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APPROXIMATELY CONVEX SETS

HUYNH VAN NGAI AND JEAN-PAUL PENOT

Abstract. We study two classes of sets whose associated distance functions sat-
isfy properties akin to approximate convexity. Since the class of approximately
convex functions is known to enjoy nice properties, one may expect analogous
properties for this class of sets. We present characterizations and delineate links
with the concept of approximately convex functions through epigraphs and sub-
level sets.

1. Introduction

The abundance of constructions in nonsmooth analysis enables to attack various
problems by using adapted techniques. However, this abundance of variants is
often considered as an inconvenience. Therefore, it is of interest to show that in
some classes of sets or functions these variants coincide. This has been done in
[32, Thm 3.6], [44], [48], [50] for the family of approximately convex functions, for
some favorable classes of functions, and for the class of α(·)-paraconvex functions
respectively; see also [2], [8], [11, section 5].

In the present paper we study the notion of approximate convexity for sets con-
sidered in [11, section 5] under the name of property (ω) and called submoothness
in [2]. We also introduce a notion of intrinsically convex set. Both notions are given
in terms of the distance function to the set. In ([48]) we study pointwise variants,
namely the concepts of approximate starshapedness and intrinsic approximate star-
shapedness for sets. Since these notions are more general than the ones studied
here, we refer the reader to that paper for what concerns regularity properties, i.e.
properties ensuring that various concepts of tangent or normal cones to a set co-
incide at a given point. Such properties are important as they show some unified
character of nonsmooth analysis. On the other hand, the class of sets we study here
is more general than the class of weakly convex sets considered in [52], [11], [2].
Directional versions of the concepts we study can be introduced, but for the sake
of brevity we do not consider them here. Our main goal is to give characteriza-
tions of approximate convexity for sets, thus establishing a parallel with the study
conducted in [38] for functions.

We adopt a versatile approach which allows one to deal with a large spectrum
of notions of normal cones and subdifferentials. That enables one to combine the
advantages of these various notions and to use the notion which is the best adapted
to a specific problem.
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Finally, we endeavor to relate the concept of approximate convexity of sets to
the notion of approximate convexity of functions introduced in [32] and studied in
a number of papers ([2], [15], [38]...). It is as follows.

Definition 1.1. ([32]) A function f : X → R∞ := R∪{+∞} on a normed vector
space X is said to be approximately convex at x ∈ X if for every ε > 0 there exists
δ > 0 such that for any x, y ∈ B(x, δ) and any t ∈ [0, 1] one has

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y) + εt(1− t) ‖x− y‖ .

Such functions are locally Lipschitzian on the interior of their domains by [32,
Prop. 3.2]. In ([32, Prop. 3.1]) it is shown that this class of functions is stable under
finite sums, under finite suprema and under composition with a continuous affine
function; moreover, this class contains the family of functions which are strictly
differentiable at x.

These nice properties incite to guess that the classes of approximately convex
sets defined in sections 3 and 4 also enjoy pleasant properties.

2. Preliminaries

In the sequel, X is a Banach space with topological dual space X∗. The open
ball with center x ∈ X and radius ρ > 0 is denoted by B(x, ρ), while BX (resp.
BX∗) stands for the closed unit ball of X (resp. X∗) and SX stands for the unit
sphere. Given a subset E of X, the distance function dE associated with E is given
by dE(x) := infe∈E d(x, e) and the indicator function ιE of E is the function defined
by ιE(x) = 0 if x ∈ E, ιE(x) = ∞ if x ∈ X\E. We write x

E→ a for x → a and
x ∈ E.

Since our study is of geometrical nature, we have to introduce some geometrical
concepts. The tangent cone to a subset E of X at some x ∈ cl(E) is the set T (E, x)
of vectors v ∈ X such that there exist sequences (tn) → 0+, (xn) E→ x (i.e. (xn) → x
and xn ∈ E for each n ∈ N) for which (t−1

n (xn−x)) → v. The normal cone N(E, x)
to E at x is the polar cone of T (E, x). Both play a crucial role in nonlinear analysis
and optimization.

The firm normal cone (or Fréchet normal cone) to E at x is given by

x∗ ∈ N−(E, x) ⇔ ∀ε > 0 ∃δ > 0 : 〈x∗, x− x〉 ≤ ε ‖x− x‖ ∀x ∈ E ∩B(x, δ).

The Clarke normal cone N↑(E, x) to E at x is defined as the polar cone to the
Clarke tangent cone T ↑(E, x), where

T ↑(E, x) := {v ∈ X : ∀(tn) → 0+,∀(xn) E→ x, ∃(vn) → v, xn + tnvn ∈ E ∀n ∈ N}.
To any notion N? of normal cone one can associate a notion of subdifferential ∂?

by setting
∂?f(x) := {x∗ ∈ X∗ : (x∗,−1) ∈ N?(Ef , xf )},

where Ef := {(x, r) ∈ X × R : r ≥ f(x)} is the epigraph of f and xf := (x, f(x)).
The notion of subdifferential we adopt here is as versatile as possible: given a
Banach space X and a subset F(X) of the set S(X) of lower semicontinuous (l.s.c.)
functions f : X → R∞ := R∪{+∞}) a subdifferential on F(X) will be just a
correspondence ∂ : F(X)×X ⇒ X∗ which assigns a subset ∂f(x) of the dual space
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X∗ of X to any f in F(X) and any x ∈ X at which f is finite; we assume it satisfies
the following natural property:

(M) 0 ∈ ∂f(x) when x is a minimizer of a Lipschitzian function f.
Conversely, with any subdifferential ∂? is associated a notion of normal cone

obtained by setting for a subset E of X and e ∈ E

N?(E, e) := R+∂?ιE(e),

where ιE is the indicator function of E. In the cases ∂? = ∂, ∂? = ∂↑ and ∂? = ∂−
we get the normal cones N(E, x), N↑(E, x) and N−(E, x) to E at x ∈ E in the
senses of Bouligand, Clarke and Fréchet respectively, as defined above. We refer
to [29] and [34] for the definitions of the approximate subdifferential ∂A and the
moderate subdifferential ∂¦ respectively.

