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ON AVERAGED, FIRMLY NONEXPANSIVE AND
QUASI-NONEXPANSIVE OPERATORS, AND MORE OF THAT

GILBERT CROMBEZ

Abstract. For an operator T on a Hilbert space, inequalities that express the
behaviour of the distance between two original points compared to the distance
between their images under T , form the base of a hierarchical classification of
operators into three different families, each family consisting of classes indexed
by a nonnegative real parameter. We investigate proper inclusions between these
classes, we range some existing types of operators into the hierarchical classifica-
tion, and we extend an algorithm to obtain a common fixed point of a family of
operators to a more extended family.

1. Introduction

Let H be a real Hilbert space with inner product 〈, 〉 and norm ‖ ‖ derived from
it, let D ⊂ H be a nonempty subset of H, and let T : D → H be an (in general
nonlinear) operator (we use the words operator and mapping as synonyms). In
[10], we considered hierarchical structures, based on a nonnegative real number ν,
for each of two families of operators T : D → H but with the added condition
that each such T had a nonempty set FixT of fixed points. It led to what was
called, respectively, the classes of ν-firmly nonexpansive mappings on D and the
classes of ν-quasi nonexpansive mappings on D. As has been remarked in [10] , the
demand (and only reason) that in both families each operator had a nonempty set
of fixed points was justified by the resulting property that then, for each fixed ν,
the corresponding class of the first family was a subset of the corresponding class
of the second family.

Continuing the investigation on the hierarchical structure of those operators led
to the conclusion that a more complete (and more interesting) description could be
obtained when the defining inequality that formed the base of the ν-firmly nonex-
pansive mappings on D was also applied for operators T : D → H, whether or not
they have fixed points. As such, in the present paper a third family could be intro-
duced, in which the classes in each family are still determined by a nonnegative real
number ν. At the start of Section 2, these three families have been (re)-introduced,
leading for each fixed ν to the class FNE(D, ν) of ν-firmly nonexpansive mappings
(whether or not the mapping has fixed points), to the (sub)class FNEFIX(D, ν)
of ν-firmly nonexpansive mappings having a nonempty set of fixed points (and as
such we have the inclusion that FNEFIX(D, ν) ⊂ FNE(D, ν), and finally to the
class QNE(D, ν) of ν-quasi-nonexpansive mappings, in which by the mere definition
each mapping has fixed points. We look in particular at the existence of proper
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inclusions, both within one and the same family but for classes with different values
of ν, and between classes corresponding to the same value of ν but belonging to
different families.

In Section 3, we investigate some interesting properties of the obtained classes of
operators. For instance, we show in Proposition 3.1 that an operator T is averaged
(see [5],[6],[8]) if and only if T belongs to some class FNE(D, ν) for ν > 0. In
Proposition 3.4 it is shown that, when T belongs to some class FNE(D, ν) for ν > 0,
then T is strongly nonexpansive (the definition of a strongly nonexpansive operator
was introduced in [5]).

As we already remarked in [10], one of the possible applications of the introduced
hierarchical structures is that the inclusions that are connected to the hierarchy
may make it easier to investigate if results that have been proved formerly for a
small class of operators, may be extended to a superset of that class, and if such
extension needs to change some side-conditions of the former results. In the last
Section 4 of the present paper, we take a closer look at an existing algorithm to
obtain a common fixed point of a family of operators. The algorithm was described
in [8, Algorithm 1.2] for averaged operators. We look at the possibility to extend it
to the classes of operators QNE(H, ν) for ν > 0, under some stronger condition for
the relaxation coefficients.

2. Characterizations and hierarchical structure of the classes of
operators

Let H ≡ (H, 〈, 〉, ‖‖) be a real Hilbert space, D a nonempty subset of H, T : D →
H a mapping and ν a nonnegative real number. When T has a nonempty set of
fixed points, we denote that set as FixT .
In [10, Theorem 3 and Theorem 4], the following result has been proved for T :
D → H and for fixed ν ≥ 0:

Theorem 2.1. The following assertions are equivalent for all x ∈ D and all y ∈ D:
(i) ‖Tx − Ty‖2 ≤ ‖x − y‖2 − ν‖Tx − x − (Ty − y)‖2

(ii) 〈x − Tx − (y − Ty), T y − Tx〉 ≤ (
1 − ν

2
)‖Tx − x − (Ty − y)‖2

(iii) 〈x − Tx − (y − Ty), y − x〉 ≤ −(
1 + ν

2
)‖Tx − x − (Ty − y)‖2

(iv) ‖x − Tx − (y − Ty) +
1

1 + ν
(y − x)‖ ≤ 1

1 + ν
‖y − x‖

(v) ‖Tx − Ty‖2 ≤ (
1 − ν

2
)‖Tx − x − (Ty − y)‖2 + 〈x − y, Tx − Ty〉

(vi) ‖Tx − Ty‖2 ≤ 1 − ν

1 + ν
‖x − y‖2 +

2ν

1 + ν
〈Tx − Ty, x − y〉.

