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NONAUTONOMOUS SECOND ORDER PERIODIC SYSTEMS:
EXISTENCE AND MULTIPLICITY OF SOLUTIONS

GIUSEPPINA BARLETTA AND NIKOLAOS S. PAPAGEORGIOU

Abstract. In this paper we study the existence and multiplicity of solutions
for a second order nonautonumous periodic system with a nonsmooth potential.
We prove two existence theorems and a multiplicity result. In the first existence
theorem the Euler functional is coercive and the solution is a minimizer of it. In
the second existence theorem the Euler functional is unbounded and the solution
is obtained using the saddle point theorem. Finally for the multiplicity result we
employ a nonsmooth version of the local linking theorem.

1. Introduction

In this paper we study the following second order periodic system with a non-
smooth potential:

(1.1)
{ −x′′(t)−A(t)x(t) ∈ ∂j(t, x(t)) a.e. on T = [0, b],

x(0) = x(b), x′(0) = x′(b) .

Here A : T → IRN×N is a continuous map and for every t ∈ T , A(t) is a symmetric
N × N -matrix. Also j : T × IRN → IR is a measurable function, which is locally
Lipschitz and in general nonsmooth in the x ∈ IRN variable. By ∂j(t, x) we denote
the generalized subdifferential of the locally Lipschitz function x → j(t, x) (see
Section 2).

Problem (1.1) was firstly studied by Rabinowitz [14] under the assumptions that
for every t ∈ T , A(t) is a negative definite matrix, j(t, ·) ∈ C1(IRN ) and x → j(t, x)
exhibits a strictly subquadratic growth (more precisely, it satisfies the well known
Ambrosetti-Rabinowitz condition). He proved the existence of a solution using
variational methods based on the saddle point theorem. Later Mawhin [9] (see
also Mawhin-Willem [10], p.89), considered problem (1.1) with A being a time-
independent symmetric N × N -matrix, but he did not impose any sign condition
on it. Moreover, he assumed that the potential function j(t, x) is measurable,
continuously differentiable in x ∈ IRN and satisfies

|j(t, x)| ≤ h(t), ‖∇j(t, x)‖ ≤ h(t) for a.a. t ∈ T and all x ∈ IRN ,

where h ∈ L1(T )+. He proved an existence result using the saddle point theorem. In
the book of Mawhin-Willem [10], p.63, the problem was studied with A(t) = m2ω2I
for all t ∈ T , where m ≥ 1 is a positive integer, ω = 2π

b and I is the identity
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N × N -matrix. The potential function j(t, x) is measurable and continuously dif-
ferentiable and convex in x ∈ IRN . In this case, the authors approach the problem
using the dual action principle and they prove an existence theorem. Recently Tang-
Wu [19] examined problem (1.1) with A being time-dependent, no sign condition
is imposed on the matrix A(t), t ∈ T and the potential function j(t, x) is measur-
able, continuously differentiable in x ∈ IRN and exhibits a strictly subquadratic
growth. The authors prove an existence theorem using the saddle point theorem.
Motreanu-Motreanu-Papageorgiou [11] considered the complementary situation to
that in the work of Tang-Wu [19] and assumed that x → j(t, x) exhibits a strictly
superquadratic growth. Moreover, in their work x → j(t, x) is only locally Lipschitz
and in general nonsmooth. Multiplicity results were proved by Barletta-Livrea [1],
Bonanno-Livrea [2], Cordaro [4], Faraci [5] (problems with a smooth potential) and
by Motreanu-Motreanu-Papageorgiou [11] (problems with a nonsmooth potential).
In the works of Barletta-Livrea [1], Bonanno-Livrea [2], Cordaro [4] and Faraci [5],
for every t ∈ T A(t) is negative definite and the method of the proof is based on an
abstract multiplicity result of Ricceri [15] or variants of it. In Motreanu-Motreanu-
Papageorgiou [11], the nonsmooth potential is quadratic or symmetric (even).

In this paper we prove two existence theorems and a multiplicity result using
nonsmooth critical point theory (see the books of Gasinski-Papageorgiou [6] and
Motreanu-Radulescu [12]).

2. Mathematical background

We make the following assumption on the matrix-valued map t → A(t).
H(A) : A : T = [0, b] → IRN×N is continuous and for every t ∈ T , A(t) is symmetric.
In our analysis of problem (1.1), we use the following space:

W 1,2
per((0, b), IRN ) = {x ∈ W 1,2((0, b), IRN ) : x(0) = x(b)} .

Since W 1,2((0, b), IRN ) is compactly embedded into C(T, IRN ), in the above defini-
tion the evaluations at t = 0 and t = b make sense. By ‖ · ‖ we denote the norm of
W 1,2

per((0, b), IRN ) and of IRN . It will always be clear from the context which one is
in use. Let Â ∈ L(C(T, IRN ), C(T, IRN )) be defined by

Â(x)(t) = A(t)x(t) for all t ∈ T, x ∈ C(T, IRN )

(the Nemytskii operator corresponding to A(·)). As in Mawhin-Willem [10], p.89
and Showalter [16], p.78, using the spectral theorem for compact self-adjoint oper-
ators on a Hilbert space, for the differential operator x → −x′′ − Âx, we obtain a
sequence of eigenfunctions which form an orthonormal basis for L2(T, IRN ) and an
orthogonal basis for W 1,2

per((0, b), IRN ). Then we can consider the following orthogo-
nal direct sum decomposition

(2.1) W 1,2
per((0, b), IRN ) = H− ⊕H0 ⊕H+

where

H− = span{x ∈ W 1,2
per((0, b), IRN ) : −x′′ − Â(x) = λx for some λ < 0}

H0 = ker(−x′′ − Âx)
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and

H+ = span{x ∈ W 1,2
per((0, b), IRN ) : −x′′ − Â(x) = λx for some λ > 0}.

Note that both H− and H0 are finite dimensional subspaces of W 1,2
per((0, b), IRN ).

Nonsmooth critical point theory relies on the subdifferential theory for locally Lip-
schitz functions due to Clarke [3]. So, let X be a Banach space, X∗ its topological
dual and denote by 〈·, ·〉 the duality brackets for the pair (X∗, X). Given a locally
Lipschitz function ϕ : X → IR the generalized directional derivative ϕ0(x;h) of ϕ
at x ∈ X in the direction h ∈ X, is defined by

ϕ0(x;h) = lim sup
x′ → x
λ ↓ 0

ϕ(x′ + λh)− ϕ(x′)
λ

.