We say that X is a Lipschitz ∂?-subdifferentiability space if for any Lipschitz
function f on X the domain of ∂?f is dense in X; this notion is close to the notion
of subdifferentiability space introduced in [27]. We say that a subdifferential ∂? is
Lipschitz-valuable on X, if for any Lipschitz function f on X and any a, b ∈ X there
exists c in the segment [a, b] joining a to b and c∗ ∈ ∂?f(c) such that

f(b)− f(a) ≤ 〈c∗, b− a〉.
Some of the subdifferentials of current use are related to generalized concepts

of directional derivatives (but not all). The Clarke-Rockafellar derivative or circa-
derivative of a function f : X → R = R ∪ {−∞,+∞} finite at x is given by the
following formulas in which Ef := {(x, r) ∈ X × R : r ≥ f(x)}, xf := (x, f(x))

f↑(x, v) := inf
r>0

lim sup
(t,y)→(0+,x)

f(y)→f(x)

inf
w∈B(v,r)

1
t
(f(y + tw)− f(y))

= inf{r ∈ R : (v, r) ∈ T ↑(Ef , xf )}.
When f is locally Lipschitzian, this formula can be simplified into

f↑(x, v) = lim sup
(t,y)→(0+,x)

1
t
(f(y + tv)− f(y)).

The (lower) directional derivative (or contingent derivative or lower epiderivative or
lower Hadamard derivative) of f at x is given by

f ′(x, v) := lim inf
(t,w)→(0+,v)

1
t
(f(x + tw)− f(x))

= inf{r ∈ R : (v, r) ∈ T (Ef , xf )}.
In particular, one has

∂f(x) = {x∗ ∈ X∗ : x∗ ≤ f ′(x, ·)},
∂↑f(x) = {x∗ ∈ X∗ : x∗ ≤ f↑(x, ·)}.

We will need the following results of independent interest. The first one is ob-
tained by an easy argument taken from the proof of [46, Prop. 1].
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Lemma 2.1. Let E be a nonempty subset of a Banach space X and let x ∈ E,
v ∈ X. Then, one has

d↑E(x, v) = lim sup
t→0+, e

E→x

1
t
dE(e + tv).

Proof. By definition of d↑E there exist some sequences (tn) → 0+, (xn) in X such
that

d↑E(x, v) = lim
n

t−1
n [dE(xn + tnv)− dE(xn)] .

We can find en ∈ E such that ‖en − xn‖ ≤ dE(xn) + t2n. Now dE(xn + tnv) ≤
dE(en + tnv) + ‖en − xn‖ . Thus (en) E→ x and

d↑E(x, v) ≤ lim sup
n

t−1
n

[
dE(en + tnv) + ‖en − xn‖ − (‖en − xn‖ − t2n)

]

= lim sup
n

t−1
n dE(en + tnv).

The reverse inequality d↑E(x, v) ≥ lim sup
t→0+, e

E→x

1
t dE(e + tv) being always valid,

equality is proved. ¤
The second result we need is close to [29, Lemma 5], [46, Lemma 1], [41, Lemma

3.6] and [2, Lemma 3.7] but it contains a crucial additional information. Recall that
an Asplund space is a space all of which separable subspaces have a separable dual.
Recall also that the norm of X is said to satisfy the Kadec-Klee property if for every
x ∈ X, a sequence (xn) of X converges to x whenever it weakly converges to x and
(‖xn‖) → ‖x‖ .

Lemma 2.2. Suppose that E is a closed nonempty subset of an Asplund space X
and that w∗ ∈ ∂−dE(w) with w ∈ X\E. Then ‖w∗‖ = 1 and there exist sequences
(xn), (x∗n) of E and X∗ respectively such that x∗n ∈ ∂−dE(xn) for each n ∈ N and

(||xn − w‖) → dE(w), (〈x∗n, w − xn〉) → dE(w), (||x∗n − w∗‖) → 0.

If moreover X is reflexive and if its norm has the Kadec-Klee property then a sub-
sequence of (xn) converges to some best approximation x of w in E and one has
〈w∗, w − x〉 = ||x− w‖ = dE(w).

Proof. The fact that ‖w∗‖ = 1 for each w∗ ∈ ∂−dE(w) is well-known (see [4, Prop.
1.4], for instance). By [41, Lemma 3.6] or [2, Lemma 3.7], given a sequence (εn) →
0+, one can find sequences (xn), (x∗n) of E and X∗ respectively such that x∗n ∈
∂−dE(xn) for each n ∈ N and (||xn − w‖) → dE(w), (||x∗n − w∗‖) → 0. It remains
to apply [41, Lemma 3.6] which asserts that for any sequence (xn) of E satisfying
(||xn − w‖) → dE(w) one has (〈w∗, w − xn〉) → dE(w). Since (||x∗n − w∗‖) → 0 and
since (w − xn) is bounded, one gets (〈x∗n, w − xn〉) → dE(w).

The last assertion is taken from [6, Lemma 6]. ¤

Given a subdifferential ∂? one can associate to it a corresponding limiting subd-
ifferential ∂? by setting for a l.s.c. function f and a point x of it domain

∂?f(x) := w∗ − lim sup
(u,f(u)→(x,f(x))

∂?f(u).
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Similarly, to any notion of normal cone one can associate a corresponding limiting
normal cone by setting

N?(E, x) := w∗ − lim sup
u

E→x

N?(E, u).

Here, the w∗-limsup of a family (Ft)t∈T of subsets of X∗ parametrized by some
topological space T with a base point 0 is the set w∗-lim supt Ft of weak∗ limits
of bounded families (x∗t )t∈S as t → 0, where S is some subset of T containing 0
in its closure cl(S) and x∗t ∈ Ft for each t ∈ S. For the limiting firm normal cone
N−(E, a) := w∗-lim sup

x
E→a

N−(E, x) we have the following result we will use later
on.

Corollary 2.3. Let E be a closed nonempty subset of an Asplund space X, let
x ∈ E and x∗ ∈ ∂−dE(x). Then ‖x∗‖ ≤ 1 and there exist nets (xn), (x∗n) of E and
X∗ respectively such that (xn) → x, (x∗n) → x∗ weak∗ and x∗n ∈ ∂−dE(xn) for each
n ∈ N.

Proof. The inequality ‖x∗‖ ≤ 1 stems from the fact that x∗ is a weak∗ limit point
of a net (w∗n)n∈N of X∗ such that w∗n ∈ ∂−dE(wn) for each n ∈ N with (wn) → x.
Let J := {n ∈ N : wn ∈ E}. For j ∈ J we take xj := wj , x∗j := w∗j . For k ∈ K :=
N\J , using the preceding lemma, we pick xk ∈ E and x∗k ∈ ∂−dE(xk) such that
‖xk − wk‖ ≤ 2dE(wk), ‖x∗k − w∗k‖ ≤ dE(wk). Then (xn) → x, (x∗n) → x∗ weak∗. ¤

3. Approximate convexity of sets

We observe that using the notion of approximate convexity for the indicator
function ιE of a subset E of X would lead to convexity of E and not to a relaxed
form of convexity. Therefore, we rather use the distance function dE . In the sequel
x is a point of E.

