j∈J(x̄)

µjζj) +
∑

j∈J(x̄)

µjσjd
2(x, x̄), for all ζj ∈ ∂gj(x̄).(3.6)

Now relations (3.5), (3.6), and the sublinearity of F imply

F (x, x̄;
k∑

i=1

λiξi +
∑

j∈J(x̄)

µjζj) 5 F (x, x̄;
k∑

i=1

λiξi) + F (x, x̄;
∑

j∈J(x̄)

µjζj)

< −(
k∑

i=1

λiρi +
∑

j∈J(x̄)

µjσj)d2(x, x̄) 5 0.

Therefore
k∑

i=1

λiξi +
∑

j∈J(x̄)

µjζj 6= 0,

which is a contradiction to (3.2). Hence x̄ is an efficient solution of (MP ). ¤
Theorem 3.2. Suppose that there exists a feasible solution x̄ of (MP) and scalars

λi = 0, i ∈ K,
k∑

i=1
λi = 1 and µj = 0, j ∈ J(x̄) such that (3.1) in Theorem 3.1 holds.

If (
k∑

i=1
λifi,

∑
j∈J(x̄)

µjgj) is (F, ρ1, σ1)-strictly-pseudoquasi-type I at x̄ and ρ1+σ1 = 0,

then x̄ is an efficient solution of (MP ).

Proof. Following the proof of Theorem 3.1, we obtain
k∑

i=1

λifi(x) 5
k∑

i=1

λifi(x̄),

and
−

∑

j∈J(x̄)

µjgj(x̄) = 0.

As (
k∑

i=1
λifi,

∑
j∈J(x̄)

µjgj) is (F, ρ1, σ1)-strictly-pseudoquasi-type I at x̄, it follows that

F (x, x̄;
k∑

i=1

λiξi) < −ρ1d
2(x, x̄), for all ξi ∈ ∂fi(x̄), i ∈ K,

F (x, x̄;
∑

j∈J(x̄)

µjζj) 5 −σ1d
2(x, x̄), for all ζj ∈ ∂gj(x̄), j ∈ J(x̄).

Using the sublinearity of F and ρ1 + σ1 = 0, we again reach a contradiction like
Theorem 3.1. ¤
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The following theorem can be proved along the similar lines of the proof of The-
orem 3.2.

Theorem 3.3. Suppose that there exists a feasible solution x̄ of (MP) and scalars

λi = 0, i ∈ K,
k∑

i=1
λi = 1 and µj = 0, j ∈ J(x̄) such that (3.1) in Theorem 3.1 holds.

If (
k∑

i=1
λifi,

∑
j∈J(x̄)

µjgj) is (F, ρ2, σ2)-quasistrictly-pseudo-type I at x̄ and ρ2+σ2 = 0,

then x̄ is an efficient solution of (MP ).

Theorem 3.4. Suppose that there exists a feasible solution x̄ of (MP) and scalars
λi > 0, i ∈ K, and µj = 0, j ∈ J(x̄) such that (3.1) in Theorem 3.1 holds. If any
one of the following two sets of hypotheses is satisfied:

(a) (i) (f, gJ) is (F, ρ, σ)-type I at x̄,

(ii)
k∑

i=1
λiρi +

∑
j∈J(x̄)

µjσj = 0,

(b) (i) (
k∑

i=1
λifi,

∑
j∈J(x̄)

µjgj) is (F, ρ3, σ3)-pseudoquasi-type I at x̄,

(ii) ρ3 + σ3 = 0,

then x̄ is a properly efficient solution of (MP).

Proof. Condition (3.1) implies that there exist ξi ∈ ∂fi(x̄), and ζj ∈ ∂gj(x̄) satisfy-
ing

(3.7) 0 =
k∑

i=1

λiξi +
∑

j∈J(x̄)

µjζj .