It is easy to check that ϕ0(x; ·) is sublinear continuous. Therefore it is the support
function of a nonempty, w∗-compact and convex set ∂ϕ(x) ⊆ X∗ defined by

∂ϕ(x) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ ϕ0(x;h) ∀ h ∈ X} .

The multifunction x → ∂ϕ(x) is called the ”generalized subdifferential” of ϕ. If
ϕ : X → IR is continuous convex, then ϕ is locally Lipschitz and the generalized
subdifferential of ϕ coincides with the subdifferential ∂Cϕ(·) of ϕ in the sense of
convex analysis, defined by

∂Cϕ(x) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ ϕ(x + h)− ϕ(x) ∀ h ∈ X} .

Also, if ϕ ∈ C1(X), then ϕ is locally Lipschitz and

∂ϕ(x) = {ϕ′(x)}.
We say that x ∈ X is a critical point of the locally Lipschitz function ϕ : X → IR,
if 0 ∈ ∂ϕ(x). In the present nonsmooth setting, the Palais-Smale condition takes
the following form:
′′A locally Lipschitz function ϕ : X → IR satisfies the ′′nonsmooth Palais-Smale
condition at level c ∈ IR ′′ (nonsmooth PSc-condition for short), if every sequence
{xn}n≥1 ⊆ X such that

ϕ(xn) → c and m(xn) = inf[‖x∗‖ : x∗ ∈ ∂ϕ(xn)] → 0 as n →∞,

has a strongly convergent subsequence. If this property holds at every level c ∈ IR,
then we simply say that ϕ satisfies the nonsmooth PS-condition′′.
The following is a nonsmooth version of the saddle point theorem.

Theorem 2.1. If X = Y ⊕ V with dimY < +∞, there exists r > 0 such that

max
x ∈ Y
‖x‖ = r

ϕ(x) ≤ inf
x∈V

ϕ(x)

and ϕ satisfies the PSc-condition where

c = inf
γ∈Γ

sup
x∈Br

ϕ(γ(x))
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with Γ =
{
γ ∈ C(Br, X) : γ|∂Br

= id|∂Br

}
, Br = {x ∈ X : ‖x‖ ≤ r} and

∂Br = {x ∈ X : ‖x‖ = r}, then c ≥ infV ϕ and c is a critical value of ϕ. Moreover,
if c = infV ϕ, then V ∩Kc 6= ∅, where Kc = {x ∈ X : ϕ(x) = c, 0 ∈ ∂ϕ(x)} (the
critical set of ϕ at level c ∈ IR).

For the multiplicity theorem, we will use the following nonsmooth version of the
local linking theorem due to Kandilakis-Kourogenis-Papageorgiou [8].

Theorem 2.2. If X = Y ⊕V with dimY < +∞, ϕ : X → IR is Lipschitz continuous
on bounded sets, it satisfies the nonsmooth PS-condition, ϕ(0) = 0, ϕ is bounded
from below, infX ϕ < 0 and there exists r > 0 such that

ϕ(y) ≤ 0 if y ∈ Y, ‖y‖ ≤ r, and ϕ(v) ≥ 0 if v ∈ V, ‖v‖ ≤ r ,

then ϕ has at least two nontrivial critical points.

3. Existence theorems

For the first existence theorem, our hypotheses on the nonsmooth potential func-
tion j(z, x), are the following:
H(j)1 : j : T × IRN → IR is a function such that

(i) for all x ∈ IRN , t → j(t, x) is measurable;
(ii) for almost all t ∈ T , x → j(t, x) is locally Lipschitz;

(iii) there exist functions a ∈ L1(T )+ and c ∈ C(IR+)+ such that for almost all
t ∈ T , all x ∈ IRN and all u ∈ ∂j(t, x), we have

|u| ≤ a(t)c(‖x‖) ;

(iv) there exist a measurable set C ⊆ T with |C| > 0 (| · | being the Lebesgue
measure on IR) and ξ ∈ L1(T )+ such that

j(t, x) → −∞ for a.a. t ∈ C as ‖x‖ → ∞
and

j(t, x) ≤ ξ(t) for a.a. t ∈ T and all x ∈ IRN ;

(v) there exists δ0 > 0, such that for almost t ∈ T and all 0 < ‖x‖ ≤ δ0

j(t, x) > 0 .

Examples : The following potential functions satisfy hypothesis H(j)1 :

j1(x) = min
{

1
2
‖x‖2,

1
r
‖x‖r

}
− 1

s
‖x‖s with 2, r < s,

j2(x) =
‖x‖

‖x‖+ 1
− 1

r
χC(t)‖x‖r with 1 < r,

and j3(x) =
1
2
‖x‖2 − 1

3
‖x‖3 .

Evidently j3 ∈ C1(IRN ).
We start with two auxiliary results which will be used in the proof of the first

existence theorem.
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By virtue of decomposition (2.1), given any x ∈ W 1,2
per((0, b), IRN ) we can write in a

unique way

x = x + x0 + x̂ with x ∈ H−, x0 ∈ H0 and x̂ ∈ H+ .

Lemma 3.1. Given ε > 0, we can find ηε > 0

|{t ∈ T : ‖x0(t)‖ < ηε‖x0‖}| < ε for all x0 ∈ H0 .

Proof. We argue by contradiction. So suppose that the lemma is not true. Then
we can find ε > 0 and a sequence {x0

n}n≥1 ⊆ H0 such that
∣∣∣∣
{

t ∈ T : ‖x0
n(t)‖ <

1
n
‖x0

n‖
}∣∣∣∣ ≥ ε for all n ≥ 1 .

Let y0
n = x0

n
‖x0

n‖ , n ≥ 1. Since H0 is finite dimensional, by passing to a suitable
subsequence if necessary, we may assume that

y0
n → y0 in W 1,2

per((0, b), IRN ) and in C(T, IRN ) as n →∞ .

Hence y0 ∈ H0, ‖y0‖ = 1 and so y0 6= 0. Also, if

Dn =
{

t ∈ T : ‖y0
n(t)‖ <

1
n

}
and Ĉ0 = {t ∈ T : y0(t) = 0},

then clearly lim supn→∞Dn ⊆ Ĉ0. So we obtain

(3.1) ε ≤ lim sup
n→∞

|Dn| ≤ | lim sup
n→∞

Dn| ≤ |Ĉ0| .