Definition 3.1. A subset E of X is said to be approximately convex at x if its
associated distance function dE is approximately convex at x.

Example 3.2. The set E := {(r, s) ∈ R2 : s ≥ max
(|r| − r2, 0

)} is approximately
convex at each of its points (for an appropriate norm) but is nonconvex. This
example (and the following one) is a special instance of Proposition 5.4 below

Example 3.3. Let W be an infinite dimensional separable Hilbert space and let
X = W × R be endowed with the norm given by ‖(w, r)‖ = (‖w‖2 + r2)1/2. Then
the subset E := {(w, r) ∈ W × R : r ≥ max(‖w‖ − 2 ‖w‖2 ,−1)} is approximately
convex at each of its points; it is closed, but not weakly closed, hence is nonconvex:
if (wn) is an orthonormal base of W, then (xn) given by xn := (wn,−1) weakly
converges to (0,−1) but (0,−1) /∈ E.

Example 3.4. If x is an isolated point of E, then E is approximately convex at x.

It is not obvious to decide whether the preceding definition depends on the choice
of the norm in the equivalence class inducing the topology of X; on the contrary,
the variant presented in the next section will not depend on the choice of the norm
inducing the topology.

In order to look for characterizations, we need the following notion.
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Definition 3.5. A multimapping M : X ⇒ X∗ is said to be approximately mono-
tone at x on E ⊂ X if for any ε > 0 there exists some δ > 0 such that for any
x1, x2 ∈ E ∩B(x, δ), x∗1 ∈ M(x1), x∗2 ∈ M(x2) one has

(3.1) 〈x∗1 − x∗2, x1 − x2〉 ≥ −ε ‖x1 − x2‖ .

For E = X one simply says that M is approximately monotone at x.

When ∂? = ∂↑, the following result is an easy consequence of [15] applied to
dE . However, since we use here an arbitrary subdifferential contained in the Clarke
subdifferential, we have to use [38] with the distance function to get the implications.
One can also deduce this result from the proof of Theorem 4.5 below by observing
that one can drop the restriction x ∈ E.

Theorem 3.6. Let ∂? be a subdifferential on the family L(X) of Lipschitz func-
tions on X such that ∂?f ⊂ ∂↑f for any f ∈ L(X) and let x be an element of
a subset E of X. Then, among the following assertions, one has the implications
(a)⇒(b)⇒(c)⇔(c’)⇔(d)⇔(e). If moreover ∂? is Lipschitz-valuable on X, in par-
ticular if ∂? = ∂↑, ∂¦, or the Ioffe subdifferential, all these assertions are equivalent.

(a) E is approximately convex at x;
(b) for any ε > 0 there exists ρ > 0 such that for any x ∈ B(x, ρ) and any

v ∈ B(0, ρ) one has

(3.2) d↑E(x, v) ≤ dE(x + v)− dE(x) + ε ‖v‖ ;

(c) for any ε > 0 there exists ρ > 0 such that for any x ∈ B(x, ρ), any x∗ ∈
∂?dE(x) and any (u, t) ∈ SX × (0, ρ) one has

(3.3) 〈x∗, u〉 ≤ dE(x + tu)− dE(x)
t

+ ε;

(c’) for any ε > 0 there exists ρ > 0 such that for any x ∈ B(x, ρ), any x∗ ∈
∂?dE(x) and any v ∈ ρBX one has

(3.4) 〈x∗, v〉 ≤ dE(x + v)− dE(x) + ε ‖v‖ ;

(d) ∂?dE is approximately monotone at x;
(e) for any ε > 0 there exists σ > 0 such that for any x, y ∈ B(y, σ), x∗ ∈

∂?dE(x) one has

(3.5) dE(x) + 〈x∗, y − x〉 ≤ dE(y) + ε ‖y − x‖ .

Corollary 3.7. If E is approximately convex at x then dE is firmly (Clarke) regular
at x, in the sense that for any subdifferential ∂? such that ∂− ⊂ ∂? ⊂ ∂↑ one has
∂−dE(x) = ∂?dE(x) = ∂↑dE(x).

For a related assertion about normal cones, we refer to [48]. The result of the
preceding corollary will remain valid in a more general class of subsets considered
in the next section, so that we omit the proof here.
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4. Intrinsic approximate convexity

The terminology of the definition we adopt now is justified by the fact that the
notion we introduce is obtained by relaxing the requirement on the distance function
to the subset E. Thus this notion is more general than the preceding notion.

Definition 4.1. A subset E of X is said to be intrinsically approximately convex
at x ∈ E if for any ε > 0 there exists ρ > 0 such that for any x1, x2 ∈ E ∩B(x, ρ),
t ∈ [0, 1], one has

(4.1) dE((1− t)x1 + tx2) ≤ εt(1− t) ‖x1 − x2‖ .

It is intrinsically approximately convex if it is intrinsically approximately convex at
each of its points.

Let us note that this definition does not depend on the choice of the norm among
the ones inducing the same topology. Although it is looser than the notion of
approximate convexity, it is sufficiently strong to eliminate pathological subsets.

Example 4.2. Let X := R and let E := {0} ∪ {xn}, where (xn) is a decreasing
sequence of (0,+∞) with limit 0. Then E is not intrinsically approximately convex
at 0 since for w ∈ [xn+1, xn] one has dE(w) = min(xn − w, w − xn+1).

Example 4.3. If E is paraconvex around x (i.e. locally weakly convex around x in
the sense of [52]), then it is intrinsically approximately convex since for any given
c > 0, ε > 0, one has ct(1 − t) ‖x1 − x2‖2 ≤ εt(1 − t) ‖x1 − x2‖ when ‖xi − x‖ ≤
c−1ε/2 for i = 1, 2 (see [52, Prop. 3.4]).

The following example provides a set which is intrinsically approximately convex
at some point but not approximately convex at the same point.

Example 4.4 (see [40], Section 8). Given p ∈ (1, 2), let E be the hypograph of the
function f : r 7→ |r|p from R to R :

E := {(r, s) ∈ R2 : s ≤ |r|p}.
Let us endow R2 with the Euclidean norm. It was shown in [40] that E is intrinsically
paraconvex around (0, 0), hence is intrinsically approximately convex at (0, 0). By
the same argument as in [40], one can show that E is not approximately convex at
(0, 0).

