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A GENERIC WELL-POSEDNESS RESULT FOR A CLASS OF
NONCONVEX OPTIMAL CONTROL PROBLEMS

ALEXANDER J. ZASLAVSKI

ABSTRACT. The Tonelli existence theorem in the calculus of variations and its
subsequent modifications were established for integrands f which satisfy convex-
ity and growth conditions. In our previous work a generic existence and unique-
ness result (with respect to variations of the integrand of the integral functional)
without the convexity condition was established for a class of optimal control
problems satisfying the Cesari growth condition. In this paper we extend this
generic existence and uniqueness result to a class of optimal control problems in
which the right-hand side of differential equations and constraint maps are also
subject to variations.

1. INTRODUCTION

The Tonelli existence theorem in the calculus of variations [20] and its subsequent
generalizations and extensions (e.g. [6, 7, 12, 16]) are based on two fundamental
hypotheses concerning the behavior of the integrand as a function of the last argu-
ment (derivative): one that the integrand should grow superlinearly at infinity and
the other that it should be convex (or exhibit a more special convexity property
in case of a multiple integral with vector-valued functions) with respect to the last
variable. Moreover, certain convexity assumptions are also necessary for properties
of lower semicontinuity of integral functionals which are crucial in most of the exis-
tence proofs, although there are some interesting theorems without convexity (see
[6, Ch. 16] and [3, 5, 8, 14, 15, 19, 21]).

In [22-27] it was shown that the convexity condition is not needed generically,
and not only for the existence but also for the uniqueness of a solution and even
for well-posedness of the problem (with respect to some natural topology in the
space of integrands). Instead of considering the existence of a solution for a single
integrand f, we investigated it for a space of integrands and showed that a unique
solution exists for most of the integrands in the space. Such approach is often used
in many situations when a certain property is studied for the whole space rather
than for a single element of the space. See, for example, [1, 17, 28] and the references
mentioned there. Interesting generic existence results were obtained for particular
cases of variational problems [4, 13]. Important generic existence and uniqueness
result for a class of nonconvex Mayer type optimal control problems with smooth
cost functions was obtained in [11].
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In [23] this approach allowed us to establish the generic existence of solutions for
a large class of optimal control problems without convexity assumptions. More pre-
cisely, in [23] we considered a class of optimal control problems (with the same sys-
tem of differential equations, the same functional constraints and the same boundary
conditions) which is identified with the corresponding complete metric space of cost
functions (integrands), say F. We did not impose any convexity assumptions. These
integrands are only assumed to satisfy the Cesari growth condition. The main result
in [23] establishes the existence of an everywhere dense Gs-set F' C F such that
for each integrand in F’ the corresponding optimal control problem has a unique
solution.

The next steps in this area of research were done in [10, 22, 24-27]. In [10]
we introduced a general variational principle having its prototype in the varia-
tional principle of Deville, Godefroy and Zizler [9]. A generic existence result in
the calculus of variations without convexity assumptions was then obtained as a
realization of this variational principle. It was also shown in [10] that some other
generic well-posedness results in optimization theory known in the literature and
their modifications are obtained as a realization of this variational principle. Note
that the generic existence result in [10] was established for variational problems but
not for optimal control problems and that the topologies in the spaces of integrands
in [23] and [10] are different.

In [22] we suggested a modification of the variational principle in [10] and applied
it to classes of optimal control problems with various topologies in the corresponding
spaces of integrands. As a realization of this principle we established a generic
existence result for a class of optimal control problems in which constraint maps
are also subject to variations as well as the cost functions [22].

The variational principle in [22] asserts that a generic well-posedness result is
true if some basic hypotheses hold. These hypotheses (H1) and (H2) introduced
in [22] are stated in Section 2 of the present paper. Proofs of applications of the
variational principle of [22] consist in verification of hypotheses (H1) and (H2) for
classes of optimization problems.

In [27] using the variational principle of [22] we established generic well-posedness
results for classes of nonconvex optimal control problems in which the right-hand
side of differential equations is also subject to variations as well as the integrands.

Note that the methods and techniques in [22] and [27] are different. In this paper
combining the methods of these two papers we extend the results of [22] and [27] and
establish generic well-posedness results for two classes of nonconvex optimal control
problems in which the right-hand side of differential equations and constraint maps
are also subject to variations as well as the integrands.

We obtain our main results as realizations of the general variational principle
of [22]. The verification of the hypothesis (H1) for our classes of optimal control
problems is highly complicated. To simplify the verification of (H1) in Section 3
we suggest a concretization of the hypothesis (H1). We introduce new assumptions
(A1)-(A7) and show that they imply (H1) (see Proposition 3.1). Thus to verify (H1)
we need to show that the assumptions (A1)-(A7) are valid. This approach allows
us to simplify the problem.
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The main results of the paper (Theorems 4.1 and 4.2) are presented in Section
4. Section 5 contains auxiliary results for Theorems 4.1 and 4.2 which are proved
in Section 6. Extensions of Theorems 4.1 and 4.2 are obtained in Section 7.

In this paper we use the following notations and definitions. We denote by mes({2)
the Lebesgue measure of a Lebesgue measurable set Q C R!'. For each function
f: X — [—o00,0], where X is nonempty, we set

inf(f) =inf{f(z): =z € X}.

We use the convention that co —oo = 0 and co/oo = 1 and the notation exp(t) = €',

teR.
Assume that (X, p;), i = 1,2 are metric spaces. For each mapping f: X1 — Xo
we set

Lip(f) = sup{p1(y,2) ' p2(f(y), f(2)) : ¥,z € X1 and y # 2}.

Assume that g : X XY — Z, where X,Y and Z are nonempty sets. For each
x € X the function y — g(z,y), y € Y is denoted by g(z,-). For each y € Y the
function z — g(z,y), € X is denoted by g(-,y).

In this paper we usually consider topological spaces with two topologies where
one is weaker than the other. (Note that they can coincide.) We refer to them as
the weak and the strong topologies, respectively. If (X, d) is a metric space with
a metric d and Y C X, then usually Y is also endowed with the metric d (unless
another metric is introduced in Y'). Assume that X; and X5 are topological spaces
and that each of them is endowed with a weak and a strong topologies. Then for
the product X7 x Xs we also introduce a pair of topologies: a weak topology which
is the product of the weak topologies on X7 and X5 and a strong topology which is
the product of the strong topologies of X; and X5. If Y C X7, then we consider the
topological subspace Y with the relative weak and strong topologies (unless other
topologies are introduced). If (X;,d;), i = 1,2 are metric spaces with the metric d;
and ds, respectively, then the space X; x X5 is endowed with the metric d defined
by

d((z1,91), (T2,92)) = di(x1,22) + da(y1, y2), (zi,y:) € X xY, i =1,2.