But because y0 ∈ H0 \ {0}, we have y0(t) 6= 0 for almost all t ∈ T . This contradicts
(3.1). ¤

The next Lemma gives useful information for the component spaces H− and H+.
Its proof can be found in Motreanu-Motreanu-Papageorgiou [11].

Lemma 3.2. (a) There exists ξ+ > 0 such that

‖x′‖2
2 −

∫ b

0
(A(t)x(t), x(t))IRN dt ≥ ξ+‖x‖2 for all x ∈ H+.

(b) There exists ξ− > 0 such that

‖x′‖2
2 −

∫ b

0
(A(t)x(t), x(t))IRN dt ≤ −ξ−‖x‖2 for all x ∈ H−.

Remark 3.3. Let {λn}n≥1 denote the eigenvalues of the differential operator x →
−x′′ − Âx repeated according to multiplicity. Using Lemma 3.2 (a), we see that
there is a smallest positive eigenvalue λm > 0 and in fact ξ+ = λm. Moreover, by
virtue of the finite dimensionality of H− (see also Lemma 3.2 (b)), there is a biggest
negative eigenvalue λk < 0. In fact −ξ− = λk.

Now we are ready for the first existence theorem concerning problem (1.1).

Theorem 3.4. If hypotheses H(A) and H(j)1 hold and dimH− = 0, then problem
(1.1) admits a nontrivial solution x0 ∈ C1(T, IRN ) ∩W 2,1((0, b), IRN ).
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Proof. Consider the integral functional ψ̂ : Cper(T, IRN ) → IR defined by

ψ̂(x) =
∫ b

0
j(t, x(t))dt .

We claim that ψ̂ is Lipschitz continuous on bounded sets, hence it is locally Lip-
schitz. To this end, let x ∈ Cper(T, IRN ) and ‖x‖∞ ≤ r. Then for any u ∈
Cper(T, IRN ) with ‖u‖∞ ≤ r, from the mean value theorem for locally Lipschitz
functions (see Clarke [3], p.41), for almost all t ∈ T we have

(3.2) j(t, x(t))− j(t, u(t)) = (v∗t (t), x(t)− u(t))IRN

with v∗t ∈ ∂j(t, yt), where yt = (1− λt)x(t) + λtu(t), λt ∈ (0, 1). Assuming without
any loss of generality that c ∈ C(IR+)+ in hypothesis H(j)1(iii) is increasing, from
(3.2) we have

j(t, x(t))− j(t, u(t)) ≤ a(t)c(η)‖x(t)− u(t)‖ with η = max{‖x‖∞, ‖v‖∞},

so
∫ b

0
|j(t, x(t))− j(t, u(t))|dt ≤ ‖a‖1c(η)‖x− u‖∞ ,

and finally
|ψ̂(x)− ψ̂(u)| ≤ ‖a‖1c(η)‖x− u‖∞ .

Therefore ψ̂ is Lipschitz continuous on B
C
r = {y ∈ Cper(T, IRN ) : ‖y‖∞ ≤ r}, hence

it is locally Lipschitz. Since W 1,2
per((0, b), IRN ) is embedded continuously and densely

into Cper(T, IRN ), from Clarke [3], pp.47 and 83, we have ψ = ψ̂|W 1,2
per((0,b),IRN )

is
locally Lipschitz and

∂ψ(x) ⊆ {u∗ ∈ L1(T, IRN ) : u∗(t) ∈ ∂j(t, x(t)) a.e. on T}.
Since x → 1

2‖x′‖2
2 − 1

2

∫ b
0 (A(t)x(t), x(t))IRN dt is a C1-convex function, then the

Euler functional ϕ : W 1,2
per((0, b), IRN ) → IR for problem (1.1) defined by

ϕ(x) =
1
2
‖x′‖2

2 −
1
2

∫ b

0
(A(t)x(t), x(t))IRN dt−

∫ b

0
j(t, x(t))dt ,

is locally Lipschitz. Because of hypothesis H(j)(iv) and Lemmata 1 and 3 of Tang-
Wu [18], given ε > 0, we can find Dε ⊆ C measurable such that |C \ Dε| < ε,
j(t, x) → −∞ uniformly in t ∈ Dε as ‖x‖ → ∞ and

(3.3) j(t, x) ≤ h(t)− g(x) for a.a. t ∈ Dε and all x ∈ IRN ,

where h ∈ L1(T )+ and g ∈ C(IRN ), g ≥ 0 with the following properties:

(3.4) g is subadditive;

(3.5) g is coercive;

(3.6) g(x) ≤ 4 + ‖x‖ for all x ∈ IRN .

We consider the integral functional G : W 1,2
per((0, b), IRN ) → IR+ defined by

G(y) =
∫

Dε

g(y(t))dt for all y ∈ W 1,2
per((0, b), IRN ) .
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Evidently G is continuous.
Claim I : G|H0

is coercive.
Let {x0

n}n≥1 ⊆ H0 be a sequence such that ‖x0
n‖ → ∞. By virtue of Lemma 3.1,

given δ > 0, we can find a measurable set Eδ ⊆ Dε, with |Dε \ Eδ| < δ such that

‖x0
n(t)‖ → +∞ uniformly in t ∈ Eδ .

We can always choose δ > 0 small so that |Eδ| > 0. Because g is coercive (see
(3.5)), given θ > 0, we can find R = R(θ) > 0 large such that

(3.7) g(x) ≥ θ for all ‖x‖ ≥ R .

So we can find n0 = n0(R) ≥ 1 such that

‖x0
n(t)‖ ≥ R for all t ∈ Eδ and all n ≥ n0 ,

so

(3.8) g(x0
n(t)) ≥ θ for all t ∈ Eδ and all n ≥ n0 (see (3.7)) .

Bearing in mind that g ≥ 0, we have∫

Dε

g(x0
n(t))dt =

∫

Eδ

g(x0
n(t))dt +

∫

Dε\Eδ

g(x0
n(t))dt

≥
∫

Eδ

g(x0
n(t))dt ≥ θ|Eδ| > 0 for all n ≥ n0 .(3.9)

Because θ > 0 was arbitrary, from (3.9) we deduce that

lim
n→∞G(x0

n) = lim
n→∞

∫

Dε

g(x0
n(t))dt = +∞ ,

so G|H0
is coercive.

