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ABOUT SUBDIFFERENTIAL CALCULUS FOR ABSTRACT
CONVEX FUNCTIONS

E. V. SHARIKOV

Abstract. We introduce a stronger version of the strong globalization property
of Rolewicz and examine the corresponding subdifferential calculus for abstract
convex functions. In particular, we calculate a formula for the abstract subdif-
ferential of the maximum of a finite set of abstract convex functions. We also
present some examples of families of functions, which possess this new strong
globalization property.

1. Introduction

In this paper we examine the subdifferential calculus for some classes of abstract
convex functions. We are concentrating mainly on the maximum of a finite set of
functions. The maximum of abstract convex functions is always abstract convex
with respect to the same set of elementary functions. So the question “How is
the subdifferential of the maximum of some functions via the subdifferentials of
given functions expressed?” is natural. Subdifferential calculus is important for
applications of abstract convex analysis, so it is interesting to find conditions that
provide the exact formula for the subdifferential of the maximum. We show that
such a formula can be given in terms of abstract convex hull with respect to a
certain subset of elementary functions (see Corollary 4.1).

Our main goal in this paper is to show that the subdifferential calculus is not a
privilege of convex analysis only. We indicate some conditions which guarantee the
existence of a calculus in abstract convex case.

In the paper [4] S. Rolewicz introduced the notion of the strong globalization
property. He says that a set Φ of functions defined on a topological space X has the
strong globalization property if for every Φ-convex function f and for every point
y ∈ X each local Φ-subgradient of f at y can be extended to a global one. Here, into
the definition of the strong globalization property, we put a more rigid condition.
Namely, we say that Φ has the strong globalization property if for every Φ-convex
function f and for every point y ∈ X, each local Φ-subgradient of f at y is also a
global one. We show that in such a case subdifferential calculus can be expressed in
terms of special functions that approximate in a certain sense the given functions.

In Section 2 we recall some definitions on abstract convexity which will be used
in the paper. Section 3 contains some general results related to the subdifferential
of a maximum of two abstract convex functions. In Section 4 we examine the
subdifferential calculus in the case when the set of elementary functions has the
strong globalization property. Section 5 contains some examples.
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2. Preliminaries

Let X be a topological space and H be a set of functions h : X → R. Recall
(see [5]) that a function f defined on X is called H-convex if f(x) = sup{h(x) :
h ∈ supp(f,H)} ∀x ∈ X, where supp(f, H) = {h ∈ H : h ≤ f}. Here h ≤ f
means that h(x) ≤ f(x) for all x ∈ X. The mapping f 7→ supp(f, H) is called
a Minkowski duality. Let U ⊂ H and f(x) = sup{h(x) : h ∈ U}. Then the set
coH U = {h ∈ H : h ≤ f} is called the H-convex hull of U . It is known (see [5],
Theorem 7.16) that

(2.1) supp(max(f1, f2),H) = coH(supp(f1,H) ∪ supp(f2,H)),

where f1 and f2 are H-convex functions.
Let L be a set of functions l : X → R. Here and in the rest of the paper let

HL denote the set of functions h(x) = l(x) − c, where l ∈ L and c ∈ R. Let
f : X → R+∞ = R∪ {+∞} and y ∈ dom f = {x ∈ X : f(x) < +∞}. Then the set
∂Lf(y) defined by

(2.2) ∂Lf(y) = {l ∈ L : l(x) − l(y) ≤ f(x) − f(y) ∀x ∈ X}
is called the abstract subdifferential of the function f at the point y ∈ X with
respect to L. We will need ε-subdifferentials as well. Let ε ≥ 0. The set

∂L,εf(y) = {l ∈ L : l(x) − l(y) ≤ f(x) − f(y) + ε ∀x ∈ X}
is called the ε-subdifferential of the function f at y with respect to L. Consider also
the following set (see [5], p. 364)

DLf(y) = {h ∈ HL : h(x) = l(x) − l(y), l ∈ ∂Lf(y)}.
It is clear that a function h ∈ HL belongs to DLf(y) if and only if

h(y) = 0 and h(x) ≤ f(x) − f(y) ∀x ∈ X.

Remark 2.1. For the sake of convenience we assume that for f(y) = +∞ the sets
∂Lf(y), ∂L,εf(y) and DLf(y) are defined as empty sets. So if we write“the set
DLf(y) is nonempty” then we mean, in particular, that y ∈ dom f .

In this paper we provide a basis for further development of applications of abstract
convexity to optimization. For this purpose we need to develop subdifferential
calculus. Note that if 0 ∈ L then a function f attains its global minimum at a point
y if and only if 0 ∈ ∂Lf(y). If 0 6∈ L then it is more convenient to consider the
set DLf(y). Then we have the following sufficient condition for a global minimum:
if DLf(y) contains a nonnegative function then f(y) ≤ f(x) for all x ∈ X. The
equivalent form of this assertion: if ∂Lf(y) contains a function that attains its global
minimum at y then f(y) ≤ f(x) ∀x ∈ X. Thus the calculus of subdifferentials is a
very important problem.

In this paper we are only presenting some general results related to the calculus of
abstract subdifferentials. Detailed examination of some particular nonconvex cases
is the theme of further research.

We will use HL,y to denote the set of all h ∈ HL such that h(y) = 0, that is
HL,y = {l − l(y) : l ∈ L}. The symbol fy also denotes the function fy(x) =
f(x) − f(y) (here y ∈ dom f).
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If T ⊂ HL,y then the HL,y-convex hull of T is defined as follows

(2.3) coHL,y
T =

{
h ∈ HL,y : h(x) ≤ sup

t∈T
t(x) ∀x ∈ X

}
.

3. Subdifferentials of the maximum of two abstract convex
functions

It is more convenient to formulate all statements in terms of the set DLf(y).
First we present some general inclusions for which additional assumptions are not
needed.

Proposition 3.1. Let f1, f2 be HL-convex functions and f1(y) = f2(y). Then

(3.1) coHL,y
(DLf1(y) ∪ DLf2(y)) ⊂ DL(max{f1, f2})(y).

Proof. If (l − l(y)) ∈ coHL,y
(DLf1(y) ∪ DLf2(y)) then

l(x) − l(y) ≤ sup
h∈DLf1(y)∪DLf2(y)

h(x)

= max

{
sup

t∈∂Lf1(y)
(t(x) − t(y)), sup

t∈∂Lf2(y)
(t(x) − t(y))

}

≤ max{f1(x) − f1(y), f2(x) − f2(y)}
= max{f1(x), f2(x)} − max{f1(y), f2(y)}.

So (l − l(y)) ∈ DL(max{f1, f2})(y). ¤

For some special types of HL-convex functions f1, f2 we can get equality instead
of the inclusion in (3.1).

Proposition 3.2. Let f1, f2 be functions defined on X such that the functions
f1y, f2y are HL,y-convex and f1(y) = f2(y). Then

DL(max{f1, f2})(y) = coHL,y
(DLf1(y) ∪ DLf2(y)).