2. A VARIATIONAL PRINCIPLE

We consider a metric space (X, p) which is called the domain space and a complete
metric space (A, d) which is called the data space. We always consider the set X with
the topology generated by the metric p. For the space A we consider the topology
generated by the metric d. This topology will be called the strong topology. In
addition to the strong topology we also consider a weaker topology on A4 which is
not necessarily Hausdorff. This topology will be called the weak topology. (Note
that these topologies can coincide.) We assume that with every a € A a lower
semicontinuous function f, on X is associated with values in R = [—00, o0].

Let a € A. We say that the minimization problem for f, on (X, p) is strongly
well-posed with respect to A [29] if inf(f,) is finite and attained at a unique point
o € X and the following assertion holds:
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For each € > 0 there exist a neighborhood V of a in A with the weak topology
and & > 0 such that for each b € V, inf(f;) is finite and if z € X satisfies fp(z) <
inf(fy) + 0, then p(x4,2) < € and |fp(2) — fa(za)| < e

In our study we use the following basic hypotheses about the functions.

(H1) For any a € A, any € > 0 and any > 0 there exist a nonempty open set

W in A with the weak topology, z € X, o € R! and 1 > 0 such that

wni{be A: d(a,b) < e} #0,

and for any b € W
(i) inf(fp) is finite;
(ii) if z € X is such that fy(z) <inf(fy) +n, then p(z,2) <~ and |fp(z) —
al <.
(H2) if a € A, inf(f,) is finite, {2,}52; C X is a Cauchy sequence and the
sequence { fq(zn)}02; is bounded, then the sequence {z,}7° ; converges in
(X, p).

The following result was obtained in [22, Theorem 2.1].

Theorem 2.1. Assume that (H1) and (H2) hold. Then there exists an everywhere
dense (in the strong topology) set B C A which is a countable intersection of open (in
the weak topology) subsets of A such that for any a € B the minimization problem
for fo on (X, p) is strongly well-posed with respect to A.

3. CONCRETIZATION OF THE HYPOTHESIS (H1)

Let (X, p) be a metric space with the topology generated by the metric p and let
(A;,d;) (i =1,2,3) be metric spaces. For the space A; (i = 1,2,3) we consider the
topology generated by the metric d;. This topology is called the strong topology.
In addition to the strong topology we consider a weak topology on A;, i = 1,2,3
which is weaker than the strong topology.

We assume that X is also equipped with a metric ps; such that the following
property holds:

(P1) For each € > 0 there is § > 0 such that p(z1,22) < € for each x1,29 € X
satisfying ps(x1,x2) < 6.

We equip the space A; x Ay x A3 with a metric d defined by
d((a1,az2,a3), (b1,ba,b3)) = di(a1,b1) + da(az, ba) + ds(as, b3),

(al,ag,ag), (bl,bg,bg) S ./41 X .AQ X .A3.
The strong topology of A; x Az x Aj is the product of the strong topologies of
A1, Ao, A3 and the weak topology of Ay x Ay x Az is the product of the weak
topologies of A1, As, As.
For each function g : X — R'U {oc} and each Y C X set

inf(g;Y) = inf{g(z) : z € Y}.

Assume that with every a € A; a function ¢, : X — R! U {co} is associated,
with every a € As a set S, C X is associated and with every a € A3 a set Q, C X
is associated.
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For each a = (a1, az,a3) € Ay x Az x Az define f, : X — R' U {oo} by

(3‘1) fa(x) = ¢a1 (:L’) for all x € Saz N Q(Iga
(3.2) fa(x) =00 for all x € X \ (Sa, N Qay)-

Let D be a nonempty closed open subset of A; x A, with the weak topology.
Denote by A the closure of the set {a € D x A3 : inf(f,) < oo} in the space
A; x As x Az with the strong topology. We assume that A # () and use the
following hypotheses:

(A1) For each a; € Ay, inf(¢,,) > —oo and for each a € D x Az the function f,

is lower semicontinuous on (X, p).

(A2) For each a = (a1,a2) € D, inf{¢,, () : x € Sy, } if finite.

(A3) For each a; € Aj, each € > 0 and each D > 0 there exists a neighborhood V
of ay in A; with the weak topology such that for each b € V and each x € X
satisfying min{¢q, (x), ¢p(x)} < D the inequality |pq, () — ¢p(z)| < € holds.

(A4) For each v € (0, 1) there exists §(y) € (0,1) such that for each a = (a1,a2) €
D, each nonempty set Y C X satisfying inf(¢4,;Y) < oo, each r € (0,1)
and each z € Y satisfying

Pay (7) < inf(¢ay;Y) 4 1d(7)/2
there exists a; € A; such that
(C_Ll,ag) €D, dl(al,&l) <7

Ga, (2) = ¢a,(2) for all z € X, ¢g,(T) < o, (T) + 10(7)
and the following property holds:
For each y € Y satisfying ¢g, (y) < inf(¢z,;Y) + 20(y)r the in-
equality p(y,z) <~ is valid.

(A5) For each a = (ai,a2) € D and each M, e > 0 there exist a number 6 > 0
and a neighborhood V of as in As with the weak topology such that the
following property holds:

For each z € U{S, : b € V} satisfying ¢, (z) < M and eachy € X
satisfying ps(x,y) < 0 the inequality |¢q, () — ¢, (y)| < € is true.

(A6) For each a = (a1,a2) € D and each ¢, M > 0 there exists a neighborhood V
of as in Ao with the weak topology such that the following property holds:

For each b1,bs € V and each = € Sy, satisfying ¢q, (x) < M there
exists y € Sp, such that ps(z,y) <e.

