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GENERALIZED NONEXPANSIVE RETRACTIONS AND
A PROXIMAL-TYPE ALGORITHM IN BANACH SPACES

FUMIAKI KOHSAKA AND WATARU TAKAHASHI

Abstract. We study the relation between generalized nonexpansive retractions
in Banach spaces and generalized projections in dual Banach spaces. Using our
results, we deal with a proximal-type algorithm in Banach spaces.

1. Introduction

Let H be a (real) Hilbert space and let A ⊂ H × H be a maximal monotone
operator. Then we study the problem of finding a solution z to the equation

(1.1) 0 ∈ Az.

We identify the mapping A and its graph G(A) = {(x, y) : y ∈ Ax}. This problem
is connected with convex minimization problems, variational inequality problems
and minimax problems.

A well-known method for approximating a solution to (1.1) is the proximal point
algorithm first introduced by Martinet [20]. This is an iterative procedure, which
generates a sequence {xn} iteratively by x1 = x ∈ H and

xn ∈ xn+1 + rnAxn+1 (n = 1, 2, . . . )

or equivalently xn+1 = Jrnxn (n = 1, 2, . . . ), where {rn} ⊂ (0,∞) and Jr =
(I + rA)−1 is the resolvent of A for all r > 0.

In 1976, Rockafellar [29] proved that if the solution set A−10 is nonempty and
lim infn rn > 0, then {xn} is weakly convergent to an element of A−10; see also
Brézis and Lions [2] and Lions [18]. It was shown by Güler [8] that the sequence
{xn} generated by this algorithm does not converge strongly in general. In 2000,
motivated by Mann’s type iteration [19, 24] and Halpern’s type iteration [9, 30]
for nonexpansive mappings, Kamimura and Takahashi [14] modified the proximal
point algorithm and obtained weak and strong convergence theorems for maximal
monotone operators in Hilbert spaces. Solodov and Svaiter [31] also obtained a
modification of the proximal point algorithm with metric projections. Solodov and
Svaiter’s strong convergence theorem is stated as follows:

Theorem 1.1 (Solodov & Svaiter [31]). Let H be a Hilbert space and let A ⊂ H×H
be a maximal monotone operator such that A−10 is nonempty. Let Jr = (I + rA)−1
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for all r > 0 and let {xn} be a sequence generated by x1 = x ∈ H and




yn = Jrnxn;
Hn = {z ∈ H : 〈z − yn, xn − yn〉 ≤ 0};
Wn = {z ∈ H : 〈z − xn, x− xn〉 ≤ 0};
xn+1 = PHn∩Wn(x) (n = 1, 2, . . . ),

where {rn} ⊂ (0,∞) satisfies lim infn rn > 0 and PHn∩Wn denotes the metric pro-
jection from H onto Hn ∩Wn for all n ∈ N. Then {xn} converges strongly to P (x),
where P denotes the metric projection from H onto A−10.

Later, Ohsawa and Takahashi [23] obtained a generalization of Theorem 1.1 to
maximal monotone operators in Banach spaces with metric projections. Kamimura
and Takahashi [15] obtained another generalization of Theorem 1.1 with generalized
projections, which is a generalization of metric projections in Hilbert spaces to
Banach spaces. See also [3, 4, 5, 13, 16, 17, 25, 32, 33] for proximal-type algorithms
for maximal monotone operators in Banach spaces.

The purpose of the present paper is to obtain a generalization of Theorem 1.1 to
maximal monotone operators defined in a dual Banach space with sunny generalized
nonexpansive retractions recently introduced by Ibaraki and Takahashi [10, 11, 12]
(Theorem 4.1). Before proving it, we study the relation between sunny generalized
nonexpansive retractions in a Banach space and generalized projections in its dual
space (Theorem 3.3). Finally, we deal with the problem of finding a minimizer of
a proper lower semicontinuous convex function in a dual Banach space (Corollary
5.1).

