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ON REGULARITY OF CONSTRAINT SYSTEMS WITH
CONTINUOUS OPERATORS

YOSHIYUKI SEKIGUCHI AND WATARU TAKAHASHI

Abstract. In the work, we consider a constraint system of a finite dimensional
optimization problem defined with an operator and closed sets. The operator
is assumed to be merely continuous. Under a constraint qualification, we give
a straightforward proof for a representation of normal vectors to the feasible
region. Then metric regularity of the constraint system are obtained by the
formula. Moreover the rate of metric regularity is estimated.

1. Introduction

We consider constraint systems of minimization problems in Euclidean spaces.
If a constraint system is defined by smooth functions, constraint qualifications at
a point, like linear independence of their gradients, are often imposed to ensure
existence of proper Lagrange multipliers. This can be proved through a represen-
tation of normal vectors to the feasible region. Constraint qualifications actually
guarantee validity of the representation and in addition, some stability of feasible
sets under perturbations.

Let us consider the following parameterized constraint system:

Cy = {x ∈ A : F (x) ∈ y + B},
where X, Y are Euclidean spaces, y ∈ Y , F is a smooth operator from X into Y
and A, B are closed sets in X, Y respectively. Then if the Jacobian of F at x̄ ∈ C0

is surjective, there exists K ≥ 0 such that

d(x,Cy) ≤ Kd(F (x), y + B)

for (x, y) ∈ A× Y close to (x̄, 0); see e.g. [4], [11].
This inequality says that Cy is nonempty for all y close to 0 and that the distance

from a given point x to Cy is bounded by the residual d(F (x), y+B), which is often
treated more easily. The former guarantees the consistency of constraint systems
under data perturbations and the latter gives, in particular, an error bound of
the distance from a feasible point x̄ to feasible regions of perturbed constraint
systems. Such regularity is called metric regularity. To have metric regularity of
constraint systems, surjectivity of the Jacobian can be replaced by other constraint
qualifications. In addition, smoothness of the constraint operator is not required
to obtain above regularity and a representation of normal vectors to the feasible
region.
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In this paper, we argue normal vectors to a constraint system with a continuous
operator and closed sets, and its regularity. Tangent vectors are discussed in [12].
The treatise that an operator and sets are used to define constraint systems gives
a unifying framework concerning multiplier rules for various constraints. Several
authors have worked on the subject. For example, smooth and finite dimensional
cases are given in [11]. Constraints with Lipschitz continuous operators are discussed
in [8] for finite dimensional cases and in [7] for infinite dimensional cases.

We consider constraint systems in Euclidean spaces, where constraint operators
are merely continuous. Our main tool is a sum rule for subdifferentials. A represen-
tation of normal vectors to such a region is essentially obtained in [10] . However
it is not explicitly given and the proof is complicated since they show it in Asplund
spaces with several additional conditions. Thus we give a straightforward proof for
the formula in Euclidean spaces, which is also in an easy accessible format.

In addition, a constraint qualification with the coderivative of the operator is
shown to be sufficient for regularity of such constraint system. Moreover the rate
of regularity, which is a quantitative measure of regularity is estimated through
the formula. With these results, we present a necessary optimality condition for a
minimization problem.

2. Preliminaries

Throughout the paper, let X and Y be Euclidean spaces. Our notation and
constructions follow [11]. Let C be a closed subset of X and x̄ ∈ C. A vector
x∗ ∈ X is said to be normal to C at x̄ in the regular sense if it satisfies

〈x∗, x− x̄〉 ≤ o(‖x− x̄‖)
for x ∈ C. It can also be written by

lim sup
x

C→x̄
x6=x̄

〈x∗, x− x̄〉
‖x− x̄‖ ≤ 0.

