OPTIMALITY CONDITIONS AND DUALITY IN NONSMOOTH MULTIOBJECTIVE OPTIMIZATION

IZHAR AHMAD AND SARITA SHARMA

Abstract

In this paper, a new class of generalized (F, ρ, σ)-type I functions are introduced for a nonsmooth multiobjective optimization problem. Based upon these generalized functions, Karush-Kuhn-Tucker type sufficient optimality conditions are derived for a feasible point to be an efficient or properly efficient solution. Appropriate duality theorems are also proved for a general Mond-Weir type dual.

1. Introduction

Multiobjective optimization is a useful mathematical model in order to investigate real-world problems with conflicting objectives, arising from economics, engineering and human decision making. Various optimality conditions and approaches to duality for the multiobjective optimization problems may be found in the literature. The case involving nonlinear functions has been of much interest in the recent past and many contributions have been made to this development.

It is well known that convexity plays a vital role in many aspects of mathematical programming including sufficient optimality conditions and duality theorems, but does no longer suffice. To relax convexity assumptions imposed on sufficient optimality conditions and duality theorems, various generalized convexity notions have been proposed. One of the useful generalizations is (F, ρ)-convexity was introduced by Preda [13] as an extension of F-convexity [7], and ρ - convexity [15], and he used this concept to obtain duality results for efficient solutions. Recently, Aghezzaf [1] and Ahmad [3] obtained sufficiency and duality theorems for efficient and properly efficient solutions under generalized (F, ρ)-convexity.

Hanson and Mond [8] introduced two new classes of functions, called type I and type II functions for scalar optimization problem, which were further generalized to pseudo-type I and quasi-type I by Rueda and Hanson [14]. Other classes of generalized type I functions have been introduced in [2, 6, 9]. Zhao [16] gave optimality conditions and duality results in nondifferentiable scalar optimization assuming Clarke [4] generalized subgradients under type I functions. Recently, Kuk and Tanino [10] established sufficient optimality conditions and duality theorems under generalized type I functions in terms of Clarke subgradients.

[^0]In the present paper, we consider a nonsmooth multiobjective optimization problem and define a new class of generalized (F, ρ, σ) - type I functions in order to establish the Karush-Kuhn-Tucker type sufficient optimality conditions for a feasible point to be efficient or properly efficient. Moreover, weak, strong and strict converse duality theorems are obtained for a general Mond-Weir type dual.

2. Definitions and preliminaries

Following conventions of vectors in R^{n} will be followed throughout the paper: $x \geqq y \Longleftrightarrow x_{i} \geqq y_{i}, i=1,2, \ldots, n ; x \geq y \Longleftrightarrow x_{i} \geqq y_{i}, i=1,2, \ldots, n$, but $x \neq$ $y ; x>y \Longleftrightarrow x_{i}>y_{i}, i=1,2, \ldots, n$. Let $K=\{1,2, \ldots, k\}$, and $M=\{1,2, \ldots, m\}$ be index sets.

A function $f: R^{n} \longrightarrow R$ is said to be locally Lipschitz at $\bar{x} \in R^{n}$, if there exist scalars $\delta>0$ and $\epsilon>0$ such that

$$
\left|f\left(x^{1}\right)-f\left(x^{2}\right)\right| \leqq \delta\left\|x^{1}-x^{2}\right\|, \text { for all } x^{1}, x^{2} \in \bar{x}+\epsilon B
$$

where $\bar{x}+\epsilon B$ is the open ball of radius ϵ about \bar{x}.
The generalized directional derivative [4] of a locally Lipschitz function f at x in the direction v, denoted by $f^{0}(x ; v)$, is as follows :

$$
\begin{gathered}
f^{0}(x ; v)=\lim \sup _{y \rightarrow x}\left[\frac{f(y+t v)-f(y)}{t}\right] . \\
t \downarrow 0
\end{gathered}
$$

The Clarke generalized gradient [4] of f at x is denoted by

$$
\partial f(x)=\left\{\xi: f^{0}(x ; v) \geqq \xi^{T} v, \text { for all } v \in R^{n}\right\}
$$

The function f at x is regular in the sense of Clarke [4], if $f^{0}(x ; v)=f^{\prime}(x ; v)$, where $f^{\prime}(x ; v)$ is the directional derivative

$$
f^{\prime}(x ; v)=\lim _{t \downarrow 0}\left[\frac{f(x+t v)-f(x)}{t}\right] .
$$

We now consider the following multiobjective optimization problem :

$$
\begin{align*}
\text { Minimize } f(x) & =\left[f_{1}(x), f_{2}(x), \ldots, f_{k}(x)\right] \tag{MP}\\
\text { subject to } x \in X & =\left\{x \in S: g_{j}(x) \leqq 0, j \in M\right\}
\end{align*}
$$

where S is a non-empty open convex subset of R^{n}, and $f_{i}: S \rightarrow R, i \in K$ and $g_{j}: S \rightarrow R, j \in M$, are locally Lipschitz functions.

The following two definitions are from Geoffrion [5].
Definition 2.1. A point $\bar{x} \in X$ is said to be an efficient solution of (MP) if there exists no $x \in X$ such that $f(x) \leq f(\bar{x})$.

Definition 2.2. An efficient solution \bar{x} is said to be a properly efficient solution of $(M P)$ if there exists a scalar $N>0$ such that for each $i, f_{i}(x)<f_{i}(\bar{x})$ and $x \in X$ imply that

$$
\frac{f_{i}(\bar{x})-f_{i}(x)}{f_{j}(x)-f_{j}(\bar{x})} \leqq N
$$

for at least one j satisfying $f_{j}(\bar{x})<f_{j}(x)$.
Definition 2.3. A functional $F: S \times S \times R^{n} \longrightarrow R$ is said to be sublinear in its third component, if for all $x, \bar{x} \in S$,
(i) $F(x, \bar{x} ; a+b) \leqq F(x, \bar{x} ; a)+F(x, \bar{x} ; b)$, for all $a, b \in R^{n}$,
(ii) $F(x, \bar{x} ; \alpha a)=\alpha F(x, \bar{x} ; a), \forall \alpha \in R, \alpha \geqq 0$, and for all $a \in R^{n}$.