Claim II : ϕ is coercive.
From (3.3) and hypothesis H(j)1(iv), for all x ∈ W 1,2

per((0, b), IRN ), we have
(3.10)∫ b

0
j(t, x(t))dt =

∫

Dε

j(t, x(t))dt +
∫

T\Dε

j(t, x(t))dt ≤ ‖h‖1−
∫

Dε

g(x(t))dt + ‖ξ‖1 .

We write x = x0+ x̂, with x0 ∈ H0 and x̂ ∈ H+ (recall we assume that dimH− = 0).
Exploiting the subadditivity of g (see (3.4)), we have

g(x0(t)) = g(x(t)− x̂(t)) ≤ g(x(t)) + g(−x̂(t)), for all t ∈ T, hence

(3.11) − g(x(t)) ≤ g(−x̂(t))− g(x0(t)) for all t ∈ T .

So, returning to (3.10) and using (3.11) and (3.6), we obtain
∫ b

0
j(t, x(t))dt ≤ ‖h‖1 +

∫

Dε

g(−x̂(t))dt−
∫

Dε

g(x0(t))dt + ‖ξ‖1

≤ ‖h‖1 +
∫ b

0
(4 + ‖x̂(t)‖)dt−

∫

Dε

g(x0(t))dt + ‖ξ‖1

≤ c1 + c2‖x̂‖ −
∫

Dε

g(x0(t))dt for some c1, c2 > 0.(3.12)
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Then, exploiting the orthogonality of the component spaces, using Lemma 3.2 and
(3.12), for all x ∈ W 1,2

per((0, b), IRN ) we have

ϕ(x) =
1
2
‖x̂′‖2

2 −
1
2

∫ b

0
(A(t)x̂(t), x̂(t))IRN dt−

∫ b

0
j(t, x(t))dt

≥ ξ+

2
‖x̂‖2 − c2‖x̂‖+

∫

Dε

g(x0(t))dt− c1 .(3.13)

From (3.13) and Claim I, it follows that ϕ is coercive.
Claim III : ϕ is sequentially weakly lower semicontinuous.
Let xn ⇀ x in W 1,2

per((0, b), IRN ). We may also assume that xn → x in C(T, IRN ).
Then by virtue of hypothesis H(j)1(ii), we have

j(t, xn(t)) → j(t, x(t)) a.e. on T .

Then hypothesis H(j)1(iv) and Fatou’s lemma, imply

(3.14) lim sup
n→∞

∫ b

0
j(t, xn(t))dt ≤

∫ b

0
j(t, x(t))dt .

Also, because x′n ⇀ x′ in L2(T, IRN ), from the weak lower semicontinuity of the
norm functional, we have

(3.15) ‖x′‖2
2 ≤ lim inf

n→∞ ‖x′n‖2
2 .

Finally, since xn → x in C(T, IRN ), we see that

(3.16)
∫ b

0
(A(t)xn(t), xn(t))IRN dt →

∫ b

0
(A(t)x(t), x(t))IRN dt .

From (3.14), (3.15) and (3.16), it follows that

ϕ(x) ≤ lim inf
n→∞ ϕ(xn) ,

hence ϕ is sequentially weakly lower semicontinuous.
Because of Claims I, II and III, we can apply the theorem of Weierstrass and find
x0 ∈ W 1,2

per((0, b), IRN ) such that

(3.17) ϕ(x0) = inf
[
ϕ(x) : x ∈ W 1,2

per((0, b), IRN )
]

.

Let δ0 > 0 be as in hypothesis H(j)1(v) and x0 ∈ H0 such that ‖x0‖∞ ≤ δ0. We
know that x0(t) 6= 0 for a.a. t ∈ T . Then

ϕ(x0) =
1
2
‖(x0)′‖2

2 −
1
2

∫ b

0

(
A(t)x0(t), x0(t)

)
IRN dt−

∫ b

0
j(t, x0(t))dt =

= −
∫ b

0
j(t, x0(t))dt < 0,

so ϕ(x0) ≤ ϕ(x0) < 0 = ϕ(0) and x0 6= 0.
From (3.17), we have 0 ∈ ∂ϕ(x0), then

(3.18) V (x0)− Â(x0) = u∗0 ,
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where V ∈ L
(
W 1,2

per((0, b), IRN ),W 1,2
per((0, b), IRN )∗

)
is defined by

〈V (x), y〉 =
∫ b

0

(
x′(t), y′(t)

)
IRN dt for all x, y ∈ W 1,2

per((0, b), IRN ) ,

and u∗0 ∈ L1(T, IRN ) is such that u∗0(t) ∈ ∂j(t, x0(t)) a.e. on T (see, Clarke [3],
p.83).
From the representation theorem for the elements in W−1,2((0, b), IRN ) =
W 1,2

0 ((0, b), IRN )∗ (see for example Gasinski-Papageorgiou [7], p.212), we know that
x′′ ∈ W−1,2((0, b), IRN ). By 〈·, ·〉0 we denote the duality brackets for the pair(
W−1,2((0, b), IRN ),W 1,2

0 ((0, b), IRN )
)
. Acting on (3.18) with the test function ψ ∈

C1
c ((0, b), IRN ) and performing an integration by parts, we obtain

(3.19) 〈−x′′0, ψ〉0 −
∫ b

0
(A(t)x0(t), ψ(t))IRN dt =

∫ b

0
(u∗0(t), ψ(t))IRN dt .