2. Preliminaries

Throughout the present paper, all linear spaces are real. Let E be a Banach space
and let E∗ denote the dual space of E. The value of x∗ ∈ E∗ at a point x ∈ E is
denoted by 〈x, x∗〉. The sets of all real numbers and all positive integers are denoted
by R and N, respectively. For a sequence {xn} of E, the strong convergence and the
weak convergence of xn to x ∈ E are denoted by xn → x and xn ⇀ x, respectively.

Let S(E) and B(E) denote the unit sphere and the closed unit ball centered at
the origin of E, respectively. A Banach space E is said to be strictly convex if
‖(x + y)/2‖ < 1 whenever x, y ∈ S(E) and x 6= y. It is also said to be uniformly
convex if for all ε ∈ (0, 2], there exists δ > 0 such that x, y ∈ S(E) and ‖x− y‖ ≥ ε
imply ‖(x + y)/2‖ ≤ 1− δ . It is known that every uniformly convex Banach space
is reflexive and strictly convex. A Banach space E is said to be smooth if the limit

(2.1) lim
t→0

‖x + ty‖ − ‖x‖
t

exists for all x, y ∈ S(E). It is said to be uniformly smooth if the limit (2.1)
converges uniformly for x, y ∈ S(E). The space E is said to have a uniformly
Gâteaux differentiable norm if for all y ∈ S(E), the limit (2.1) converges uniformly
for x ∈ S(E). It is known that E is uniformly convex if and only if E∗ is uniformly
smooth.
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Let J be the duality mapping from E into E∗ defined by

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}
for all x ∈ E. We know that E is smooth if and only if J is single-valued. We
also know that if E is smooth, strictly convex and reflexive, then J is single-valued,
one-to-one and onto. In this case, the duality mapping J∗ from E∗ into E is the
inverse of J , that is, J∗ = J−1. See [6, 7, 34, 35] for geometry of Banach spaces.

Let E be a smooth Banach space. Following Alber [1] and Kamimura and Taka-
hashi [15], we denote by φ : E × E → [0,∞) the mapping defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2

for all (x, y) ∈ E × E. Let φ∗ : E∗ × E∗ → [0,∞) be the mapping defined by

φ∗(x∗, y∗) = ‖x∗‖2 − 2〈J−1y∗, x∗〉+ ‖y∗‖2

for all (x∗, y∗) ∈ E∗ × E∗. It is easy to see that (‖x‖ − ‖y‖)2 ≤ φ(x, y) for all
x, y ∈ E. Thus, in particular, φ(x, y) ≥ 0 for all x, y ∈ E. We also know the
following:

(2.2) φ(x, y) = φ(x, z) + φ(z, y) + 2〈x− z, Jz − Jy〉
for all x, y, z ∈ E. It is easy to see that

(2.3) φ(x, y) = φ∗(Jy, Jx)

for all x, y ∈ E. It is also easy to see that if E is additionally assumed to be strictly
convex, then

(2.4) φ(x, y) = 0 ⇐⇒ x = y.

Let C be a nonempty closed convex subset of a smooth, strictly convex and reflex-
ive Banach space E. Then, for all x ∈ E, there exists a unique z ∈ C (denoted by
ΠCx) such that φ(z, x) = miny∈C φ(y, x). The mapping ΠC is called the generalized
projection from E onto C. We know the following lemmas:

Lemma 2.1 ([1, 15]). Let C be a nonempty closed convex subset of a smooth, strictly
convex and reflexive Banach space E and let (x, z) ∈ E × C. Then the following
hold:

(a) z = ΠCx if and only if 〈y − z, Jx− Jz〉 ≤ 0 for all y ∈ C;
(b) φ(z,ΠCx) + φ(ΠCx, x) ≤ φ(z, x).

Lemma 2.2 ([15]). Let E be a smooth and uniformly convex Banach space and
let {xn} and {yn} be sequences of E such that {xn} or {yn} is bounded. Then
limn φ(xn, yn) = 0 implies that limn ‖xn − yn‖ = 0.

