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ON STRICTLY QUASI-MONOTONE OPERATORS AND
VARIATIONAL INEQUALITIES

YU-QING CHEN AND YEOL JE CHO*

Abstract. Let E be a real reflexive Banach space. A mapping T : D ⊆ E → 2E∗

is said to be strictly quasi-monotone if (g, x − y) > 0 for some g ∈ Ty implies
that (f, x − y) > 0 for f ∈ Tx, where x, y ∈ D. In this paper, we first study
variational inequality problems for strictly quasi-monotone operators, then we
obtain a surjective result for strictly quasi-monotone operator equation.

1. Introduction

The class of monotone operators is an important class of nonlinear operators
that has many applications in nonlinear partial differential equations, nonlinear
semi-group theory, variational inequality and so on (see [1], [4], [9], [10], [16]). The
theory for monotone operators has been well developed and has many other general-
izations (see [2], [4], [16]). In [14], an open problem concerning the existence of zero
points of nonlinear operators related to the generalization of monotone operator
was suggested by Bott, and we recall this problem as follows:

Problem B. Let B be the unit ball in a real Hilbert space and A : B → H be finite
dimensional continuous. Suppose that

(Ax, x) ≥ −θ‖Ax‖‖x‖
for x ∈ ∂B and

(Ax−Ay, x− y) ≥ −θ‖Ax−Ay‖‖x− y‖
for all x, y ∈ B, where θ ∈ (0, 1). Does Ax = 0 has a solution in B ?

Now, we introduce the following definition:

Definition 1.1. Let E be a real Banach space and T : D ⊆ E → 2E∗ be a mapping.

(1) T is said to be quasi-monotone if, for any u, v ∈ D, (g, u− v) > 0 for some
g ∈ Tv implies that (f, u− v) ≥ 0 for all f ∈ Tu (see [11]).

(2) T is said to be strictly quasi-monotone if, for any u, v ∈ D, (g, u − v) > 0
for some g ∈ Tv implies that (f, u− v) > 0 for all f ∈ Tu.
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One can easily see that the class of strictly quasi-monotone operators is a subclass
of quasi-monotone operators, and we will know that the class of strictly quasi-
monotone operators has better properties than that of quasi-monotone operators in
studying variational inequality as showing in Lemma 2.5. For other works related to
quasi-monotone operators, we refer the reader to [2] and [13]. One may also see that
the operator A : R → R given by Ax = x2+1 for all x ∈ R is strictly quasi-monotone
but not quasi-monotone, thus the concept of strictly quasi-monotone operator is a
generalization of quasi-monotone operator.

In this paper, we obtain some existence results for variational inequalities of
strictly quasi-monotone operators and thereby we obtain some existence results for
strictly quasi-monotone operator equations. Our results may be viewed as partial
solutions related to the Problem B.

2. Main results

In this section, we study the variational inequality problems and the existence
problems of operator equations for strictly quasi-monotone operators. First, we
give the following result on the of sum of a strictly quasi-monotone operator and
the sub-differential of an indicator function of a closed convex set.

Proposition 2.1. Let E be a real reflexive Banach space and K a closed convex
subset of E. If A : K → 2E∗ is strictly quasi-monotone, then A + ∂IK is strictly
quasi-monotone, where IK(x) = 0 if x ∈ K and IK(x) = +∞, otherwise.

Proof. If (f + g, y − x) > 0 for some f ∈ Ay, g ∈ ∂IK(y) and x, y ∈ D(∂IK), then

(f, y − x) > −(g, y − x).

However (g, y − x) ≤ 0 for g ∈ ∂Ik(y) and x, y ∈ K, so we have (f, y − x) > 0.
Hence (f ′, x− y) > 0 for all f ′ ∈ Ax and x, y ∈ K. Consequently, it follows that

(f ′ + g′, x− y) > 0

for all f ′ ∈ Ax, g′ ∈ ∂IK(x) and x, y ∈ D(∂IK), i.e., A + ∂IK is strictly quasi-
monotone. ¤

Remark 2.2. The conclusion for Proposition 2.1 is generally not true if ∂IK is
replaced by a monotone operator, and this can be seen by the following example.