(vii) When 0 ≤ ν < 1: ‖Tx − Ty‖ ≤ ‖(1 − ν)(x − y) + ν(Tx − Ty)‖.

From Theorem 2.1, we derive for each fixed nonnegative ν the following classes
of mappings T : D → H: in the first place, when for T one of the equivalent
assertions in Theorem 2.1 for some given ν is valid, then we say that T is ν-firmly
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nonexpansive; the class of all such mappings is denoted as FNE(D, ν). Secondly,
the subclass of mappings T of FNE(D, ν) having a nonempty set FixT of fixed
points, is denoted by FNEFIX(D, ν). Hence, from the mere definition, we have that
both classes are connected by FNEFIX(D, ν) ⊂ FNE(D, ν) (we remark that in [10,
Definition 1 and Theorems 3 and 4] only the classes of operators with fixed points
have been introduced, but with another notation).

For fixed ν, a third class of operators T : D → H that will be used in this paper
has been introduced in [10, Definition 6]. It is, for fixed ν, the class QNE(D, ν) of
ν-quasi-nonexpansive mappings T : D → H, characterized as follows

Theorem 2.2 (see [10, Theorem 7]). Let ν be a fixed nonnegative real number and
let T : D → H be an operator with FixT 6= ∅. Then the following assertions are
equivalent for all x ∈ D and all z ∈FixT :

(i) ‖Tx − z‖2 ≤ ‖x − z‖2 − ν‖x − Tx‖2

(ii) 〈x − Tx, z − Tx〉 ≤ (
1 − ν

2
)‖x − Tx‖2

(iii) 〈x − Tx, z − x〉 ≤ −(
1 + ν

2
)‖x − Tx‖2

(iv) ‖x − Tx +
1

1 + ν
(z − x)‖ ≤ 1

1 + ν
‖z − x‖

(v) ‖Tx − z‖2 ≤ (
1 − ν

2
)‖x − Tx‖2 + 〈x − z, Tx − z〉

(vi) ‖Tx − z‖2 ≤ 1 − ν

1 + ν
‖x − z‖2 +

2ν

1 + ν
〈Tx − z, x − z〉

(vii) When 0 ≤ ν < 1: ‖Tx − z‖ ≤ ‖(1 − ν)(x − z) + ν(Tx − z)‖.

For a fixed ν, and based on the respective equivalent assertions for operators T in
FNEFIX(D, ν) (Theorem 2.1) and in QNE(D, ν) (Theorem 2.2) we obtain the inclu-
sion FNEFIX(D, ν) ⊂ QNE(D, ν) which, contrary to the inclusion FNEFIX(D, ν) ⊂
FNE(D, ν), is now an inclusion between classes of operators belonging to truly dif-
ferent families.

For particular values of ν, we recognize some well-known classes of operators.
For instance, from Theorem 2.1 (i), we immediately derive that for ν = 0 the class
FNE(D, 0) coincides with the class of nonexpansive operators on D ([2],[3],[11]),
while for ν = 1 the class FNE(D, 1) is precisely the class of firmly nonexpansive
operators on D ([2],[13],[14]). From Theorem 2.2 (i), we see that for ν = 0 the class
QNE(D, 0) is the class of quasi-nonexpansive operators (or general paracontractions)
on D ([9],[12],[15]). Theorem 2 (ii) shows that for ν = 1 the class QNE(D, 1)
coincides with the class I as defined in [4] and [7].

We now take a closer look at the interesting topic of the existence of proper
inclusions, either within one family of operators but corresponding to different values
of ν, or between different families of operators but corresponding to the same value
of ν.