Since C1
c ((0, b), IRN ) is dense in W 1,2

0 ((0, b), IRN ), from (3.19) it follows that

(3.20) − x′′0(t)−A(t)x0(t) = u∗0(t) a.e. on T, x0(0) = x0(b) ,

so x′′0 ∈ L1(T, IRN ), and x0 ∈ C1(T, IRN ) ∩W 2,1((0, b), IRN ). Acting on (3.18) with
v ∈ W 1,2

per((0, b), IRN ), after integrating by parts, we have

(
x′0(b), v(b)

)
IRN−

(
x′0(0), v(0)

)
IRN−

∫ b

0

(
x′′0(t), v(t)

)
IRN dt−

∫ b

0
(A(t)x0(t), v(t))IRN dt

=
∫ b

0
(u∗0(t), v(t))IRN dt

and using (3.20) we deduce
(
x′0(b), v(b)

)
IRN =

(
x′0(0), v(0)

)
IRN for all v ∈ W 1,2

per((0, b), IRN ) ,

so we conclude that x′0(0) = x′0(b), hence x0 ∈ C1(T, IRN ) ∩W 2,1((0, b), IRN ) is a
nontrivial solution of (1.1). ¤

In the above existence theorem, the Euler functional of the problem was bounded
from below (in fact coercive). In the next existence theorem, the Euler functional
is indefinite. Moreover, we do not assume that dimH− = 0 and so the problem has
an indefinite linear part.

The new hypotheses on the nonsmooth potential j(t, x) are the following:
H(j)2 : j : T × IRN → IR is a function such that hypotheses H(j)2(i) and (ii) are
the same as hypotheses H(j)1(i) and (ii), and

(iii) for almost all t ∈ T , all x ∈ IRN and all u ∈ ∂j(t, x), we have

|u| ≤ a(t) + c(t)‖x‖θ with a, c ∈ L1(T )+, 0 < θ < 1 ;

(iv)
1

‖x‖2θ

∫ b

0
j(t, x(t))dt → ±∞ as ‖x‖ → ∞, x ∈ H0.
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Remark 3.5. Hypothesis H(j)2(iv) is weaker than the analogous condition em-
ployed in Theorems 2 and 3 by Tang-Wu [19]. Note that, if A ≡ 0, then hypothesis
H(j)2(iv) becomes

lim
‖x‖→∞

1
‖x‖2θ

∫ b

0
j(t, x)dt = ±∞ .

This condition was used by Tang [17] and by Papageorgiou-Papageorgiou [13], in the
latter in the context of problems driven by the ordinary vector p−Laplacian.

As before, we consider the Euler functional ϕ : W 1,2
per((0, b), IRN ) → IR for problem

(1.1), defined by

ϕ(x) =
1
2
‖x′‖2

2 −
1
2

∫ b

0
(A(t)x(t), x(t))IRN dt−

∫ b

0
j(t, x(t))dt .

Due to hypotheses H(j)2(i), (ii) (iii) we know that ϕ is Lipschitz continuous on
bounded sets, hence locally Lipschitz (see Clarke [3], p.83).
First we check that ϕ satisfies the nonsmooth PS−condition.

Proposition 3.6. If hypotheses H(A) and H(j)2 hold, then ϕ satisfies the non-
smooth PS−condition.

Proof. We do the proof for the case 1
‖x‖2θ

∫ b
0 j(t, x(t))dt → +∞ as ‖x‖ → ∞, x ∈ H0,

the proof being similar if the limit is −∞. So let {xn}n≥1 ⊆ W 1,2
per((0, b), IRN ) be a

sequence such that

|ϕ(xn) ≤ M1 for some M1 > 0, all n ≥ 1 and m(xn) → 0 .

Since ∂ϕ(xn) ⊆ W 1,2
per((0, b), IRN )∗ is weakly compact and the norm functional in a

Banach space is weakly lower semicontinuous, by the Weierstrass theorem, we can
find x∗n ∈ ∂ϕ(xn) such that m(xn) = ‖x∗n‖, n ≥ 1. We write

xn = xn + x0
n + x̂n with xn ∈ H−, x0

n ∈ H0, x̂n ∈ H+ for all n ≥ 1 .

From the choice of the sequence {xn}n≥1 ⊆ W 1,2
per((0, b), IRN ), we have

〈x∗n, x̂n〉 ≤ εn‖x̂n‖ with εn ↓ 0 ,

hence we can find u∗n ∈ L1(T, IRN ), u∗n(t) ∈ ∂j(t, xn(t)) a.e. on T such that

(3.21) 〈V (xn), x̂n〉 − 〈Â(xn), x̂n〉 −
∫ b

0
(u∗n, x̂n)IRN dt ≤ εn‖x̂n‖ .

Exploiting the orthogonality of the component spaces, and using Lemma 3.2 (a),
we have

(3.22) 〈V (xn), x̂n〉− 〈Â(xn), x̂n〉 = ‖x̂′n‖2
2−

∫ b

0
(A(t)x̂n(t), x̂n(t))IRN dt ≥ ξ+‖x̂n‖2 .

The use of (3.22) and of hypothesis H(j)2(iii) in (3.21), yields

ξ+‖x̂n‖2 ≤ εn‖x̂n‖+
∫ b

0
‖u∗n(t)‖‖x̂n(t)‖dt ≤ εn‖x̂n‖+

(
c3 + c4‖xn‖θ

)
‖x̂n‖

≤ εn‖xn‖+
(
c3 + c4‖xn‖θ + c4‖x0

n‖θ
)
‖x̂n‖+ c4‖x̂n‖θ+1

for some c3, c4 > 0.(3.23)



SECOND ORDER SYSTEMS 383

Using Young’s inequality with suitably small ε > 0 on each summand of the right
hand side in (3.23), we obtain

(3.24) ‖x̂n‖2 ≤ c5‖xn‖2θ + c6‖x0
n‖2θ + c7 for some c5, c6, c7 > 0, all n ≥ 1.

In a similar fashion, using as a test function −x−n ∈ W 1,2
per((0, b), IRN ), we have

(3.25) ‖xn‖2 ≤ c8‖x0
n‖2θ + c9‖x̂n‖2θ + c10 for some c8, c9, c10 > 0, all n ≥ 1.

From (3.24) and (3.25) and if yn = xn + x̂n, then

‖yn‖2 = ‖xn‖2 + ‖x̂n‖2 ≤ c11‖yn‖2θ + c12‖x0
n‖2θ + c13

for some c11, c12, c13 > 0, all n ≥ 1,

so, via Young’s inequality with ε > 0,

‖yn‖2 ≤ c14‖x0
n‖2θ + c15 for some c14, c15 > 0, all n ≥ 1,

hence

(3.26) lim sup
n→∞

‖yn‖
‖x0

n‖θ
< +∞ .