From (ii), it is clear that $F(x, \bar{x} ; 0)=0$.
We next introduce generalized (F, ρ, σ)-type I functions.
Let F be a sublinear functional, and let the functions f and g be locally Lipschitz at a given point $\bar{x} \in S$. Let $\rho_{i} \in R, i \in K, \sigma_{j} \in R, j \in M$, and $d(\cdot, \cdot): S \times S \rightarrow R$.

Definition 2.4. (f, g) is said to be (F, ρ, σ)-type I at $\bar{x} \in S$, if for all $x \in X$, we have

$$
\begin{align*}
f_{i}(x)-f_{i}(\bar{x}) & \geqq F\left(x, \bar{x} ; \xi_{i}\right)+\rho_{i} d^{2}(x, \bar{x}), \text { for all } \xi_{i} \in \partial f_{i}(\bar{x}), i \in K, \tag{2.1}\\
-g_{j}(\bar{x}) & \geqq F\left(x, \bar{x} ; \zeta_{j}\right)+\sigma_{j} d^{2}(x, \bar{x}), \text { for all } \zeta_{j} \in \partial g_{j}(\bar{x}), j \in M
\end{align*}
$$

If in the above definition, (2.1) is a strict inequality, then we say that (f, g) is (F, ρ, σ)-semistrictly-type I at \bar{x}.

Remark 2.5. If $\rho_{i}=0, F\left(x, \bar{x} ; \xi_{i}\right)=\xi_{i}^{T} \eta(x, \bar{x}), i \in K$, and $\sigma_{j}=0, F\left(x, \bar{x} ; \zeta_{j}\right)=$ $\zeta_{j}^{T} \eta(x, \bar{x}), j \in M$, for a certain mapping $\eta: X \times S \rightarrow R^{n}$, then above definition reduces to one of type I functions defined in [10].

Example 2.6. Consider the following multiobjective optimization problem:

$$
\begin{aligned}
\text { Minimize } f(x) & =\left[f_{1}(x), f_{2}(x)\right] \\
\text { subject to } g(x) & \leqq 0, x \in S
\end{aligned}
$$

where $f=\left(f_{1}, f_{2}\right): S \rightarrow R^{2}$, and $g: S \rightarrow R$ are given by

$$
\begin{aligned}
& f_{1}(x)=\left\{\begin{array}{l}
x^{3}+x ;-1 \leqq x<0 \\
3 x ; 0 \leqq x \leqq 1
\end{array}\right. \\
& f_{2}(x)=\left\{\begin{array}{l}
x^{2} ;-1 \leqq x<0 \\
x ; 0 \leqq x \leqq 1
\end{array}\right.
\end{aligned}
$$

and

$$
g(x)=|x|-1 \leqq 0
$$

The feasible region is $X=\{x:-1 \leqq x \leqq 1\}$.

The Clarke generalized gradients of f_{1}, f_{2}, and g at $\bar{x}=0$ are

$$
\partial f_{1}(0)=\left\{\xi_{1}: 1 \leqq \xi_{1} \leqq 3\right\}, \partial f_{2}(0)=\left\{\xi_{2}: 0 \leqq \xi_{2} \leqq 1\right\},
$$

and

$$
\partial g(0)=\{\zeta:-1 \leqq \zeta \leqq 1\}
$$

It can be easily seen that (f, g) is (F, ρ, σ)-type I at $\bar{x}=0 \in S$, for the sublinear functional $F(x, \bar{x} ; a)=a^{T}\left(x^{3}+\bar{x}\right), d(x, \bar{x})=\sqrt{x+\bar{x}-2}, \rho=2$, and $\sigma=3$. But (f, g) is not type I [10] as can be verified by taking $\rho=0$, and $\sigma=0$.
Definition 2.7. (f, g) is said to be (F, ρ, σ)-quasi-type I at $\bar{x} \in S$, if for all $x \in X$, we have

$$
\begin{aligned}
f_{i}(x) & \leqq f_{i}(\bar{x}) \Longrightarrow F\left(x, \bar{x} ; \xi_{i}\right) \leqq-\rho_{i} d^{2}(x, \bar{x}), \text { for all } \xi_{i} \in \partial f_{i}(\bar{x}), i \in K, \\
-g_{j}(\bar{x}) & \leqq 0 \Longrightarrow F\left(x, \bar{x} ; \zeta_{j}\right) \leqq-\sigma_{j} d^{2}(x, \bar{x}), \text { for all } \zeta_{j} \in \partial g_{j}(\bar{x}), j \in M .
\end{aligned}
$$

Definition 2.8. (f, g) is said to be (F, ρ, σ)-pseudo-type I at $\bar{x} \in S$, if for all $x \in X$, we have

$$
\begin{aligned}
& F\left(x, \bar{x} ; \xi_{i}\right) \geqq-\rho_{i} d^{2}(x, \bar{x}) \Longrightarrow f_{i}(x) \geqq f_{i}(\bar{x}), \text { for all } \xi_{i} \in \partial f_{i}(\bar{x}), i \in K, \\
& F\left(x, \bar{x} ; \zeta_{j}\right) \geqq-\sigma_{j} d^{2}(x, \bar{x}) \Longrightarrow-g_{j}(\bar{x}) \geqq 0, \text { for all } \zeta_{j} \in \partial g_{j}(\bar{x}), j \in M .
\end{aligned}
$$

Definition 2.9. (f, g) is said to be (F, ρ, σ)-quasipseudo-type I at $\bar{x} \in S$, if for all $x \in X$, we have

$$
\begin{align*}
f_{i}(x) \leqq f_{i}(\bar{x}) & \Longrightarrow F\left(x, \bar{x} ; \xi_{i}\right) \leqq-\rho_{i} d^{2}(x, \bar{x}), \text { for all } \xi_{i} \in \partial f_{i}(\bar{x}), i \in K \\
F\left(x, \bar{x}, \zeta_{j}\right) & \geqq-\sigma_{j} d^{2}(x, \bar{x}) \Longrightarrow-g_{j}(\bar{x}) \geqq 0, \text { for all } \zeta_{j} \in \partial g_{j}(\bar{x}), j \in M . \tag{2.2}
\end{align*}
$$