(a) Since (f, gJ) is (F, ρ, σ)-type I at x̄, we have for all x ∈ X,

k∑

i=1

λifi(x)−
k∑

i=1

λifi(x̄) = F (x, x̄;
k∑

i=1

λiξi)

+
k∑

i=1

λiρid
2(x, x̄), ∀ ξi ∈ ∂fi(x̄),(3.8)

0 = −
∑

j∈J(x̄)

µjgj(x̄) = F (x, x̄;
∑

j∈J(x̄)

µjζj)

+
∑

j∈J(x̄)

µjσjd
2(x, x̄), ∀ ζj ∈ ∂gj(x̄).(3.9)

Now relations (3.8), (3.9), and the sublinearity of F imply that

k∑

i=1

λifi(x)−
k∑

i=1

λifi(x̄) = F (x, x̄;
k∑

i=1

λiξi) +
k∑

i=1

λiρid
2(x, x̄)
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+F (x, x̄;
∑

j∈J(x̄)

µjζj) +
∑

j∈J(x̄)

µjσjd
2(x, x̄)

= F (x, x̄;
k∑

i=1

λiξi +
∑

j∈J(x̄)

µjζj)

+(
k∑

i=1

λiρi +
∑

j∈J(x̄)

µjσj)d2(x, x̄)

= (
k∑

i=1

λiρi +
∑

j∈J(x̄)

µjσj)d2(x, x̄), (by (3.7))

= 0, (by (ii)) .

Hence by Theorem 1 of Geoffrion [5], x̄ is a properly efficient solution of (MP ).
(b) Since gJ(x̄) = 0, µJ = 0, the second part of assumption (i) gives

F (x, x̄;
∑

j∈J(x̄)

µjζj) 5 −σ3d
2(x, x̄), for all ζj ∈ ∂gj(x̄), j ∈ J(x̄).

The above inequality together with the sublinearity of F , (3.7), and assumption
(ii) imply

F (x, x̄;
k∑

i=1

λiξi) = −ρ3d
2(x, x̄), for all ξi ∈ ∂fi(x̄), i ∈ K,

which on applying the first part of assumption (i) yields
k∑

i=1

λifi(x) =
k∑

i=1

λifi(x̄).

Hence by Theorem 1 of Geoffrion [5], x̄ is a properly efficient solution of (MP ). ¤

The so-called Cottle constraint qualification is used in the following theorem:

Proposition 3.5. Let fi, i ∈ K and gj , j ∈ M, be locally Lipschitz functions at
a point x̄ ∈ X. Problem (MP ) satisfies the Cottle constraint qualification at x̄ if
either gj(x̄) < 0, for all j ∈ M , or 0 /∈ conv {∂gj(x̄) : gj(x̄) = 0}.

Assuming the Cottle constraint qualification, we obtain the Karush-Kuhn-Tucker
type necessary conditions for efficiency (see, for example, [11], Theorem 3.2.9).

Theorem 3.6. Assume that x̄ is an efficient solution of (MP ) at which the Cottle

constraint qualification is satisfied. Then there exist scalars λi = 0, i ∈ K,
k∑

i=1
λi =

1, µj = 0, j ∈ M , such that

0 ∈
k∑

i=1

λi∂fi(x̄) +
m∑

j=1

µj∂gj(x̄),(3.10)
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µjgj(x̄) = 0, j ∈ M.(3.11)

The above conditions are also necessary for weak efficiency of x̄ for (MP) (see
[11], Corollary 3.2.10).

4. Generalized Mond-Weir type duality

In this section, we discuss weak, strong, and strict converse duality theorems
between the problem (MP ), and its corresponding general Mond-Weir [12] type
dual:

(MD) Maximize f(y) +
∑

j∈J0

µjgj(y)e

subject to

0 ∈
k∑

i=1

λi∂fi(y) +
m∑

j=1

µj∂gj(y),(4.1)

∑

j∈Jα

µjgj(y) = 0, α = 1, 2, . . . , p,(4.2)

λi = 0, i ∈ K,(4.3)

µj = 0, j ∈ M,(4.4)

k∑

i=1

λi = 1,(4.5)

where, e = (1, 1, . . . , 1) ∈ Rk, and Jα ⊆ M, α = 0, 1, 2, . . . , p, with Jα∩Jβ = φ, α 6=
β, and

p⋃
α=0

Jα = M .