From the assertions in Theorem 2.1 (i) and Theorem 2.2 (i), we derive that,
when µ and ν are real numbers with µ > ν ≥ 0, then FNE(D, µ) ⊂ FNE(D, ν),
FNEFIX(D, µ) ⊂ FNEFIX(D, ν) and QNE(D, µ) ⊂ QNE(D, ν). In particular, this
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leads to FNE(D, 0) =
⋃+∞

ν=0FNE(D, ν), and analogous expressions are valid for the
two other families.

Remark 2.3. In some parts of the proof of the next proposition, use will be made
of the following result: when C is a proper nonempty closed convex subset of H,
P is the projection operator onto C, 1 is the identity operator on H, and Tλ =
1 + λ(P − 1) with 0 < λ ≤ 2, then Tλ : H → H has C as a nonempty set of fixed
points, and for arbitrary x and y in H we have that

‖Tλx − Tλy‖2 ≤ ‖x − y‖2 − (
2 − λ

λ
)‖(Tλx − x) − (Tλy − y)‖2.

Hence, Tλ ∈ FNEFIX(H, ν) with ν = 2−λ
λ . Evidently, we also have that Tλ ∈

QNE(H, ν) with the same value of ν.

Proposition 2.4. The following proper inclusions are valid for real numbers µ and
ν:

a) When ν > 0, then
(i) FNEFIX(D, ν) $ FNEFIX(D, 0)
(ii) QNE(D, ν) $ QNE(D, 0)

b) When µ > ν > 0, then
(i) FNEFIX(D, µ) $ FNEFIX(D, ν)
(ii) QNE(D, µ) $ QNE(D, ν)

c) FNEFIX(D, 0) $ QNE(D, 0)
d) When 0 < ν < 1, then FNEFIX(D, ν) $ QNE(D, ν)

Proof. a)(i) Take for H the Euclidean space R2 in which an orthonormal reference
system xOy is chosen, and let T2 be reflection with respect to the x-axis. Then
T2 = 1 + 2(P − 1) where P is the projection operator onto the x-axis. By Remark
2.3, we know that T2 ∈FNEFIX(R2, 0). Taking in particular the points x = (0, 2)
and y = (1, 3), then ‖T2x − T2y‖2 = ‖x − y‖2, but ‖T2x − x − (T2y − y)‖2 = 4.
Hence, when ν > 0 then T2 /∈FNEFIX(R2, ν).

a)(ii) See Example 11 in [10].
b)(i) In order to make the proof somewhat more transparent, let ε be a real

number such that 0 < ε < 1, take for µ the value 1 and for ν the value 1−ε
1+ε . We’ll

apply Remark 2.3 for H = R2 and C the x-axis of an orthonormal reference system
in R2, in order to obtain that FNEFIX(R2, 1) $ FNEFIX(R2, 1−ε

1+ε). To this end, we
know from Remark 3 that when we take for λ the value 1+ε, then T1+ε belongs to the
class FNEFIX(R2, 1−ε

1+ε). We now show that T1+ε does not belong to FNEFIX(R2, 1).
Indeed, in order that T1+ε really should be an element of FNEFIX(R2, 1), it would
be necessary that the inequality ‖T1+εx−T1+εy‖2 ≤ ‖x−y‖2−1‖T1+εx−x−(T1+εy−
y)‖2 should be valid for all x ∈ R2 and all y ∈ R2. But taking the points x = (0, 2)
and y = (1, 3), it follows from an easy computation that ‖T1+εx−T1+εy‖2 = 1+ ε2,
that ‖x − y‖2 = 2, and that ‖T1+εx − x − (T1+εy − y)‖2 = (1 + ε)2. Hence, the
mentioned inequality is not valid for the chosen pair of points.

b)(ii) Consider the same example as in the proof of b)(i). We know that T1+ε be-
longs to QNE(R2, 1−ε

1+ε). In order to show that T1+ε is not an element of QNE(R2, 1),
it is sufficient to find a point x in R2 and a fixed point z of T1+ε such that the in-
equality ‖T1+εx − z‖2 ≤ ‖x − z‖2 − 1‖x − T1+εx‖2 is not valid. Take x = (0, 2),
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z = (0, 0). Then T1+εx = (0,−2ε) and x− T1+εx = (0, 2 + 2ε), and it follows easily
that the stated inequality is not valid.

c) (See also Example 2.3 in [15]). Let H = R, and let T : R → R be the
mapping defined by T0 = 0 and, for x 6= 0, Tx = 2