(A7) For each a = (a1, az2,a3) € D x Ajs satisfying inf(f,) < oo and each €,§ > 0
there exist v > 0, ag € A3z, T € Sq, N Qas, an open set U in A3 with the
weak topology such that

ds(as,as) < e, UN{be As: ds(byas) < e} #0,
Do (T) < In{60r () 2 € S0y N Quy} +6 < 00,
{reX: ps(x,z) <~} CQpC Qg forallbeld,
Uzeg, {2z € X @ ps(z,2) < v} C Qg for all b e U.

In this section we will prove the following result.

Proposition 3.1. Assume that (A1)—(AT) hold. Then (H1) holds.
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Proof. Let
a = (CLl,CLQ,CLg) € Aa €7 € (07 1)
The construction of the set W (see (H1)) is rather complicated. We will construct
W as the product Vi x [Va1 N Vao| X U where V) is an open subset of A;j, Vo1 and
Vs are open subsets of Ay and U is an open subset of Agz.
By the definition of A we may assume without loss of generality that inf(f,) < co.
Clearly, (a1, a2) € D. Choose a positive number

(3'3) Yo € (078_1 min{€77})'

Let (7o) € (0,1) be as guaranteed by (A4) (namely (A4) is true with v = g, d(y) =
9(70)). Choose

(3.4) r € (0,7/4), 61 € (0,47 15(70)r).
By Property (P1) there is

(3.5) 71 € (0,70/16)

such that

(3.6) p(z1,22) < v0/16 for each z1, zo € X satisfying ps(z1, 22) < 71.
First we define the open subset U of Az. By (A7) there are

(3.7) as € Az, T € Sg, NQay, Ao € (0,1),

and an open set U in As with the weak topology such that

(3.8) ds(ag,as) < 61, UN{b e As: ds(b,az) < o1} # 0,
(3.9) ¢a, (T) < inf{pa,(2) 1 2 € Say, N Qay} + 51 < 00,
(3.10) {r e X : ps(x,7) < Ap} CQp C Qa, forallbeld,
(3.11) Uze, {2z € X ¢ ps(z,2) < Ag} C Qa, forallbeld.

It follows from the choice of §(vp), (A4) which holds with v = 9, d(7) = d(y0),
Y =54, N Qas, (3.7), (3.9) and (3.4) that there exists a; € A; such that

(3.12) di(ai,a1) <r, (ai,a2) €D,

(3.13) Ga,(2) > ¢a, (2) for all z € X, ¢g,(T) < ¢, (T) + 10(70)

and that the following property holds:

(Pi) For each y € Sy, N Qa, satisfying ¢a, (y) < inf(¢a,; Say N Qas) + 25(70)r the
inequality p(y,z) < 7o is valid.

Let us now define an open subset V; of A;. Choose a number
(314) D > ‘(ba,l (i’)’ + 4.
In view of (A3) there exists an open neighborhood V; of a; in A; with the weak
topology such that the following property holds:

(Pii) For each h € V; and each z € X satisfying min{¢a, (z), ¢n(z)} < D the
inequality |@a, (z) — ¢n(z)| < Apdy/4 holds.
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In our next step we construct the open subsets Vo1 and Vo of As. By (A5) and
(3.12) there exist a positive number

(3.15) 2 € (0,8 min{vyy, Agd1})
and an open neighborhood Vo1 of ag in Ay with the weak topology such that the
following property holds:
(Piii) For each x € U{Sy : b € Va1} satisfying ¢, (x) < D and each y € X
satisfying ps(x,y) < d2 the inequality |¢g, () — ¢a, (y)| < Apd1/16 holds.
It follows from (A6) and (3.12) that there exists an open neighborhood Vag of as
in As with the weak topology such that the following property holds:
(Piv) For each hi,hy € Vag and each = € Sy, satisfying ¢g, (z) < D there exists
y € Sh, such that ps(x,y) < da.

Since D is an open subset of A; x Ao with the weak topology we may assume
without loss of generality that

(3.16) Vi X Va1 N Vool CD

Set
(3.17) W =V; x [Va1 N Vag] X U.
Clearly W is an open set in D x A3 with the weak topology,
(3.18) a1 € Vi, az € Vo1 N Vaa.

We will show that (H1) holds with = &, n = Agd1/4, @ = inf(f(5, a5,35)) and W
and 7.
In view of (3.8) there is b € U such that dsz(b,a ) < 601. Together with (3.18),

(3.17), (3.12), (3.4) and (3.3) this implies that (a1, as,b) € W and
d((a1,a2,a3), (a1, a2,b)) <r+ 0 <e.

Thus

(3.19) wni{be A: d(a,b) < e} #0.

We will show that inf(f,) < D — 2 for all b € W.
Let £ e U. By (3.7), (3.10), (A1), (3.1), (3.9) and (3.13) Z € Sa, N Q¢ and

(3.20) —00 < inf(f(a,,a0,6)) < ¢a, (Z) < 0o for all £ € U.
Assume that

(3.21) b= (b1,b2,b3) € W.

In view of (3.21), (3.17), (3.18), (3.7), (3.14) and (Piv) there is

(3.22) Y € Sp,

such that

(3.23) ps(y, ) < 02.

Together with (3.18), (3.7), (3.14), (3.4) and (Piii) this implies that
$a, (y) < ¢a, (T) + Dod1/16 < D — 3.
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It follows from this inequality, (3.21), (3.17), (Pii), (3.14), (3.4) and (3.7) that
(3.24) Doy (1) < ay (y) + Aod1/4 < ¢a, (Z) + Apd1(5/16) < D —2.

In view of (3.23), (3.15), (3.4), (3.10), (3.21) and (3.17) y € Qp,. Together with
(3.24), (3.22), (3.1) and (3.2) this implies that

inf(fy) < du, (4) < da, (&) + Ao1(5/16) < D — 2.

Thus we have shown that

(3.25) inf(fp) < ¢a, (Z) + Agd1(5/16) < D — 2 for all b € W.
Assume that

(3.26) b= (b1,b2,b3) € W.

By (3.26) and (3.17)

(3.27) (@1,be,b3) € W.

It follows from (3.25), (3.26), (3.17), (3.27), (3.1) (3.2) and property (Pii) that
inf(fy) < inf{fy(2) : z € X and f(g, b, b5)(2) < D}
< Agd1/4 +inf{fia, by p5)(2) 2 € X and f(g, b, p5)(2) < D}
- A061/4 + inf(f(fll,bz,b:g))

and
Inf(f(a;,b0,05)) < I0f{f(a, 00,65)(2) 2 € X and fy(2) < D}

<inf{fp(z) : z€ X and fy(z) < D} + Agd1 /4
— Ao /4 + inf(fy).