Theorem 4.1 (Weak Duality). Assume that for all feasible x for (MP ) and all
feasible (y, λ, µ) for (MD), any one of the following two sets of hypotheses is satis-
fied:

(a) (i) (
k∑

i=1
λifi +

∑
j∈J0

µjgj ,
∑

j∈Jα

µjgj) is (F, ρ1, σ1α)-strictly-pseudoquasi-type

I at y for any α = 1, 2, . . . , p,

(ii) ρ1 +
p∑

α=1
σ1α = 0,

(b) (i) (
k∑

i=1
λifi +

∑
j∈J0

µjgj ,
∑

j∈Jα

µjgj) is (F, ρ2, σ2α)-quasi-strictlypseudo-type

I at y for any α = 1, 2, . . . , p,

(ii) ρ2 +
p∑

α=1
σ2α = 0;

then the following cannot hold

f(x) ≤ f(y) +
∑

j∈J0

µjgj(y)e.
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Proof. (a) Suppose to the contrary that

(4.6) f(x) ≤ f(y) +
∑

j∈J0

µjgj(y)e,

holds. Since x is feasible for (MP ), λi = 0, i ∈ K,
k∑

i=1
λi = 1 and µj = 0, j ∈ M ,

then (4.6) implies

(4.7)
k∑

i=1

λifi(x) +
∑

j∈J0

µjgj(x) 5
k∑

i=1

λifi(y) +
∑

j∈J0

µjgj(y).

Also, from (4.2), we have

(4.8) −
∑

j∈Jα

µjgj(y) 5 0, α = 1, 2, . . . , p.

Using hypothesis (i), we see that (4.7) and (4.8) together give

(4.9) F (x, y;
k∑

i=1

λiξi +
∑

j∈J0

µjζj) < −ρ1d
2(x, y), for all ξi ∈ ∂fi(y), i ∈ K,

(4.10)

F (x, y;
∑

j∈Jα

µjζj) 5 −σ1αd2(x, y), α = 1, 2, . . . , p, for all ζj ∈ ∂gj(y), j ∈ Jα.

By the sublinearity of F, we summarize to get

F (x, y;
k∑

i=1

λiξi +
m∑

j=1

µjζj) 5 F (x, y;
k∑

i=1

λiξi +
∑

j∈J0

µjζj) +
p∑

α=1

F (x, y;
∑

j∈Jα

µjζj)

< −(ρ1 +
p∑

α=1

σ1α)d2(x, y).

Since (ρ1 +
p∑

α=1
σ1α) = 0, we have

(4.11) F (x, y;
k∑

i=1

λiξi +
m∑

j=1

µjζj) < 0.

From condition (4.1), there exist ξi ∈ ∂fi(y), i ∈ K, and ζj ∈ ∂gj(y), j ∈ M, such
that

k∑

i=1

λiξi +
m∑

j=1

µjζj = 0,

which implies

F (x, y;
k∑

i=1

λiξi +
m∑

j=1

µjζj) = 0,
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contradicting (4.11). Hence f(x) ≤ f(y) +
∑

j∈J0

µjgj(y)e cannot hold.

(b). Under this hypothesis, inequality (4.9) holds as 5 inequality (with ρ1 = ρ2),
and (4.10) holds as strict inequality (with σ1α = σ2α). Therefore (4.11) also holds
as strict inequality, again a contradiction. ¤

Theorem 4.2 (Strong Duality). Let x̄ be an efficient solution of (MP ) at which
the Cottle constraint qualification is satisfied. Then there exist λ̄ ∈ Rk, and µ̄ ∈ Rm

such that (x̄, λ̄, µ̄) is feasible for (MD) and the objective values of (MP ) and (MD)
are equal. If the assumptions of weak duality (Theorem 4.1) are satisfied, then
(x̄, λ̄, µ̄) is an efficient solution of (MD).

Proof. Using Theorem 3.6, we obtain scalars λ̄i = 0, i ∈ K,
k∑

i=1
λ̄i = 1 and µ̄j =

0, j ∈ M such that (3.10) and (3.11) hold. Therefore (x̄, λ̄, µ̄) is a feasible solution
of (MD), and the objective values of (MP) and (MD) are equal. If (x̄, λ̄, µ̄) is not
an efficient solution of (MD), then there exists a feasible solution (y, λ, µ) of (MD)
such that

f(x̄) +
∑

j∈J◦

µ̄jgj(x̄)e ≤ f(y) +
∑

j∈J◦

µjgj(y)e.