From the mean value theorem for locally Lipschitz functions (see Clarke [3], p.41),
for almost all t ∈ T , we can find v∗n(t) ∈ ∂j(t, vn(t)) with vn(t) = λn(t)xn(t) + (1−
λn(t))x0

n(t), λn(t) ∈ (0, 1), such that

|j(t, xn(t))− j(t, x0
n(t))| = |(v∗n(t), xn(t) + x̂n(t))IRN | ≤ ‖v∗n(t)‖‖yn(t)‖

≤
(
a(t) + ĉ(t)

(
‖x0

n(t)‖θ + ‖yn(t)‖θ
))
‖yn(t)‖ with ĉ ∈ L1(T )+ .(3.27)

From the choice of the sequence {xn}n≥1 ⊆ W 1,2
per((0, b), IRN ), we have

ϕ(xn) +
∫ b

0
j(t, x0

n(t))dt ≥ −M1 +
∫ b

0
j(t, x0

n(t))dt ,

so using (3.27) we deduce that

c16‖yn‖2 + c17‖yn‖+ c18‖x0
n‖θ‖yn‖+ c19‖yn‖θ+1

≥ −M1 +
∫ b

0
j(t, x0

n(t))dt for some c16, c17 c18 > 0,

hence

c16

( ‖yn‖
‖x0

n‖θ

)2

+ c17
‖yn‖
‖x0

n‖2θ
+ c18

‖yn‖
‖x0

n‖θ
+ c19

‖yn‖
‖x0

n‖θ

( ‖yn‖
‖x0

n‖
)θ

≥ −M1

‖x0
n‖2θ

+
1

‖x0
n‖2θ

∫ b

0
j(t, x0

n(t))dt .(3.28)

If {x0
n} ⊆ W 1,2

per((0, b), IRN ) is bounded, then so is {yn} ⊆ W 1,2
per((0, b), IRN ). If

‖x0
n‖ → ∞, then by passing to the limit n →∞ in (3.28) we reach a contradiction,

since from (3.26) the left hand side has a finite limsup, while the right hand side goes
to +∞ (see hypothesis H(j)2(iv)). This proves that {x0

n}n≥1 ⊆ W 1,2
per((0, b), IRN ) is
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bounded, hence {xn}n≥1 ⊆ W 1,2
per((0, b), IRN ) is bounded (see (3.26)). Therefore we

may assume that xn ⇀ x in W 1,2
per((0, b), IRN ) and xn → x in C(T, IRN ). We have

∣∣∣∣〈V (xn), xn − x〉 −
∫ b

0
(A(t)xn(t), (xn − x)(t))IRN dt−

∫ b

0
(u∗n(t), (xn − x)(t))IRN dt

∣∣∣∣
≤ εn‖xn − x‖ .(3.29)

Evidently
∫ b

0
(A(t)xn(t), (xn − x)(t))IRN dt → 0 and

∫ b

0
(u∗n(t), (xn−x)(t))IRN dt → 0 as n →∞ .

So, from (3.29) it follows that

(3.30) lim
n→∞〈V (xn), xn − x〉 = 0 .

But V ∈ L
(
W 1,2

per((0, b), IRN ),W 1,2
per((0, b), IRN )∗

)
and so V (xn) ⇀ V (x) in

W 1,2
per((0, b), IRN )∗. Hence, from (3.30) we have 〈V (xn), xn〉 → 〈V (x), x〉, so

(3.31) ‖x′n‖2 → ‖x′‖2 as n →∞ .

Also we have

(3.32) x′n ⇀ x′ in L2(T, IRN ) as n →∞ .

From (3.31), (3.32) and the Kadec-Klee property of Hilbert spaces, we infer that
x′n → x′ in L2(T, IRN ). Therefore xn → x in W 1,2

per((0, b), IRN ) and so ϕ satisfies the
nonsmooth PS-condition. ¤

In what follows let

W = H− ⊕H0, and Z = H0 ⊕H+ .

Then W = H⊥
+ , Z = H⊥− and W is finite dimensional.

Proposition 3.7. (a) If hypotheses H(A) and H(j)2 (with the +∞ limit in
H(j)2(iv)) hold, then ϕ|H+

is coercive.
(b) If hypotheses H(A) and H(j)2 (with the −∞ limit in H(j)2(iv)) hold, then

ϕ|Z is coercive.

Proof. (a) For every x ∈ H+, using Lemma 3.2 (a), we have

ϕ(x) ≥ ξ+

2
‖x‖2 −

∫ b

0
j(t, x(t))dt .(3.33)

By virtue of hypothesis H(j)2(iii) and the mean value theorem for locally Lipschitz
functions (see Clarke [3], p.41), we have

|j(t, x)| ≤ a0(t)‖x‖+ c0(t)‖x‖θ+1 for a.a. t ∈ T, all x ∈ IRN .

Using this in (3.33), we obtain

(3.34) ϕ(x) ≥ ξ+

2
‖x‖2 − c20‖x‖ − c21‖x‖θ+1 for some c20, c21 > 0, all x ∈ H+ .



SECOND ORDER SYSTEMS 385

Since θ + 1 < 2, from (3.34) we infer that ϕ|H+
is coercive.

(b) For every x ∈ Z, we write x = x0+ x̂ with x0 ∈ H0 and x̂ ∈ H+. Then exploiting
the orthogonality of the component spaces, and using Lemma 3.2 (a), we have

ϕ(x) ≥ ξ+

2
‖x̂‖2 −

∫ b

0
j(t, x(t))dt

=
ξ+

2
‖x̂‖2 −

∫ b

0
(j(t, x(t))− j(t, x0(t)))dt−

∫ b

0
j(t, x0(t))dt .(3.35)

As in the proof of Proposition 3.6, using the mean value theorem for locally Lipschitz
functions, we obtain

∣∣∣∣
∫ b

0
(j(t, x(t))− j(t, x0(t)))dt

∣∣∣∣ ≤ c20‖x̂‖+ c21‖x0‖θ‖x̂‖+ c22‖x̂‖θ+1

for some c20, c21, c22 > 0 .

Using this estimate in (3.35) together with Young’s inequality with ε > 0 small, we
obtain

ϕ(x) ≥ c23‖x̂‖2 − c24‖x0‖2θ − c25 −
∫ b

0
j(t, x0(t))dt for some c23, c24, c25 > 0 ,

so

(3.36)
ϕ(x)
‖x0‖2θ

≥ c23
‖x̂‖2

‖x0‖2θ
− c24 − c25

‖x0‖2θ
− 1
‖x0‖2θ

∫ b

0
j(t, x0(t))dt .