Such vectors form a closed convex cone. The set is called the regular normal cone
to C at x̄ and denoted by N̂C(x̄). If C is convex, an easy calculation gives N̂C(x̄) =
{x∗ ∈ X : 〈x∗, x − x̄〉 ≤ 0, x ∈ C}, which is the standard normal cone of convex
analysis. For calculus of regular normal vectors, see e.g. [11], [12]. A vector x∗

is said to be normal to C at x̄ (in the general sense) if there exists xk
C→ x̄ and

x∗k → x∗ with x∗k ∈ N̂C(xk). The whole set is called the normal cone to C at x̄ and
denoted by NC(x̄). If N̂C(x̄) = NC(x̄), we say C is Clarke regular at x̄. When C is
convex, it is Clarke regular at every its point.

For a lower semicontinuous function f from X into (−∞,∞] and x̄ ∈ domf , three
types of subdifferentials are defined as follows:

The Fréchet subdifferential ∂̂f(x̄) of f at x̄;

∂̂f(x̄) := {x∗ ∈ X : (x∗,−1) ∈ N̂epif ((x̄, f(x̄)))},
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the subdifferential ;

∂f(x̄) := {x∗ ∈ X : (x∗,−1) ∈ Nepif ((x̄, f(x̄)))},
the singular subdifferential ;

∂∞f(x̄) := {x∗ ∈ X : (x∗, 0) ∈ Nepif ((x̄, f(x̄)))}.
If f is convex, the Fréchet subdifferential and the subdifferential are equal to the
subdifferential of convex analysis;

∂f(x̄) = ∂̂f(x̄) = {x∗ ∈ X : f(x) ≥ f(x̄) + 〈x∗, x− x̄〉, x ∈ X}.
We have the following formulas.

Proposition 2.1 ([10]). Let f be a lower semicontinuous function from X into
(−∞,∞] and x̄ ∈ dom f . Then

∂̂f(x̄) =

{
x∗ ∈ X : lim inf

x→x̄
x6=x̄

f(x)− f(x̄)− 〈x∗, x− x̄〉
‖x− x̄‖ ≥ 0

}
;

∂f(x̄) = lim sup
x

f→x̄

∂̂f(x) = lim sup
x

f→x̄
ε↘0

∂̂εf(x),

where

∂̂εf(x̃) =

{
x∗ ∈ X : lim inf

x→x̃
x6=x̃

f(x)− f(x̃)− 〈x∗, x− x̃〉
‖x− x̃‖ ≥ −ε

}

for x̃ ∈ dom f and ε > 0.

Note that for the indicator function

IC(x) =

{
0, x ∈ C;
∞, x /∈ C,

we have the relation that ∂̂IC(x̄) = N̂C(x̄) and ∂IC(x̄) = ∂∞IC(x̄) = NC(x̄) for all
x̄ ∈ C.

Let S be a set-valued mapping from X into Y and gphS = {(x, y) ∈ X ×Y : y ∈
S(x)}. For (x̄, ȳ) ∈ gphS, the coderivative of S at x̄ for ȳ is the set-valued mapping
D∗S(x̄, ȳ) from X into Y defined by

D∗S(x̄, ȳ)(y∗) = {x∗ ∈ X : (x∗,−y∗) ∈ NgphS(x̄, ȳ)}
for y∗ ∈ Y . If S is single-valued, we write D∗S(x̄, S(x̄)) = D∗S(x̄). We present
some useful calculus rules. For the proofs, see [11] and the references therein.

Proposition 2.2 (normals to product sets). Let C = C1×C2 for closed sets C1 ∈ X
and C2 ∈ Y . Then for z̄ = (x̄, ȳ) with x̄ ∈ C1 and ȳ ∈ C2,

N̂C(z̄) = N̂C1(x̄)× N̂C2(ȳ);

NC(z̄) = NC1(x̄)×NC2(ȳ).
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Theorem 2.3 (addition of functions). Let fi be proper, lower semicontinuous func-
tions from X into (−∞,∞] and x̄ ∈ domf1∩· · ·∩domfn. Suppose for x∗i ∈ ∂∞fi(x̄),

x∗1 + · · ·+ x∗n = 0 ⇒ x∗1 = · · · = x∗n = 0.

Then the following inclusions hold:

∂(f1 + · · ·+ fn)(x̄) ⊂ ∂f1(x̄) + · · ·+ ∂fn(x̄),

∂∞(f1 + · · ·+ fn)(x̄) ⊂ ∂∞f1(x̄) + · · ·+ ∂∞fn(x̄).