Proof. If is clear that DLf(y) = supp(fy,HL,y) for any function f . Since f1(y) =
f2(y) then (max{f1, f2})y = max{f1y, f2y}. Formula (2.1) gives us the equality

supp(max{f1y, f2y},HL,y) = coHL,y
(supp(f1y, HL,y) ∪ supp(f2y,HL,y))

for HL,y-convex functions f1y, f2y. Hence

DL(max{f1, f2})(y) = supp((max{f1, f2})y,HL,y) = supp(max{f1y, f2y},HL,y)

= coHL,y
(supp(f1y,HL,y) ∪ supp(f2y, HL,y))

= coHL,y
(DLf1(y) ∪ DLf2(y)). ¤

The following example demonstrates that the equality

DL(max{f1, f2})(y) = coHL,y
(DLf1(y) ∪ DLf2(y))

does not necessarily hold for arbitrary HL-convex functions f1, f2 with f1(y) =
f2(y).
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Example 3.1. Let X = R and L consists of all linear functions and the function
l(x) = x2. Consider the functions f1, f2:

f1(x) =

{
x2, x ≤ 0,

0, x ≥ 0.
f2(x) =

{
0, x ≤ 0,

x2, x ≥ 0.

Note that f1 and f2 are HL-convex and f1(0) = f2(0). At the same time, both f1y

and f2y are not HL,y-convex for y = 0. It is clear that DLf1(0) = DLf2(0) = {0},
hence coHL,0

(DLf1(0)∪DLf2(0)) = {0}. But the function f(x) = max{f1(x), f2(x)}
coincides with elementary function l(x) = x2, therefore l ∈ DLf(0). This means
that DL(max{f1, f2})(0) 6= coHL,0

(DLf1(0) ∪ DLf2(0)).

Further, consider a multifunction A : X × 2HL × 2HL → 2HL , where 2HL is the
set of all nonempty subsets of HL.

Proposition 3.3. Let y ∈ X. Assume that the inclusion

(3.2) A(y,DLg1(y),DLg2(y)) ⊂ DL(max{g1, g2})(y)

holds for all HL-convex functions g1, g2 such that the sets DLg1(y),DLg2(y) are
nonempty and g1(y) = g2(y). Let f1, f2 be HL-convex functions such that the sets
DLf1(y),DLf2(y) are nonempty and f1(y) = f2(y). If

A(y,DLf1(y),DLf2(y)) = DL(max{f1, f2})(y)

then

(3.3) DL(max{f1, f2})(y) = coHL,y
(DLf1(y) ∪ DLf2(y)).

Proof. Let f1, f2 be HL-convex functions such that the sets DLf1(y),DLf2(y) are
nonempty, f1(y) = f2(y) and A(y,DLf1(y),DLf2(y)) = DL(max{f1, f2})(y). Con-
sider the functions

gi(x) = sup{h(x) + fi(y) : h ∈ DLfi(y)}
= sup{h(x) : h(y) = fi(y), h ∈ supp(fi,HL)}.

It is clear that g1(y) = f1(y) = f2(y) = g2(y) and g1y, g2y are HL,y-convex. Propo-
sition 3.2 implies the equality DL(max{g1, g2})(y) = coHL,y

(DLg1(y) ∪ DLg2(y)).
Since

DLgi(y) = {h ∈ HL,y : h ≤ gi − gi(y)}

=

{
h ∈ HL,y : h(x) ≤ sup

h′∈DLfi(y)
h′(x) ∀x ∈ X

}
= DLfi(y)

then A(y,DLg1(y),DLg2(y)) = A(y,DLf1(y),DLf2(y)). Hence

DL(max{f1, f2})(y) = A(y,DLf1(y),DLf2(y)) = A(y,DLg1(y),DLg2(y))(3.4)

⊂ DL(max{g1, g2})(y) = coHL,y
(DLg1(y) ∪ DLg2(y))

= coHL,y
(DLf1(y) ∪ DLf2(y)).

Combining the above inclusion with Proposition 3.1 yields the equality
DL(max{f1, f2})(y) = coHL,y

(DLf1(y) ∪ DLf2(y)). ¤
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Proposition 3.4. Let y ∈ X. Assume that

coHL,y
(DLf1(y) ∪ DLf2(y)) ⊂ A(y,DLf1(y),DLf2(y)) ⊂ DL(max{f1, f2})(y)

for all HL-convex functions f1, f2 such that the sets DLf1(y),DLf2(y) are nonempty
and f1(y) = f2(y). Then for all such functions f1, f2

A(y,DLf1(y),DLf2(y)) = coHL,y
(DLf1(y) ∪ DLf2(y)).

Proof. Using the same functions gi as in the proof of Proposition 3.3 we conclude
that A(y,DLf1(y),DLf2(y)) ⊂ coHL,y

(DLf1(y) ∪ DLf2(y)) (see (3.4)). However,
coHL,y

(DLf1(y) ∪ DLf2(y)) ⊂ A(y,DLf1(y),DLf2(y)) by our assumptions. So we
obtain the desired equality. ¤

Example 3.1 and Proposition 3.3 show that, in general, the set DL(max{f1, f2})(y)
cannot be described in terms of the sets DLf1(y) and DLf2(y).

At the same time the equality DL(max{f1, f2})(y) = coHL,y
(DLf1(y) ∪DLf2(y))

is valid for broad classes of HL-convex functions. However the mapping coHL,y
can

be very complicated.

Proposition 3.5. Let L be a set of functions defined on a set X. Let L consist of
all functions l(x) = max{l1(x), l2(x) + c}, where l1, l2 ∈ L and c ∈ R. Then

DL(max{f1, f2})(y) = coHL,y
(DLf1(y) ∪ DLf2(y))

for all HL-convex functions f1, f2 and all points y ∈ X such that the sets DLf1(y),
DLf2(y) are nonempty and f1(y) = f2(y).

Proof. It is clear that HL ⊂ HL and a function is HL-convex if and only if it is
HL-convex. Let f1 and f2 be HL-convex functions (then they are also HL-convex).
Let y ∈ X be a point such that the sets DLf1(y) and DLf2(y) are nonempty and
f1(y) = f2(y). First we will prove that

(3.5) sup{hi(x) : hi ∈ DLfi(y)} = fi(x) − fi(y) ∀x ∈ X ∀ i = 1, 2.

For this purpose we only need to check that sup{hi(x) : hi ∈ DLfi(y)} ≥ fi(x) −
fi(y). For each i = 1, 2 choose an arbitrary function h′

i ∈ DLfi(y). Since h′
i ∈ HL

then h′
i(x) = max{l1i (x), l2i (x) + ci} + c′i, where l1i , l

2
i ∈ L and ci, c

′
i ∈ R. For

the sake of definiteness assume that h′
i(y) = l1i (y) + c′i. Then l1i (y) + c′i = 0 and

l1i (x) + c′i ≤ fi(x) − fi(y) for all x ∈ X. For every ti ∈ supp(fi,HL) consider the
function hti defined by

hti(x) = max{l1i (x) + c′i, ti(x) − fi(y)}.
We see that hti ∈ HL, hti(y) = 0 and hti(x) ≤ fi(x) − fi(y) ∀x ∈ X, that is
hti ∈ DLfi(y). Since fi is HL-convex then

sup{ti(x) − fi(y) : ti ∈ supp(fi,HL)} = fi(x) − fi(y) ∀x ∈ X.