3x sin 1
x . Then FixT = {0}, and

we see immediately that |Tx − 0|2 ≤ |x − 0|2. Hence, T ∈ QNE(R, 0). But T /∈
FNEFIX(R, 0). Indeed, taking x = 2

π and y = 2
3π we have that |Tx− Ty| > |x− y|.

d) We first remark that, when ν is given with 0 < ν < 1, then there exists
a positive integer N (that we choose to the bigger than 2) such that ν ≤ N−1

N+1 .
Indeed, there exists ε > 0 such that ν = 1 − ε. Choose N > 2 such that ε ≥ 2

N+1 .
Then ν = 1 − ε ≤ 1 − 2

N+1 , and hence ν ≤ N−1
N+1 .

For this value of N , define T : R → R such that T0 = 0 and Tx = 1
N x cos 1

x , for
x ∈ R\{0}. Then Fix T = {0}. The operator T belongs to QNE(D, ν), since the
inequality (i) of Theorem 2.2 is true for z = 0 and for all x ∈ R. Indeed, for x 6= 0
we have

∣∣∣∣
1
N

x cos
1
x

∣∣∣∣
2

≤ |x|2 − ν

∣∣∣∣x − 1
N

x cos
1
x

∣∣∣∣
2

⇐⇒ 1
N2

cos2
1
x
≤ 1 − ν

∣∣∣∣1 − 1
N

cos
1
x

∣∣∣∣
2

.

Now, the maximal value of the left-hand side of the obtained inequality is 1
N2 , and

the minimal value of the right-hand side is 1− ν(1 + 1
N )2. Hence, in order that the

needed inequality is true, it is sufficient that 1
N2 ≤ 1−ν(1+ 1

N )2, and this is fulfilled
since ν ≤ N−1

N+1 .
We now show that the operator T does not belong to FNEFIX(D, ν). This is

done by choosing two points x and y in R for which inequality (i) in Theorem
2.1 is not true. Choose x = 1

(N−1)π , y = 1
Nπ , and suppose for the moment that

N is even (for N odd, the following computation is immediately adapted). Then
Tx − Ty = −2N+1

N2(N−1)π
, x − y = 1

N(N−1)π , and Tx − x − (Ty − y) = −3N+1
N2(N−1)π

. Now,
in order that inequality (i) in Theorem (2.1) should be true for those two points,
the following inequality has to be true.

∣∣∣∣
−2N + 1

N2(N − 1)π

∣∣∣∣
2

≤
∣∣∣∣

1
N(N − 1)π

∣∣∣∣
2

− ν

∣∣∣∣
−3N + 1

N2(N − 1)π

∣∣∣∣
2

,

and this is the case if and only if (−2N +1)2 ≤ N2 − ν(−3N +1)2, and continuing,
this is true if and only if ν ≤ −3N2+4N−1

(−3N+1)2
. In the right-hand side of this last

inequality, the denominator is positive; however, the numerator is negative when
we assume that N > 2. Hence, ν should have to be negative, and this is clearly a
contradiction. ¤

3. Some properties of operators in connection to their class

The hierarchical structure of the classes of operators, based on the proper in-
clusions as described in the foregoing section, makes it acceptable to assume that
properties of operators may be connected, in the first place, to the family of op-
erators they belong to (either .-quasi -nonexpansive or .-firmly nonexpansive) and
secondly, within each family, to the specific class(es) they belong to defined by one
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value of ν or by grouping some values of ν (e.g., ν ≥ 1, or ν 6= 0, etc.). In this
section, we mention a few of those properties.

As for the first property, we recall that an operator T : D → H is called averaged
(or α-averaged)([5],[6],[8]) iff there exists a nonexpansive operator N and a real
number α ∈]0, 1[ such that T = (1 − α)1D + αN (where 1D denotes the identity
operator on D). Our first property shows that the family of all averaged operators
is precisely the union of all classes FNE(D, ν) for ν > 0.

Proposition 3.1.

T is averaged ⇐⇒ T ∈ FNE(D, ν) for ν > 0.