Moreover if each epi fi is Clarke regular, equalities hold.

3. Normal cones to continuous constraints

Let F be an operator from X into Y and A, B closed sets. We consider the
following minimization problem:

P minimize f(x) subject to x ∈ C,

where

(3.1) C = {x ∈ A : F (x) ∈ B}.
We show a formula for a normal cone to C. If F is locally Lipschitz, it is found

in [8]. The formula for continuous operators is, in fact, essentially obtained in [10].
However since it is not explicitly given and the proof is complicated, we reformulate
it in an easy accessible format and give a straightforward proof.

Theorem 3.1. Let F be a continuous operator from X into Y and C be defined in
(3.1) for closed sets A, B. Suppose the following constraint qualification is satisfied
at x̄:

(∗)
{

for z∗ ∈ NA(x̄), y∗ ∈ NB(F (x̄)),
0 ∈ D∗F (x̄)(y∗) + z∗ ⇒ y∗ = 0, z∗ = 0.

Then
NC(x̄) ⊂ {D∗F (x̄)(y∗) + z∗ : z∗ ∈ NA(x̄), y∗ ∈ NB(F (x̄))}.

Moreover if A, B are Clarke regular at x̄, F (x̄) respectively and F is continuously
Fréchet differentiable at x̄, equality holds

Proof. We define ‖(x, y)‖ = ‖x‖+ ‖y‖ for (x, y) ∈ X×Y . For all x ∈ X and y ∈ Y ,
we have

IC(x) = IA(x) + IB(F (x)) ≤ IA(x) + IB(y) + IgphF ((x, y)).

Let f(x, y) = IA(x) + IB(y) + IgphF ((x, y)). Then IC(x) ≤ f(x, y) and IC(x) =
f(x, F (x)).

We will show the following inclusion:

(3.2) ∂IC(x̄) ⊂ {x∗ ∈ X : (x∗, 0) ∈ ∂f(x̄, F (x̄))}.
Suppose x∗ ∈ ∂IC(x̄). Then there exist xk

IC→ x̄ and x∗k → x∗ with x∗k ∈ ∂̂IC(xk) by
the definition. Since IC(x̄) = 0, we have IC(xk) = 0 for large k and hence we may
assume xk ∈ C for all k. It follows from Proposition 2.1 that for arbitrary ε > 0,
there exists δ > 0 such that

IC(x) ≥ IC(xk) + 〈x∗k, x− xk〉 − ε‖x− xk‖,
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whenever ‖x− xk‖ ≤ δ. This implies

f(x, y) ≥ f(xk, F (xk)) + 〈x∗k, x− xk〉 − ε‖x− xk‖ − ε‖y − F (xk)‖
for y ∈ Y . Since ε is arbitrary, we obtain (x∗k, 0) ∈ ∂̂f(xk, F (xk)). Now we have
f(xk, F (xk)) = IC(xk) = 0 = f(x̄, F (x̄)) for all k. Thus continuity of F gives that

(xk, F (xk))
f→ (x̄, F (x̄)). Therefore (x∗, 0) ∈ ∂f(x̄, F (x̄)) and hence (3.2) holds.

Next we describe the set ∂f(x̄, F (x̄)). We can write

f(x, y) = IA×Y ((x, y)) + IX×B((x, y)) + IgphF ((x, y))

for all (x, y) ∈ X × Y . To apply Theorem 2.3, we suppose that (x∗1, y
∗
1) ∈

∂IA×Y ((x̄, F (x̄))), (x∗2, y
∗
2) ∈ ∂IX×B((x̄, F (x̄))), (x∗3, y

∗
3) ∈ ∂IgphF ((x̄, F (x̄))) and

that (x∗1, y
∗
1) + (x∗2, y

∗
2) + (x∗3, y

∗
3) = (0, 0). Here we have

∂IA×Y ((x̄, F (x̄))) = NA×Y ((x̄, F (x̄))) = NA(x̄)× {0},
∂IX×B((x̄, F (x̄))) = NX×B((x̄, F (x̄))) = {0} ×NB(F (x̄)),

by Proposition 2.2. Thus y∗1 = 0, x∗2 = 0 and

(x∗1 + x∗3, y
∗
2 + y∗3) = (x∗1, 0) + (0, y∗2) + (x∗3, y

∗
3) = (0, 0).