Let D be a nonempty closed subset of a smooth Banach space E, let T be a
mapping from D into itself and let F (T ) be the set of fixed points of T . Then
T is said to be generalized nonexpansive ([10, 11, 12]) if F (T ) is nonempty and
φ(Tx, u) ≤ φ(x, u) for all x ∈ D and u ∈ F (T ). Let C be a nonempty closed subset
of E and let R be a mapping from E onto C. Then R is said to be a retraction if
R2 = R. It is known that if R is a retraction from E onto C, then F (R) = C. The
mapping R is also said to be sunny if R(Rx + t(x − Rx)) = Rx whenever x ∈ E
and t ≥ 0. A nonempty closed subset C of a smooth Banach space E is said to be
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a generalized nonexpansive retract (resp. sunny generalized nonexpansive retract)
([10, 11, 12]) of E if there exists a generalized nonexpansive retraction (resp. sunny
generalized nonexpansive retraction) R from E onto C. We need the following
lemmas:

Lemma 2.3 ([12]). Let C be a nonempty closed subset of a smooth and strictly
convex Banach space E and let R be a retraction from E onto C. Then the following
are equivalent:

(a) R is sunny and generalized nonexpansive;
(b) 〈x−Rx, Jy − JRx〉 ≤ 0 for all (x, y) ∈ E × C.

Lemma 2.4 ([12]). Let C be a nonempty closed sunny generalized nonexpansive
retract of a smooth and strictly convex Banach space E. Then the sunny generalized
nonexpansive retraction from E onto C is uniquely determined.

Lemma 2.5 ([12]). Let C be a nonempty closed subset of a smooth and strictly
convex Banach space E such that there exists a sunny generalized retraction R from
E onto C and let (x, z) ∈ E × C. Then the following hold:

(a) z = Rx if and only if 〈x− z, Jy − Jz〉 ≤ 0 for all y ∈ C;
(b) φ(Rx, z) + φ(x,Rx) ≤ φ(x, z).

Let E be a smooth, strictly convex and reflexive Banach space and let A ⊂
E × E∗ be a set-valued mapping with range R(A) = {x∗ : x∗ ∈ Ax} and domain
D(A) = {x ∈ E : Ax 6= ∅}. Then the mapping A is said to be monotone if
〈x − y, x∗ − y∗〉 ≥ 0 whenever (x, x∗), (y, y∗) ∈ A. It is also said to be maximal
monotone if A is monotone and there is no monotone operator from E into E∗
whose graph properly contains the graph of A. It is known that if A ⊂ E × E∗
is maximal monotone, then A−10 is closed and convex. We know the following
theorem:

Theorem 2.6 ([28]). Let E be a smooth, strictly convex and reflexive Banach space
and let A ⊂ E × E∗ be a monotone operator. Then A is maximal monotone if and
only if R(J + rA) = E∗ for all r > 0.

By Theorem 2.6, if E is smooth, strictly convex and reflexive and A ⊂ E∗×E (=
E∗ × E∗∗) is a maximal monotone operator, then R(J−1 + rA) = E for all r > 0.
Thus, if r > 0 and x ∈ E, then there exists z ∈ E such that

J−1(Jx) ∈ J−1(Jz) + rA(Jz)

or equivalently x ∈ z + rAJz. It follows from the strict convexity of E and E∗
that such a point z is unique. Thus we can define the resolvent of A by Prx = z,
that is, Pr = (I + rAJ)−1. The Yosida approximation of A is also defined by
Ar = (I − Pr)/r. We know that (JPrx,Arx) ∈ A for all x ∈ E; see Ibaraki and
Takahashi [12] for more details.

3. Results on generalized nonexpansive retracts

Using the techniques developed by Matsushita and Takahashi [21], we prove the
following lemma:
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Lemma 3.1. Let E be a smooth, strictly convex and reflexive Banach space and let
C be a nonempty closed generalized nonexpansive retract of E. Then JC is closed
and convex.