If in the above definition, inequality (2.2) is satisfied as

$$
F\left(x, \bar{x} ; \zeta_{j}\right) \geqq-\sigma_{j} d^{2}(x, \bar{x}) \Longrightarrow-g_{j}(\bar{x})>0, \text { for all } \zeta_{j} \in \partial g_{j}(\bar{x}), j \in M
$$

then we say that (f, g) is (F, ρ, σ)-quasistrictly-pseudo-type I at \bar{x}.
Definition 2.10. (f, g) is said to be (F, ρ, σ)-pseudoquasi-type I at $\bar{x} \in S$, if for all $x \in X$, we have

$$
\begin{gather*}
F\left(x, \bar{x} ; \xi_{i}\right) \geqq-\rho_{i} d^{2}(x, \bar{x}) \Longrightarrow f_{i}(x) \geqq f_{i}(\bar{x}) \text {, for all } \xi_{i} \in \partial f_{i}(\bar{x}), i \in K, \tag{2.3}\\
-g_{j}(\bar{x}) \leqq 0 \Longrightarrow F\left(x, \bar{x} ; \zeta_{j}\right) \leqq-\sigma_{j} d^{2}(x, \bar{x}), \text { for all } \zeta_{j} \in \partial g_{j}(\bar{x}), j \in M .
\end{gather*}
$$

If in the above definition, inequality (2.3) is satisfied as

$$
F\left(x, \bar{x} ; \xi_{i}\right) \geqq-\rho_{i} d^{2}(x, \bar{x}) \Longrightarrow f_{i}(x)>f_{i}(\bar{x}), \text { for all } \xi_{i} \in \partial f_{i}(\bar{x}), i \in K,
$$

or equivalently,

$$
f_{i}(x) \leqq f_{i}(\bar{x}) \Longrightarrow F\left(x, \bar{x} ; \xi_{i}\right)<-\rho_{i} d^{2}(x, \bar{x}), \text { for all } \xi_{i} \in \partial f_{i}(\bar{x}), i \in K,
$$

then we say that (f, g) is (F, ρ, σ)-strictly-pseudoquasi-type I at \bar{x}.

3. SUFFICIENCY

In this section, we obtain Karush-Kuhn-Tucker type sufficient optimality conditions for a feasible point of $(M P)$ to be efficient or properly efficient. Let $J(\bar{x})=$ $\left\{j \in M: g_{j}(\bar{x})=0\right\}$, and $g_{J}(\bar{x})$ denotes the vector of active constraints.

Theorem 3.1. Suppose that there exists a feasible solution \bar{x} of (MP) and scalars $\lambda_{i} \geqq 0, i \in K, \sum_{i=1}^{k} \lambda_{i}=1$ and $\mu_{j} \geqq 0, j \in J(\bar{x})$ such that

$$
\begin{equation*}
0 \in \sum_{i=1}^{k} \lambda_{i} \partial f_{i}(\bar{x})+\sum_{j \in J(\bar{x})} \mu_{j} \partial g_{j}(\bar{x}) \tag{3.1}
\end{equation*}
$$

If $\left(f, g_{J}\right)$ is (F, ρ, σ)-semistrictly-type I at \bar{x} and $\sum_{i=1}^{k} \lambda_{i} \rho_{i}+\sum_{j \in J(\bar{x})} \mu_{j} \sigma_{j} \geqq 0$, then \bar{x} is an efficient solution of (MP).

Proof. Condition (3.1) implies that there exist $\xi_{i} \in \partial f_{i}(\bar{x}), i \in K$, and $\zeta_{j} \in \partial g_{j}(\bar{x}), j \in$ $J(\bar{x})$ satisfying

$$
\begin{equation*}
\sum_{i=1}^{k} \lambda_{i} \xi_{i}+\sum_{j \in J(\bar{x})} \mu_{j} \zeta_{j}=0 \tag{3.2}
\end{equation*}
$$

Now suppose that \bar{x} is not an efficient solution of $(M P)$, then there exists a feasible solution x of (MP), and an index r such that

$$
f_{r}(x)<f_{r}(\bar{x})
$$

and

$$
f_{i}(x) \leqq f_{i}(\bar{x}), \text { for all } i \neq r
$$

These two inequalities lead to

$$
\sum_{i=1}^{k} \lambda_{i} f_{i}(x) \leqq \sum_{i=1}^{k} \lambda_{i} f_{i}(\bar{x})
$$

Also, we have $-\sum_{j \in J(\bar{x})} \mu_{j} g_{j}(\bar{x})=0$.
Since $\left(f, g_{J}\right)$ is (F, ρ, σ)-semistrictly-type I at \bar{x}, we have

$$
\begin{equation*}
f_{i}(x)-f_{i}(\bar{x})>F\left(x, \bar{x} ; \xi_{i}\right)+\rho_{i} d^{2}(x, \bar{x}), \text { for all } \xi_{i} \in \partial f_{i}(\bar{x}), i \in K \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
-g_{j}(\bar{x}) \geqq F\left(x, \bar{x} ; \zeta_{j}\right)+\sigma_{j} d^{2}(x, \bar{x}), \text { for all } \zeta_{j} \in \partial g_{j}(\bar{x}), j \in J(\bar{x}) \tag{3.4}
\end{equation*}
$$

On summing the inequalities obtained on multiplying (3.3) by $\lambda_{i} \geqq 0, i \in K$, and (3.4) by $\mu_{j} \geqq 0, j \in M$, respectively, we get

$$
0 \geqq \sum_{i=1}^{k} \lambda_{i} f_{i}(x)-\sum_{i=1}^{k} \lambda_{i} f_{i}(\bar{x})
$$

$$
\begin{align*}
0= & -\sum_{j \in J(\bar{x})} \mu_{j} g_{j}(\bar{x}) \\
& \geqq F\left(x, \bar{x} ; \sum_{j \in J(\bar{x})} \mu_{j} \zeta_{j}\right)+\sum_{j \in J(\bar{x})} \mu_{j} \sigma_{j} d^{2}(x, \bar{x}), \text { for all } \zeta_{j} \in \partial g_{j}(\bar{x}) \tag{3.6}
\end{align*}
$$