Since x∗3 ∈ D∗F (x̄)(−y∗3), one has

(0, 0) ∈ {x∗1 + D∗F (x̄)(−y∗3)} × {y∗2 + y∗3},
and then 0 ∈ x∗1+D∗F (x̄)(y∗2). Since x∗1 ∈ NA(x̄) and y∗2 ∈ NB(F (x̄)), the constraint
qualification guarantees that x∗1 = 0, y∗2 = 0 and hence we have x∗3 = 0, y∗3 = 0.
Therefore we can apply Theorem 2.3 and obtain

(3.3) ∂f(x̄, F (x̄)) ⊂ NA(x̄)× {0}+ {0} ×NB(F (x̄)) + NgphF ((x̄, F (x̄))).

For any x∗ ∈ NC(x̄), we have (x∗, 0) ∈ ∂f(x̄, F (x̄)) by the inclusion (3.2). Thus
there exist x∗1 ∈ NA(x̄), y∗2 ∈ NB(F (x̄)) and (x∗3, y

∗
3) ∈ NgphF ((x̄, F (x̄))) such that

(x∗, 0) = (x∗1, 0) + (0, y∗2) + (x∗3, y
∗
3) = (x∗1 + x∗3, y

∗
2 + y∗3).

Then x∗ = x∗1 + x∗3 and y∗2 + y∗3 = 0. Since x∗3 ∈ D∗F (x̄)(−y∗3), we conclude
x∗ ∈ x∗1 + D∗F (x̄)(y∗2). This shows the first part of the statement.

Next we suppose that the operator F is strictly differentiable at x̄ and A, B
are Clarke regular at x̄, F (x̄) respectively. If we show that the inclusions in (3.2),
equalities in (3.3) hold. Then the proof is completed.

Suppose (x∗, 0) ∈ ∂f(x̄, F (x̄)). Then there exists (xk, yk)
f→ (x̄, ȳ) and (x∗k, y

∗
k) →

(x∗, 0) with (x∗k, y
∗
k) ∈ ∂̂f(xk, yk). The similar argument above tells us that xk ∈ C

and (xk, yk) ∈ gphF . For ηk ↘ 0, we can find δ0 > 0 such that

f(x, y) ≥ f(xk, yk) + 〈(x∗k, y∗k), (x− xk, y − yk)〉 − ηk{‖x− xk‖+ ‖y − yk‖},
whenever ‖x− xk‖+ ‖y − yk‖ < δ0. Since F is continuous, there exists δ > 0 such
that ‖x− xk‖ ≤ δ implies ‖x− xk‖+ ‖F (x)− F (xk)‖ < δ0. Thus if ‖x− xk‖ < δ,
we have

f(x, F (x)) ≥ f(xk, F (xk)) + 〈(x∗k, y∗k), (x− xk, F (x)− F (xk)〉
− ηk{‖x− xk‖+ ‖F (x)− F (xk)‖},

≥ f(xk, F (xk)) + 〈x∗k, x− xk〉 − ‖y∗k‖‖F (x)− F (xk)‖
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− ηk{‖x− xk‖+ ‖F (x)− F (xk)‖}.
Now f(x, F (x)) = IC(x) and strict differentiability at x̄ implies that ‖F (x) −
F (xk)‖ ≤ ‖∇F (x̄)‖‖x − xk‖ + ‖x − xk‖ for x, xk close to x̄. Thus we have for
large k,

lim inf
x→xk

IC(x)− IC(xk)− 〈x∗k, x− xk〉
‖x− xk‖ ≥ −εk,

where εk = max{ηk, ‖y∗k‖}(‖∇F (x̄)‖+ 2). This implies that x∗k ∈ ∂̂εk
IC(xk) and we

obtain x∗ ∈ ∂IC(x̄) by Proposition 2.1. Since gphF is Clarke regular at every its
point [11], the regularity of A, B and gphF ensures the equality of (3.3). ¤