Hence

sup{hi(x) : hi ∈ DLfi(y)} ≥ sup{hti(x) : ti ∈ supp(fi,HL)}
≥ sup{ti(x) − fi(y) : ti ∈ supp(fi,HL)}
= fi(x) − fi(y) ∀x ∈ X.
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So the equalities (3.5) hold true. This means that

coHL,y
(DLf1(y) ∪ DLf2(y))

= {h ∈ HL,y : h(x) ≤ max{f1(x) − f1(y), f2(x) − f2(y)} ∀x ∈ X}
= DL(max{f1, f2})(y). ¤

Under the assumptions of Proposition 3.5, in order to describe the sets DLf1(y)
and DLf2(y) we need to know all support functions of f1 and f2 with respect to
HL. In other words, we need to know the values of the functions f1 and f2 at
each point x ∈ X. These sets can be very complicated, and therefore the set
coHL,y

(DLf1(y) ∪ DLf2(y)) is also complicated.
In the next sections we will consider one special case when the subdifferential

calculus is possible. We will assume that the subdifferential has a local nature.
This means that for the description of a set DLf(y) we need to know the behaviour
of the function f only in a neighbourhood of the point y. This allows us to give a
sufficiently simple description of DLf(y).

4. Subdifferential calculus in case that HL has the strong
globalization property

Let H be a set of functions defined on a topological space X. We say that H
has the strong globalization property if for any H-convex function f , for any point
y ∈ X and for any h ∈ H the following implication holds

(4.1) (h(y) = f(y), h(x) ≤ f(x) in a neighbourhood of y)

=⇒ (h(x) ≤ f(x) for all x ∈ X).

For instance, it was shown in [4] (see Example 5.4) that the set H of all continuous
affine functions defined on a topological linear space X has the strong globalization
property.

Remark 4.1. Assume that H has the strong globalization property. Then every
subset H ′ ⊂ H also has the strong globalization property since any H ′-convex
function is H-convex.

Now let L be a set of functions defined on X. As above, HL denotes the set of all
vertical shifts of functions l ∈ L. Assume that HL has the strong globalization prop-
erty. Take an HL-convex function f and a point y ∈ X. Let U be a neighbourhood
of y. Then the following equality holds

(4.2) ∂Lf(y) = {l ∈ L : l(x) − l(y) ≤ f(x) − f(y) ∀x ∈ U}.
Indeed, let l ∈ L and l(x) − l(y) ≤ f(x) − f(y) ∀x ∈ U . Then the function h(x) =
l(x) − l(y) + f(y) belongs to HL. Moreover, h(y) = f(y) and h(x) ≤ f(x) ∀x ∈ U .
Hence h(x) ≤ f(x) for all x ∈ X. This implies l ∈ ∂Lf(y).

Similarly, we have the equality for the set DLf(y)

(4.3) DLf(y) = {h ∈ HL : h(y) = 0, h(x) ≤ f(x) − f(y) ∀x ∈ U}.
The following proposition demonstrates a technique that can be applied for sub-

differential calculus. We assume that the space Rn is equipped with the usual
coordinate-wise order relation: a ≤ b if and only if ai ≤ bi for all i = 1, . . . , n
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(a, b ∈ Rn). We will consider increasing continuous mappings M : Rn → R. For
example, the mappings M(a) =

∑
i ai and M(a) = maxi ai (a = (a1, . . . , an) ∈ Rn)

are increasing and continuous on Rn. Moreover, the maximum of abstract convex
functions is always abstract convex. Hence the mapping M(a) = maxi ai verifies
the assumptions of Propositions 4.1 and 4.4 irrespective of the set HL.

For y ∈ X let U(y) denote the set of all neighbourhoods of y.

Proposition 4.1. Let M : Rn → R be an increasing continuous mapping such
that for all h1, . . . , hn ∈ HL the function M(h1(x), . . . , hn(x)) is HL-convex. Let
y ∈ X and f1, . . . , fn be HL-convex functions such that fi(x) < +∞ for all x from a
neighbourhood of the point y. Assume that HL has the strong globalization property.
Then for every h ∈ DLM(f1, . . . , fn)(y) the following inequalities hold

h(x) ≤ M(F1(x), . . . , Fn(x)) − M(F1(y), . . . , Fn(y)) for all x ∈ X,

where

Fi(x) = inf
ε>0

inf
U∈U(y)

sup
z∈U

sup{hi(x) : hi ∈ supp(fi,HL), hi(z) ≥ fi(z) − ε}.

Proof. Since the mapping M : Rn → R is continuous and increasing then for any
sets Ai ⊂ R (i = 1, . . . , n)

M

(
sup

a1∈A1

a1, . . . , sup
an∈An

an

)
= sup

ai∈Ai

M(a1, . . . , an),

M

(
inf

a1∈A1

a1, . . . , inf
an∈An

an

)
= inf

ai∈Ai

M(a1, . . . , an).
(4.4)

(Here we assume that M(b1, . . . , bj , . . . , bn) = limb→bj
M(b1, . . . , b, . . . , bn) for bj =

±∞).
Consider the following sets

Ti(U, ε) =
⋃

z∈U

{hi ∈ supp(fi,HL) : hi(z) ≥ fi(z) − ε},

where U ∈ U(y) and ε > 0.
Let U ′ be a neighbourhood of y such that fi(x) < +∞ for all i and x ∈ U ′. Since

all functions fi are HL-convex then for any Ui ∈ U(y) and εi > 0

(4.5) fi(x) = sup
hi∈Ti(Ui,εi)

hi(x) ∀x ∈ Ui ∩ U ′.

In particular, the equality fi(y) = suphi∈Ti(Ui,εi) hi(y) holds for any Ui ∈ U(y) and
εi > 0. Hence

(4.6) Fi(y) = inf
εi>0

inf
Ui∈U(y)

sup
hi∈Ti(Ui,εi)

hi(y) = fi(y).

So let h ∈ DLM(f1, . . . , fn)(y). Then

h(x) ≤ M(f1(x), . . . , fn(x)) − M(f1(y), . . . , fn(y)) for all x ∈ X.

Due to (4.5), (4.6) and (4.4) we have for any neighbourhoods Ui ∈ U(y) and εi > 0
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h(x) ≤ M

(
sup

h1∈T1(U1,ε1)
h1(x), . . . , sup

hn∈Tn(Un,εn)
hn(x)

)
− M(F1(y), . . . , Fn(y))

(4.7)

= sup
hi∈Ti(Ui,εi)

M(h1(x), . . . , hn(x)) − M(F1(y), . . . , Fn(y)) ∀x ∈
n⋂

i=1

(Ui ∩ U ′).