Proof. Let R be a generalized nonexpansive retraction from E onto C. Since R is
a retraction from E onto C, we have F (R) = C. We first show that JC is convex.
Let x∗ and y∗ be elements of JC, let α ∈ (0, 1) and put β = 1 − α. Then we have
x, y ∈ C such that x∗ = Jx and y∗ = Jy. Then we have

φ(RJ−1(αJx + βJy), J−1(αJx + βJy))(3.1)

= ‖RJ−1(αJx + βJy)‖2 − 2〈RJ−1(αJx + βJy), αJx + βJy〉
+ ‖J−1(αJx + βJy)‖2 + α‖x‖2 + β‖y‖2 − (α‖x‖2 + β‖y‖2)

= αφ(RJ−1(αJx + βJy), x) + βφ(RJ−1(αJx + βJy), y)

+ ‖αJx + βJy‖2 − (α‖x‖2 + β‖y‖2)

Since x, y ∈ C = F (R) and R is generalized nonexpansive, we have

αφ(RJ−1(αJx + βJy), x) + βφ(RJ−1(αJx + βJy), y)(3.2)

+ ‖αJx + βJy‖2 − (α‖x‖2 + β‖y‖2)

≤ αφ(J−1(αJx + βJy), x) + βφ(J−1(αJx + βJy), y)

+ ‖αJx + βJy‖2 − (α‖x‖2 + β‖y‖2)

= α{‖αJx + βJy‖2 − 2〈J−1(αJx + βJy), Jx〉+ ‖x‖2}
+ β{‖αJx + βJy‖2 − 2〈J−1(αJx + βJy), Jy〉+ ‖y‖2}
+ ‖αJx + βJy‖2 − (α‖x‖2 + β‖y‖2)

= 2‖αJx + βJy‖2 − 2〈J−1(αJx + βJy), αJx + βJy〉
= 2‖αJx + βJy‖2 − 2‖αJx + βJy‖2 = 0.

By (3.1) and (3.2), we have φ(RJ−1(αJx + βJy), J−1(αJx + βJy)) = 0. By (2.4),
we have

RJ−1(αJx + βJy) = J−1(αJx + βJy).
Hence we obtain J−1(αJx+βJy) ∈ C, that is, αx∗+βy∗ = αJx+βJy ∈ JC. This
shows that JC is convex.

We next show that JC is closed. Let {x∗n} be a sequence of JC converging
strongly to x∗ ∈ E∗. Then we have x ∈ E and xn ∈ C such that x∗ = Jx and
x∗n = Jxn for all n ∈ N. By xn ∈ C, we have

φ(Rx, xn) ≤ φ(x, xn)

= ‖x‖2 − 2〈x, x∗n〉+ ‖x∗n‖2

→ ‖x‖2 − 2〈x, x∗〉+ ‖x∗‖2 = φ(x, x) = 0

as n →∞. Hence we have limn φ(Rx, xn) = 0. On the other hand,

φ(Rx, xn) = ‖Rx‖2 − 2〈Rx, Jxn〉+ ‖xn‖2

= ‖Rx‖2 − 2〈Rx, x∗n〉+ ‖x∗n‖2
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→ ‖Rx‖2 − 2〈Rx, x∗〉+ ‖x∗‖2 = φ(Rx, x)

as n → ∞. Thus we have φ(Rx, x) = 0. Then it follows from (2.4) that Rx = x.
This gives us that x∗ = Jx = JRx ∈ JC. Thus JC is closed. This completes the
proof. ¤

Lemma 3.2. Let E be a smooth, strictly convex and reflexive Banach space, let
C∗ be a nonempty closed convex subset of E∗ and let ΠC∗ be the generalized projec-
tion from E∗ onto C∗. Then the mapping R defined by R = J−1ΠC∗J is a sunny
generalized nonexpansive retraction from E onto J−1C∗.