Proof. Suppose that T is α-averaged. Then there exists α ∈]0, 1[ and a nonexpansive
operator N such that T = (1−α)1D + αN . We know that the family of the nonex-
pansive operators is precisely the family FNE(D, 0). Put ν = 1−α

α , or equivalently
α = 1

1+ν ; then ν > 0. Hence, T may also be represented as T = 1
1+ν N + ν

1+ν 1D.We
show that T ∈ FNE (D, ν). Since N = (1 + ν)T − ν1D, we have, for x ∈ D and
y ∈ D:

‖Nx − Ny‖2 − ‖x − y‖2

= ‖(1 + ν)(Tx − Ty) − ν(x − y)‖2 − ‖x − y‖2

= (1 + ν)2‖Tx − Ty‖2 − (1 − ν2)‖x − y‖2 − 2ν(1 + ν)〈Tx − Ty, x − y〉.

The left-hand side of the resulting equality is nonpositive, and so the same is true
for the right-hand side. Dividing the three terms of the right-hand side by (1 + ν)2

and rearranging, there results

‖Tx − Ty‖2 ≤ 1 − ν

1 + ν
‖x − y‖2 +

2ν

1 + ν
〈Tx − Ty, x − y〉.

According to Theorem 2.1, (vi), this means precisely that T ∈ FNE(D, ν).
Conversely, suppose that T ∈ FNE(D, ν) is given for some ν > 0. Define the

operator N by N = (1 + ν)T − ν1D. By the same computation as above we have

1
(1 + ν)2

[‖Nx − Ny‖2 − ‖x − y‖2]

= ‖Tx − Ty‖2 − 1 − ν

1 + ν
‖x − y‖2 − 2ν

1 + ν
〈Tx − Ty, x − y〉.

The right-hand side of this equality is nonpositive, according to Theorem 2.1,(vi).
So the same is true for the left-hand side; since 1

(1+ν)2
> 0, we conclude that N is

nonexpansive. Writing α = 1
1+ν we obtain that T = αN + (1 − α)1D. Hence, T is

α-averaged. ¤

Let T be an element of FNE(D, ν), ν ≥ 0. Then, the inequality (i) of Theorem
2.1 is true for T . Put S = 1D − T . Replacing in the mentioned inequality T by
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1D − S, and elaborating, we get

T ∈ FNE(D, ν)

⇐⇒ ‖x − Sx − (y − Sy)‖2 ≤ ‖x − y‖2 − ν‖x − Sx − x − (y − Sy − y)‖2

⇐⇒ ‖Sx − Sy‖2 + ‖x − y‖2 − 2〈Sx − Sy, x − y〉 ≤ ‖x − y‖2 − ν‖Sx − Sy‖2.

We formulate the obtained result as follows (cfr. [6, Lemma 2.1])

Proposition 3.2. For ν ≥ 0 and for S = 1D − T we have T ∈ FNE(D, ν) if and
only if (1+ν

2 )‖Sx − Sy‖2 ≤ 〈Sx − Sy, x − y〉

In [5], Bruck and Reich introduced the following definition.

Definition 3.3. Let E be a Banach space. An operator T : D(T ) ⊂ E → E
is called strongly nonexpansive if T is nonexpansive and if the following is true:
whenever the sequence {xn − yn} is bounded and ‖xn − yn‖ − ‖Txn − Tyn‖ → 0,
then (xn − yn) − (Txn − Tyn) → 0.

They proved the following result: when E is uniformly convex and T is firmly
nonexpansive, then T is strongly nonexpansive.

When working in a Hilbert space, a firmly nonexpansive operator T belongs
to FNE(D, 1). We are able to generalize the property of Bruck and Reich for all
operators T : D → H that belong to FNE(D, ν) for ν > 0, as follows:

Proposition 3.4. When T ∈ FNE(D, ν) with ν > 0, then T is strongly nonexpan-
sive.

Proof. Since FNE(D, ν) ⊂ FNE(D, 0), T is certainly nonexpansive. According to
Theorem 2.1, (i), we know that for each positive integer n the following inequality
is true

‖Txn − Tyn‖2 − ‖xn − yn‖2 ≤ −ν‖Txn − xn − (Tyn − yn)‖2,

and so also the next inequality (3.1) is true for each such n

(3.1) (‖Txn − Tyn‖ − ‖xn − yn‖)(‖Txn − Tyn‖ + ‖xn − yn‖)
≤ −ν‖Txn − xn − (Tyn − yn)‖2.