Note that, by our assumptions, each function M(h1(x), . . . , hn(x)) is HL-convex,
and therefore for any Ui ∈ U(y) and εi > 0 the function

(4.8) sup
hi∈Ti(Ui,εi)

M(h1(x), . . . , hn(x)) − M(F1(y), . . . , Fn(y)) (x ∈ X)

is HL-convex as well. Moreover, by (4.7), each function (4.8) is not less than h(x)
in a neighbourhood of the point y and interpolates h at y (it is equal to zero at y).
Since HL has the strong globalization property it follows that

h(x) ≤ sup
hi∈Ti(Ui,εi)

M(h1(x), . . . , hn(x)) − M(F1(y), . . . , Fn(y)) ∀x ∈ X.

This implies (see (4.4))

h(x) ≤ inf
εi>0

inf
Ui∈U(y)

sup
hi∈Ti(Ui,εi)

M(h1(x), . . . , hn(x)) − M(F1(y), . . . , Fn(y))

= M(F1(x), . . . , Fn(x)) − M(F1(y), . . . , Fn(y)) ∀x ∈ X. ¤

Assume that the set DLf(y) is nonempty. Then we can introduce the following
function defined on X

(4.9) appf,y(x) = inf
U∈U(y)

sup
z∈U, DLf(z)6=∅

sup
h∈DLf(z)

(h(x) + f(z)), (x ∈ X).

We will show that the function appf,y can be considered as an approximation of
the function f near the point y. In the classical convex case we can estimate this
function using ε-subdifferentials (see Proposition 4.5 and Example 4.1).

First we prove some properties of the function appf,y.

Proposition 4.2. Let y ∈ X and f : X → R+∞ be a function such that DLf(y) 6= ∅.
Then

(4.10) appf,y(y) = f(y), sup
h∈DLf(y)

(h(x) + f(y)) ≤ appf,y(x) ≤ f(x) ∀x ∈ X.

Moreover, DL(appf,y)(y) = DLf(y).

Proof. Since y ∈ U for each U ∈ U(y) we have that appf,y(x) ≥ suph∈DLf(y)(h(x)+
f(y)) for all x ∈ X. In particular, appf,y(y) ≥ suph∈DLf(y)(h(y) + f(y)) = f(y).
Inequality appf,y ≤ f is trivial since h(x) + f(z) ≤ f(x) for any h ∈ DLf(z).

Since appf,y(y) = f(y) and appf,y ≤ f then DL(appf,y)(y) ⊂ DLf(y). Take a
function h ∈ DLf(y). Then

h(x) = (h(x)+f(y))−f(y) ≤ sup
h′∈DLf(y)

(h′(x)+f(y))−f(y) ≤ appf,y(x)−appf,y(y),
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hence h ∈ DL(appf,y)(y). ¤

Proposition 4.3. Let y ∈ X and f, g be HL-convex functions such that DLf(y) 6= ∅
and DLg(y) 6= ∅. Assume that HL has the strong globalization property. If f(x) =
g(x) in a neighbourhood U ′ of y then appf,y = appg,y.

Proof. Let z ∈ U ′ ∩ dom f ∩ dom g. Then U ′ is also a neighbourhood of z and, by
(4.3), we have

DLf(z) = {h ∈ HL : h(z) = 0, h(x) ≤ f(x) − f(z) ∀x ∈ U ′}
= {h ∈ HL : h(z) = 0, h(x) ≤ g(x) − g(z) ∀x ∈ U ′} = DLg(z).

Since we can take in (4.9) inf(U∈U(y),U⊂U ′) instead of infU∈U(y) then
appf,y = appg,y. ¤

So if HL has the strong globalization property and f is an HL-convex function
such that DLf(y) 6= ∅ then, in view of Propositions 4.2 and 4.3, we can say that the
function appf,y approximates the function f near the point y in the following sense:
the function appf,y depends only on the local behaviour of f at y, interpolates f
at y and does not exceed f on the whole space X. The equality DL(appf,y)(y) =
DLf(y) shows that such an approximation is closely connected with the notion of
the subdifferential. Note that the function t(x) = suph∈DLf(y)(h(x)+f(y)) enjoys all
these properties as well. However, due to the inequalities t(x) ≤ appf,y(x) ≤ f(x)
(see (4.10)), the approximation appf,y(x) is better than t(x).

A main question now is to establish conditions which guarantee that the approx-
imations appf,y(x) and t(x) = suph∈DLf(y)(h(x) + f(y)) coincide on X.

If DLf(z) is nonempty in a neighbourhood of y then

(4.11) appf,y(x) = lim sup
z→y

sup
h∈DLf(z)

(h(x) + f(z)) for all x ∈ X.

So for each fixed x ∈ X we have: appf,y(x) = suph∈DLf(y)(h(x)+f(y)) if and only if
the function u(z) = suph∈DLf(z)(h(x) + f(z)) is upper semicontinuous at the point
y.

Proposition 4.4. Let M : Rn → R be an increasing continuous mapping such that
for all h1, . . . , hn ∈ HL the function M(h1(x), . . . , hn(x)) is HL-convex. Let y ∈ X
and f1, . . . , fn be HL-convex functions such that the sets DLf1(z), . . . ,DLfn(z) are
nonempty in a neighbourhood of y. If HL has the strong globalization property then

(4.12) DLM(f1, . . . , fn)(y) = DLM
(
appf1,y, . . . , appfn,y

)
(y).

Proof. If h ∈ DLM
(
appf1,y, . . . , appfn,y

)
(y) then

h(x) ≤ M
(
appf1,y(x), . . . , appfn,y(x)

)
−M

(
appf1,y(y), . . . , appfn,y(y)

)
∀x ∈ X.

Since the mapping M is increasing then, due to Proposition 4.2,

h(x) ≤ M(f1(x), . . . , fn(x)) − M(f1(y), . . . , fn(y)) ∀x ∈ X,

hence h ∈ DLM(f1, . . . , fn)(y).
Conversely, let h ∈ DLM(f1, . . . , fn)(y). In this part of the proof we will use the

same arguments as those in the proof of Proposition 4.1. Let U ′ be a neighbourhood
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of y such that the sets DLfi(z) are nonempty for all i and z ∈ U ′. By definition of
DLfi(z) we have for all z ∈ U ′

fi(z) = sup
hi∈DLfi(z)

(hi(z) + fi(z)), fi(x) ≥ sup
hi∈DLfi(z)

(hi(x) + fi(z)) ∀x ∈ X.

Hence for any neighbourhood Ui ∈ U(y)

fi(x) = sup
z∈Ui∩U ′

sup
hi∈DLfi(z)

(hi(x) + fi(z)) ∀x ∈ Ui ∩ U ′,

and therefore (see (4.4))

h(x)

≤ M(f1(x), . . . , fn(x)) − M(f1(y), . . . , fn(y))

= M

(
sup

z∈U1∩U ′
sup

h1∈DLf1(z)
(h1(x) + f1(z)), . . . , sup

z∈Un∩U ′
sup

hn∈DLfn(z)
(hn(x) + fn(z))

)

− M
(
appf1,y(y), . . . , appfn,y(y)

)

= sup
zi∈Ui∩U ′

sup
hi∈DLfi(zi)

M ((h1(x) + f1(z1)), . . . , (hn(x) + fn(zn)))

− M
(
appf1,y(y), . . . , appfn,y(y)

)
∀x ∈

n⋂

i=1

(Ui ∩ U ′).

