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A NOTE ON THE MULTIPLE-SET SPLIT CONVEX
FEASIBILITY PROBLEM IN HILBERT SPACE

EYAL MASAD AND SIMEON REICH

ABSTRACT. We prove weak and strong convergence theorems for an algorithm
that solves the multiple-set split convex feasibility problem in Hilbert space.

Let Hy and Hs be two real Hilbert spaces, and let » and p be two natural numbers.
Foreach 1 <14 < p, let C; be a closed convex subset of Hy, and foreach 1 < j < r, let
Q; be a closed convex subset of Ha. Further, for each 1 < j <, let T; : Hy — H>
be a bounded linear operator, and let €2 be an additional closed convex subset of
H;.

The (constrained) multiple-set split convez feasibility problem (MSCFP) is finding
a point «* € €} such that

P
(1) x*eC::ﬂC’i and Tjz*eQ;, 1<j<r
i=1

This problem extends the well-known (and by now classical) convex feasibility
problem (CFP) and the recent MSCFP proposed and studied in [7]. That paper
also contains many relevant references, as well as the real-world application to the
inverse problem of intensity-modulated radiation therapy (IMRT) which inspired
it. We replace the Euclidean spaces in [7] with Hilbert spaces and the single matrix
considered there with r bounded linear operators.

Following [7], we propose to solve this problem by employing the following algo-
rithm.

Foreach1 <i<pand1l<j <r,let a; and 3; be positive numbers, and for each
closed convex subset K of a Hilbert space H, let Px : H — K denote the nearest
point projection of H onto K.

Let G : Hy — Hj be the gradient V f of the convex and continuously differentiable
functional f : H; — R defined by

1< 1 « 2
(2) flz) == §Zai‘aj—Pcix|2+§Zﬁj |Tjz — P, Tjx
i=1 j=1
for all z € Hy, where | - | denotes the norms of both H; and Hs.
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It follows, for example, from [5, page 940] that

p T
(3) Gz = oI — Po,)u+Y_ BT (I - Po,)Tjx
i=1 j=1

for all x € Hy, where I denotes the identity operator and T7 is the adjoint operator

of T, j =1,2,...,r. Since the operator I — Pk is nonexpansive (see, for example,
[9, p. 17]), we see that G is Lipschitz with Lipschitz constant

P T
(4) L:=) ot 8IT%.
i=1 j=1

We are now ready to present our iterative algorithm for solving the MSCFP and
to prove our main convergence theorem.

Theorem 1. If the MSCFP has a solution, then, given a point xg € Hy and a
number s € (0,2/L), the sequence (x,)52; C Hy defined by

(5) Tnt1 = Polx, — sGxy), n=0,1,2,...,
converges weakly to a solution of the MSCFP.

We precede the proof of this theorem with several lemmata.

Lemma 2. Let H be a Hilbert space with inner product (-,-) and induced norm |- |,
and let ¢ : H — R be a continuously differentiable and convex functional.
If G, the gradient of ¢, is L-Lipschitz, then

1
(6) (Gx — Gy,x —y) > 7 |Gz — Gy|?

for all points xz,y € H.

This lemma is a special case of [2, Corollaire 10].

Let X be a Banach space. A mapping U : X — X is said to be averaged ([4],
[1], [19]) if there exist a nonexpansive mapping S : X — X and a number ¢ € (0, 1)
such that U = (1 — ¢)I 4+ ¢S.

Lemma 3. If a mapping G : H — H satisfies (6) and 0 < s < 2/L, then the
mapping U = I — sG is averaged.

Proof. Choose a number ¢ € (0,1) such that ¢ > Ls/2, and set S := I — 2G. Then
U= (1-c¢)I+cS and S is nonexpansive:
| —y|? = |Sz — Sy|* =

= o=y = (le—vP — 224Gz — Gy.z — ) + (2) |6 - GuP) 2

(2~ Jioe-cut 2o
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A mapping S : X — X is called strongly nonexpansive [4] if it is nonexpansive
and whenever (z, —yy)>2, is bounded and |z,, — yn| — |Sxy, — Syn| — 0, it follows
that (z, — yn) — (Sxy, — Syn) — 0.

We now quote Proposition 2.4 in [18].

Lemma 4. Let X be a Banach space and let S : X — X be a strongly nonexpansive
mapping. Assume that both X and its dual X* are uniformly convex.

If S has a fived point, then for each x in X, the sequence of iterates (S"x)>2,
converges weakly to a fixed point of S.