Thus

(3.28) [inf(fp) — inf(f(a, po,ps))| < Aod1/4 for all b= (b1, ba, b3) € W.

Relations (3.1), (3.2), (3.7), (3.9) (3.13) and (A1) imply that

(3.29) 00 < i0f(fay apany) < bar (2) < bun (2) + r(30)

<7rd(y0) + 61 +inf{pg, (2) : 2 € Say N Qas }
<7rd(v0) + 01 +1inf(f(ay,a0,5))-
Assume that
(3.30) b= (by,bs,b3) €W, z € X, fo(z) < inf(fy) + Agdy /4.
By (3.30), (3.1), (3.2) and (3.25)
(3.31) 2 € Spy, N Qug, f1(2) = o, (2).
It follows from (3.31), (3.30), (3.25), (3.7), (3.4) that
(3.32) op, (2) < inf(f) + Agd1/4 < D —1.
Together with (Pii), (3.30) and (3.17) this inequality implies that
(3.33) 62 (2) — 6, ()] < Aod /4.
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Relations (3.33), (3.31), (3.32) and (3.28) imply that

(3.34) |0a; (2) — Inf(f(a1 60,09 )]
< |¢a, (2) = @b, (2)| + |Poy (2) — inf(fp)[ + [inf(fp) — inf(fia, bs b))l
< 30od1 /4.

Relations (3.34), (3.25), (3.27), (3.7) and (3.4) imply that

(3.35) ¢a,(2) < D.

By (Piv) (with hy = be, ha = a2, = 2), (3.30), (3.31), (3.17) and (3.35) there
exists y € X such that

(3.36) Y € Say, ps(z,y) < da.
In view of (3.30), (3.17), (Piii), (3.31), (3.35) and (3.36)
(3.37) |ba, () — a, (2)| < Aod1/16.
It follows from (3.36), (3.15), (3.4), (3.31), (3.30), (3.17) and (3.11) that
(3.38) ye{ue X ps(z,u) < Ap} C Qas-
By (3.37), (3.34), (3.30), (3.25), (3.29), (3.7) and (3.4)
(3.39) ba, (y) < ba, (2) + 167 Aod1 < inf(fa, by ) + 30001/4 + Aod1/16
< ¢a, (T) + Aod1[(5/16) + 3/4 + 1/16]
< inf(f(ay,an,a5)) +70(70) + 1 + Aod1(5/4)
< inf(f(ay,az,a5)) + 2r0(70)-
In view of (3.39), (3.36), (3.38), (3.1), (3.2) and (Pi) p(z,y) < 0. Together with
(3.36), (3.15), (3.6) and (3.3) this inequality implies that
p(z,%) < p(z,y) + p(y, T) < p(2,y) + 70 < 70/16 +70 < 7.
It follows from (3.33), (3.37), (3.36), (3.38), (3.39) and (3.4) that

|¢b1 (Z) - inf(f(a1,a2,&3))|
S |¢b1 (Z) - ¢(_11 (Z)| + |d)(_11 (Z) - ¢6,1 (y)| + |¢(_11 (y) - inf(f(@l,az,&:;)”
< A161/4 4 Agd1 /16 4 2r0(v0) < 3rd(v0) < Y0 < -

This completes the proof of Proposition 3.1. O

4. THE MAIN RESULT

Let (Y,]|-||) be a Banach space and —oo < a < b < co. A function z : [a,b] = Y
is strongly measurable on [a, b] if there exists a sequence of functions z, : [a,b] — Y,
n =1,2,... such that for any integer n > 1 the set z,([a,b]) is countable and the
set {t € [a,b] : z,(t) = y} is Lebesgue measurable for any y € Y, and z,,(t) — z(t)
asn — oo in (Y, || -||) for almost every t € [a, b].

The function x : [a,b] — Y is Bochner integrable if it is strongly measurable and

there exists a finite f; ||z(t)||dt. Denote by S(Y') the set of all nonempty closed
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convex subsets of Y. For each z € Y and each C C Y set dy(z,C) = inf{||z — y|| :
y € C}. For each C1,Cy C Y define

dy (Cy,C3) = max{ sup dy(y,Cs), sup dy(z,C1)}.
yeCq zeCs

For the space S(Y) we consider the uniformity determined by the following base:
(4.1) 8y(6) = {(Cl,CQ) S S(Y) X S(Y) : dy(Cl,CQ) < 6},

where € > 0. It is well known that the space S(Y') with this uniformity is metrizable
(by a Hausdorff type metric) and complete. We endow the set S(Y) with the
topology induced by this uniformity.

Denote by Py ([a, b]) the set of all set-valued mappings A : [a,b] — S(Y'). For the
space Py ([a,b]) we consider the uniformity determined by the following base:

(4.2) () = {(A1, A2) € (Py([a,b]))? : dy (A(t), Aa(t)) < e for all £ € [a, ]},

[a?

where ¢ > 0. It is easy to see that the space Py ([a,b]) with this uniformity is
metrizable and complete. We equip the space Py ([a, b]) with the topology induced
by this uniformity.

Let (E,|| - ), (F,]| - |]) be Banach spaces. We equip the space E with the
metric dg(z,y) = ||z —y|| , ,y € E and equip the space F' with the metric
dr(u,v) = ||lu—||, u,v € F.

Let —0o < 71 < 7o < o0o. Denote by Whi(r,7; E) the set of all functions
x : [11, 2] — E for which there exists a Bochner integrable function u : [r, 73] — E

such that
t

x(t) = x(m) —i—/ u(s)ds, t € (11, 72).

T1

(see, e.g. [2]). Tt is known that if x € Whi(7,79; E) then this equation defines
a unique Bochner integrable function v which is called the derivative of z and is
denoted by z’.

Let 0 < T < T3 < co. Denote by X the set of all pairs of functions (x,u) where
r € WHY(Ty, Ty; E) and w : [T1, T3] — F is a strongly measurable function. To be
more precise, we have to define elements of X as classes of pairs equivalent in the
sense that (z1,u1) and (x2,u2) are equivalent if and only if xo(t) = z1(¢) for all
t € [T1,Ts] and ua(t) = ui(t), t € [T1, 7] almost everywhere (a.e.). For the set X
we consider the metric p defined by

(4.3)  p((z1,u1), (22, uz))
=inf{e > 0: mes{t € [T1, T3] : ||z1(t) — 2z2(t)|| + [Jui(t) — ua(t)|| > €} < €},
(Sclvul)’ (x27u2) € X.