Since HL has the strong globalization property then this inequality holds for all
x ∈ X. So, due to (4.4), we conclude that for all x ∈ X

h(x)

≤ inf
Ui∈U(y)

sup
zi∈Ui∩U ′

sup
hi∈DLfi(zi)

M ((h1(x) + f1(z1)), . . . , (hn(x) + fn(zn)))

− M
(
appf1,y(y), . . . , appfn,y(y)

)

= inf
Ui∈U(y)

sup
(zi∈Ui, DLfi(zi) 6=∅)

sup
hi∈DLfi(zi)

M ((h1(x) + f1(z1)), . . . , (hn(x) + fn(zn)))

− M
(
appf1,y(y), . . . , appfn,y(y)

)

= M
(
appf1,y(x), . . . , appfn,y(x)

)
− M

(
appf1,y(y), . . . , appfn,y(y)

)
. ¤

Corollary 4.1. Assume that HL has the strong globalization property. Assume
that f1, . . . , fn are HL-convex functions and take a point y ∈ X such that the sets
DLf1(z), . . . ,DLfn(z) are nonempty in a neighbourhood of y and

appfi,y(x) = sup
h∈DLfi(y)

(h(x) + fi(y)) for all x ∈ X, i = 1, . . . , n.

If f1(y) = · · · = fn(y) then

(4.13) DL(max{f1, . . . , fn})(y) = coHL,y

n⋃

i=1

DLfi(y).

If all functions fi are continuous at y then

(4.14) DL(max{f1, . . . , fn})(y) = coHL,y

⋃

i∈I

DLfi(y),
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where I = {i : fi(y) = max{f1(y), . . . , fn(y)}}.

Proof. Let M(a1, . . . , an) = max{a1, . . . , an}. Then M satisfies the conditions of
Proposition 4.4. Hence, by (4.12)

(4.15) DL(max{f1, . . . , fn})(y) = DL(max{appf1,y, . . . , appfn,y})(y).

Let f1(y) = · · · = fn(y). Since appfi,y(y) = fi(y) (see (4.10)) then we have

max{appf1,y(x), . . . , appfn,y(x)} − max{appf1,y(y), . . . , appfn,y(y)}

= max

{
sup

h∈DLf1(y)
h(x) + f1(y), . . . , sup

h∈DLfn(y)
h(x) + fn(y)

}
− max{f1(y), . . . , fn(y)}

= max
i

sup
h∈DLfi(y)

h(x).

So a function h′ ∈ HL,y belongs to DL(max{appf1,y, . . . , appfn,y})(y) if and only if
h′(x) ≤ maxi suph∈DLfi(y) h(x) for all x ∈ X. In other words (see (2.3))

DL(max{appf1,y, . . . , appfn,y})(y) = coHL,y

n⋃

i=1

DLfi(y).

This and (4.15) give us the required equality (4.13).
If all functions fi are continuous at the point y then there exists a neighbourhood

U of y such that max{f1(x), . . . , fn(x)} = maxi∈I fi(x) for all x ∈ U . Since HL has
the strong globalization property then

DL(max{f1, . . . , fn})(y) = DL

(
max
i∈I

fi

)
(y).

At the same time, fi(y) = fj(y) for any i, j ∈ I. Then it follows from the first part
of the proof that

DL

(
max
i∈I

fi

)
(y) = coHL,y

⋃

i∈I

DLfi(y).

Thus the equality (4.14) holds true. ¤

Corollary 4.2. Let conditions of Proposition 4.4 hold, M(h1, . . . , hn) ∈ HL for all
hi ∈ HL and

appfi,y(x) = sup
h∈DLfi(y)

(h(x) + fi(y)) for all x ∈ X and i = 1, . . . , n.

Then

DLM(f1, . . . , fn)(y)

= coHL,y
[M(DLf1(y) + f1(y), ..,DLfn(y) + fn(y)) − M(f1(y), .., fn(y))] ,

where [M(DLf1(y) + f1(y), . . . ,DLfn(y) + fn(y)) − M(f1(y), . . . , fn(y))] is the set
of all functions of the form

h(x) = M(h1(x) + f1(y), . . . , hn(x) + fn(y)) − M(f1(y), . . . , fn(y))

with hi ∈ DLfi(y) for all i = 1, . . . , n.
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Proof. It is sufficient to note that, by our conditions, every function

h(x) = M(h1(x)+f1(y), . . . , hn(x)+fn(y))−M(f1(y), . . . , fn(y)) with hi ∈ DLfi(y)

belongs to HL,y.
Due to (4.12) a function h′ ∈ HL,y belongs to DLM(f1, . . . , fn)(y) if and only if

h′(x)

≤ M(appf1,y(x), . . . , appfn,y(x)) − M(appf1,y(y), . . . , appfn,y(y))

= M

(
sup

h∈DLf1(y)
(h(x) + f1(y)), . . . , sup

h∈DLfn(y)
(h(x) + fn(y))

)

− M(f1(y), . . . , fn(y))

= sup
hi∈DLfi(y)

[M(h1(x) + f1(y), . . . , hn(x) + fn(y)) − M(f1(y), . . . , fn(y)] ∀x ∈ X.

The proof is completed. ¤
For example, if M(a1, . . . , an) = a1+· · ·+an then, under assumptions of Corollary

4.2, the sum (f1 + · · · + fn) of HL-convex functions fi is HL-convex as well and

DL(f1 + · · · + fn)(y) = coHL,y
(DLf1(y) + · · · + DLfn(y)).

So the main problem now is to find conditions which guarantee the equality
appf,y(x) = suph∈DLf(y)(h(x) + f(y)). Since appf,y(x) ≥ suph∈DLf(y)(h(x) + f(y))
then we are interested in the inverse inequality. In the following proposition we
estimate function appf,y using ε-subdifferentials.

Proposition 4.5. Let y ∈ X. Assume that for any HL-convex function g the
following implication holds:

(4.16) lim sup
x→y

g(x) < +∞ =⇒ g is continuous at y.

Let a function f be HL-convex and continuous at y. If the set DLf(y) is nonempty
then

(4.17) appf,y(x) ≤ lim
ε→+0

sup
l∈∂L,εf(y)

(l(x) − l(y) + f(y)) for all x ∈ X.

Proof. First we will prove that for each ε > 0 a neighbourhood Uε of the point y
exists such that

(4.18) l(y) − l(z) + f(z) ≥ f(y) − ε for all z ∈ Uε, l ∈ ∂Lf(z).

Assume it is not true. Then a number ε > 0 exists such that for any neighbourhood
U of the point y we can find z ∈ U and l ∈ ∂Lf(z), for which the inequality
(l(y) − l(z) + f(z)) < (f(y) − ε) holds.