4. Constraint qualification and Metric regularity

Metric regularity is one of the central concepts in theoretical studies of optimiza-
tion problems. A set-valued mapping S from X into Y is said to be metrically
regular around (x̄, ȳ) ∈ gphS if there exists K ≥ 0 such that

d(x, S−1(y)) ≤ Kd(y, S(x))

for (x, y) close to (x̄, ȳ). The infimum of such K is called the rate of (metric) regu-
larity at (x̄, ȳ) and denoted by reg S(x̄, ȳ). In particular, we consider the following
set-valued mapping from X into Y :

(4.1) Ω(x) =

{
F (x)−B, x ∈ A;
∅, x /∈ A.

Metric regularity of Ω around (x̄, ȳ) ∈ gphΩ implies the inequality

d(x,Cy) ≤ Kd(F (x), B)

for Cy = {x ∈ A : F (x) ∈ y + B} and (x, y) ∈ A× Y close to (x̄, ȳ). This coincides
the regularity mentioned in the introduction and expresses consistency and stability
of constraint systems with perturbations as explained there. In addition metric
regularity of Ω gives a representation of tangent vectors to the feasible region [12].

The rate of regularity is a quantitative measure of stability and related to a
condition number in linear programming; see [1] and references therein. We use the
normal formula obtained in the previous section and a coderivative criterion to show
that the constraint qualification is sufficient for metric regularity of the mapping Ω.
Moreover we obtain an upper bound for the rate of regularity. The estimate below
has been studied in [2], [9] and a short proof is given in [5].

Theorem 4.1 ([9]). Let S be a set-valued mapping from X into Y with a closed
graph and (x̄, ȳ) ∈ gphS. Then

reg S(x̄|ȳ) = [inf{‖x∗‖ : x∗ ∈ D∗S(x̄, ȳ)(y∗), ‖y∗‖ = 1}]−1.

and the following conditions are equivalent:
(i) S is metrically regular around (x̄, ȳ);
(ii) kerD∗S(x̄|ȳ) = {0}.
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Lemma 4.2. Let F be a continuous operator from X into Y . Set F0(x, u) =
F (x)− u. Then

D∗F0(x̄, ū)(y∗) = D∗F (x̄)(y∗)× {−y∗}
for all y∗ ∈ Y .

Proof. Let ‖(x, y)‖ = ‖x‖+ ‖y‖ for (x, y) ∈ X ×Y ×Y . It is sufficient to show that
(x∗, u∗,−y∗) ∈ N̂gph F0(x0, u0, F (x0) − u0) if and only if u∗ = −y∗ and (x∗,−y∗) ∈
N̂gph F (x0, F (x0)), for (x0, u0, F (x0)− u0) close to (x̄, ū, F (x̄)− ū).

Let y0 = F (x0) − u0. Suppose (x∗, u∗) ∈ D̂∗F0(x0, u0)(y∗). The definition says
that for arbitrary ε > 0, there exists δ > 0 such that

〈x∗, x− x0〉+ 〈u∗, u− u0〉+ 〈−y∗, y − y0〉 ≤ ε{‖x− x0‖+ ‖u− u0‖+ ‖y − y0‖},
whenever ‖x−x0‖+‖u−u0‖+‖y−y0‖ < δ and (x, u, y) ∈ gphF0. Since y = F (x)−u,
the above inequality means

(4.2) 〈x∗, x− x0〉+ 〈u∗, u− u0〉+ 〈−y∗, F (x)− u− (F (x0)− u0)〉
≤ ε{‖x− x0‖+ ‖u− u0‖+ ‖F (x)− u− (F (x0)− u0)‖}.

Setting x = x0, we have 〈u∗, u−u0〉+ 〈−y∗,−u+u0〉 ≤ ε{‖u−u0‖+ ‖u−u0‖} and
hence 〈u∗+ y∗, u−u0〉 ≤ 2ε‖u−u0‖. Since this holds for any u with ‖u−u0‖ < δ/2
and ε is arbitrary, we obtain u∗ = −y∗.