Now, when the assumptions for controlling strong nonexpansivity are true, then
the first factor on the left-hand side tends to zero, in the second factor on the
left-hand side the sequence {‖xn − yn‖} is a bounded sequence of numbers, and
it is easy to show that also the sequence of numbers ‖Txn − Tyn‖ is bounded.
Together, this leads to the result that the left-hand side of (3.1) tends to zero. The
sequence formed by the numbers of the right-hand side of (3.1) consists of non-
positive numbers that are not smaller than those on the left-hand side, and those
tend to zero. Hence, also ν‖Txn − xn − (Tyn − yn)‖2 → 0. So, when ν 6= 0, then
(xn − yn) − (Txn − Tyn) → 0. ¤
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The former result is of course also valid for the operators belonging to
FNEFIX(D, ν) with ν > 0. Each class FNEFIX(D, ν), however, is properly con-
tained in the class QNE(D, ν). We now give a possible adaptation of the notion
of strongly nonexpansive operator T for classes of ν-quasi-nonexpansive operators,
followed by an extension of Proposition 3.4 for such classes.

Definition 3.5. An operator T : D → H is called strongly quasi-nonexpansive if T
is quasi-nonexpansive and if the following is true: whenever for a sequence of fixed
points zn of T the sequence {xn − zn} is bounded and ‖xn − zn‖−‖Txn − zn‖ → 0,
then xn − Txn → 0.

Proposition 3.6. When T∈ QNE(D, ν) with ν > 0, then T is strongly quasi-
nonexpansive.

Proof. The proof follows completely the same pattern as the proof of Proposition
3.4. So, it will not be elaborated again. ¤

4. An algorithm to obtain a common fixed point of a family of
ν-quasi-nonexpansive operators

The algorithm that we want to investigate, is Algorithm 1.2 in [8]; it goes as
follows:

Fix x0 ∈ H and, for every n ∈ N, set

xn+1 = xn + λn(T1,n(T2,n(· · ·Tm−1,n(Tm,nxn + em,n) + em−1,n · · · )
+ e2,n) + e1,n − xn),

where m is a fixed positive integer, where each Ti,n (1 ≤ i ≤ m) is an αi,n-
averaged operator on H, where each ei,n (1 ≤ i ≤ m) is a vector in H, and where
each λn ∈]0, 1].

As we have seen, the averaged operators on H are those that belong to the classes
FNE(H, ν) for ν > 0. We will investigate that same algorithm for the classes of
operators QNE(H, ν) for ν > 0 which, as we know, form supersets of the former
ones. We are interested, in particular, if meaningful results for the algorithm, when
applied to the broader class of operators, are still valid, but possibly with suitable
adaptations. In order to make the computations somewhat easier to follow, we shall
take for m the value 4. So, we consider the following

Algorithm 4.1. Starting from some point x0 ∈ H and, for every n ∈ N, set

xn+1 = xn + λn(T1,n(T2,n(T3,n(T4,nxn + e4,n) + e3,n) + e2,n) + e1,n − xn),

where, for each i with 1 ≤ i ≤ 4, Ti,n belongs to QNE(H, νi,n) with νi,n > 0, ei,n

belongs to H, and where λn ∈]0, 1].

The essential elements needed to assure weak convergence of an orbit of Algorithm
4.1 are given in the following

Theorem 4.2. Let (xn)n∈N be an arbitrary orbit of Algorithm 4.1. Suppose that

(a) F =
+∞⋂

n=0

4⋂

i=1

FixTi,n 6= ∅
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and

(b) ∀i, 1 ≤ i ≤ 4 :
∑

n∈N
λn‖ei,n‖ < +∞.

Then:
(i) The sequence (xn)n∈N is quasi-Fejér monotone with respect to F and, hence,

it is bounded.
(ii) For fixed z ∈ F , put

e∗n = λn(T1,n(T2,n(T3,n(T4,nxn + e4,n) + e3,n) + e2,n) + e1,n − z).

Then the sequence {‖e∗n‖}n∈N is bounded.
(iii) For fixed z ∈ F , put ζ = supn ‖xn − z‖ and η = 2ζ + supn ‖e∗n‖. Then

‖xn+1 − z‖2 ≤ (1 − λn)‖xn − z‖2 + η‖e∗n‖.
(iv) When

∑
n∈N λn < +∞ , then

∑
n∈N ‖e∗n‖ < +∞.