In the sequel we consider the space X endowed with the metric p and with the
topology induced by the metric p. For each (x1,u1), (z2,u2) € X set

(4.4) ps((z1,u1), (z2,u2)) = oo if mes({t € [T1,T2] : ui(t) # ua(t)}) > 0,
otherwise ps((x1,u1), (x2,u2)) = sup{||z1(t) — x2(t)|| : t € [Th,To]}
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and

ps((m1,u1), (w2, u2)) = ps((x1,u1), (T2, u2)) (1 + ps((@1,u1), (w2, ug))) ™"

Clearly ps is a metric.
Set
(4.5) Pr = Pr([T1, o)), Pr = Pr([T1,T2]), A(t) = E for all t € [T}, Ty].

For each continuous mapping G : [T1,T3] x E x F' — E, each nonempty closed
subset B C E, each A € Pg and each U € Pp we denote by X (B, G, A,U) the set
of all pairs (z,u) € X such that

(4.6) z(Th) € B,

(4.7) z(t) € A(t), t € [Th, T3],

(4.8) u(t) e U(t), t € [T1,Ts] a.e.,
(4.9) 2'(t) = G(t,z(t),u(t)), t € [Th,Ts] ae..

Denote by M the set of all functions f : [Ty, T3] x E x F' — R! with the following
properties:

(i) f is measurable with respect to the o-algebra generated by products of
Lebesgue measurable subsets of [T7,T>] and Borel subsets of E x F;

(ii) for each €, M > 0 there exists 0 > 0 such that for almost every ¢t € [T, T3]
the inequality |f (¢, x1,u1) — f(t, z2,us)| < € holds for each 1,22 € E and
each uy,uy € F satisfying

il lwil| < M, i = 1,2 and [[z1 — 2], |[ur — ual] <6
(iii) for each M, e > 0 there exist I';§ > 0 such that for almost every ¢ € [T7, T3]
the inequality
[f (w1, u) = f(t 2, u)| < emax{[f (¢, 21, u)l, [f(t, 22, u)]} + €
is valid for each x1,z9 € E and each u € F' satisfying
[, [|lz2ll < M, |lul]] = T, [|z1 — 22l < 6

(iv) there exists an integrable scalar function A(t) < 0, t € [T1, 7] such that
f(t,z,u) > A(t) for all (t,z,u) € [T1,Ts] x E x F}

(v) there is a constant ¢y > 0 such that |f(¢,0,0)| < c¢f for almost every t €
[T, T).

It follows from property (i) that for any f € M, each continuous function x :
[T1,T»] — E and each strongly measurable function w : [T1,T5] — F the function
ft,x(t),u(t)), t € [Ty, T»] is measurable.

Now we equip the set M with the strong and weak topologies.

For each f,g € M set

JM(f,g) =sup{|f(t,z,u) — g(t,x,u)|: (t,x,u) € [T1,T2] x E x F}
—i—sup{Lip(f(t,',') —g(t,~,~)) tte [Tl,TQ]},
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Clearly (M,duq) is a complete metric space. The metric dyq induces in M a
topology which is called the strong topology.
For each € > 0 we set

Enw(€) = {(f,9) € M x M : there exists a nonnegative ¢ € LY (T1,T)

T>
such that ¢(t)dt <1 and for every ¢ € [T1,T»] and every (z,u) € E x F
T

411)  [f(t 2 u) = g(t zu)| < e+ emax{[f(t z,u)l, [g(t, 2, u)[} + ep (D)}

It was shown in [27] that for the set M there exists the uniformity which is de-
termined by the base Epqyp(€), € > 0. This uniformity induces in M the weak
topology.

Denote by M! (respectively, M€) the set of all lower semicontinuous (respectively,
continuous) functions f : [T1,Ty] x E x F — R! in M. Denote by M/ the set of
all functions f € M such that for almost every ¢ € [T1,T5] the function f(t,-,-) is
Lipschitzian on bounded subsets of £ x F. Denote by M; the set of all functions
f € M such that for almost every ¢ € [T}, T] the function f(¢,-,-) : E x F — R}
is locally Lipschitzian. Clearly M!, M¢ M, My, are closed subsets of M with
the strong topology. We consider the topological subspaces M!, M¢ My, My,
MNn My, MNMp, MMy, MSNMp C M with the relative weak and strong

topologies.
For each f € M we define I : X — R' U {c0} by
Ts
(4.12) I (z,u) = ft,z(t),ut))dt, (z,u) € X.
T1

We study the optimal control problem
(4.13) I/ (z,u) — min, (z,u) € X(B,G,A,U)

where f € M, B is a nonempty closed subset of £, A € Pg, U € Pr and G :
[T1,T5] x E x F — E belongs to a space of mappings described below.

Denote by L the set of all continuous mappings G : [11, T2 x Ex F — E. It is not
difficult to see that for each G € L, each continuous function x : [T7,T3] — E and
each strongly measurable function u : [T1,T5] — F the function G(¢, z(t),u(t)), t €
[Ty, Ts] is strongly measurable.

For each G1,Gs € L we set

(4.14)  dro(Gy,Ga) = sup{||G1(t, x,u) — Go(t,z,u)|| : t € [T1,To), z € E, u € F}
+ sup{Lip(G1(t,-, ) — Ga(t,-,)) : t € [T1,Tr]},

des(Gi, Ga) = drs(Gr, G2) (1 + ds(Gr, Ga))
It is not difficult to see that (£, drs) is a complete metric space. The metric d,
induces in £ the topology which is called the strong topology.
For each G1,Gs € L we set
Jﬁw(leGQ) = Sup{HGl(tvxvu) - GQ(t,ZL‘,’LL)H cte [TI,T2]7 T e Ea u € F}
+ sup{Lip(G1(t,-,u) — Ga(t,-,u)) : t € [T1,Ts], u € F},
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(4.15) drw(G1,Go) = drw(G1, G1) (1 + dry (G, Go)) 7L

It is not difficult to see that (£, dr,,) is a complete metric space. The metric dgy,
induces in £ the topology which is called the weak topology.