Proof. We first show that J−1C∗ is closed. Let {xn} be a sequence of J−1C∗ con-
verging strongly to x ∈ E. Then we have Jxn ∈ C∗. Since E is smooth and reflexive,
the duality mapping J is norm-to-weak continuous from E into E∗; see Takahashi
[34, 35]. This implies that Jxn ⇀ Jx. Since C∗ is closed and convex, it is also
weakly closed. Hence we have Jx ∈ C∗, that is, x ∈ J−1C∗. Thus J−1C∗ is closed.

It is obvious that R is a mapping from E into J−1C∗. We next show that R is
a retraction from E onto J−1C∗. If x ∈ J−1C∗, then we have Jx ∈ C∗ and hence
ΠC∗Jx = Jx. This implies that

Rx = J−1ΠC∗Jx = J−1Jx = x.

Thus R is onto and Rx = x for all x ∈ J−1C∗. It also holds that

R2y = R(Ry) = Ry

for all y ∈ E. This shows that R is a retraction.
We finally show that R is sunny and generalized nonexpansive. Since R is a

retraction from E onto J−1C∗, we have F (R) = J−1C∗. Thus F (R) is nonempty.
On the other hand, by Lemma 2.1, we have

φ∗(y∗,ΠC∗x
∗) + φ∗(ΠC∗x

∗, x∗) ≤ φ∗(y∗, x∗)

for all (x∗, y∗) ∈ E∗ × C∗, which is equivalent to

(3.3) φ∗(Jy,ΠC∗Jx) + φ∗(ΠC∗Jx, Jx) ≤ φ∗(Jy, Jx)

for all (x, y) ∈ E × J−1C∗. By (2.3) and (3.3), we have

φ(J−1ΠC∗Jx, J−1Jy) + φ(J−1Jx, J−1ΠC∗Jx) ≤ φ(J−1Jx, J−1Jy)

for all (x, y) ∈ E × J−1C∗. Thus we obtain

φ(Rx, y) + φ(x,Rx) ≤ φ(x, y)

for all (x, y) ∈ E × J−1C∗. If (x, y) ∈ E × J−1C∗, then it follows from the last
inequality that

0 ≤ φ(x, y)− {φ(Rx, y) + φ(x,Rx)}
= {‖x‖2 − 2〈x, Jy〉+ ‖y‖2} − {‖Rx‖2 − 2〈Rx, Jy〉+ ‖y‖2

+ ‖x‖2 − 2〈x, JRx〉+ ‖Rx‖2}
= 2{〈Rx, Jy〉+ 〈x, JRx〉 − 〈x, Jy〉 − 〈Rx, JRx〉}
= 2〈x−Rx, JRx− Jy〉.
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Thus we have 〈x − Rx, Jy − JRx〉 ≤ 0 for all (x, y) ∈ E × J−1C∗. By Lemma
2.3, R is sunny and generalized nonexpansive. Therefore R is a sunny generalized
nonexpansive retraction from E onto J−1C∗. This completes the proof. ¤

Using Lemmas 3.1 and 3.2, we have the following theorem:

Theorem 3.3. Let E be a smooth, strictly convex and reflexive Banach space and
let C be a nonempty closed subset of E. Then the following are equivalent:

(a) C is a sunny generalized nonexpansive retract of E;
(b) C is a generalized nonexpansive retract of E;
(c) JC is closed and convex.

In this case, the unique sunny generalized nonexpansive retraction from E onto C
is given by J−1ΠJCJ , where ΠJC is the generalized projection from E∗ onto JC.

Proof. It is obvious that (a) implies (b). By Lemma 3.1, (b) implies (c). Lemma 3.2
ensures that if JC is closed and convex, then R = J−1ΠJCJ is a sunny generalized
nonexpansive retraction from E onto C = J−1JC. Thus (c) implies (a). This
completes the proof. ¤

We can also show the following proposition:

Proposition 3.4. Let E be a smooth, strictly convex and reflexive Banach space and
let C be a nonempty closed sunny generalized nonexpansive retract of E. Let R be
the sunny generalized nonexpansive retraction from E onto C and let (x, z) ∈ E×C.
Then the following are equivalent:

(a) z = Rx;
(b) φ(x, z) = miny∈C φ(x, y).