Now set u = u0 in (4.2). We have

〈x∗, x− x0〉+ 〈−y∗, F (x)− F (x0)〉 ≤ ε{‖x− x0‖+ ‖F (x)− F (x0)‖}.
Continuity of F guarantees the inequality

lim sup
(x,z)

gphF→ (x0,F (x0))

〈(x∗,−y∗), (x, z)− (x0, F (x0))〉
‖x− x0‖+ ‖z − F (x0)‖ ≤ ε.

Letting ε to 0, this implies (x∗,−y∗) ∈ N̂gphF (x0, F (x0)). Thus x∗ ∈ D̂∗F (x0)(y∗).
Therefore we obtain D̂∗F0(x0, u0)(y∗) ⊂ D̂∗F (x0)(y∗)× {−y∗}.

Next we show the reverse inclusion. Suppose x∗ ∈ D̂∗F (x0)(y∗). Then for any
ε > 0, there exits δ > 0 such that

〈x∗, x− x0〉+ 〈−y∗, y − F (x0)〉 ≤ ε{‖x− x0‖+ ‖y − F (x0)‖},
whenever ‖x − x0‖ + ‖y − F (x0)‖ < δ and (x, y) ∈ gphF . Let us define u0 =
F (x0) − y0 and take any point (x, u, y) ∈ gphF0 which satisfies ‖x − x0‖ + ‖u −
u0‖+ ‖y − y0‖ < δ. Then we have (x, y + u) ∈ gphF and

‖x− x0‖+ ‖y + u− F (x0)‖ = ‖x− x0‖+ ‖(y + u)− (y0 + u0)‖
≤ ‖x− x0‖+ ‖y − y0‖+ ‖u− u0‖ < δ.

Thus we have

〈x∗, x− x0〉+ 〈−y∗, (y + u)− F (x0)〉 ≤ ε{‖x− x0‖+ ‖(y + u)− F (x0)‖},
and hence

〈(x∗,−y∗,−y∗), (x, u, y)− (x0, u0, y0)〉 ≤ ε{‖x− x0‖+ ‖u− u0‖+ ‖y + y0‖}.
This means (x∗,−y∗) ∈ D̂∗F0(x0, u0)(y∗) and the proof is completed. ¤
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Theorem 4.3. Let F be a continuous operator and C defined in (3.1) for closed
sets A, B. Suppose the constraint qualification (∗) holds at x̄. Then Ω defined in
(4.1) is metrically regular around (x̄, ȳ) and

reg Ω(x̄|0) ≤ [
inf{‖x∗ + z∗‖ : x∗ ∈ D∗F (x̄)(y∗),

y∗ ∈ NB(F (x̄)), z∗ ∈ NA(x̄), ‖y∗‖ = 1}]−1
.

Moreover if A, B are Clarke regular at x̄, F (x̄) respectively, equality holds.

Proof. Let F0(x, u) = F (x) − u and D = {(x, u) ∈ X × Y : x ∈ A,F0(x, u) ∈ B}.
Then gphΩ = D. Suppose z∗ ∈ NA(x̄), y∗ ∈ NB(F0(x̄, 0)) and 0 ∈ D∗F0(x̄, 0)(y∗)+
(z∗, 0). Then by Lemma 4.2, 0 ∈ D∗F (x̄)(y∗)× {−y∗}+ (z∗, 0). Since z∗ ∈ NA(x̄),
y∗ ∈ NB(F (x̄)) and 0 ∈ D∗F (x̄)(y∗) + z∗, we have y∗ = 0 and z∗ = 0 by the
constraint qualification. Applying Theorem 3.1 and Lemma 4.2, we obtain

ND(x̄, 0) ⊂ {D∗F0(x̄, 0)(y∗) + (z∗, 0) : z∗ ∈ NA(x̄), y∗ ∈ NB(F0(x̄, 0))}
= {{D∗F (x̄)(y∗) + z∗} × {−y∗} : z∗ ∈ NA(x̄), y∗ ∈ NB(F (x̄))}.