If ‖x‖ → ∞, then ‖x̂‖ → ∞ and/or ‖x0‖ → ∞. Therefore from (3.36) and hypoth-
esis H(j)2(iv) (the −∞ option), we have that ϕ(x) → +∞ as ‖x‖ → ∞, so ϕ|Z is
coercive. ¤

Proposition 3.8. (a) If hypotheses H(A) and H(j)2 (with the +∞ limit in
H(j)2(iv)) hold, then ϕ|W is anticoercive (i.e. ϕ(x) → −∞ as ‖x‖ → ∞,
x ∈ W ).

(b) If hypotheses H(A) and H(j)2 (with the −∞ limit in H(j)2(iv)) hold, then
ϕ|H− is anticoercive (i.e. ϕ(x) → −∞ as ‖x‖ → ∞, x ∈ H−).

Proof. (a) For x ∈ W , we write x = x + x0 with x ∈ H−, x0 ∈ H0. Then using
Lemma 3.2 (b), we have

ϕ(x) ≤ −ξ−
2
‖x‖2 −

∫ b

0
j(t, x(t))dt

= −ξ−
2
‖x‖2 −

∫ b

0
(j(t, x(t))− j(t, x0(t)))dt−

∫ b

0
j(t, x0(t))dt .

As in the proof of Proposition 3.6, we check that
∣∣∣∣
∫ b

0
(j(t, x(t))− j(t, x0(t)))dt

∣∣∣∣ ≤ c26‖x‖+ c27‖x0‖θ‖x‖+ c28‖x‖θ+1

for some c26, c27, c28 > 0 .



386 G.BARLETTA AND N. S. PAPAGEORGIOU

Hence it follows that

ϕ(x) ≤ −c29‖x‖2 + c30‖x0‖2θ + c31 −
∫ b

0
j(t, x0(t))dt for some c29, c30, c31 > 0 ,

so

(3.37)
ϕ(x)
‖x0‖2θ

≤ −c29
‖x‖2

‖x0‖2θ
+ c30 +

c31

‖x0‖2θ
− 1
‖x0‖2θ

∫ b

0
j(t, x0(t))dt .

Then as in the proof of Proposition 3.6, from (3.37) we infer that ϕ|W is anticoercive.
(b) Let x ∈ H−. Then using Lemma 3.2 (b), we have

ϕ(x) ≤ −ξ−
2
‖x‖2 −

∫ b

0
j(t, x(t))dt .(3.38)

Recall that

|j(t, x)| ≤ a0(t)‖x‖+ c0(t)‖x‖θ+1 for a.a. t ∈ T, all x ∈ IRN .

Using this growth estimate in (3.38), we have

ϕ(x) ≤ −ξ−
2
‖x‖2 + c32‖x‖+ c33‖x‖θ+1 for some c32, c33 > 0 .

Since θ + 1 < 2, from the above inequality we infer that ϕ|H− is anticoercive. ¤
Now we are ready for the second existence theorem

Theorem 3.9. If hypotheses H(A) and H(j)2 hold, then problem (1.1) has a solu-
tion x0 ∈ C1(T, IRN ) ∩W 2,1((0, b), IRN ).

Proof. First we assume that in hypothesis H(j)2(iv) the limit is +∞. By virtue of
Proposition 3.7 (a) we can find β0 ∈ IR such that

(3.39) ϕ|H+
≥ β0 .

On the other hand from Proposition 3.8 (a), we see that we can find r > 0 large
such that

(3.40) ϕ|∂Br∩W < β0 where ∂Br = {x ∈ W 1,2
per((0, b), IRN ) : ‖x‖ = r} .

Because of (3.39), (3.40) and Proposition 3.6 we can apply Theorem 2.1 and obtain
x0 ∈ W 1,2

per((0, b), IRN ) such that 0 ∈ ∂ϕ(x0), that is V (x0) − Â(x0) = u∗0 with
u∗0 ∈ L1(T, IRN ), u∗0(t) ∈ ∂j(t, x0(t)) a.e. on T . From this, as in the proof of
Theorem 3.4, we conclude that x0 ∈ C1(T, IRN ) ∩ W 2,1((0, b), IRN ) and it solves
problem (1.1).
Next suppose that in hypothesis H(j)2(iv) the limit is −∞. In this case Proposition
3.7 (b) implies that we can find β1 ∈ IR such that

(3.41) ϕ|Z ≥ β1 .

Also from Proposition 3.8 (b), we see that we can find ρ > 0 large such that

(3.42) ϕ|∂Bρ∩H− < β1 .

Note that (3.41), (3.42) and Proposition 3.6, permit the use of Theorem 2.1, which
gives x0 ∈ W 1,2

per((0, b), IRN ) such that 0 ∈ ∂ϕ(x0), that is V (x0)− Â(x0) = u∗0 with
u∗0 ∈ L1(T, IRN ) u∗0(t) ∈ ∂j(t, x0(t)) a.e. on T . From this as before we conclude
that x0 ∈ C1(T, IRN ) ∩W 2,1((0, b), IRN ) and it solves problem (1.1). ¤
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4. Multiplicity result

In this section, using Theorem 2.2 we prove a multiplicity result for problem
(1.1). The hypotheses on the nonsmooth potential j(t, x) are the following:
H(j)3 : j : T × IRN → IR is a function such that j(t, 0) = 0 a.e. on T , hypotheses
H(j)3(i), (ii) and (iv) are the same as hypotheses H(j)1(i), (ii) and (iv), and

(iii) for almost all t ∈ T , all x ∈ IRN and all u ∈ ∂j(t, x), we have

‖u‖ ≤ a(t) + c(t)‖x‖r with a, c ∈ L1(T )+, and 2 ≤ r < ∞ ;

(v) if λm > 0 is the first positive eigenvalue of x → −x′′− Â(x), then there exist
θ ∈ L∞(T )+ and δ0 > 0 such that

θ(t) ≤ λm a.e. on T, θ 6= λm

and 0 ≤ j(t, x(t)) ≤ 1
2
θ(t)‖x‖2 for a.a. t ∈ T and all ‖x‖ ≤ δ0 .