Proof. By Theorem 3.3, we have the following equality: R = J−1ΠJCJ . So, using
(2.3), we have

z = Rx ⇐⇒ Jz = ΠJCJx

⇐⇒ φ∗(Jz, Jx) = min
y∗∈JC

φ∗(y∗, Jx)

⇐⇒ φ∗(Jz, Jx) = min
y∈C

φ∗(Jy, Jx)

⇐⇒ φ(x, z) = min
y∈C

φ(x, y).

This completes the proof. ¤

4. Strong convergence theorem

Now, we are ready to prove our main result in this paper, which generalizes
Solodov and Svaiter’s theorem (Theorem 1.1) in Hilbert spaces to that in Banach
spaces.

Theorem 4.1. Let E be a uniformly convex Banach space with a uniformly Gâteaux
differentiable norm and let A ⊂ E∗ ×E be a maximal monotone operator such that
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A−10 is nonempty. Let Pr = (I + rAJ)−1 for all r > 0 and let {xn} be a sequence
generated by x1 = x ∈ E and





yn = Prnxn;
Hn = {z ∈ E : 〈xn − yn, Jz − Jyn〉 ≤ 0};
Wn = {z ∈ E : 〈x− xn, Jz − Jxn〉 ≤ 0};
xn+1 = RHn∩Wn(x) (n = 1, 2, . . . ),

where {rn} ⊂ (0,∞) satisfies lim infn rn > 0 and RHn∩Wn denotes the sunny gen-
eralized nonexpansive retraction from E onto Hn ∩Wn for all n ∈ N. Then {xn}
converges strongly to R(x), where R denotes the sunny generalized nonexpansive
retraction from E onto J−1A−10.

Proof. It follows from the maximal monotonicity of A that A−10 is closed and convex
and hence Theorem 3.3 ensures that J−1A−10 is a sunny generalized nonexpansive
retract of E. Since J is norm-to-weak* continuous, Hn and Wn are closed for all
n ∈ N. It should be noted that the surjectivity of J implies that

JHn = {z∗ ∈ E∗ : 〈xn − yn, z∗ − Jyn〉 ≤ 0}
and

JWn = {z∗ ∈ E∗ : 〈x− xn, z∗ − Jxn〉 ≤ 0}
for all n ∈ N. It also follows from the injectivity of J that

J(Hn ∩Wn) = JHn ∩ JWn

for all n ∈ N. Thus JHn, JWn and J(Hn∩Wn) are closed and convex for all n ∈ N.
So, if we can show that Hn ∩Wn is nonempty, then Theorem 3.3 ensures that Hn,
Wn and Hn ∩Wn are sunny generalized nonexpansive retracts of E for all n ∈ N.

We first show that J−1A−10 ⊂ Hn ∩Wn for all n ∈ N by induction. It is obvious
that W1 = E. Let u ∈ J−1A−10 be given. Then it follows from

Ar1x1 =
x1 − y1

r1
∈ AJy1

and 0 ∈ AJu that

〈x1 − y1, Jy1 − Ju〉 = r1〈Ar1x1 − 0, Jy1 − Ju〉 ≥ 0.