Then consider the function

g(x) = sup{l(x) − l(z) + f(z) : z ∈ X, l ∈ ∂Lf(z), l(y) − l(z) + f(z) < f(y) − ε}.
This function is HL-convex, g(x) ≤ f(x) for all x ∈ X and g(y) ≤ f(y) − ε.
Moreover, due to our assumption, for any neighbourhood U of the point y a point
z ∈ U exists such that g(z) ≥ f(z), hence lim supz→y g(z) ≥ lim infz→y f(z). Since
f is continuous at the point y and g(y) ≤ f(y) − ε then lim supz→y g(z) ≥ f(y) >
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f(y) − ε ≥ g(y). Hence g is discontinuous at y and, by (4.16), we conclude that
lim supz→y g(z) = +∞. On the other hand, since g ≤ f and f is continuous at
y then lim supz→y g(z) ≤ lim supz→y f(z) = f(y) < +∞, which contradicts the
equality lim supz→y g(z) = +∞.

So for each ε > 0 a neighbourhood Uε of y exists such that (4.18) holds. Then
for any z ∈ Uε and l ∈ ∂Lf(z) we have

l(x)− l(y) = (l(x)− l(z) + f(z))− (l(y)− l(z) + f(z)) ≤ f(x)− f(y) + ε ∀x ∈ X.

This implies that l ∈ ∂L,εf(y) for all l ∈ ∂Lf(z) with z ∈ Uε. Therefore

(4.19) sup
l∈∂Lf(z), z∈Uε

(l(x)−l(y)+f(y)) ≤ sup
l∈∂L,εf(y)

(l(x)−l(y)+f(y)) for all x ∈ X.

At the same time, since (−l(z) + f(z)) ≤ (−l(y) + f(y)) whenever l ∈ ∂Lf(z) then
(4.20)

sup
l∈∂Lf(z), z∈Uε

(l(x) − l(z) + f(z)) ≤ sup
l∈∂Lf(z), z∈Uε

(l(x) − l(y) + f(y)) for all x ∈ X.

It follows from the inequalities (4.19) and (4.20) that

sup
l∈∂Lf(z), z∈Uε

(l(x) − l(z) + f(z)) ≤ sup
l∈∂L,εf(y)

(l(x) − l(y) + f(y)) for all x ∈ X.

Hence

appf,y(x)

= inf
U∈U(y)

sup
z∈U, l∈∂Lf(z)

(l(x) − l(z) + f(z))

≤ inf
ε>0

sup
z∈Uε, l∈∂Lf(z)

(l(x) − l(z) + f(z))

≤ inf
ε>0

sup
l∈∂L,εf(y)

(l(x) − l(y) + f(y)) = lim
ε→+0

sup
l∈∂L,εf(y)

(l(x) − l(y) + f(y)). ¤

Remark 4.2. Implication (4.16) means that every HL-convex function g is contin-
uous at y whenever a neighbourhood U of y and a number c ∈ R exist such that
g(u) ≤ c for all u ∈ U . Note that this implication can be false even in the case
when all elements of HL are continuous. For example, let g : R → R be the function
defined by: g(x) = 0 if x ≤ 0 and g(x) = 1 if x > 0. Then g can be represented
as the supremum of a family of continuous functions. We see that g is uniformly
bounded on R. However g is discontinuous at zero.

Example 4.1. Let L be the set of all linear continuous functions defined on a
normed space X. Then every HL-convex function is convex in usual sense. It was
proved in ([2], Proposition 2.2.6) that a convex function g defined on X is Lipschitz
continuous at y ∈ X provided that g is bounded above in a neighbourhood of y.
Thus we conclude that the condition (4.16) is valid in the classical convex case.

The other approach to examining the equality appf,y(x) = suph∈DLf(y)(h(x) +
f(y)) is based on upper semicontinuity of the mapping DLf(·). We will use the
following definition of upper semicontinuity of set valued mappings due to Berge
[1]. Let X and T be topological spaces. We say that a mapping D : X → 2T is
upper semicontinuous at y ∈ X if, for any open set G ⊂ T such that D(y) ⊂ G, a
neighbourhood U of y exists such that D(u) ⊂ G for all u ∈ U .
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Proposition 4.6. Let L consist of continuous functions. Assume that the set HL

is equipped with the topology of pointwise convergence. Let f be an HL-convex
function, y ∈ X and let the sets DLf(z) be nonempty in a neighbourhood of y.
If f is continuous at the point y and DLf(·) is upper semicontinuous at y then
appf,y(x) = suph∈DLf(y)(h(x) + f(y)) for all x ∈ X.

Proof. Firstly, since f is continuous at y then (see (4.11))

appf,y(x) = lim sup
z→y

sup
h∈DLf(z)

(h(x) + f(z)) = f(y) + lim sup
z→y

sup
h∈DLf(z)

h(x).

Take ε > 0 and x ∈ X. Let t denote the function t(z) = suph∈DLf(z) h(x). Let
Gε = {h ∈ HL : ∃ g ∈ DLf(y) |h(x) − g(x)| < ε}. Then Gε is an open set and
DLf(y) ⊂ Gε. Since the mapping DLf(·) is upper semicontinuous at y then there
is a neighbourhood U of the point y such that T := ∪z∈UDLf(z) ⊂ Gε, hence

sup
z∈U

t(z) = sup
z∈U

sup
h∈DLf(z)

h(x) = sup
h∈T

h(x) ≤ sup
h∈Gε

h(x)

= sup{h(x) : h ∈ HL, ∃ g ∈ DLf(y) |h(x) − g(x)| < ε}
≤ sup{h(x) : h ∈ HL, ∃ g ∈ DLf(y) (h(x) − g(x)) < ε}
≤ sup

g∈DLf(y)
g(x) + ε = t(y) + ε.

This means that t is upper semicontinuous at y, therefore

appf,y(x) = f(y) + lim sup
z→y

t(z) ≤ f(y) + t(y) = sup
h∈DLf(y)

(h(x) + f(y)).

The reverse inequality suph∈DLf(y)(h(x) + f(y)) ≤ appf,y(x) follows from Proposi-
tion 4.2. ¤

5. Examples

Let X and Y be topological spaces and ω : X → Y an open continuous mapping.
Let L be a set of functions defined on ω(X) = {ω(x) : x ∈ X}. Let L be the
set of all functions l(x) = `(ω(x)) defined on X, where ` ∈ L. Then the set of all
HL-convex functions coincides with the set of functions f(x) = g(ω(x)), where g is
HL-convex.

Proposition 5.1. If HL has the strong globalization property then also HL has the
strong globalization property.
If g is an HL-convex function, y = ω(x) and

appg,y(z) = sup
h∈DLg(y)

(h(z) + g(y)) ∀ z ∈ ω(X),

then the following equalities hold for the function f = g ◦ ω

appf,x(z) = sup
h∈DLf(x)

(h(z) + f(x)) ∀ z ∈ X.

Proof. Assume that HL has the strong globalization property, and let h ∈ HL. Let
f(x) = g(ω(x)) be an HL-convex function such that

h(y) = f(y), h(x) ≤ f(x) ∀x ∈ U,
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where U is a neighbourhood of y. Since h(x) = `(ω(x)) − c then `(ω(y)) − c =
g(ω(y)), `(ω(x))−c ≤ g(ω(x)) ∀x ∈ U . Since ω is an open mapping then U ′ = ω(U)
is a neighbourhood of the point ω(y). Because HL has the strong globalization
property, we have `(z) − c ≤ g(z) for all z ∈ ω(X) and h(x) ≤ f(x) for all x ∈ X.
So we proved that HL has the strong globalization property.