Now it is a challenge to show whether the assertions of Theorem 3.6 can be
extended to this weaker notion. It appears that most implications can be adapted
as follows; they are not as complete as in the preceding theorem. However, we will
supplement them in some special cases later on. The equivalence (c)⇔(c’) of the
next statement is nothing but a reformulation. However, it shows a link with the
study made in [11, Prop. 4.2, 4.4]. When one of the assertions (b)-(d) holds, we
say that E is ∂?-intrinsically approximately convex at x.

Theorem 4.5. Let E be a nonempty closed subset of X and let ∂? be a subdiffer-
ential such that ∂?f ⊂ ∂↑f for any Lipschitz function f on X. Then, among the
following assertions, one has the implications (a)⇒(b)⇒(c)⇔(c’)⇔(d)⇐(e). When
X is a Lipschitz ∂?-subdifferentiability space one has (e)⇒(a).
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(a) E is intrinsically approximately convex at x;
(b) for any ε > 0 there exists δ > 0 such that for any x, x′ ∈ E ∩ B(x, δ), one

has

(4.2) d↑E(x, x′ − x) ≤ ε
∥∥x− x′

∥∥ ;

(c) for any ε > 0 there exists δ > 0 such that for any x, x′ ∈ E ∩ B(x, δ),
x∗ ∈ ∂?dE(x), one has

(4.3) 〈x∗, x′ − x〉 ≤ ε
∥∥x− x′

∥∥ ;

(c’) there exists a function α : E × E → R+ ∪ {+∞} such that α(x, x′) → 0 as
x, x′ E→ x and

(4.4) 〈x∗, x′ − x〉 ≤ α(x, x′)
∥∥x− x′

∥∥ for any (x, x′) ∈ E × E, x∗ ∈ ∂?dE(x);

(d) ∂?dE(·) is approximately monotone at x on E : for any ε > 0 there exists
δ > 0 such that for any x1, x2 ∈ E ∩B(x, δ), x∗1 ∈ ∂?dE(x1), x∗2 ∈ ∂?dE(x2)
one has

(4.5) 〈x∗1 − x∗2, x1 − x2〉 ≥ −ε ‖x1 − x2‖ ;

(e) for any ε > 0 there exists σ > 0 such that for any w ∈ B(x, σ), x ∈
E ∩B(x, σ), w∗ ∈ ∂?dE(w) one has

(4.6) dE(w) + 〈w∗, w − x〉 ≤ ε ‖w − x‖ .

Proof. (a)⇒(b) Given ε > 0 let ρ > 0 be as in Definition 4.1 and let x, x′ ∈
E ∩B(x, ρ). By Lemma 2.1, we have

d↑E(x, x′ − x) = lim sup
t→0+, e

E→x

1
t
dE(e + t(x′ − x)).

Now, since dE(e + t(x′ − x)) ≤ dE(e + t(x′ − e)) + t ‖e− x‖ ≤ εt(1 − t) ‖x′ − e‖ +
t ‖e− x‖ , we get

d↑E(x, x′ − x) ≤ ε
∥∥x′ − x

∥∥ .

(b)⇒(c) is a consequence of the inclusion ∂?dE(x) ⊂ ∂↑dE(x) and of the definition
of ∂↑dE(x). The implication (c)⇒(b) also holds when ∂? ⊃ ∂− and X is an Asplund
space, since in such a case assertion (c) with ∂? implies assertion (c) with ∂↑ by
taking the weak∗ closure of the convex hull of ∂?dE(x).

(c)⇒(c’) It suffices to set for (x, x′) ∈ E × E, α(x, x′) := 0 if x = x′ and for
x 6= x′,

α(x, x′) := sup{〈x∗, x′ − x

‖x− x′‖〉 : x∗ ∈ ∂?dE(x)}.
Then (c) ensures that α(x, x′) → 0 as x, x′ → x.

(c’)⇒(c) is obvious.
(c)⇒(d) Given ε > 0 let δ > 0 be as in assertion (c) and let x1, x2 ∈ E ∩B(x, δ),

x∗1 ∈ ∂?dE(x1), x∗2 ∈ ∂?dE(x2). Taking x = x1, x∗ = x∗1, x′ = x2 in inequality
(4.3) and adding its sides to the corresponding ones obtained by choosing x = x2,
x∗ = x∗2, x′ = x1, we get relation (4.5) with ε changed into 2ε.

(d)⇒(c) is obtained by taking x1 = x, x∗1 = x∗, x2 = x′, x∗2 = 0 in assertion (d),
using the fact that x2 is a minimizer of dE , so that 0 ∈ ∂?dE(x2) by condition (M).
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(e)⇒(c) is obvious (change (w, x) into (x, x′) in (4.6) with x ∈ E).
(e)⇒(a) when X is a Lipschitz ∂?-subdifferentiability space. Given ε > 0, let

σ > 0 be as in assertion (e) and let x1, x2 ∈ E∩B(x, σ), t ∈ [0, 1], w := (1−t)x1+tx2.
Since X is a Lipschitz ∂?-subdifferentiability space, there exist sequences (wn) → w,
(w∗n) such that w∗n ∈ ∂?dE(wn) for each n ∈ N. Then, as ∂?dE(wn) ⊂ ∂↑dE(wn) ⊂
BX∗ , we have (〈w∗n, w − wn〉) → 0. Since by convexity w ∈ B(x, σ), we have wn ∈
B(x, σ) for n large enough, hence, by (4.6),

(1− t)dE(wn) + (1− t)〈w∗n, x1 − wn〉 ≤ (1− t)ε ‖x1 − wn‖ ,

tdE(wn) + t〈w∗n, x2 − wn〉 ≤ tε ‖x2 − wn‖ .

Adding the corresponding sides of these relations, we get

dE(wn) + 〈w∗n, w − wn〉 ≤ (1− t)ε ‖x1 − wn‖+ tε ‖x2 − wn‖ ,

and, passing to the limit,

dE(w) ≤ (1− t)ε ‖x1 − w‖+ tε ‖x2 − w‖ = 2εt(1− t) ‖x1 − x2‖ .

¤

The preceding implications yield the following regularity result.

Corollary 4.6. If E is intrinsically approximately convex at x, then for any subd-
ifferential ∂? such that ∂− ⊂ ∂? ⊂ ∂↑ one has ∂−dE(x) = ∂?dE(x) = ∂↑dE(x).