Example 2.3. Let A,B : R → R be given by Ax = 2x for all x ∈ R and Bx = x2+1
for all x ∈ R. Then A is monotone and B is strictly quasi-monotone. Further,
A + B is not strictly quasi-monotone. In fact, if we take x = −1 and y = −2, then
(Ay + By)(−1 + 2) > 0, but (Ax + Bx)(−1 + 2) = 0.

If K is closed convex, then the normal cone NK(x) = {f ∈ E∗ : f(x − y) ≥
0 for all y ∈ K} equals to ∂IK(x) (see [7]). Therefore, Proposition 2.1 can be
stated as the following equivalent form:

Proposition 2.4. Let E be a real reflexive Banach space and K a closed subset
of E. If A : K → 2E∗ is strictly quasi-monotone, then A + NK is strictly quasi-
monotone.
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Lemma 2.5. Let E be a real reflexive Banach space and C a non-empty bounded
closed convex subset of E. If A : C → 2E∗ is an finite dimensional weakly upper
semi-continuous (i.e., for each finite dimensional subspace F of E with F ∩C 6= ∅,
A : C ∩ F → 2E∗ is upper semi-continuous in the weak topology) and strictly quasi-
monotone mapping with bounded closed convex values, then (fv, u0 − v) ≤ 0 for all
v ∈ C and some fv ∈ Tu0 if and only if (g, u0 − v) ≤ 0 for all v ∈ C and g ∈ Tv.

Proof. For the only if part, if (g, u0 − v) > 0 for some v ∈ C and g ∈ Tv, then, by
Definition 1.1, we have (f, u0 − v) > 0 for all f ∈ Tu0, which is a contradiction.

Now, we prove the if part. For v ∈ C, we put vt = tu0 +(1− t)v for any t ∈ (0, 1).
Then we have

(gt, u0 − vt) ≤ 0
for all gt ∈ Tvt, i.e., (gt, u0 − v) ≤ 0 for all gt ∈ Tvt. By letting t → 1−, then the
finite dimensional weakly upper semi-continuity of T and bounded closed convexity
of Tu0 imply that there exists fv ∈ Tu0 such that

(fv, u0 − v) ≤ 0.

¤
Remark 2.6. For the results of Lemma 2.5 in monotone case, we refer the reader to
[6] and [10], and we do not know whether Lemma 2.5 is still true for quasi-monotone
operators.

Theorem 2.7. Let E be a real reflexive Banach space and C a non-empty closed
convex bounded subset of E. If A : C → 2E∗ is an finite dimensional weakly upper
semi-continuous and strictly quasi-monotone mapping with bounded closed convex
values, then there exists u0 ∈ C such that

(fv, u0 − v) ≤ 0

for all v ∈ C and some fv ∈ Tu0.

Proof. For any finite dimensional subspace F of E with F ∩C 6= ∅, let jF : F → E
be the natural inclusion and j∗F be the conjugate mapping of jF . Consider the
following variational inequality problem:

Find u ∈ F ∩ C such that
(j∗F fv, u− v) ≤ 0

for all v ∈ C ∩ F and some fv ∈ Tu. Since T is finite dimensional weakly upper
semi-continuous and j∗F T is upper semi-continuous on F∩C, there exists uF ∈ F∩C
such that

(j∗F fv, uF − v) ≤ 0
for all v ∈ C ∩ F and some fv ∈ TuF , i.e., (fv, uF − v) ≤ 0 for all v ∈ C ∩ F and
some fv ∈ TuF . By Lemma 2.5, we get

(g, uF − v) ≤ 0

for all v ∈ C ∩ F and g ∈ Tv. Now, we put

WF = {u ∈ C : (g, u− v) ≤ 0 for all v ∈ F ∩ C and g ∈ Tv}.
It is obvious that WF is closed convex. One can easily check that

W∪n
i=1Fi ⊆ WFi , dim(Fi) < +∞, Fi ∩ C 6= ∅
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for i = 1, 2, . . . , n. Hence ∩F∈FWF 6= ∅, where

F = {F ⊂ E : F ∩ C 6= ∅ and dim(F ) < +∞}.
Take u0 ∈ ∩F∈FWF . We claim that u0 satisfies the conclusion of Theorem 2.7.