Let us prove the second part of proposition. Let g be HL-convex, y = ω(x) and
appg,y(z) = suph∈DLg(y)(h(z)+g(y)) for all z ∈ ω(X). It is clear that (`−`(ω(t))) ∈
DLg(ω(t)) if and only if (` ◦ ω − `(ω(t))) ∈ DLf(t). Hence

appf,x(z) = inf
U∈U(x)

sup
t∈U

sup
h∈DLg(ω(t))

(h(ω(z)) + g(ω(t))).

Since ω is a continuous and open mapping then

appf,x(z) = inf
U ′∈U(ω(x))

sup
t∈U ′

sup
h∈DLg(t)

(h(ω(z)) + g(t)).

Thus, using also our assumption, we obtain

appf,x(z) = appg,y(ω(z)) = sup
h∈DLg(y)

(h(ω(z)) + g(y))

= sup
h∈DLg(ω(x))

(h(ω(z)) + g(ω(x))) = sup
h∈DLf(x)

(h(z) + f(x)). ¤

Note that, under the conditions of Proposition 5.1, we have a simple isomorphism
between HL-convex and HL-convex functions. If f = g ◦ ω then infx∈X f(x) =
infy∈ω(X) g(y). So if HL has the strong globalization property but the elementary
functions h ∈ HL seem difficult then we can use such isomorphism in order to get
a more convenient equivalent form of abstract convex functions.

Proposition 5.2. Let X and V be topological spaces. Let H be a set of functions
h : X → R. Assume that for each two points x, y ∈ X there exists a continuous
mapping ω : V → X such that x, y ∈ ω(V ) and Hω has the strong globalization
property, where Hω is the set of all functions h′ : V → R defined by h′(v) = h(ω(v)),
(h ∈ H). Then H has the strong globalization property.

Proof. Let f : X → R+∞ be H-convex function. Let y ∈ X and h ∈ H be a function
such that h(y) = f(y) and h(x) ≤ f(x) for all x from a neighbourhood U of the
point y. Take a point x ∈ X and consider a mapping ω : V → X, which satisfies
the conditions of our proposition for the points x, y. Let ω(v1) = y and ω(v2) = x.
Consider the functions h′, f ′ defined on V by the formulas: h′(v) = h(ω(v)), f ′(v) =
f(ω(v)). Then h′ belongs to Hω, and f ′ is Hω-convex. Since ω is continuous then
a neighbourhood U ′ of the point v1 exists such that ω(v) ∈ U for all v ∈ U ′. Hence
h′(v1) = h(y) = f(y) = f ′(v1) and h′(v) = h(ω(v)) ≤ f(ω(v)) = f ′(v) for all v ∈ U ′.
Since Hω has the strong globalization property then h′(v) ≤ f ′(v) for all v ∈ V . In
particular, h(x) = h′(v2) ≤ f ′(v2) = f(x). ¤

Now consider the simplest case X = R.

Proposition 5.3. Let L be a set of continuous functions defined on R. Assume
that for any functions h1, h2 ∈ HL and for any points x1, x2 ∈ X the following
implication holds

(5.1) (h1(x1) = h2(x1), h1(x2) = h2(x2), x1 6= x2) =⇒ (h1 = h2).
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Let y ∈ R and f be an HL-convex function such that the sets DLf(z) are nonempty
in a neighbourhood U of y. Then for any h ∈ HL implication (4.1) holds.

Proof. Let U be a neighbourhood of y such that DLf(z) 6= ∅ for all z ∈ U . Let
h ∈ HL be an elementary function such that h(y) = f(y) and h(x) ≤ f(x) for all
x ∈ U ′, where U ′ is a neighbourhood of y. We need to check that h(x) ≤ f(x) for
all x ∈ R.

First we will show that h(x) ≤ f(x) for any x > y. Let x > y. Then a point
z ∈ U ∩ U ′ exists such that x > z > y. Since z ∈ U then DLf(z) 6= ∅. Take an
arbitrary function hz ∈ DLf(z). Then hz(y) + f(z) ≤ f(y) = h(y). Moreover, since
z ∈ U ′ then h(z) ≤ f(z) = hz(z)+ f(z). Consider the function h′(t) = hz(t)+ f(z).
Since HL is closed under vertical shifts and hz ∈ HL then h′ ∈ HL. So for these z, y
and h, h′ ∈ HL we have

(5.2) z > y, h′(y) ≤ h(y), h(z) ≤ h′(z).

Note that, under our assumptions, HL consists of continuous functions. Then, due
to (5.2), a point t1 ∈ [y, z] exists such that h′(t1) = h(t1).

Now suppose that h(x) > h′(x). This means, in particular, that h 6= h′. It follows
from (5.1) that h′(t) 6= h(t) for any t 6= t1. Then, by (5.2), either h′(y) < h(y) or
h(z) < h′(z). If h(z) < h′(z) then a point t2 ∈ (z, x) exists such that h′(t2) = h(t2),
which contradicts our assumption. Hence h′(y) < h(y) and y < t1. Take a positive
number ε such that ε < min{h(y) − h′(y), h(x) − h′(x)} and consider the function
hε(t) = h′(t) + ε. Then hε ∈ HL. Moreover, the following inequalities hold

(5.3) hε(t1) > h(t1), hε(y) < h(y), hε(x) < h(x).

Since y < t1 < x and the functions hε and h are continuous then, by (5.3), we
can find two different points a ∈ (y, t1) and b ∈ (t1, x) such that hε(a) = h(a) and
hε(b) = h(b). Then, by (5.1), hε = h, which contradicts (5.3).

So we conclude that h(x) ≤ h′(x). Since h′(x) = hz(x) + f(z) and hz ∈ DLf(z)
then h′(x) ≤ f(x). Thus we have proved that h(x) ≤ f(x) for any x > y.

The same arguments show that h(x) ≤ f(x) for all x < y. ¤

Proposition 5.4. Let L be a set of continuous functions defined on R such that
(5.1) is valid for HL. Assume also that for any sequence {hi} ⊂ HL the fol-
lowing holds: if a function h ∈ HL and an interval (a, b) ⊂ R exist such that
limi→+∞ hi(x) = h(x) for all x ∈ (a, b) then limi→+∞ hi(x) = h(x) for all x ∈ R.
Then HL has the strong globalization property.

Proof. Let f be an HL-convex function and y ∈ R. Let h ∈ HL be an elementary
function such that h(y) = f(y) and h(x) ≤ f(x) in a neighbourhood U of the point
y. We need to check that h(x) ≤ f(x) for all x ∈ R. Here we will show only that
h(x) ≤ f(x) for all x < y. The proof of the inequality h(x) ≤ f(x) for x > y is
analogous.