From the above inequality and (3.11), we have

f(x̄) ≤ f(y) +
∑

j∈J◦

µjgj(y)e,

which contradicts weak duality (Theorem 4.1). Hence (x̄, λ̄, µ̄) is an efficient solution
of (MD). ¤

Remark 4.3. It may be noted that the above strong duality theorem is also valid
for weakly efficient solution as the Karush-Kuhn-Tucker type necessary conditions
used in the theorem holds for weak efficiency as well.

Theorem 4.4 (Strict Converse Duality). Let x̄ be a feasible solution of (MP ) and
let (ȳ, λ̄, µ̄) be a feasible solution of (MD) such that

(4.12)
k∑

i=1

λ̄ifi(x̄) 5
k∑

i=1

λ̄ifi(ȳ) +
∑

j∈J0

µ̄jgj(ȳ).

If (
k∑

i=1
λ̄ifi +

∑
j∈J0

µ̄jgj ,
∑

j∈Jα

µ̄jgj) is (F, ρ1, σ1α)-strictly-pseudoquasi-type I at ȳ

for any α = 1, 2, . . . p, and ρ1 +
p∑

α=1
σ1α = 0, then x̄ = ȳ.

Proof. We assume that x̄ 6= ȳ, and exhibit a contradiction. By imposing the

(F, ρ1, σ1α)-strictly-pseudoquasi-type I assumption on (
k∑

i=1
λ̄ifi+

∑
j∈J0

µ̄jgj ,
∑

j∈Jα

µ̄jgj)

at ȳ, we have



428 I. AHMAD AND S. SHARMA

(4.13) F (x̄, ȳ;
k∑

i=1

λ̄iξi +
∑

j∈J0

µ̄jζj) = −ρ1d
2(x̄, ȳ)

=⇒
k∑

i=1

λ̄ifi(x̄) +
∑

j∈J0

µ̄jgj(x̄) >

k∑

i=1

λ̄ifi(ȳ) +
∑

j∈J0

µ̄jgj(ȳ),

(4.14) −
∑

j∈Jα

µ̄jgj(ȳ) 5 0 =⇒ F (x̄, ȳ;
∑

j∈Jα

µ̄jζj) 5 −σ1αd2(x̄, ȳ), α = 1, 2, . . . , p.

Since (ȳ, λ̄, µ̄) is feasible for (MD), we obtain

(4.15) −
∑

j∈Jα

µ̄jgj(ȳ) 5 0, α = 1, 2, . . . , p.

Relation (4.14) along with (4.15) yields

(4.16) F (x̄, ȳ;
∑

j∈Jα

µ̄jζj) 5 −σ1αd2(x̄, ȳ), α = 1, 2, . . . , p.

From condition (4.1), there exist ξi ∈ ∂fi(ȳ) and ζj ∈ ∂gj(ȳ), such that
k∑

i=1

λ̄iξi +
m∑

j=1

µ̄jζj = 0,

which along with the sublinearity of F gives

0 = F (x̄, ȳ;
k∑

i=1

λ̄iξi +
m∑

j=1

µ̄jζj)(4.17)

5 F (x̄, ȳ;
k∑

i=1

λ̄iξi +
∑

j∈J◦

µ̄jζj) +
p∑

α=1

F (x̄, ȳ;
∑

j∈Jα

µ̄jζj).

The inequality (4.17) together with (4.16) reveals

F (x̄, ȳ;
k∑

i=1

λ̄iξi +
∑

j∈J◦

µ̄jζj) = −
p∑

α=1

F (x̄, ȳ;
∑

j∈Jα

µ̄jζj)(4.18)

=
p∑

α=1

σ1αd2(x̄, ȳ)

= −ρ1d
2(x̄, ȳ), (by ρ1 +

p∑

α=1

σ1α = 0).

The inequalities (4.13) and (4.18) imply
k∑

i=1

λ̄ifi(x̄) +
∑

j∈J◦

µ̄jgj(x̄) >
k∑

i=1

λ̄ifi(ȳ) +
∑

j∈J0

µ̄jgj(ȳ).
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Since µ̄j = 0 and gj(x̄) 5 0, j ∈ M , we obtain

k∑

i=1

λ̄ifi(x̄) >

k∑

i=1

λ̄ifi(ȳ) +
∑

j∈J0

µ̄jgj(ȳ),

contradicting (4.12). Hence x̄ = ȳ. ¤
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