Now relations (3.5), (3.6), and the sublinearity of F imply

$$
\begin{aligned}
F\left(x, \bar{x} ; \sum_{i=1}^{k} \lambda_{i} \xi_{i}+\sum_{j \in J(\bar{x})} \mu_{j} \zeta_{j}\right) & \leqq F\left(x, \bar{x} ; \sum_{i=1}^{k} \lambda_{i} \xi_{i}\right)+F\left(x, \bar{x} ; \sum_{j \in J(\bar{x})} \mu_{j} \zeta_{j}\right) \\
& <-\left(\sum_{i=1}^{k} \lambda_{i} \rho_{i}+\sum_{j \in J(\bar{x})} \mu_{j} \sigma_{j}\right) d^{2}(x, \bar{x}) \leqq 0 .
\end{aligned}
$$

Therefore

$$
\sum_{i=1}^{k} \lambda_{i} \xi_{i}+\sum_{j \in J(\bar{x})} \mu_{j} \zeta_{j} \neq 0
$$

which is a contradiction to (3.2). Hence \bar{x} is an efficient solution of $(M P)$.
Theorem 3.2. Suppose that there exists a feasible solution \bar{x} of (MP) and scalars $\lambda_{i} \geqq 0, i \in K, \sum_{i=1}^{k} \lambda_{i}=1$ and $\mu_{j} \geqq 0, j \in J(\bar{x})$ such that (3.1) in Theorem 3.1 holds. If $\left(\sum_{i=1}^{k} \lambda_{i} f_{i}, \sum_{j \in J(\bar{x})} \mu_{j} g_{j}\right)$ is $\left(F, \rho_{1}, \sigma_{1}\right)$-strictly-pseudoquasi-type I at \bar{x} and $\rho_{1}+\sigma_{1} \geqq 0$, then \bar{x} is an efficient solution of (MP).
Proof. Following the proof of Theorem 3.1, we obtain

$$
\sum_{i=1}^{k} \lambda_{i} f_{i}(x) \leqq \sum_{i=1}^{k} \lambda_{i} f_{i}(\bar{x})
$$

and

$$
-\sum_{j \in J(\bar{x})} \mu_{j} g_{j}(\bar{x})=0 .
$$

As $\left(\sum_{i=1}^{k} \lambda_{i} f_{i}, \sum_{j \in J(\bar{x})} \mu_{j} g_{j}\right)$ is $\left(F, \rho_{1}, \sigma_{1}\right)$-strictly-pseudoquasi-type I at \bar{x}, it follows that

$$
F\left(x, \bar{x} ; \sum_{i=1}^{k} \lambda_{i} \xi_{i}\right)<-\rho_{1} d^{2}(x, \bar{x}), \text { for all } \xi_{i} \in \partial f_{i}(\bar{x}), i \in K
$$

$$
F\left(x, \bar{x} ; \sum_{j \in J(\bar{x})} \mu_{j} \zeta_{j}\right) \leqq-\sigma_{1} d^{2}(x, \bar{x}), \text { for all } \zeta_{j} \in \partial g_{j}(\bar{x}), j \in J(\bar{x}) .
$$

Using the sublinearity of F and $\rho_{1}+\sigma_{1} \geqq 0$, we again reach a contradiction like Theorem 3.1.

The following theorem can be proved along the similar lines of the proof of Theorem 3.2.

Theorem 3.3. Suppose that there exists a feasible solution \bar{x} of (MP) and scalars $\lambda_{i} \geqq 0, i \in K, \sum_{i=1}^{k} \lambda_{i}=1$ and $\mu_{j} \geqq 0, j \in J(\bar{x})$ such that (3.1) in Theorem 3.1 holds. $\operatorname{If}\left(\sum_{i=1}^{k} \lambda_{i} f_{i}, \sum_{j \in J(\bar{x})} \mu_{j} g_{j}\right)$ is $\left(F, \rho_{2}, \sigma_{2}\right)$-quasistrictly-pseudo-type I at \bar{x} and $\rho_{2}+\sigma_{2} \geqq 0$, then \bar{x} is an efficient solution of (MP).

Theorem 3.4. Suppose that there exists a feasible solution \bar{x} of (MP) and scalars $\lambda_{i}>0, i \in K$, and $\mu_{j} \geqq 0, j \in J(\bar{x})$ such that (3.1) in Theorem 3.1 holds. If any one of the following two sets of hypotheses is satisfied:
(a) (i) $\left(f, g_{J}\right)$ is (F, ρ, σ)-type I at \bar{x},
(ii) $\sum_{i=1}^{k} \lambda_{i} \rho_{i}+\sum_{j \in J(\bar{x})} \mu_{j} \sigma_{j} \geqq 0$,
(b) (i) $\left(\sum_{i=1}^{k} \lambda_{i} f_{i}, \sum_{j \in J(\bar{x})} \mu_{j} g_{j}\right)$ is $\left(F, \rho_{3}, \sigma_{3}\right)$-pseudoquasi-type I at \bar{x},
(ii) $\rho_{3}+\sigma_{3} \geqq 0$,
then \bar{x} is a properly efficient solution of (MP).
Proof. Condition (3.1) implies that there exist $\xi_{i} \in \partial f_{i}(\bar{x})$, and $\zeta_{j} \in \partial g_{j}(\bar{x})$ satisfying

$$
\begin{equation*}
0=\sum_{i=1}^{k} \lambda_{i} \xi_{i}+\sum_{j \in J(\bar{x})} \mu_{j} \zeta_{j} \tag{3.7}
\end{equation*}
$$