So, we have u ∈ H1 and hence u ∈ H1 ∩ W1. Hence J−1A−10 ⊂ H1 ∩ W1. This
implies that H1∩W1 is nonempty. By Theorem 3.3, H1∩W1 is a sunny generalized
nonexpansive retract of E. Thus we can define x2 = RH1∩W1(x) and y2 = Pr2x2.
Suppose that for some m ∈ N, J−1A−10 ⊂ Hk ∩Wk for all k = 1, 2, . . . , m. Then
xk and yk are well-defined for all k = 1, 2, . . . , m + 1. If u ∈ J−1A−10, then we can
show that u ∈ Hm+1 as in the proof of u ∈ H1. By u ∈ J−1A−10 ⊂ Hm ∩Wm and
xm+1 = RHm∩Wm(x), it follows from Lemma 2.5 that

〈x− xm+1, Ju− Jxm+1〉 ≤ 0,

which implies that u ∈ Wm+1. Hence u ∈ Hm+1 ∩Wm+1. So, we have J−1A−10 ⊂
Hm+1 ∩Wm+1. Thus we obtain

J−1A−10 ⊂ Hn ∩Wn

for all n ∈ N. This implies that {xn} is well-defined.
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We next prove that

(4.1) lim
n→∞ ‖xn − yn‖ = 0.

Fix n ∈ N. Note that xn ∈ Wn and

〈x− xn, Jz − Jxn〉 ≤ 0

for all z ∈ Wn. So, by Lemma 2.5, we have xn = RWnx. Thus, using Lemma 2.5, it
follows from xn+1 ∈ Wn that

φ(xn, xn+1) = φ(RWnx, xn+1)(4.2)

≤ φ(x, xn+1)− φ(x,RWnx)

= φ(x, xn+1)− φ(x, xn),

which implies that φ(x, xn) ≤ φ(x, xn+1). Using Proposition 3.4, we also have

(4.3) φ(x, xn+1) = φ(x,RHn∩Wnx) ≤ φ(x,Rx)

because Rx ∈ J−1A−10 ⊂ Hn ∩Wn. Hence the limit limn φ(x, xn) exists. It also
follows from (‖x‖ − ‖xn‖)2 ≤ φ(x, xn) that {xn} is bounded. By the existence of
limn φ(x, xn) and (4.2), we have

φ(xn, xn+1) ≤ φ(x, xn+1)− φ(x, xn) → 0

as n → ∞. This implies that limn φ(xn, xn+1) = 0. Since E is uniformly convex,
Lemma 2.2 ensures that

lim
n→∞ ‖xn − xn+1‖ = 0.

On the other hand, since yn = RHnxn and xn+1 ∈ Hn, it follows from Lemma 2.5
that

φ(yn, xn+1) = φ(RHnxn, xn+1) ≤ φ(xn, xn+1) → 0
as n →∞. Using Lemma 2.2, we have

lim
n→∞ ‖yn − xn+1‖ = 0.

Therefore we obtain limn ‖xn − yn‖ = 0.
We next show that Jxn ⇀ JRx. Let {Jxni} be any subsequence of {Jxn}

converging weakly to an element z∗ of E∗. Since the norm of E is uniformly Gâteaux
differentiable, the duality mapping J is uniformly norm-to-weak* continuous on each
bounded subset of E; see Takahashi [34, 35] for more details. Thus it follows from
(4.1) that

lim
n→∞〈p, Jxn − Jyn〉 = 0

for all p ∈ E. This implies that Jyni ⇀ z∗. Since lim infn rn > 0, we also know that

lim
n→∞ ‖Arnxn‖ = lim

n→∞
‖xn − yn‖

rn
= 0.

If (w∗, w) ∈ A, then it follows from the monotonicity of A that

〈w −Arnxn, w∗ − Jyn〉 ≥ 0

for all n ∈ N. Letting ni →∞ in the last inequality, we obtain

〈w, w∗ − z∗〉 ≥ 0.
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By the maximality of A, we have z∗ ∈ A−10. Putting z = J−1z∗, by Proposition
3.4, we see that

(4.4) φ(x,Rx) ≤ φ(x, z).