Let B be a nonempty closed subset of E and let M be one of the following spaces:
M, /\/ll; M Mprs Mg, Min My MMy Min Mip; MeN Mp. Denote by
N(B) the set of all pairs (f,G) € M x L with the following properties:

(vi) there exist numbers cp,c; > 0, an integrable scalar function \(t) > 0, ¢t €
[T1,T»] and an increasing function ¢ : [0,00) — [0, 00) such that

(4.16) [|G(t,y1,v) — G(t, y2,0)|| < collyr — wall¥([|v]])
for each t € [T}, T3], each y1,y2 € E and each v € F,

(4.17) ft,y,v) > crp(||v]]) — A(¢) for all (t,y,v) € [T1,T] X E X F;
(vii) for each € > 0 there is an integrable scalar function ¢.(t) > 0, t € [17,T3]

such that ||G(t,y,v)|| < ¢e(t) +€f(t,y,v) for all (t,y,v) € [T1,T2] x E x F,
(viii) there is (z,u) € X such that I/ (x,u) < oo, (Ty) € B and

2'(t) = G(t,z(t),u(t)), t € [T, Ts] ae..

The space N (B) was introduced in [27] where it was noted that N (B) = N(E)
(see Corollary 11.1 of [27]). For simplicity we set

(4.18) N = N(E) = N(B).
We assume that N # ). The following result was proved in [27, Proposition 4.1].

Proposition 4.1. The set N is an open closed subset of M x L with the weak
topology.

By Proposition 9.1 of [27] for each f € M, I/ : X — R'U {0} is a lower
semicontinuous functional on (X, p).
We study the optimal control problem

I/ (z,u) — min, (z,u) € X(B,G,A,U)

where (f,G) e N, A€ Pg, U € Pp.
For each a = (f,G, A,U) € N x Pg x Pr we define J, : X — R' U {cc} by

(4.19)  Ju(z,u) = I (z,u) if (z,u) € X(B,G, A,U), otherwise J,(z,u) = cc.

We will show that for each a = (f,G, A, U) € N x Pg x Pr, J*: X — R'U{oc0}
is a lower semicontinuous functional on (X, p) (see Propositions 5.1 and 5.2).
The following theorem is our first main result.

Theorem 4.1. Assume that the set B is bounded and let A be the closure of the set
{a=(f,G,A,U) € N x Pg x Pr: inf(J,) < oo} in the space N' x Pg x Pp with
the strong topology. Assume that A is nonempty. Then there exists an everywhere
dense (in the strong topology) subset B C A which is a countable intersection of
open (in the weak topology) subsets of A such that for each a € B the minimization
problem for J, on (X, p) is strongly well-posed with respect to A.
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We also study the optimal control problem
I/ (z,u) — min, (z,u) € X(B,G,A,U)

where (f,G) e N, U € Pp. R
For each a = (f,G,U) € N x P we define J, : X — R' U {oo} by

(4.20)  Ja(z,u) = I (2, u) if (z,u) € X(B,G, A,U), otherwise J,(z,u) = oo.

We will show that for each a € (f,G,U) € N X Pp, Jv: X — R'U {0} is a
lower semicontinuous functional on (X, p) (see Propositions 5.1 and 5.2).
The following theorem is our second main result.

Theorem 4.2. Assume that the set B is bounded and let A be the closure of the
set {(f,G,U) € N x Pp : inf(J,) < oo} in the space N' x Pp with the strong
topology. Assume that A is nonempty. Then there exists an everywhere dense (in
the strong topology) subset B C A which is a countable intersection of open (in the
weak topology) subsets of A such that for each a € B the minimization problem for

Jo on (X, p) is strongly well-posed with respect to A.

5. AUXILIARY RESULTS

In this section we collect auxiliary results which will be used in the proofs of
Theorems 4.1 and 4.2.

Proposition 5.1 ([27, Proposition 9.1]). Let f € M, (z,u) € X, {(x;,uw;)};2; C X
and let
p((xi, ui), (z,u)) — 0 as i — oo.

Then
T

Ts
ft,z(t),u(t))dt < liminf Ft,xi(t), ui(t))dt.

T oo U

Proposition 5.2 ([27, Proposition 9.2]). Assume that (f,G) € N, {(zi,u;)}2, C
X is a Cauchy sequence in the space (X, p), the sequence {1/ (z;,u;)}22, is bounded
and that for all natural numbers i

zi(t) = G(t, xi(t),wi(t)), t € [T1,Ty] a.e..

Then there is (xx,ux) € X such that p((x;,w;), (z«,us)) — 0 as i — oo, z;(t) —
x4(t) as i — oo uniformly on [Th, T3] and that

2l (t) = G(t, xu(t), ux(t)), t € [T1, T3] a.e..

Proposition 5.3 ([27, Proposition 9.3]). Let f € M, ¢ € (0,1) and D > 0. Then
there is a neighborhood V of f in M with the weak topology such that for each
g €V and each (z,u) € X satisfying min{I/(z,u),9(x,u)} < D the inequality
[T (z,u) — I9(z,u)| < € holds.

For each f € M and each A C X set
inf(I7; A) = inf{I/ (z,u) : (z,u) € A}.

Analogously to Lemma 5.1 [24] we can prove the following auxiliary result.
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Proposition 5.4. For each vy € (0,1) there exists 6(7y) € (0,1) such that for each
f € M, each nonempty set A C X for which inf(I1; A) < oo, each r € (0,1] and
each (z,u) € A satisfying I/ (z, 1) < inf(If; A) + ré(v)/2 there exists a continuous
function h : [Ty, Ty] x E x F — R which satisfies
0 < h(t,z,u) <r/2 for all (t,x,u) € [T1,To] X E X F,

[ty 21, u1) = h(t, 22, uz)| < 27 'r(||lzn — @2 + |Jur — ua])

for each x1,x9 € E, each ui,ug € F' and each t € [Ty, T5]
such that the function f defined by

ft,x,u) = f(t,z,u) + h(t,z,u), (t,x,u) € [Ty, Ty] x E x F
belongs to M, satisfies )
I(z,a) < I (z,u) +ré(y)
and has the following property:
For each (y,v) € A satisfying

If(y, v) < inf([f; A) 4+ 26(v)r

the inequality p((Z,u), (y,v)) < v is valid.
Moreover h is the sum of two functions, one of them depending only on (t,x)
while the other depending only on (t,u).