(a) Since $\left(f, g_{J}\right)$ is (F, ρ, σ)-type I at \bar{x}, we have for all $x \in X$,

$$
\begin{align*}
\sum_{i=1}^{k} \lambda_{i} f_{i}(x)-\sum_{i=1}^{k} \lambda_{i} f_{i}(\bar{x}) \geqq & F\left(x, \bar{x} ; \sum_{i=1}^{k} \lambda_{i} \xi_{i}\right) \\
& +\sum_{i=1}^{k} \lambda_{i} \rho_{i} d^{2}(x, \bar{x}), \forall \xi_{i} \in \partial f_{i}(\bar{x}) \tag{3.8}\\
0=-\sum_{j \in J(\bar{x})} \mu_{j} g_{j}(\bar{x}) \geqq & F\left(x, \bar{x} ; \sum_{j \in J(\bar{x})} \mu_{j} \zeta_{j}\right) \\
& +\sum_{j \in J(\bar{x})} \mu_{j} \sigma_{j} d^{2}(x, \bar{x}), \forall \zeta_{j} \in \partial g_{j}(\bar{x}) \tag{3.9}
\end{align*}
$$

Now relations $(\overline{3.8}),(\overline{3.9})$, and the sublinearity of F imply that

$$
\sum_{i=1}^{k} \lambda_{i} f_{i}(x)-\sum_{i=1}^{k} \lambda_{i} f_{i}(\bar{x}) \geqq F\left(x, \bar{x} ; \sum_{i=1}^{k} \lambda_{i} \xi_{i}\right)+\sum_{i=1}^{k} \lambda_{i} \rho_{i} d^{2}(x, \bar{x})
$$

$$
\begin{aligned}
& +F\left(x, \bar{x} ; \sum_{j \in J(\bar{x})} \mu_{j} \zeta_{j}\right)+\sum_{j \in J(\bar{x})} \mu_{j} \sigma_{j} d^{2}(x, \bar{x}) \\
\geqq & F\left(x, \bar{x} ; \sum_{i=1}^{k} \lambda_{i} \xi_{i}+\sum_{j \in J(\bar{x})} \mu_{j} \zeta_{j}\right) \\
& +\left(\sum_{i=1}^{k} \lambda_{i} \rho_{i}+\sum_{j \in J(\bar{x})} \mu_{j} \sigma_{j}\right) d^{2}(x, \bar{x}) \\
\geqq & \left(\sum_{i=1}^{k} \lambda_{i} \rho_{i}+\sum_{j \in J(\bar{x})} \mu_{j} \sigma_{j}\right) d^{2}(x, \bar{x}),(\text { by }(3.7)) \\
\geqq & 0,(\text { by }(\mathrm{ii})) .
\end{aligned}
$$

Hence by Theorem 1 of Geoffrion [5], \bar{x} is a properly efficient solution of (MP).
(b) Since $g_{J}(\bar{x})=0, \mu_{J} \geqq 0$, the second part of assumption (i) gives

$$
F\left(x, \bar{x} ; \sum_{j \in J(\bar{x})} \mu_{j} \zeta_{j}\right) \leqq-\sigma_{3} d^{2}(x, \bar{x}), \text { for all } \zeta_{j} \in \partial g_{j}(\bar{x}), j \in J(\bar{x})
$$

The above inequality together with the sublinearity of F, (3.7), and assumption (ii) imply

$$
F\left(x, \bar{x} ; \sum_{i=1}^{k} \lambda_{i} \xi_{i}\right) \geqq-\rho_{3} d^{2}(x, \bar{x}), \text { for all } \xi_{i} \in \partial f_{i}(\bar{x}), i \in K
$$

which on applying the first part of assumption (i) yields

$$
\sum_{i=1}^{k} \lambda_{i} f_{i}(x) \geqq \sum_{i=1}^{k} \lambda_{i} f_{i}(\bar{x})
$$

Hence by Theorem 1 of Geoffrion [5], \bar{x} is a properly efficient solution of (MP).
The so-called Cottle constraint qualification is used in the following theorem:
Proposition 3.5. Let $f_{i}, i \in K$ and $g_{j}, j \in M$, be locally Lipschitz functions at a point $\bar{x} \in X$. Problem $(M P)$ satisfies the Cottle constraint qualification at \bar{x} if either $g_{j}(\bar{x})<0$, for all $j \in M$, or $0 \notin \operatorname{conv}\left\{\partial g_{j}(\bar{x}): g_{j}(\bar{x})=0\right\}$.

Assuming the Cottle constraint qualification, we obtain the Karush-Kuhn-Tucker type necessary conditions for efficiency (see, for example, [11], Theorem 3.2.9).

Theorem 3.6. Assume that \bar{x} is an efficient solution of (MP) at which the Cottle constraint qualification is satisfied. Then there exist scalars $\lambda_{i} \geqq 0, i \in K, \sum_{i=1}^{k} \lambda_{i}=$ $1, \mu_{j} \geqq 0, j \in M$, such that

$$
\begin{equation*}
0 \in \sum_{i=1}^{k} \lambda_{i} \partial f_{i}(\bar{x})+\sum_{j=1}^{m} \mu_{j} \partial g_{j}(\bar{x}) \tag{3.10}
\end{equation*}
$$

$$
\begin{equation*}
\mu_{j} g_{j}(\bar{x})=0, j \in M \tag{3.11}
\end{equation*}
$$

The above conditions are also necessary for weak efficiency of \bar{x} for (MP) (see [11], Corollary 3.2.10).

4. Generalized Mond-Weir type duality

In this section, we discuss weak, strong, and strict converse duality theorems between the problem $(M P)$, and its corresponding general Mond-Weir [12] type dual:
(MD)

$$
\text { Maximize } f(y)+\sum_{j \in J_{0}} \mu_{j} g_{j}(y) e
$$

subject to

$$
\begin{gather*}
0 \in \sum_{i=1}^{k} \lambda_{i} \partial f_{i}(y)+\sum_{j=1}^{m} \mu_{j} \partial g_{j}(y) \tag{4.1}\\
\sum_{j \in J_{\alpha}} \mu_{j} g_{j}(y) \geqq 0, \alpha=1,2, \ldots, p \\
\lambda_{i} \geqq 0, i \in K \\
\mu_{j} \geqq 0, j \in M \\
\sum_{i=1}^{k} \lambda_{i}=1
\end{gather*}
$$

where, $e=(1,1, \ldots, 1) \in R^{k}$, and $J_{\alpha} \subseteq M, \alpha=0,1,2, \ldots, p$, with $J_{\alpha} \cap J_{\beta}=\phi, \alpha \neq$ β, and $\bigcup_{\alpha=0}^{p} J_{\alpha}=M$.