Since Jxni ⇀ Jz and the norm square of E∗ is weakly lower semicontinuous, we
have

φ(x, z) = ‖x‖2 − 2〈x, Jz〉+ ‖Jz‖2(4.5)

≤ lim inf
i→∞

{‖x‖2 − 2〈x, Jxni〉+ ‖Jxni‖2}
= lim inf

i→∞
φ(x, xni)

≤ lim sup
i→∞

φ(x, xni)

≤ φ(x,Rx),

where the last inequality follows from (4.3). By (4.4) and (4.5), we have φ(x,Rx) =
φ(x, z) and hence Rx = z. Thus we obtain z∗ = Jz = JRx. Consequently, the
whole sequence {Jxn} converges weakly to JRx.

We finally show that xn → Rx. By (2.2), we have

φ(Rx, xn) = φ(Rx, x) + φ(x, xn) + 2〈Rx− x, Jx− Jxn〉(4.6)

for all n ∈ N. By (4.3) and (4.6), we obtain

lim sup
n→∞

φ(Rx, xn) ≤ lim sup
n→∞

{φ(Rx, x) + φ(x,Rx) + 2〈Rx− x, Jx− Jxn〉}
= φ(Rx, x) + φ(x,Rx) + 2〈Rx− x, Jx− JRx〉
= φ(Rx, Rx) = 0.

Thus lim supn φ(Rx, xn) = 0. This gives us that limn φ(Rx, xn) = 0. By Lemma
2.2, we obtain limn ‖Rx−xn‖ = 0. Therefore the sequence {xn} converges strongly
to Rx. This completes the proof. ¤

5. Application to a convex minimization problem

In this section, we deal with a convex minimization problem in dual Banach
spaces. Let E be a Banach space and let f : E∗ → (−∞,∞] be a proper lower
semicontinuous convex function. By Rockafellar’s theorem [26, 27], the subdifferen-
tial ∂f ⊂ E∗ × E defined by

∂f(x∗) = {x ∈ E : f(x∗) + 〈x, y∗ − x∗〉 ≤ f(y∗) (∀y∗ ∈ E∗)}
for all x∗ ∈ E∗ is maximal monotone. It is well-known that

0 ∈ ∂f(u∗) ⇐⇒ f(u∗) = min
y∗∈E∗

f(y∗).

Let Pr be the resolvent of ∂f , that is, Pr = (I + r∂fJ)−1 (r > 0). Then we can
show that

z = Prx ⇐⇒ x ∈ z + r∂f(Jz)

⇐⇒ 0 ∈ 1
r
(J−1(Jz)− J−1(Jx)) + ∂f(Jz)
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⇐⇒ 0 ∈ ∂
( 1

2r
‖ · ‖2 − 1

r
〈x, ·〉+ f

)
(Jz)

⇐⇒ Jz = arg min
y∗∈E∗

{
f(y∗) +

1
2r
‖y∗‖2 − 1

r
〈x, y∗〉

}

⇐⇒ z = J−1
(
arg min

y∗∈E∗

{
f(y∗) +

1
2r
‖y∗‖2 − 1

r
〈x, y∗〉

})
.

Thus, using Theorem 4.1, we have the following corollary:

Corollary 5.1. Let E be a uniformly convex Banach space with a uniformly Gâteaux
differentiable norm and let f : E∗ → (−∞,∞] be a proper lower semicontinuous
convex function such that (∂f)−1(0) is nonempty. Let {xn} be a sequence generated
by x1 = x ∈ E and




yn = J−1
(
arg miny∗∈E∗

{
f(y∗) + 1

2rn
‖y∗‖2 − 1

rn
〈xn, y∗〉

})
;

Hn = {z ∈ E : 〈xn − yn, Jz − Jyn〉 ≤ 0};
Wn = {z ∈ E : 〈x− xn, Jz − Jxn〉 ≤ 0};
xn+1 = RHn∩Wn(x) (n = 1, 2, . . . ),

where {rn} ⊂ (0,∞) satisfies lim infn rn > 0 and RHn∩Wn denotes the sunny gen-
eralized nonexpansive retraction from E onto Hn ∩Wn for all n ∈ N. Then {xn}
converges strongly to R(x), where R denotes the sunny generalized nonexpansive
retraction from E onto J−1(∂f)−1(0).
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