Examples : The following functions satisfies hypotheses H(j)3:

j1(t, x) =

{
θ(t)
2 ‖x‖2 if ‖x‖ ≤ 1

1
rχC(t)(1− ‖x‖r) + θ(t)

2 if ‖x‖ > 1

and

j2(t, x) =
θ(t)
2
‖x‖2 − c0‖x‖r

with θ ∈ L∞(T )+ as in hypothesis H(j)3(v), 2 < r, c0 > 0 and C ⊆ T measurable
with |C| > 0.

We will need the following lemma.

Lemma 4.1. If θ ∈ L∞(T )+, θ(t) ≤ λm a.e. on T and θ 6= λm, then there exists
ξ̂ > 0 such that for all x ∈ H+

ψ̂(x) = ‖x′‖2
2 −

∫ b

0
(A(t)x(t), x(t))IRN dt−

∫ b

0
θ(t)‖x(t)‖2dt ≥ ξ̂‖x‖2 .

Proof. Clearly ψ̂ ≥ 0 on H+. We argue indirectly. So suppose that the lemma is
not true. Exploiting the 2-homogeneity of the functional ψ̂, we can find a sequence
{xn}n≥1 ⊆ H+ with ‖xn‖ = 1 for all n ≥ 1, such that ψ̂(xn) ↓ 0. By passing to a
suitable subsequence if necessary, we may assume that

xn ⇀ x in W 1,2
per((0, b), IRN ) and xn → x in C(T, IRN ) .

Note that ψ̂ is weakly lower semicontinuous on W 1,2
per((0, b), IRN ). So we obtain

ψ̂(x) ≤ lim inf
n→∞ ψ̂(xn) = 0 ,

hence

(4.1) ‖x′‖2
2 −

∫ b

0
(A(t)x(t), x(t))IRN dt =

∫ b

0
θ(t)‖x(t)‖2dt ≥ λm‖x‖2

2 .

Since x ∈ H+ and λm is the first positive eigenvalue, from (4.1) we infer that
x ∈ C1(T, IRN ) is an eigenfunction corresponding to the eigenvalue λm > 0. Hence
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x(t) 6= 0 for a.a. t ∈ T . Therefore from (4.1) and the hypothesis on θ, we have a
contradiction. ¤

Now we are ready for the multiplicity result. We require that dimH− = 0 but
the kernel of the differential operator x → −x′′ − Â(x) can be nontrivial.

Theorem 4.2. If hypotheses H(j)3 hold, and dimH− = 0, then problem (1.1)
admits at least two nontrivial solutions x0, x̂ ∈ C1(T, IRN ) ∩W 2,1((0, b), IRN ).

Proof. We consider the orthogonal direct sum decomposition

W 1,2
per((0, b), IRN ) = H0 ⊕H+ .

Recall that H0 ⊆ C(T, IRN ) ⊆ W 1,2
per((0, b), IRN ) is a finite dimensional subspace,

so all norms are equivalent. This means that if we choose δ0 > 0 as in hypothesis
H(j)3(v), then, if ‖x0‖ ≤ δ0, x0 ∈ H0, then ‖x0(t)‖ ≤ δ0 for all t ∈ T . Then for
every such x0 ∈ H0, we have

(4.2) 0 ≤ j(t, x0(t)) a.e. on T .

Hence, using (4.2) and the fact that x0 ∈ H0

ϕ(x0) = −
∫ b

0
j(t, x0(t))dt ≤ 0 .(4.3)

From hypotheses H(j)3(iii) and (v), we see that

(4.4) j(t, x(t)) ≤ θ(t)
2
‖x‖2 + ĉ(t)‖x‖r for a.a. t ∈ T .

Then, using Lemma 4.1 and (4.4), we can find c34 > 0 such that, for every x ∈ H+,
we have

ϕ(x) ≥ 1
2
‖x′‖2

2 −
1
2

∫ b

0
(A(t)x(t), x(t))IRN dt− 1

2

∫ b

0
θ(t)‖x(t)‖2dt− c34‖x‖r

≥ ξ̂

2
‖x‖2 − c34‖x‖r .(4.5)

Because r > 2, we can find δ̂ ≤ δ0 such that

(4.6) ϕ(x) ≥ 0 for all x ∈ H+ with ‖x‖ ≤ δ0 .

Arguing as in the proof of Claim 2 of Theorem 3.4, we can check that the Euler
functional ϕ is coercive. This implies that ϕ satisfies the nonsmooth PS-condition.
Indeed, let {xn}n≥1 ∈ W 1,2

per((0, b), IRN ) be a sequence such that

|ϕ(xn)| ≤ M2 for some M2 > 0, all n ≥ 1 and m(xn) → 0 as n →∞ .

As before, we can find x∗n ∈ ∂ϕ(xn) such that m(xn) = ‖x∗n‖ for all n ≥ 1. Since ϕ

is coercive and {ϕ(xn)}n≥1 is bounded, we infer that {xn}n≥1 ⊆ W 1,2
per((0, b), IRN is

bounded. From this fact, as in the last part of the proof of Proposition 3.6, we can
check that ϕ satisfies the nonsmooth PS-condition. Also ϕ is bounded from below.
If inf ϕ = 0 = ϕ(0), then, by virtue of (4.3), all x0 ∈ H0, with 0 < ‖x0‖ ≤ δ0 are
nontrivial minimizers of ϕ, hence nontrivial solutions of (1.1). Therefore we have a
continuum of solutions belonging in C1(T, IRN ) ∩W 2,1((0, b), IRN ).
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If inf ϕ < 0, then by virtue of Theorem 2.2, we know that ϕ has at least two non-
trivial critical points x0, x̂ ∈ W 1,2

0 (Z). As before, we have that x0, x̂ ∈ C1(T, IRN )∩
W 2,1((0, b), IRN ) and solve problem (1.1). ¤

Remark 4.3. Theorem 4.2 above improves Theorem 8 of Motreanu-Motreanu- Pa-
pageorgiou [11], where the potential function j(t, x) is necessarily quadratic near
infinity. The following potential function satisfies hypotheses H(j)3 but not those
of Theorem 8 in [11]. For simplicity we drop the t-dependence.

j(x) =
{

θ
2‖x‖2 if ‖x‖ ≤ 1

−c ln ‖x‖+ θ
2 if ‖x‖ > 1

with θ < λm and c > 0. Note that, if c = θ, then j ∈ C1(IR).
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