First suppose that a sequence {yi} ⊂ R exists such that yi < y ∀ i, limi→+∞ yi =
y and h(yi) < f(yi) for all i. Since f is HL-convex then for each i a function
hi ∈ supp(f,HL) exists such that f(yi) ≥ hi(yi) > h(yi). We have for each i

(5.4) yi < y, hi(yi) > h(yi), hi(y) ≤ f(y) = h(y).
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Since the functions hi and h are continuous then we can find a point t ∈ (yi, y]
such that hi(t) = h(t). Assume that hi(x) < h(x) for certain x < yi. Then a point
t′ ∈ (x, yi) exists such that hi(t′) = h(t′), and therefore, by (5.1), hi = h, which
contradicts (5.4). Hence h(x) ≤ hi(x) ≤ f(x) for all x < yi. Since yi → y then
h(x) ≤ f(x) for all x < y.

Now suppose that such a sequence {yi} does not exist. Since h(x) ≤ f(x) for all
x ∈ U then h(x) = f(x) for all x ∈ [a, y], where a is a point from the neighbourhood
U and a < y. Assume that a point y0 < a exists such that h(y0) > f(y0). We will
get some contradictions for such a situation. So take a small enough ε > 0 such
that h(y0)− f(y0) > 2ε. Let {εi} be a decreasing sequence of positive numbers and
limi→+∞ εi = 0, ε1 = ε. Since f is HL-convex and HL is closed under shifts then a
sequence {hi} ⊂ supp(f, HL) exists such that hi(a) = f(a)− εi for each i. Consider
two cases:
1.) Let a point y′ ∈ (a, y) and an index i exist such that f(y′) − hi(y′) > f(a) −
hi(a) = εi. Choose a positive number δ such that min{f(y′) − hi(y′), 2εi} > δ >
f(a) − hi(a) = εi. Then consider the function h′(x) = hi(x) + δ. We have

h′(y′) = hi(y′) + δ < f(y′) = h(y′), h′(a) = hi(a) + δ > f(a) = h(a),

h′(y0) = hi(y0) + δ < f(y0) + 2εi ≤ f(y0) + 2ε < h(y0).
Since y0 < a < y′, these inequalities contradict (5.1) and the continuity of the
elementary functions.
2.) Let f(y′) − hi(y′) ≤ f(a) − hi(a) = εi for all i and y′ ∈ (a, y). Since f(y′) −
hi(y′) ≥ 0 then

lim
i→+∞

hi(x) = f(x) = h(x) for all x ∈ (a, y).

Due to the assumptions of this proposition limi→+∞ hi(x) = h(x) for all x ∈ X.
Hence h(y0) = limi→+∞ hi(y0) ≤ f(y0) because hi ∈ supp(f, HL). But this contra-
dicts the assumption h(y0) > f(y0). ¤
Example 5.1. Let a0 > 0 and X = R. Let L be the set of all functions l(x) =
−a0(x − a)2, where a ∈ R. Then conditions of Proposition 5.4 hold for HL, and
therefore HL has the strong globalization property. But we do not have the tools
here for necessary or for sufficient conditions for global minimum of HL-convex
functions since HL does not contain any constant and each function h(x) = −a0(x−
a)2 − c has no global minimum over X.

So we should consider only examples where some elementary functions attain
their global minimum. In the following example zero belongs to L. Hence we will
have necessary and sufficient condition for the global minimum.

Example 5.2. Let l1(x) and l2(x) be continuous strictly decreasing and strictly
increasing functions respectively (x ∈ R). Assume that L consists of all the functions
al1(x), al2(x) with a ≥ 0. It is easy to check that the set HL verifies the assumptions
of Proposition 5.4. For example, we can take

l1(x) = −ex, l2(x) = −e−x.

We see that the set HL here is closed under horizontal and vertical shifts. Moreover,
the set of all HL-convex functions is bigger than the set of all lower semicontinuous
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convex functions defined on R. Indeed, let t(x) = ax − c be an affine function. If
a = 0 then t ∈ HL. If a > 0 then for each y ∈ R we have that (−aeye−x+a+t(y)) ≤
t(x) for any x ∈ R, the function h(x) = −aeye−x + a + t(y) interpolates t in y and
belongs to HL. The same can be done for a < 0. Hence every affine function is
HL-convex.

Example 5.3. Let l1, . . . , lm, a1, . . . , am be strictly increasing continuous functions
defined on R. Let L denote the set of all functions lt(x) = a1(t)l1(x) + · · · +
am(t)lm(x) with t ∈ R. We will check that (5.1) is valid for HL. So let

h1(x) = a1(t1)l1(x) + · · · + am(t1)lm(x) − c1,

h2(x) = a1(t2)l1(x) + · · · + am(t2)lm(x) − c2.

Let x 6= y and h1(x) = h2(x), h1(y) = h2(y). Then (h1(x) − h1(y)) − (h2(x) −
h2(y)) = 0, that is

(5.5) (a1(t1)− a1(t2))(l1(x)− l1(y)) + · · ·+ (am(t1)− am(t2))(lm(x)− lm(y)) = 0.

Since x 6= y and the functions li are strictly increasing then all the quantities
(li(x)− li(y)) have the same sign and are not equal to zero. Since all ai are strictly
increasing then the equality (5.5) is possible only for t1 = t2. It follows from the
equality h1(y) = h2(y) that c1 = c2, hence h1 = h2.
Now let the sequences {tk}, {ck} and an interval (a, b) be such that

lim
k→+∞

(
m∑

i=1

ai(tk)li(x) − ck

)
=

m∑

i=1

ai(t0)li(x) − c0 for all x ∈ (a, b).

Let x, y ∈ (a, b) and x > y. Then

lim
k→+∞

(
m∑

i=1

ai(tk)li(x) − ck

)
− lim

k→+∞

(
m∑

i=1

ai(tk)li(y) − ck

)

=
m∑

i=1

ai(t0)li(x) −
m∑

i=1

ai(t0)li(y)

=⇒ lim
k→+∞

((a1(tk) − a1(t0))(l1(x) − l1(y))

+ · · · + (am(tk) − am(t0))(lm(x) − lm(y))) = 0.

Since all the quantities (li(x)− li(y)) are positive and all the functions ai are contin-
uous and strictly increasing then limk→+∞ tk = t0. The equality limk→+∞ ck = c0

is valid as well. Hence, due to Proposition 5.4, HL has the strong globalization
property.

Now consider the usual convex functions defined on a topological linear space.

Example 5.4. Let L be the set of all linear continuous functions defined on a
topological linear space X. Let L be the set of all linear functions defined on R.
It follows from Example 5.3 (with m = 1, a1(t) = t, l1(x) = x) that the set HL
of all affine functions defined on R has the strong globalization property. Take
two arbitrary points x, y ∈ X and consider the function ω : R → X defined by
ω(v) = vx + (1 − v)y. Then ω(0) = y and ω(1) = x. Moreover, ω is continuous
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and for any h ∈ HL the function h′(v) = h(ω(v)) belongs to HL. Indeed, if h(z) =
l(z) + c ∀ z ∈ X, where l ∈ L and c ∈ R, then h′(v) = l(vx + (1 − v)y) + c =
v(l(x) − l(y)) + (l(y) + c). Thus, by Proposition 5.2 (see also Remark 4.1), HL has
the strong globalization property.
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