Proposition 5.5 ([27, Lemma 9.2]). Let the set B be bounded, (f,G) € N', M >0
and € > 0. Then there exists 6 > 0 such that for each H € L satisfying dr,(H,G) <
1, each (z,u) € X which satisfies

o(Ty) € B, I (z,u) < M, 2'(t) = H(t,z(t),u(t)), t € [T}, Ts] a.e.

and each continuous function z : [Th,Ts] — E satisfying ||z(t) — z(t)|| < 9§, t €
[Ty, Ts] the following inequality holds:

T2 T2
[ fz@),ult)dt — [ f(E 2(E), u(t))] < e
T1 Tl

Proposition 5.6 ([27, Lemma 6.2]). Let (f,G) € N, € > 0 and M > 0. Then there
exist D > 0 and a neighborhood V of G in L with the weak topology such that for
each H/A €V, each (z,u) € X satisfying

x(Th) € B, «'(t) = H(t, z(t),u(t)), t € [Ty, Ts] a.e. and I’ (x,u) < M,
and each £ € B there exists z € WHL(T1,Ty; E) such that (z,u) € X, 2(Ty) = &,
2'(t) = AL, z(t),u(t)), t € [T1,Ty] a.e.

and
[2(t) —z()|] < e+ DI|§ — z(T1)]| for all t € [T1, T3]

We need the following result (see Lemma 2.1 of [18]).

Proposition 5.7. Let (Z,|| - ||) be a norm linear space and let B(0,r) = {y € Z :
llyl| < r}. Assume that r is a positive number and C' is a closed convez subset of Z
such that for all y € B(0,r), infyco ||y — z|| <r. Then 0 € C.

The following proposition is an auxiliary result for (A7).
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Proposition 5.8. Let B be a nonempty closed subset of E, a = (f,G,A,U) €
N X Pg x Pp, inf(J,) < oo and let €,§ > 0. Then there are

(5.1) v€(0,1/8), A€ Pg, U € Pp, (z,u4) € X(B,G,A,U)
and an open set W in Pr X Pr such that
(5.2) A(t) C A(t), U(t) C U(t) for all t € [Ty, T,

(A, A) € £ (6), (U,0) € £ (o),

(5.3)  WN{(B,V) €PpxPr: (BA) €&y (), (V,U) € ELp () #0,
(5.4) IM(z,a) < inf{If(z,u) : (z,u) € X(B,G,A,U)} +6 < o
and that for all (B,V) € W the following properties hold:
(Ci) if (z,u) € X satisfies
(5.5) l|z(t) —z(t)|| + [|u(t) — a(t)|| < 27 for a.e. t € [Th,T],

then x(t) € B(t) for allt € [T1,T2], u(t) € V(t) for almost every t € [T1,Ts];
(Cii) if (x,u) € X satisfies x(t) € B(t) for allt € [T1,T>] and u(t) € V(t) for a.e.
t € [T1,Ts] and if (z,v) € X satisfies

(5.6) |2(t) = 2O + [[u(t) — v <27 for a. e t € (T1,Ty),
then

(5.7) z(t) € A(t) for all t € [T, Ts), v(t) € U(t) for a.e. t € [T1,To).

Proof. For each r € (0,1] define A" € P, B") € P by

(5.8) ANty ={z € E: dg(z,A(t)) <r}, t € [T1, T,
define

(5.9) UMt ={ue F: dp(u,U(t)) <r}, t € [T, T
and set

(5.10) pu(r) = inf(J(f,G,A(r),U(r)))-

Clearly p(r) is finite for all » € (0, 1] and the function p is monotone decreasing.
There is 79 € (0,8 !¢) such that p is continuous ar ro. Choose 71 € (0,79) such
that

(5.11) () — plro)| < 16716,
There is

(5.12) (z,u) € X(B,G, A B))
such that

(5.13) I (z,a) < plry) +1671.
Relations (5.13) and (5.11) imply that

(5.14) I(z,3) < plro) + 8714
Set

(5.15) rg = (1o +71)/2.
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Clearly
(5.16) (AT, A) € EF, pyy(e), i =0,1,2,
(U, U) € Eff, 1,(€), i =0,1,2,

Choose a positive number v such that

(5.17) 0<y<1/8, v<(ro—r2)/8=(rog—r1)/16 = (ra —71)/8
and define
(5.18) A=Al 7=yl

W = the interior of the set

(519)  {(B,V)€PrxPr: (B,A™) el (3), (V,U™) el (1)}

It follows from (5.17), (5.18), (5.12), (5.19), (5.8), (5.16), (5.14) and (5.10) that
(5.1)-(5.4) hold. We will show that (Ci) and C(ii) hold.

Assume that (B, V) € W and let (z,u) € X satisfy (5.5). By (5.5)
(5.20)

[lu(t) — a(t)|] < 2y for a.e. t € [T1,Ts], ||z(t) — Z(t)|| < 2v for all t € [T, Ts).

In view of (5.19) and the inclusion (B,V) e W for all t € [T, T3]
dp(B(t), A () < v, dr(V(1),U"2(1) < 7.

This implies that for all ¢ € [T}, T]
(5.21) dp(B(t) = a(t), A(t) — a(t)) < 7, dp(V(t) = u(t), VU2 () = u(t)) < 7.
It follows from (5.12), (5.8), (5.9) and (5.15) that for all t € [T7, T5]
(5.22) {ze€E:|lz—z®)||<re—r}C{ze€E: dp(z Alt)) <r} = A" (1)
and that for almost every ¢ € [T1, T3]
(5.23) {veF: [[v—at)]<ro—r}C{veF: dp(v,U(t) <rs}=U"(1).
In view of (5.20), (5.17) and (5.22) for all t € [T, T3]

{zeB: |z—a)ll <7} C{z€ E: [z —a()]] < 3y} < A1),
(5.24) {ze E: ||z]| <~} c AT (1) — x(t).
By (5.20), (5.17) and (5.23) for almost every t € [T, T3]

fveF: flo—u®)| <7} c{ve F: [lo—at)] <3y} cU(),
(5.25) {fveF: |jv]| <~} cUT™ () —u(t).