Proof. Let x∗ ∈ ∂↑dE(x) and let ε > 0 be given. By (c) with ∂? = ∂↑, we can find
δ > 0 such that for each x ∈ B(x, δ), setting x′ := x, x := x ∈ B(x, δ) in (4.3), we
have

〈x∗, x− x〉 ≤ ε ‖x− x‖ .

That shows that x∗ ∈ ∂−dE(x). We even have a uniformity property on the elements
of ∂↑dE(x). ¤

Now let us give some specializations to some specific subdifferentials and normal
cones. We start with the firm normal cone.

Corollary 4.7. Suppose that E is a closed subset of an Asplund space X and let
∂? be the Fréchet subdifferential ∂−. Then all the assertions of Theorem 4.5 are
equivalent to the following assertions:

(f) for any ε > 0 there exists δ > 0 such that for any x, x′ ∈ E ∩ B(x, δ),
x∗ ∈ N−(E, x) one has

(4.7) 〈x∗, x′ − x〉 ≤ ε ‖x∗‖∥∥x− x′
∥∥ ;

(g) for any ε > 0 there exists δ > 0 such that for any x1, x2 ∈ E ∩ B(x, δ),
x∗1 ∈ N−(E, x1), x∗2 ∈ N−(E, x2) one has

(4.8) 〈x∗1 − x∗2, x2 − x1〉 ≤ ε max (‖x∗1‖ , ‖x∗2‖) ‖x1 − x2‖ .

Proof. The relation ∂−dE(x) = N−(E, x) ∩BX∗ for each x ∈ E, yields equivalence
of assertions (c) and (f) by an homogeneity argument.

(f)⇒(g) by summation, changing ε into ε/2. The reverse implication is obtained
by taking x1 := x, x2 := x′, x∗1 = x∗, x∗2 = 0.
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(c)⇒(e) Given ε > 0, let δ > 0 be as in (c). Let σ := δ/5 and let w ∈ B(x, σ),
x ∈ E ∩ B(x, σ), w∗ ∈ ∂−dE(w). By Lemma 2.2 we can find sequences (xn) in E
and (x∗n) in X∗ such that x∗n ∈ ∂−dE(xn) for each n ∈ N and

(4.9) (||xn − w‖) → dE(w), (〈x∗n, w − xn〉) → dE(w), (||x∗n − w∗‖) → 0.

Relation (4.6) being trivial if w = x, without loss of generality, we may suppose
w 6= x and ||xn−w‖ ≤ 2||x−w‖ ≤ 4σ for each n ∈ N; then xn ∈ B(x, 5σ) ⊂ B(x, δ)
and ||xn− x‖ ≤ ||xn−w‖+ ||w− x‖ ≤ 3||x−w‖. Now, for n large enough, relation
(4.9) implies the inequality of the first line below, while assertion (c) ensures the
passage from the second line to the third one:

dE(w) + 〈w∗, x− w〉 ≤ (〈x∗n, w − xn〉+ ε ‖x− w‖)
+ (〈x∗n, x− w〉+ ||x∗n − w∗‖ ‖x− w‖)

≤ 〈x∗n, x− xn〉+ ε ‖x− w‖+ ε ‖x− w‖
≤ ε ‖x− xn‖+ 2ε ‖x− w‖ ≤ 5ε ‖x− w‖ .

Since ε > 0 is arbitrary, assertion (e) holds.
Finally, since X is Asplund, it is a ∂−-subdifferentiability space, so that (e)

ensures that E is intrinsically approximately convex by Theorem 4.5. ¤

The case of the limiting subdifferential can be easily derived from the preceding
corollary.

Corollary 4.8. Suppose that E is a closed subset of an Asplund space X and let ∂?

be the limiting Fréchet subdifferential ∂−. Then all the assertions of Theorem 4.5
are equivalent.

Proof. Using Corollary 2.3, the assertions (c), (d), (e) of Theorem 4.5 with ∂− follow
from the corresponding assertions with ∂− by a passage to the weak∗ limit for a
bounded net; the reverse implications are obvious. ¤

Now let us turn to the Clarke subdifferential. It would be interesting to know
whether one can get rid of the assumption of the last assertion that X is an Asplund
space.

Corollary 4.9. For a closed subset E of a Banach space X and ∂? = ∂↑, among the
assertions of Theorem 4.5, the following implications hold: (e)⇒(a)⇒(b)⇔(c)⇔(c’)
⇔(d). If moreover X is an Asplund space, all these assertions are equivalent.

Proof. (c)⇒(b) is a consequence of the well known fact that for any x, v ∈ X one has
d↑E(x, v) = max{〈x∗, v〉 : x∗ ∈ ∂↑dE(x)}, dE being Lipschitzian. The other implica-
tions follow from the choice ∂? = ∂↑ in Theorem 4.5 since any Banach space is a Lip-
schitz ∂↑-subdifferentiability space. When X is an Asplund space the equivalences
can be deduced from the preceding corollary: since ∂↑dE(x) = co∗(∂−dE(x)) one
has the equivalence (e−)⇔(e−)⇔(e↑) (where (e↑), (e−), (e−) are (e) for ∂? = ∂↑, ∂−,
∂− respectively), hence, with a similar notation, (c↑)⇒(c−)⇒(e−)⇒(e↑)⇒(a). ¤
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5. Approximately convex sets and functions

Some links between geometrical properties and analytical properties are contained
in the next statements. Unless otherwise specified, we endow the product space
X := W × R of a n.v.s. W with R with a product norm, i.e. a norm such that the
projections and the insertions w 7→ (w, 0) and r 7→ (0, r) are nonexpansive. Then,
for each (w, r) ∈ W × R one has

max (‖w‖ , |r|) ≤ ‖(w, r)‖ ≤ ‖w‖+ |r| .
Proposition 5.1. Let W be a normed vector space and let f : W → R∞ be a l.s.c.
function which is approximately convex at w ∈ W. Then, for any r ≥ f(w) the
epigraph E of f is intrinsically approximately convex at x := (w, r).