Thus the relation w∗ ∈ D∗Ω(x̄, 0)(y∗) implies that y∗ ∈ NB(F (x̄)) and that there
exist x∗ ∈ D∗F (x̄)(y∗) and z∗ ∈ NA(x̄) such that w∗ = x∗ + z∗. We are to apply
Theorem 4.1. If we take w∗ = 0 in the relation, we have 0 ∈ D∗F (x̄)(y∗) + z∗ and
hence y∗ = 0, z∗ = 0 by the constraint qualification. Therefore metric regularity of
Ω around (x̄, 0) and the desired inequality are obtained. ¤

Finally we obtain a necessary condition for local optimals of optimization prob-
lems. We need the following lemma, which is shown by the argument in [3]. For
x̄ ∈ X and a locally Lipschitz function f on X, let Br(x̄) be the open ball with the
center x̄ and the radius r, and

Lip f(x̄) = lim sup
x,x′→x̄

x6=x′

|f(x)− f(x′)|
‖x− x′‖ .

Lemma 4.4. Let f be a locally Lipschitz function on X, S a set-valued mapping
from X into Y . Consider the problem

minimize f(x) s.t. 0 ∈ S(x).

Suppose x̄ is a local optimal of the problem and S is metrically regular around (x̄, 0).
Then x̄ is a local optimal for an unconstrained problem

minimize f(x) + LKd(0, S(x)),

whenever L > Lip f(x̄) and K > reg S(x̄|0).

Proof. Let L > Lip f(x̄) and K > reg S(x̄|0). Since x̄ is a local optimal, there exists
r > 0 such that f(x̄) ≤ f(x) for all x ∈ Br(x̄) ∩ S−1(0), f is L-Lipschitz on Br(x̄)
and d(x, S−1(0)) ≤ Kd(0, S(x)) for x ∈ Br(x̄). Let x ∈ Br/3(x̄) and x′ ∈ S−1(0).
By Lipschitz continuity of f , we have f(x̄)−f(x) ≤ L‖x̄−x‖ ≤ Lr/3. If x′ ∈ Br(x̄),

f(x̄)− f(x) ≤ f(x′)− f(x) ≤ L‖x′ − x‖.
If x′ /∈ Br(x̄),

‖x′ − x‖ ≥ ‖x′ − x̄‖ − ‖x̄− x‖ ≥ r − r

3
=

2
3
r,
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and hence f(x̄)− f(x) ≤ Lr/3 ≤ L‖x′ − x‖. Thus regularity of F gives

f(x̄)− f(x) ≤ Ld(x, S−1(0)) ≤ LKd(0, S(x)).

Therefore we obtain f(x̄) ≤ f(x) + LKd(0, S(x)) for all x ∈ Br/3(x̄). ¤

Corollary 4.5. Let f be a locally Lipschitz function, F a continuous operator from
X into Y and A, B are closed sets in X, Y respectively. Suppose x̄ is a local optimal
of the minimization problem

minimize f(x) subject to x ∈ A, F (x) ∈ B

and the constraint qualification (∗) holds at x̄. Then there exist y∗ ∈ NB(F (x̄)) and
z∗ ∈ NA(x̄) such that

0 ∈ ∂f(x̄) + D∗F (x̄)(y∗) + z∗

and x̄ is a local optimal to the problem

minimize f(x) + LKd(F (x), B) subject to x ∈ A

for L > Lip f(x̄) and K > reg Ω(x̄|0), where Ω is defined by (4.1).

Proof. Let f0(x) = f(x)+ IC(x). It follows from Proposition 2.1 that 0 ∈ ∂f0(0). A
lower semicontinuous function f from X into R is locally Lipschitz at x if and only if
∂∞f(x) = {0} [11]. Thus by Theorem 2.3, we have ∂f0(x̄) ⊂ ∂f(x̄) + NC(x̄). Since
the constraint qualification is satisfied, we obtain the desired inclusion and metric
regularity of Ω around (x̄, 0) from Theorem 3.1 and Theorem 4.3 respectively. In
addition the remain of the statement is followed by Lemma 4.4 and the equality
d(0,Ω(x)) = Kd(F (x), B) for x ∈ A.

¤
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