We continue by quoting special cases of Proposition 1.3 and Lemma 2.1 in [4],
respectively. We denote the fixed point set of S by F(S).

Lemma 5. In a uniformly conver Banach space, each averaged mapping is strongly
nonexrpansive.

Lemma 6. If Sy and Sy are strongly nonexpansive mappings, and F(S1) N F(S2) #
@, then F(Sl) N F(Sg) = F(Sgsl) = F(51S2)

Proof of Theorem 1. Consider the mapping S : H; — H; defined by S := Pq(I —
sQ).

Since G is L-Lipschitz and 0 < s < 2/L, Lemma 3, when combined with Lemma
2, shows that the mapping U = [ —sG is averaged. Since the nearest point mapping
Pq is also averaged (see, for example, [9, page 17]), so is their composition S. It is
also strongly nonexpansive by Lemma 5.

Every solution of the MSCFP is a null point of G and a fixed point of U, Py and
S. Thus, the sequence (z,,)5; defined by (5) converges weakly to a fixed point of
S by Lemma 4. This fixed point z* of S is also a fixed point of both Py and U by
Lemma 6. Hence it is a null point of G which belongs to (2.

In other words, the point £* is a minimum point of the functional f and a solution
of the MSCFP (because f(z*) = 0), as asserted. O

This theorem contains the finite dimensional Theorem 3 of [7]. However, in the
infinite dimensional case, strong convergence cannot be guaranteed. To see this,
consider the special case of the convex feasibility problem (CFP), where there are
no Q1,...,Qr,p=2,a1=ay=1,s= %, and € = Hy. Then the iterative scheme
(5) takes the form

1
(7) Tn4+1 = i(PCyIn + PCan)7

and it is known [3, Theorem 5.1] that the sequence (x,)°; generated by (7), al-
though weakly convergent, need not converge in norm.

We now present an interesting case where strong convergence is assured. Re-
call first that a mapping S : X — X is said to be asymptotically regular if
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lim (S"z — S"Tlx) = 0 for each z in X. Next, we quote Theorem 1.1 of [1].
n—oo
We say that S: X — X is odd if S(—z) = —Sz for all x € X.

Lemma 7. If the Banach space X is uniformly convez, and the mapping S : X — X
is nonexpansive, odd and asymptotically reqular, then for each x € X, the sequence
of iterates (S™x)S, converges strongly to a fized point of S.

We say that a subset D C X is symmetric (with respect to the origin) if —D = D.

Theorem 8. If the closed and convex sets {C; | 1 <i < p},
{Q; | 1 <5 <r} and Q are all symmetric, then the sequence (x,)32, generated by
(5) converges strongly to a solution of the MSCFP.

Proof. Since the nearest point projections onto the closed and convex sets C1, ..., Cp,
Q1,...,Q, and Q are all odd (cf. [18, Lemma 2.2]), so are G and the composition
S = Pqo(I—sG). This composition is also strongly nonexpansive and asymptotically
regular by [4, Corollary 1.1]. Therefore the result follows from Lemma 7. O

Another instance of strong convergence occurs when the solution set of the
MSCFP has a nonempty interior (cf. [14] and [15, Section 6]). In this case the
parameter s may even equal 2/L.

We remark in passing that the sequence ()22, generated by (5) may converge
(albeit weakly) even if the MSCFP has no solution (cf., for example, [13, Corollary
4.10] and [11, Theorem 4.2]). This will happen when the mapping S = Pq(I — sG)
has a fixed point, or equivalently, when the functional f : H; — R defined by (2)
attains its minimum over €. In this case the limit of (z,)%; may be considered a
generalized solution of the MSCFP. More information regarding the MSCFP and its
solutions may be found in the recent paper [8] and the references mentioned therein.
When the functional f does not attain its infimum over €2, then the mapping S is
fixed point free and |z,,| — oo as n — oo. This follows from either [1, Corollary 2.2]
or [4, Corollary 1.4].

It may be of interest to note that when the sequence (z,)52; generated by our
algorithm does converge (either weakly or strongly), it will continue to converge
even in the presence of summable computational errors. This follows from Theorem
4.1 and 4.2 in [6] (see also [4, Theorem 2.5] and [15, Theorem 2]).

Finally, we also observe that other algorithms for solving the MSCFP can be
based on [16, Theorem 2], [10, Theorem 3], [12, Théoreme 1], [17, Corollary 2], and
on their more recent counterparts (see, for example, the papers [21] and [20], as well
as their references).
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