Proof. Given ε > 0, let ρ > 0 be such that

f((1− t)w1 + tw2) ≤ (1− t)f(w1) + tf(w2) + εt(1− t) ‖w1 − w2‖
for any w1, w2 ∈ B(w, ρ), t ∈ [0, 1]. Let xi := (wi, ri) (i = 1, 2) be elements of the
epigraph E of f in B(x, ρ) and let t ∈ [0, 1], w := (1−t)w1+tw2, r := (1−t)r1+tr2,
x := (w, r). Then, as w1, w2 ∈ B(w, ρ) and (w, f(w)) ∈ E one has dE(x) = 0 if
f(w) ≤ r and dE(x) ≤ ‖(w, r)− (w, f(w))‖ ≤ f(w)− r if f(w) > r, so that

dE(x) ≤ max(0, f(w)− r)

≤ max(0, (1− t)(f(w1)− r1) + t(f(w2)− r2) + εt(1− t) ‖w1 − w2‖)
≤ εt(1− t) ‖w1 − w2‖ ≤ εt(1− t) ‖x1 − x2‖ .

Thus E is intrinsically approximately convex at x. ¤
Let us give a kind of converse to the preceding proposition.

Theorem 5.2. Let W be a Banach space and let f : W → R be a function which
is locally Lipschitzian around w ∈ W and such that the epigraph E of f is an
intrinsically approximately convex subset of X := W × R around x := (w, f(w)).
Then f is an approximately convex function around w.

Proof in the case W is an Asplund space. In view of the characterization of ap-
proximate convexity of a function given in [38] it suffices to prove that ∂−f is ap-
proximately monotone at w. Let c be the Lipschitz rate of f on some ball B(w, ρ0).
Given ε > 0 there exists some ρ ∈ (0, ρ0) such that for any x1, x2 ∈ B(x, ρ) and any
x∗1 ∈ N−(E, x1) ∩ ( c + 1)BX∗ , x∗2 ∈ N−(E, x2) ∩ (c + 1)BX∗ one has

〈x∗1 − x∗2, x1 − x2〉 ≥ −ε ‖x1 − x2‖ .

Then, for w1, w2 ∈ B(w, ρ/(c + 1)), w∗i ∈ ∂−f(wi) for i = 1, 2, setting xi :=
(wi, f(wi)), x∗i := (w∗i ,−1) one has xi ∈ B(x, ρ) and x∗i ∈ N−(E, xi) ∩ (c + 1)BX∗ ,
hence

〈w∗1 − w∗2, w1 − w2〉 = 〈x∗1 − x∗2, x1 − x2〉 ≥ −ε ‖x1 − x2‖
≥ −ε (‖w1 − w2‖+ |f(w1)− f(w2)|) ≥ −ε(c + 1) ‖w1 − w2‖ .

Since ε is arbitrarily small, we get that f is approximately convex at w. ¤
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The proof in the general case relies on the following lemma extracted from the
proof of [46, Prop. 10 c]; it is close to previous results of that kind due to F.H.
Clarke [9] and to A.D. Ioffe ([29], [30, Prop. 2.1] for bornological subdifferentials)
in the case x = (w, f(w)).

Lemma 5.3. Let f : W → R be a function which is Lipschitzian with rate c on
a ball B(w, ρ) of W. Then, for σ ∈ (0, ρ) small enough and for any w ∈ B(w, σ)
and any w∗ ∈ ∂↑f(w) one has (w∗,−1) ∈ ∂↑dE(x), where E is the epigraph of f
and x := (w, f(w)), X := W ×R being endowed with the norm given by ‖(w, r)‖ =
c ‖w‖+ |r| .
Proof. By [24, Prop. 2.1], [28] one can find σ ∈ (0, ρ) such that

(5.1) dE(w, r) = (f(w)− r)+
for (w, r) ∈ B(x, σ) with x := (w, f(w)), X being endowed with the norm described
in the statement; here for t ∈ R, t+ stands for max(t, 0). In fact, σ := (c/2c+1)ρ can
be chosen: we may suppose r < f(w) and we have dE(w, r) ≤ ‖(w, r)− (w, f(w))‖ =
f(w)−r ≤ σ(c+1), while for (u, s) ∈ E with u ∈ B(w, ρ) we have ‖(w, r)− (u, s)‖ =
c ‖w − u‖ + |r − s| ≥ f(w) − f(u) + s − r ≥ f(w) − r; since for (u, s) ∈ E with
u ∈ X\B(w, ρ) we have ‖(w, r)− (u, s)‖ ≥ cρ − cσ, equality (5.1) holds. Let
w ∈ B(w, σ) and w∗ ∈ ∂↑f(w); we have to prove that for any (v, s) ∈ X we have

〈(w∗,−1), (v, s)〉 ≤ d↑E((w, r), (v, s)).

Since w∗ ∈ ∂↑f(w) there exist sequences (εn) → 0+, (wn) → w, (tn) → 0+ such
that

t−1
n (f(wn + tnv)− f(wn)) > 〈w∗, v〉 − εn

for each n. Setting rn := f(wn) and observing that, for n large enough,

t−1
n dE(wn + tnv, rn + tns) = t−1

n (f(wn + tnv)− rn − tns)+
≥ t−1

n (f(wn + tnv)− rn − tns)

≥ 〈w∗, v〉 − εn − s,

using Lemma 2.1 we get the expected inequality:

d↑E((w, r), (v, s)) ≥ lim sup
n

t−1
n dE(wn + tnv, rn + tns) ≥ 〈w∗, v〉 − s.

Proof of the theorem in the general case. Since intrinsic approximate convexity
is preserved when using an equivalent norm, we may use the norm described in
the lemma and take σ > 0 as there. We use the implication (a)⇒(c) of Corollary
4.9: for any ε > 0 there exists δ ∈ (0, σ) such that for any x, x′ ∈ E ∩ B(x, δ),
x∗ ∈ ∂↑dE(x), one has

(5.2) 〈x∗, x′ − x〉 ≤ ε
∥∥x− x′

∥∥ .

Now, setting γ := δ/2c, by the preceding lemma, for every w ∈ B(w, γ) and w∗ ∈
∂↑f(w) we have (w∗,−1) ∈ ∂↑dE(x) with x := (w, f(w)) ∈ B(x, δ). Let u ∈ γBX

be such that w′ := w + u ∈ B(w, γ). Then we have that x := (w, f(w)), x′ :=
(w′, f(w′)) ∈ E ∩B(x, δ), x∗ := (w∗,−1) ∈ ∂↑dE(x), hence, by inequality (5.2),

〈w∗, u〉 − (
f(w′)− f(w)

) ≤ ε
(
c
∥∥w′ − w

∥∥ +
∣∣f(w′)− f(w)

∣∣) ≤ 2cε ‖u‖ .
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Thus for any ε > 0 there exists γ > 0 such that for any w ∈ B(w, γ), any w∗ ∈
∂↑f(w) and any u ∈ B(0, γ) with w + u ∈ B(w, γ) one has f(w + u) − f(w) ≥
〈w∗, u〉 − ε(c + 1) ‖u‖ , so that f is approximately convex at w by [15, Thm 2] or
[38]. ¤

Let us complete the preceding results with the following one.