It follows from (5.24), (5.21) and Proposition 5.7 that for all ¢ € [T1, T3] we have
0 € B(t) — z(t). In view of (5.21), (5.25) and Proposition 5.7 for almost every
t € [T1,Ts] we have 0 € V(t) — u(t). Therefore C(i) holds.

Let us show that (Cii) hold. Assume that (z,u) € X satisfies

(5.26) x(t) € B(t) for all t € [Ty, T5],

(5.27) u(t) € V(t) for almost every t € [T1,Ty]
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and (z,v) € X satisfies (5.6). By (5.26), (5.8), (5.17)-(5.19) and the inclusion
(B, V) e W, forall t € [Tl,Tz]
dp(z(t), A(t)) < [|2(t) — z(®)]] + de(x(t), Az(t))
< |l2(t) —z(®)]| + dE(B(t) AT (1)) + 7y < By +72 <,
2(t) € AT (t) = A(t).
In view of (5.27), (5.9), (5.6), (5.17)- (5 19) and the inclusion (B, V) € W, for almost
every t € [Th, T3]
dp(v(t), U(t) < |[o(t) — u(@)|| + dr(u(t), U(t))
< |v(t) = u@®)|| + dr((t), UT(t)) + 1o < 3y + 19 < 70,
o(t) e UM (t) = U(¢).
Therefore C(ii) holds. This completes the proof of Proposition 5.8. O

6. PROOFS OF THEOREMS 4.1 AND 4.2

Set A; = M and Ay = £. In the case of Theorem 4.1 we put Ajs = Pg x Pr and
in the case of Theorem 4.2 put Az = Pp. Set D = N. For each a € M put ¢, = I
and for each H € L set

Sy ={(z,u) € X : z(T1) € B and 2'(t) = H(t,x(t),u(t)), t € [T1, To] a.e.}.
In the case of Theorem 4.1 for any a = (A,U) € Pg x Pr set
Qo ={(z,u) € X: z(t) € A(t), t € [Th,T5] and u(t) € U(t), t € [T1,T5] a.e.}.
In the case of Theorem 4.2 for any a € Pr set
Qo = {(z,u) € X : u(t) €a(t), t €[T1,Ts] a.e.}.

By (4.17) and Propositions 5.1 and 5.2, (A1) holds. In view of (4.17) and property
(viii), (A2) holds. By Theorem 2.1 we need to show that (H1) and (H2) hold. (H2)
follows from Proposition 5.2. Therefore we need only to verify (H1). In view of
Proposition 3.1 it is sufficient to show that (A3)-(A7) hold. Note that (A3) follows
from Proposition 5.3. Proposition 5.4 implies (A4). By Proposition 5.5, (A5) is true.
It is clear that (A6) follows from Proposition 5.6 and (A7) follows from Proposition
5.8. This completes the proof of Theorems 4.1 and 4.2.

7. EXTENSIONS OF THEOREMS 4.1 AND 4.2
We study the optimal control problem
I (z,u) — min, (z,u) € X({z},G,A,U)
where (f,G) e N, z€ E, A€ Pg, U € Pp.
For each a = (f,G,z, A,U) € N x E x Pg x Pp we define J, : X — R'U{cc} by
(7.1)  Ju(z,u) = I (z,u) if (z,u) € X({z},G, A,U), otherwise J,(z,u) = cc.
By Propositions 5.1 and 5.2 for each a € N' x E x Pg x Pg, J*: X — R' U {co}

is a lower semicontinuous functional on (X, p).
We will prove the following result.
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Theorem 7.1. Let A be the closure of the set {a € N x E x Pg x Pp: inf(J,) <
oo} in the space N x E x Pg X Pg with the strong topology. Then there erists
an everywhere dense (in the strong topology) subset B C A which is a countable
intersection of open (in the weak topology) subsets of A such that for each a € B
the minimization problem for J, on (X, p) is strongly well-posed with respect to A.

We also study the optimal control problem
I (z,u) — min, (z,u) € X({z},G, 4,U)

where (f,G) e N, z€ E, U € Pp.
For each a = (f,G,z,U) € N x E x Pg we define J, : X — R' U {00} by

(7.2)  Ju(z,u) = I (z,u) if (z,u) € X({z},G, A, U), otherwise Jo(x,u) = oo.

By Propositions 5.1 and 5.2 for each a € N X E x Pp, J%: X — R*U{oo} is a
lower semicontinuous functional on (X, p).
We will prove the following result.

~

Theorem 7.2. Let A be the closure of the set {a € N x E x Pp : inf(J,) < oo}
in the space N' x E x P with the strong topology. Then there exists an everywhere
dense (in the strong topology) subset B C A which is a countable intersection of
open (in the weak topology) subsets of A such that for each a € B the minimization

problem for J, on (X, p) is strongly well-posed with respect to A.

Proofs of Theorems 7.1 and 7.2. Set Ay = M and Ay = £ x E. In the case of
Theorem 7.1 we put A3 = Pg X Pp and in the case of Theorem 7.2 put A3 = Pr.
Set D =N x E. For each a € M put ¢, = I* and for each a = (H,z) € L x E set

S, ={(x,u) € X : x(T1) = z and 2'(t) = H(t,z(t),u(t)), t € [T}, Tr] a.e.}.
In the case of Theorem 7.1 for any a = (A,U) € Pr X Pr set
Qo ={(z,u) € X : x(t) € A(t), t € [T1,Ts] and u(t) € U(t), t € [T1,T3] a.e.}.
In the case of Theorem 7.2 for any a € P set
Qo ={(z,u) € X : u(t) € a(t), t € [Th,Tr] a.e.}.

By (4.17) and Propositions 5.1 and 5.2, (Al) holds. In view of (4.17), property
(viii) and the definition of N, (A2) holds. By Theorem 2.1 we need to show that
(H1) and (H2) hold. (H2) follows from Proposition 5.2. Therefore we need only
to verify (H1). In view of Proposition 3.1 it is sufficient to show that (A3)-(AT)
hold. Note that (A3) follows from Proposition 5.3. Proposition 5.4 implies (A4).
By Proposition 5.5, (A5) is true. It is clear that (A6) follows from Proposition 5.6
and (A7) follows from Proposition 5.8. This completes the proof of Theorems 7.1
and 7.2. g
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