In fact, (g, u0 − v) ≤ 0 for all v ∈ C and g ∈ Tv. By Lemma 2.5, we know that

(fv, u0 − v) ≤ 0

for all v ∈ C and some fv ∈ Tu0. ¤

From Theorem 2.7, we have the following:

Corollary 2.8. Let E be a real reflexive Banach space and C a non-empty closed
convex unbounded subset of E. If A : C → 2E∗ is an finite dimensional weakly upper
semi-continuous and strictly quasi-monotone mapping with bounded closed convex
values and there exist v0 ∈ C, r > 0 such that

(f, u− v0) > 0

for all f ∈ Tu and u ∈ C with ‖u‖ > r, then there exists u0 ∈ C such that

(fv, u0 − v) ≤ 0

for all v ∈ C and some fv ∈ Tu0.

Proof. For Cn = C ∩B(0, n), by Theorem 2.7, there exists un ∈ Cn such that

(f, un − v) ≤ 0

for all v ∈ Cn and some fv ∈ Tun.By Lemma 2.5, we know that

(g, un − v) ≤ 0

for all v ∈ Cn and some g ∈ Tv. By assumption, we know that ‖un‖ ≤ r for
n = 1, 2, . . . and thus we may assume that un ⇀ u0 as n →∞. Otherwise, we take
subsequence. Consequently, it follows that

(g, u0 − v) ≤ 0

for all v ∈ C and g ∈ Tv. Again, we use Lemma 2.5 to conclude the proof. ¤

Corollary 2.9. Let E be a real reflexive Banach space, C a non-empty closed
convex unbounded subset of E. If A : B(0, R) → E∗ is an finite dimensional weakly
continuous and strictly quasi-monotone mapping and

(Au, u) > −‖Au‖‖u‖
for all u ∈ ∂B(0, r), then there exists u0 ∈ B(0, r) such that Au0 = 0.

Proof. By Theorem 2.7, there exists u0 ∈ B(0, R) such that

(Au0, u0 − v) ≤ 0

for all v ∈ B(0, R). Now, we claim that Au0 = 0. We first prove that ‖u0‖ < R.
In fact, if ‖u0‖ = R, then, by assumption, ‖Au0‖ 6= 0 and thus there exists v0 ∈
∂B(0, r) such that (Au0, v0) = −‖Au0‖‖v0‖. But we have

−‖Au0‖‖u0‖ < (Au0, u0) ≤ (Au0, v0) = −‖Au0‖‖v0‖,
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which is a contradiction. Therefore, we have ‖u0‖ < R. Since there exists r > 0
such that u0 + v ∈ B(0, R) for all v ∈ E with ‖v‖ ≤ r, we have

(Au0, v) ≥ 0

for all v ∈ B(0, r) and so Au0 = 0. ¤
We do not know whether the conclusion of Corollary 2.8 is true if A is a multi-

valued strictly quasi-monotone mapping and so we give an open question as follows:

Question. Let E be a real reflexive Banach space and C a non-empty closed convex
unbounded subset of E. If A : B(0, R) → 2E∗ is an finite dimensional weakly upper
semi-continuous and strictly quasi-monotone mapping with bounded closed convex
values and

(f, u) > −‖f‖‖u‖
for all u ∈ ∂B(0, r) and f ∈ Au. Does 0 ∈ Au0 has a solution in B(0, R) ?

Theorem 2.10. Let E be a real reflexive Banach space and let A : E → 2E∗ be
an finite dimensional weakly upper semi-continuous mapping with bounded closed
convex values. Suppose the following conditions are satisfied:

(i) A− p∗ is strictly quasi-monotone for each p∗ in E∗,
(ii) lim inf‖x‖→∞,f∈Ax

(f,x)
‖x‖2 = +∞.

Then A(E) = E∗.

Proof. For each p∗ ∈ E∗, by assumption (ii), there exists R > 0 such that

(f − p∗, u) > 0

for all u ∈ E with ‖u‖ ≥ R. By the assumption (i), A−p∗ is strictly quasi-monotone
and so Corollary 2.8 implies that there exists u0 ∈ E such that

(fv − p∗, u0 − v) ≤ 0

for all v ∈ E and some fv ∈ Au0. Put v = u0 − w for all w ∈ E, we get

(fw − p∗, w) ≤ 0

for all w ∈ E and some fw ∈ Au0. But Au0 is bounded closed convex and thus
the separation theorem of Mazur for convex subsets implies that 0 ∈ Au0 − p∗ (see
[17]). ¤
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