Proposition 5.4. Let f : W → R be a function which is Lipschitz with rate c > 0
on some ball B(w, ρ). Suppose X := W × R is endowed with the norm given by
‖(w, r)‖ = c ‖w‖ + |r| . If f is approximately convex at w, then, for any r ≥ f(w),
the epigraph E of f is approximately convex at x := (w, r).

Proof. Let x := (w, f(w)) and let us endow X with the norm described in the
statement. By [24], [28] we can find ρ′ ∈ (0, ρ) such that, for (w, r) ∈ B(x, ρ′) we
have

dE(w, r) = (f(w)− r)+
Given ε > 0, let δ ∈ (0, ρ′) be such that for any w1, w2 ∈ B(w, δ), t ∈ [0, 1] we have

f((1− t)w1 + tw2) ≤ (1− t)f(w1) + tf(w2) + εct(1− t) ‖w1 − w2‖
Let xi := (wi, ri) ∈ B(x, δ) for i = 1, 2 and let w := (1−t)w1+tw2, r := (1−t)r1+tr2,
x := (w, r) ∈ B(x, δ) by convexity. Then we have

(5.3) f(w)− r ≤ (1− t)(f(w1)− r1)+ + t(f(w2)− r2)+ + εt(1− t)c ‖w1 − w2‖ ,

hence, since c ‖w1 − w2‖ ≤ ‖x1 − x2‖ ,

dE(x) ≤ (1− t)dE(x1) + tdE(x2) + εt(1− t) ‖x1 − x2‖ .

¤

In particular, when f is Lipschitzian with rate 1 around w, and when X is en-
dowed with the norm given by ‖(w, r)‖ = c ‖w‖ + |r| , the epigraph E of f is
approximately convex at x when f is approximately convex at w.

The preceding results enable us to give a partial answer to the question of the
relationships between intrinsic approximate convexity and approximate convexity.
We restrict our attention to sets satisfying the cone property (the so-called epi-
Lipschitzian sets). Recall that E satisfies the cone property around x if there exist
r, ρ > 0 and u ∈ SX such that for every x ∈ E ∩B(x, ρ), v ∈ B(u, r), t ∈ (0, r) one
has x + tv ∈ E. Our argument is close to the one in [2, Thm 4.14], even if intrinsic
approximate convexity is not considered there.

Corollary 5.5. Suppose E satisfies the cone property around x. Then E is intrin-
sically approximately convex at x if, and only if, it is approximately convex at x for
some compatible norm on X.

Proof. It suffices to prove the only if condition. Since E satisfies the cone property
around x there exist ρ, σ > 0, some hyperplane W of X and some u ∈ SX such that
X = W ⊕ Ru and a Lipschitzian function f : B(0, ρ) ∩W → R with E ∩B(x, σ) =
{x + w + ru : w ∈ B(0, ρ), r ≥ f(w)} ∩B(x, σ). Thus, identifying X with W × Ru,
locally E is the epigraph of a Lipschitzian function, and by Theorem 5.2, since E
is intrinsically approximately convex at x, f is approximately convex at 0. Then,
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by Proposition 5.4, we can endow the product W ×Ru with a norm for which E is
approximately convex at x. ¤

Finally, let us turn to sublevel sets.

Proposition 5.6. Let X be an Asplund space and let f : X → R be a continuous
function. Suppose f is approximately convex at x ∈ S := {x ∈ X : f(x) ≤ 0} and
there exist c > 0, r > 0 such that ‖x∗‖ ≥ c for each x ∈ (X\S) ∩ B(x, r) and each
x∗ ∈ ∂−f(x). Then S is intrinsically approximately convex at x.

Proof. Without loss of generality we may suppose f takes the value +∞ on X\U,
where U := B(x, r). Then, by [45, Thm 9.1] with ϕ = c, (see also, among several
other contributions, [54], [12], [41, Thm 3.2] with various assumptions on X) and
we have f+(x) ≥ cdS(x) for x ∈ U ′, where f+ := max(f, 0) and U ′ := B(x, r/2).
Let ε > 0 be given. Using [38, Thm 7], we can find δ ∈ (0, r/2) such that

∀x, x′ ∈ B(x, δ), x∗ ∈ ∂−f(x) 〈x∗, x′ − x〉 ≤ f(x′)− f(x) + cε
∥∥x′ − x

∥∥ .

Since f and f+ are approximately convex at x, by [32, Thm 3.6] and elementary
calculus rules, we have

c∂−dS(x) ⊂ ∂−f(x) = ∂f(x) = co∗(∂f(x) ∪ {0}) = co∗(∂−f(x) ∪ {0}).
Given x, x′ ∈ S ∩ B(x, δ), x∗ ∈ ∂−dS(x), by the preceding inclusion and inequality
and a passage to the convex hull and the closure, we get 〈cx∗, x′−x〉 ≤ cε ‖x′ − x‖ .
Thus, assertion (c) of Theorem 4.5 is satisfied for ∂ := ∂− and E := S so that S is
intrinsically approximately convex at x. ¤
Remark 5.7. The same conclusion holds for a pair (X, ∂?) which is variational in
the sense of [45, Thm 9.1] and such that ∂− ⊂ ∂? ⊂ ∂↑ (which is the case of ∂? = ∂−
when X is Asplund).

6. Approximately convex sets and projections

The following result shows that, in the framework of uniformly smooth spaces,
approximate convexity of a distance function is equivalent to its continuous differ-
entiability.

First, we need the following lemma which gives the firm regularity of −dE on
uniformly smooth spaces. The result could be deduced from [23, Thm 5.6] or
from the fact that an approximately convex function is firmly regular and from the
study of marginal functions made in [38]. However, for the reader’s convenience,
we present a direct proof inspired by [5] where the Gâteaux regularity of −dE has
been established.

Lemma 6.1. Let X be Fréchet uniformly smooth and let E be an arbitrary nonempty
closed subset of X. Then −dE is firmly (Clarke) regular at any w ∈ X \ E in the
sense that ∂↑(−dE) = ∂−(−dE).