Theorem 4.1 (Weak Duality). Assume that for all feasible x for (MP) and all feasible (y, λ, μ) for $(M D)$, any one of the following two sets of hypotheses is satisfied:
(a) (i) $\left(\sum_{i=1}^{k} \lambda_{i} f_{i}+\sum_{j \in J_{0}} \mu_{j} g_{j}, \sum_{j \in J_{\alpha}} \mu_{j} g_{j}\right)$ is $\left(F, \rho_{1}, \sigma_{1 \alpha}\right)$-strictly-pseudoquasi-type I at y for any $\alpha=1,2, \ldots, p$,
(ii) $\rho_{1}+\sum_{\alpha=1}^{p} \sigma_{1 \alpha} \geqq 0$,
(b) (i) $\left(\sum_{i=1}^{k} \lambda_{i} f_{i}+\sum_{j \in J_{0}} \mu_{j} g_{j}, \sum_{j \in J_{\alpha}} \mu_{j} g_{j}\right)$ is $\left(F, \rho_{2}, \sigma_{2 \alpha}\right)$-quasi-strictlypseudo-type I at y for any $\alpha=1,2, \ldots, p$,
(ii) $\rho_{2}+\sum_{\alpha=1}^{p} \sigma_{2 \alpha} \geqq 0 ;$
then the following cannot hold

$$
f(x) \leq f(y)+\sum_{j \in J_{0}} \mu_{j} g_{j}(y) e
$$

Proof. (a) Suppose to the contrary that

$$
\begin{equation*}
f(x) \leq f(y)+\sum_{j \in J_{0}} \mu_{j} g_{j}(y) e, \tag{4.6}
\end{equation*}
$$

holds. Since x is feasible for $(M P), \lambda_{i} \geqq 0, i \in K, \sum_{i=1}^{k} \lambda_{i}=1$ and $\mu_{j} \geqq 0, j \in M$, then (4.6) implies

$$
\begin{equation*}
\sum_{i=1}^{k} \lambda_{i} f_{i}(x)+\sum_{j \in J_{0}} \mu_{j} g_{j}(x) \leqq \sum_{i=1}^{k} \lambda_{i} f_{i}(y)+\sum_{j \in J_{0}} \mu_{j} g_{j}(y) . \tag{4.7}
\end{equation*}
$$

Also, from (4.2), we have

$$
\begin{equation*}
-\sum_{j \in J_{\alpha}} \mu_{j} g_{j}(y) \leqq 0, \alpha=1,2, \ldots, p \tag{4.8}
\end{equation*}
$$

Using hypothesis (i), we see that (4.7) and (4.8) together give

$$
\begin{equation*}
F\left(x, y ; \sum_{i=1}^{k} \lambda_{i} \xi_{i}+\sum_{j \in J_{0}} \mu_{j} \zeta_{j}\right)<-\rho_{1} d^{2}(x, y), \text { for all } \xi_{i} \in \partial f_{i}(y), i \in K, \tag{4.9}
\end{equation*}
$$

$$
\begin{equation*}
F\left(x, y ; \sum_{j \in J_{\alpha}} \mu_{j} \zeta_{j}\right) \leqq-\sigma_{1 \alpha} d^{2}(x, y), \alpha=1,2, \ldots, p, \text { for all } \zeta_{j} \in \partial g_{j}(y), j \in J_{\alpha} \tag{4.10}
\end{equation*}
$$

By the sublinearity of F , we summarize to get

$$
\begin{aligned}
F\left(x, y ; \sum_{i=1}^{k} \lambda_{i} \xi_{i}+\sum_{j=1}^{m} \mu_{j} \zeta_{j}\right) & \leqq F\left(x, y ; \sum_{i=1}^{k} \lambda_{i} \xi_{i}+\sum_{j \in J_{0}} \mu_{j} \zeta_{j}\right)+\sum_{\alpha=1}^{p} F\left(x, y ; \sum_{j \in J_{\alpha}} \mu_{j} \zeta_{j}\right) \\
& <-\left(\rho_{1}+\sum_{\alpha=1}^{p} \sigma_{1 \alpha}\right) d^{2}(x, y) .
\end{aligned}
$$

Since $\left(\rho_{1}+\sum_{\alpha=1}^{p} \sigma_{1 \alpha}\right) \geqq 0$, we have

$$
\begin{equation*}
F\left(x, y ; \sum_{i=1}^{k} \lambda_{i} \xi_{i}+\sum_{j=1}^{m} \mu_{j} \zeta_{j}\right)<0 . \tag{4.11}
\end{equation*}
$$

From condition (4.1), there exist $\xi_{i} \in \partial f_{i}(y), i \in K$, and $\zeta_{j} \in \partial g_{j}(y), j \in M$, such that

$$
\sum_{i=1}^{k} \lambda_{i} \xi_{i}+\sum_{j=1}^{m} \mu_{j} \zeta_{j}=0
$$

which implies

$$
F\left(x, y ; \sum_{i=1}^{k} \lambda_{i} \xi_{i}+\sum_{j=1}^{m} \mu_{j} \zeta_{j}\right)=0
$$

contradicting (4.11). Hence $f(x) \leq f(y)+\sum_{j \in J_{0}} \mu_{j} g_{j}(y) e$ cannot hold.
(b). Under this hypothesis, inequality (4.9) holds as \leqq inequality (with $\rho_{1}=\rho_{2}$), and (4.10) holds as strict inequality (with $\sigma_{1 \alpha}=\sigma_{2 \alpha}$). Therefore (4.11) also holds as strict inequality, again a contradiction.