(v) When
∑

n∈N λn < +∞, we have
(v)a

∑
n∈N λnν1,n‖(1 − T1,n)T2,nT3,nT4,nxn‖2 < +∞

(v)b
∑

n∈N λnν2,n‖(1 − T2,n)T3,nT4,nxn‖2 < +∞
(v)c

∑
n∈N λnν3,n‖(1 − T3,n)T4,nxn‖2 < +∞

(v)d
∑

n∈N λnν4,n‖(1 − T4,n)xn‖2 < +∞
(v)e For fixed z ∈ F

∑

n∈N
λn‖T1,nT2,nT3,nT4,nxn − z‖2 < +∞.

Proof. (i) Take z ∈ F . Then

(4.1) xn+1 − z = (1 − λn)(xn − z)

+ λn(T1,n(T2,n(T3,n(T4,nxn + e4,n) + e3,n) + e2,n) + e1,n − z).

Since each Ti,n is also quasi-nonexpansive, i.e., belongs to QNE(H, 0), we obtain
after repeated application of the characteristic inequality of quasi-nonexpansivity
together with the triangle inequality

‖T1,n(T2,n(T3,n(T4,nxn + e4,n) + e3,n) + e2,n) + e1,n − z‖(4.2)

≤ ‖e1,n‖ + ‖T2,n(T3,n(T4,nxn + e4,n) + e3,n) + e2,n) − z‖
≤ ‖e1,n‖ + ‖e2,n‖ + ‖T3,n(T4,nxn + e4,n) + e3,n − z‖
≤ · · ·
≤ ‖e1,n‖ + ‖e2,n‖ + ‖e3,n‖ + ‖e4,n‖ + ‖xn − z‖.

Hence, taking norms in (4.1), we obtain

‖xn+1 − z‖ ≤ (1 − λn)‖xn − z‖ + λn‖xn − z‖ + λn

4∑

i=1

‖ei,n‖(4.3)

= ‖xn − z‖ + λn

4∑

i=1

‖ei,n‖.
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According to assumption (b) of Theorem 4.2, we know that
∑

n∈N λn(
∑4

i=1 ‖ei,n‖) <
+∞. This means, according to Definition 1.1 in [7], that the sequence (xn)n∈N is
quasi-Fejér monotone of type I with respect to F . As a consequence, the sequence
(xn)n∈N is bounded.

We remark that for the proof of this part we only used the fact that all operators
are quasi-nonexpansive; hence, this result would still be valid when all Ti,n should
belong to QNE(H, 0).

(ii) Putting z∗n = xn + λn(z − xn), it follows easily that

(4.4) z∗n + e∗n = xn+1.

From inequality (4.2) in the proof of (i) above we may write that
‖e∗n‖
λn

≤
∑4

i=1 ‖ei,n‖ + ‖xn − z‖, and hence

(4.5) ‖e∗n‖ ≤ λn(
4∑

i=1

‖ei,n‖) + λn‖xn − z‖.

From assumption (b) of this Theorem, the sequence with general term
λn (

∑4
i=1 ‖ei,n‖) is bounded. Moreover, due to the result in (i), we know that

also the sequence {xn}n∈N is bounded, and we know that λn ∈]0, 1] for each n.
Hence, sup ‖e∗n‖ < +∞.

(iii) From (4.4) we derive that ‖xn+1−z‖ ≤ ‖z∗n−z‖+‖e∗n‖. Hence, ‖xn+1−z‖2 ≤
‖z∗n − z‖2 + (2‖z∗n − z‖ + ‖e∗n‖)‖e∗n‖. But, from the definition of z∗n we derive that
‖z∗n−z‖ = (1−λn)‖xn−z‖, from which we conclude that‖z∗n−z‖ ≤ ‖xn−z‖. Using
these last two results in the inequality concerning ‖xn+1 − z‖2 in (iii), we deduce:

‖xn+1 − z‖2 ≤ (1 − λn)2‖xn − z‖2 + η‖e∗n‖
≤ (1 − λn)‖xn − z‖2 + η‖e∗n‖.

(iv) The result of (iv) follows immediately from inequality (4.5).
(v) From Theorem 2.2, (i) in the present paper, we know that for each u ∈ H, for

each z ∈ F , for each i with 1 ≤ i ≤ 4 and for each n ∈ N the following inequality is
true:

(4.6) ‖Ti,nu − z‖2 ≤ ‖u − z‖2 − νi,n‖u − Ti,nu‖2.