Proof. Let us denote by j the reduced duality mapping, i.e. the derivative of the
function ‖·‖ on X\{0}. Let w ∈ X \ E. By ([53, Thm 3.7.4]) and the uniform
smoothness of X, given ε > 0, there exists δ > 0 such that

(6.1)
∣∣∣∣
1
t

(||x + tu|| − ||x||)− 〈j(x), u〉
∣∣∣∣ < ε ∀x, u ∈ SX , |t| < δ.
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Let u ∈ SX . There exists (wn) → w, (tn) → 0+, such that

(−dE)↑(w, u) = lim
n→∞

1
tn

(−dE(wn + tnu) + dE(wn)) .

For each n, we can find xn ∈ E such that

−dE(wn + tnu) 6 −||wn + tnu− xn||+ t2n.

Therefore,
1
tn

(−dE(wn + tnu) + dE(wn)) 6 1
tn

(−||wn + tnu− xn||+ ||wn − xn||) + tn.

Setting rn := ||wn − xn||, un := r−1
n (wn − xn), and observing that

(
tnr−1

n

) → 0 as(
r−1
n

) → 1/dE(w), using (6.1), we have, for n large enough and t ∈
(−δdE(w), δdE(w)),

1
tn

(−||wn + tnu− xn||+ ||wn − xn||) =
1

tnr−1
n

(−||un + tnr−1
n u||+ ‖un‖

)

6 −〈j(un), u〉+ ε

6 1
tr−1

n

(−||un + tr−1
n u||+ ||un||

)
+ 2ε

6 t−1 (−||wn + tu− xn||+ ||wn − xn||) + 2ε

6 t−1 (−dE(wn + tu) + ||wn − xn||) + 2ε.

Passing to the limit as n →∞, we obtain for any u ∈ SX , t ∈ (−δdE(w), δdE(w))

(−dE)↑(w, u) 6 1
t

(−dE(w + tu) + dE(w)) + 2ε.

Since u is arbitrary in SX , this inequality proves the firm regularity of −dE(·). ¤
The following result is reminiscent of [10, Thm 4.1] which takes place in a Hilbert

space. However, here U is not a uniform neighborhood of E; it may be small (or
large) and far from E.

Theorem 6.2. Suppose that the norm of X is Fréchet differentiable on X\{0}. Let
E be a closed subset of X and let U be an open subset of X. Consider the following
assertions:

(a) Each w ∈ U has a unique metric projection PE(w) in E and the mapping
PE(·) is continuous on U \ E.

(b) dE(·) is continuously differentiable on U \ E.
(c) dE(·) is approximately convex on U \ E.

Then, one has (a) ⇒ (b) ⇒ (c). If X is Fréchet uniformly smooth, then (a) ⇒
(b) ⇔ (c).
If, in addition, X is strictly convex and the norm of X has the Kadec-Klee property,
then (a)⇔(b)⇔(c).

Proof. (a)⇒(b) For any w ∈ U\E, v ∈ X, since the norm is differentiable at w −
PE(w) 6= 0 and PE is continuous, we have

d↑E(w, v) = lim sup
y→w,t↓0

1
t

(dE(y + tv)− dE(y))
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6 lim sup
y→w,t↓0

1
t

(||y + tv − PE(y)|| − ||y − PE(y)||)

6 lim sup
y→w,t↓0

sup
θ∈[0,1]

〈j(y − PE(y) + θtv), v〉 = 〈j(w − PE(w)), v〉.

In the last equality we have also used the fact that since the norm is differentiable
and convex, the duality mapping j(.) is continuous by [49, p. 20]. Thus d↑E(w, ·) =
〈j(w − PE(w)), ·〉 and ∂↑dE(w) = {j(w − PE(w))}. Thus dE(.) is continuously
differentiable on U \ E.

(b)⇒(c) is obvious.
(c)⇒(b) when X is uniformly Fréchet smooth. Assume that dE(·) is approx-

imately convex on U \ E. Then, by Corollary 3.7, dE(·) is firmly regular at all
w ∈ U \ E. Moreover, by the preceding lemma, −dE(·) is firmly regular at all
w ∈ X\E. Thus ∂−dE(w) 6= ∅ and ∂−(−dE)(w) 6= ∅ at any w ∈ U \ E. Therefore,
dE(·) is Fréchet differentiable on U \ E.

Let us prove that d′E(·) is continuous on U \ E. Let w ∈ U \ E and ε ∈ (0, 1) be
given. There exists δ > 0 such that for all v ∈ B(0, δ) we have

dE(w + v)− dE(w)− 〈d′E(w), v〉 6 ε||v||,
On the other hand, by the approximate convexity of dE(·), there exists ρ ∈ (0, δ)
such that

〈d′E(x), v〉 6 dE(x + v)− dE(x) + ε||v||
for all x ∈ B(w, ρ), v ∈ B(0, ρ). Thus, for any x ∈ B(w, ερ), v ∈ B(0, ρ), we have

〈d′E(x)− d′E(w), v〉 6 2||x− w||+ 2ε||v|| 6 4ερ

Hence ||d′E(x)− d′E(w)|| 6 4ε for x ∈ B(w, ερ) and d′E(·) is continuous at w.
(b)⇒(a) when X is strictly convex, uniformly smooth and its norm has the Kadec-

Klee property. We follow the argument of [6, Lemma 6]. The uniform smoothness
of X ensures that X is reflexive by the Milman-Pettis theorem ([3], [21, Thm 9.12])
and, by Lemma 2.2, for any w ∈ U \ E, there exists x ∈ E such that

(6.2) 〈d′E(w), w − x〉 = ||w − x|| = dE(w).

Since ‖d′E(w)‖ ≤ 1, we have ‖d′E(w)‖ = 1 and j(w− x) = d′E(w). Since the space is
strictly convex, j is injective, so that x is the unique point of E satisfying (6.2). In
order to prove that PE(·) is continuous, let us consider a sequence (wn) → w. Let
xn := PE(wn) and let z be a weak limit point of (xn). Since d′E is continuous and
the norm is weakly lower semicontinuous, passing to the limit in the equality

〈d′E(wn), wn − xn〉 = dE(wn) = ||wn − xn||
we get, since ‖d′E(w)‖ ≤ 1,

||w − z|| ≥ 〈d′E(w), w − z〉 = dE(w) = lim
n
||wn − xn|| ≥ ||w − z||.

By the Kadec-Klee property we obtain that (xn) → z, so that z ∈ E and z =
PE(w). ¤
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