Theorem 4.2 (Strong Duality). Let \bar{x} be an efficient solution of (MP) at which the Cottle constraint qualification is satisfied. Then there exist $\bar{\lambda} \in R^{k}$, and $\bar{\mu} \in R^{m}$ such that $(\bar{x}, \bar{\lambda}, \bar{\mu})$ is feasible for $(M D)$ and the objective values of $(M P)$ and (MD) are equal. If the assumptions of weak duality (Theorem 4.1) are satisfied, then $(\bar{x}, \bar{\lambda}, \bar{\mu})$ is an efficient solution of (MD).

Proof. Using Theorem 3.6, we obtain scalars $\bar{\lambda}_{i} \geqq 0, i \in K, \sum_{i=1}^{k} \bar{\lambda}_{i}=1$ and $\bar{\mu}_{j} \geqq$ $0, j \in M$ such that (3.10) and (3.11) hold. Therefore $(\bar{x}, \bar{\lambda}, \bar{\mu})$ is a feasible solution of (MD), and the objective values of (MP) and (MD) are equal. If ($\bar{x}, \bar{\lambda}, \bar{\mu}$) is not an efficient solution of (MD), then there exists a feasible solution (y, λ, μ) of (MD) such that

$$
f(\bar{x})+\sum_{j \in J_{\circ}} \bar{\mu}_{j} g_{j}(\bar{x}) e \leq f(y)+\sum_{j \in J_{\circ}} \mu_{j} g_{j}(y) e
$$

From the above inequality and (3.11), we have

$$
f(\bar{x}) \leq f(y)+\sum_{j \in J_{\circ}} \mu_{j} g_{j}(y) e
$$

which contradicts weak duality (Theorem4.1). Hence $(\bar{x}, \bar{\lambda}, \bar{\mu})$ is an efficient solution of (MD).

Remark 4.3. It may be noted that the above strong duality theorem is also valid for weakly efficient solution as the Karush-Kuhn-Tucker type necessary conditions used in the theorem holds for weak efficiency as well.

Theorem 4.4 (Strict Converse Duality). Let \bar{x} be a feasible solution of (MP) and let $(\bar{y}, \bar{\lambda}, \bar{\mu})$ be a feasible solution of $(M D)$ such that

$$
\begin{equation*}
\sum_{i=1}^{k} \bar{\lambda}_{i} f_{i}(\bar{x}) \leqq \sum_{i=1}^{k} \bar{\lambda}_{i} f_{i}(\bar{y})+\sum_{j \in J_{0}} \bar{\mu}_{j} g_{j}(\bar{y}) \tag{4.12}
\end{equation*}
$$

If $\left(\sum_{i=1}^{k} \bar{\lambda}_{i} f_{i}+\sum_{j \in J_{0}} \bar{\mu}_{j} g_{j}, \sum_{j \in J_{\alpha}} \bar{\mu}_{j} g_{j}\right)$ is $\left(F, \rho_{1}, \sigma_{1 \alpha}\right)$-strictly-pseudoquasi-type I at \bar{y} for any $\alpha=1,2, \ldots p$, and $\rho_{1}+\sum_{\alpha=1}^{p} \sigma_{1 \alpha} \geqq 0$, then $\bar{x}=\bar{y}$.

Proof. We assume that $\bar{x} \neq \bar{y}$, and exhibit a contradiction. By imposing the $\left(F, \rho_{1}, \sigma_{1 \alpha}\right)$-strictly-pseudoquasi-type I assumption on $\left(\sum_{i=1}^{k} \bar{\lambda}_{i} f_{i}+\sum_{j \in J_{0}} \bar{\mu}_{j} g_{j}, \sum_{j \in J_{\alpha}} \bar{\mu}_{j} g_{j}\right)$ at \bar{y}, we have

$$
\begin{align*}
F\left(\bar{x}, \bar{y} ; \sum_{i=1}^{k} \bar{\lambda}_{i} \xi_{i}\right. & \left.+\sum_{j \in J_{0}} \bar{\mu}_{j} \zeta_{j}\right) \geqq-\rho_{1} d^{2}(\bar{x}, \bar{y}) \tag{4.13}\\
& \Longrightarrow \sum_{i=1}^{k} \bar{\lambda}_{i} f_{i}(\bar{x})+\sum_{j \in J_{0}} \bar{\mu}_{j} g_{j}(\bar{x})>\sum_{i=1}^{k} \bar{\lambda}_{i} f_{i}(\bar{y})+\sum_{j \in J_{0}} \bar{\mu}_{j} g_{j}(\bar{y}),
\end{align*}
$$

$$
\begin{equation*}
-\sum_{j \in J_{\alpha}} \bar{\mu}_{j} g_{j}(\bar{y}) \leqq 0 \Longrightarrow F\left(\bar{x}, \bar{y} ; \sum_{j \in J_{\alpha}} \bar{\mu}_{j} \zeta_{j}\right) \leqq-\sigma_{1 \alpha} d^{2}(\bar{x}, \bar{y}), \alpha=1,2, \ldots, p \tag{4.14}
\end{equation*}
$$

Since $(\bar{y}, \bar{\lambda}, \bar{\mu})$ is feasible for (MD), we obtain

$$
\begin{equation*}
-\sum_{j \in J_{\alpha}} \bar{\mu}_{j} g_{j}(\bar{y}) \leqq 0, \alpha=1,2, \ldots, p \tag{4.15}
\end{equation*}
$$

Relation (4.14) along with (4.15) yields

$$
\begin{equation*}
F\left(\bar{x}, \bar{y} ; \sum_{j \in J_{\alpha}} \bar{\mu}_{j} \zeta_{j}\right) \leqq-\sigma_{1 \alpha} d^{2}(\bar{x}, \bar{y}), \alpha=1,2, \ldots, p . \tag{4.16}
\end{equation*}
$$