This leads, by using (4.6) a number of times, to

‖T1,nT2,nT3,nT4,nxn − z‖2

≤ ‖T2,nT3,nT4,nxn − z‖2 − ν1,n‖T2,nT3,nT4,nxn − T1,nT2,nT3,nT4,nxn‖2

= ‖T2,nT3,nT4,nxn − z‖2 − ν1,n‖(1 − T1,n)(T2,nT3,nT4,nxn)‖2

≤ · · ·
≤ ‖xn − z‖2

− ν4,n‖(1 − T4,n)xn‖2

− ν3,n‖(1 − T3,n)T4,nxn‖2

− ν2,n‖(1 − T2,n)T3,nT4,nxn‖2

− ν1,n‖(1 − T1,n)(T2,nT3,nT4,nxn)‖2.
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Introducing, as in [8], the following notation for operators S1, S2, S3, S4

u4
k=iSk =

{
SiSi+1 · · ·S4, if i ≤ 4
1, otherwise ,

the finally obtained inequality may be rewritten as

(4.7)
4∑

i=1

νi,n‖(1 − Ti,n) u4
k=i+1 Tk,nxn‖2

≤ ‖xn − z‖2 − ‖T1,nT2,nT3,nT4,nxn − z‖2.

Multiplying both members of inequality (4.8) with λn and adding to the newly
obtained inequality stated in (iii) of the present theorem, there results after some
simplification

(4.8) λn

4∑

i=1

νi,n‖(1 − Ti,n) u4
k=i+1 Tk,nxn‖2

≤ ‖xn − z‖2 − ‖xn+1 − z‖2 − λn‖T1,nT2,nT3,nT4,nxn − z‖2 + η‖e∗n‖.
Summing up, for n going from 0 to some positive integer N , we get

N∑

n=0

λn

4∑

i=1

νi,n‖(1 − Ti,n) u4
k=i+1 Tk,nxn‖2

+
N∑

n=0

λn‖T1,nT2,nT3,nT4,nxn − z‖2

≤ ‖x0 − z‖2 + η
N∑

n=0

‖e∗n‖.

Due to the assumption that
∑

n∈N λn < +∞ and to result (iv) of the present
theorem, we know that the right-hand side of the obtained inequality tends to a
finite limit when N goes to infinity. This leads to the stated results (v)a,· · · ,(v)e. ¤

We remark that the results in (v) of this theorem may be seen as replacements for
the results (ii) and (iii) in Theorem 3.1 in [8], under the additional condition that∑

n∈N λn < +∞ but for operators that now are ν-quasi-nonexpansive for ν 6= 0. As
a consequence, also the analogous results of Theorem 3.2 and Theorem 3.3 in [8]
could be stated.
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[7] P. L. Combettes, Quasi-Fejérian analysis of some optimization algorithms, Inherently parallel
algorithms in feasibility and optimization and their applications (D. Butnariu, Y. Censor and
S. Reich, eds.), North-Holland, Amsterdam, 2001, pp. 115–152.

[8] P. L. Combettes, Solving monotone inclusions via compositions of nonexpansive averaged op-
erators, Optimization 53 (2004), 477–506.

[9] G. Crombez, Finding common fixed points of strict paracontractions by averaging strings of
sequential iterations, J. Nonlinear Convex Anal. 3 (2002), 345–351.

[10] G. Crombez, A hierarchical presentation of operators with fixed points on Hilbert spaces ,
Numer. Funct. Anal. Optim. 27 (2006), 259–277.

[11] F. Deutsch and I. Yamada, Minimizing certain convex functions over the intersection of the
fixed point sets of nonexpansive mappings, Numer. Funct. Anal. Optim. 19 (1998), 33–56.

[12] L. Elsner, I. Koltracht and M. Neumann, Convergence of sequential and asynchronous nonlin-
ear paracontractions, Numer. Math. 62 (1992), 305–319.

[13] S. D. Flam, Successive averages of firmly nonexpansive mappings, Math. Oper. Res. 20 (1995),
497–512.

[14] K. C. Kiwiel and B. Lopuch, Surrogate projection methods for finding fixed points of firmly
nonexpansive mappings, SIAM J. Optim. 7 (1997), 1084–1102.

[15] V. Vasin and A. Ageev, Ill-posed problems with a priori information, VSP, Utrecht, 1995.

Manuscript received June 2, 2006

revised April 3, 2007

Gilbert Crombez
Department of Pure Mathematics and Computer Algebra, Ghent University, Krijgslaan 281 - S25,
B-9000 Gent, Belgium

E-mail address: Gilbert.Crombez@UGent.be