From condition (4.1), there exist $\xi_{i} \in \partial f_{i}(\bar{y})$ and $\zeta_{j} \in \partial g_{j}(\bar{y})$, such that

$$
\sum_{i=1}^{k} \bar{\lambda}_{i} \xi_{i}+\sum_{j=1}^{m} \bar{\mu}_{j} \zeta_{j}=0
$$

which along with the sublinearity of F gives

$$
\begin{align*}
0 & =F\left(\bar{x}, \bar{y} ; \sum_{i=1}^{k} \bar{\lambda}_{i} \xi_{i}+\sum_{j=1}^{m} \bar{\mu}_{j} \zeta_{j}\right) \tag{4.17}\\
& \leqq F\left(\bar{x}, \bar{y} ; \sum_{i=1}^{k} \bar{\lambda}_{i} \xi_{i}+\sum_{j \in J_{\circ}} \bar{\mu}_{j} \zeta_{j}\right)+\sum_{\alpha=1}^{p} F\left(\bar{x}, \bar{y} ; \sum_{j \in J_{\alpha}} \bar{\mu}_{j} \zeta_{j}\right) .
\end{align*}
$$

The inequality (4.17) together with (4.16) reveals

$$
\begin{align*}
F\left(\bar{x}, \bar{y} ; \sum_{i=1}^{k} \bar{\lambda}_{i} \xi_{i}+\sum_{j \in J_{o}} \bar{\mu}_{j} \zeta_{j}\right) & \geqq-\sum_{\alpha=1}^{p} F\left(\bar{x}, \bar{y} ; \sum_{j \in J_{\alpha}} \bar{\mu}_{j} \zeta_{j}\right) \tag{4.18}\\
& \geqq \sum_{\alpha=1}^{p} \sigma_{1 \alpha} d^{2}(\bar{x}, \bar{y}) \\
& \geqq-\rho_{1} d^{2}(\bar{x}, \bar{y}),\left(\text { by } \rho_{1}+\sum_{\alpha=1}^{p} \sigma_{1 \alpha} \geqq 0\right) .
\end{align*}
$$

The inequalities (4.13) and (4.18) imply

$$
\sum_{i=1}^{k} \bar{\lambda}_{i} f_{i}(\bar{x})+\sum_{j \in J_{0}} \bar{\mu}_{j} g_{j}(\bar{x})>\sum_{i=1}^{k} \bar{\lambda}_{i} f_{i}(\bar{y})+\sum_{j \in J_{0}} \bar{\mu}_{j} g_{j}(\bar{y}) .
$$

Since $\bar{\mu}_{j} \geqq 0$ and $g_{j}(\bar{x}) \leqq 0, j \in M$, we obtain

$$
\sum_{i=1}^{k} \bar{\lambda}_{i} f_{i}(\bar{x})>\sum_{i=1}^{k} \bar{\lambda}_{i} f_{i}(\bar{y})+\sum_{j \in J_{0}} \bar{\mu}_{j} g_{j}(\bar{y})
$$

contradicting (4.12). Hence $\bar{x}=\bar{y}$.

Acknowledgement

The authors wish to thank the referees for their valuable suggestions which have improved the presentation of the paper.

References

[1] B. Aghezzaf, Sufficiency and duality in multiobjective programming involving generalized (F, ρ) - convexity, J. Math. Anal. Appl. 258 (2001), 617-628.
[2] B. Aghezzaf and M. Hachimi, Generalized invexity and duality in multiobjective programming problems, J. Global Optim. 18 (2000), 91-101.
[3] I. Ahmad, Sufficiency and duality in multiobjective programming with generalized (F, ρ)-convexity, J. Appl. Anal. 10 (2005), 19-33.
[4] F.H. Clarke, Optimization and Nonsmooth Analysis, John Wiley and Sons, New York, 1983.
[5] A. M. Geoffrion, Proper efficiency and the theory of vector maximization, J. Math. Anal. Appl. 22 (1968), 618-630.
[6] M. Hachimi and B. Aghezzaf, Sufficiency and duality in differentiable multiobjective programming involving generalized type-I functions, J. Math. Anal. Appl. 296 (2004), 382-392.
[7] M. A. Hanson and B. Mond, Further generalizations of convexity in mathematical programming, J. Inform. Optim. Sci. 3 (1982), 25-32.
[8] M. A. Hanson and B. Mond, Necessary and sufficient conditions in constrained optimization, Math. Program. 37 (1987), 51-58.
[9] R. N. Kaul, S. K. Suneja and M. K. Srivastava, Optimality criteria and duality in multiobjective optimization involving generalized invexity, J. Optim. Theory Appl. 80 (1994), 465-482.
[10] H. Kuk and T. Tanino, Optimality and duality in nonsmooth multiobjective optimization involving generalized type I functions, Comput. Math. Appl. 45 (2003), 1497-1506.
[11] K. M. Miettinen, Nonlinear Multiobjective Optimization, Kluwer Academic, Boston, MA, 1999.
[12] B. Mond and T. Weir, Generalized concavity and duality, in: Generalized Concavity in Optimization and Economics, S. Schaible, W.T. Ziemba (Eds.), Academic Press, New York, 1981, pp. 263-279.
[13] V. Preda, On efficiency and duality for multiobjective programs, J. Math. Anal. Appl. 166 (1992), 365-377.
[14] N. G. Rueda and M. A. Hanson, Optimality criteria in mathematical programming involving generalized invexity, J. Math. Anal. Appl. 130 (1988), 375-385.
[15] J. P. Vial, Strong and weak convexity of sets and functions, Math. Oper. Res. 8 (1983), 231-259.
[16] F. Zhao, On sufficiency of the Kuhn-Tucker conditions in nondifferentiable programming, Bull. Austral. Math. Soc. 46 (1992), 385-389.

Izhar Ahmad
Department of Mathematics, Aligarh Muslim University Aligarh - 202 002, India

E-mail address: izharamu@hotmail.com
Sarita Sharma
Department of Mathematics, Aligarh Muslim University Aligarh - 202 002, India

E-mail address: ssharma05@hotmail.com

[^0]: 2000 Mathematics Subject Classification. Primary 90C29, 90C30, 90C46.
 Key words and phrases. Nonsmooth multiobjective optimization, generalized type I functions, sufficient optimality conditions, duality theorems.

