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VARIATIONAL PRINCIPLES FOR VECTOR EQUILIBRIUM
PROBLEMS RELATED TO CONJUGATE DUALITY

LKHAMSUREN ALTANGEREL, RADU IOAN BOŢ, AND GERT WANKA

Abstract. This paper deals with the characterization of solutions for vector
equilibrium problems by means of conjugate duality. By using the Fenchel du-
ality we establish variational principles, that is, optimization problems with set-
valued objective functions, the solution sets of which contain the ones of the
vector equilibrium problems. The set-valued objective mappings depend on the
data, but not on the solution sets of the vector equilibrium problems. As a par-
ticular instance we obtain gap functions for the weak vector variational inequality
problem.

1. Introduction

In analogy to the scalar case, vector equilibrium problems can be considered
as being generalizations of vector variational inequalities, vector optimization and
equilibrium problems (cf. [3]). In the past some results established for these spe-
cial cases have been extended to vector equilibrium problems. By generalizing the
similar concept from the scalar case (see [7]), gap functions for vector variational
inequalities have been proposed for the first time in [9]. Moreover, by generaliz-
ing the similar concept from the scalar case (cf. [6] and [8]) so-called variational
principles for vector equilibrium problems have been also given (see [4] and [5]).
These are optimization problems with set-valued objective functions, the solution
sets of which contain the ones of the vector equilibrium problems, being actually
extensions of the concept of gap (merit) functions for vector variational inequalities.

Recently, in the scalar case, the construction of gap functions for variational
inequalities and equilibrium problems has been associated to Lagrange duality ([10])
but also, more generally, to conjugate duality (see [1], [2], and [12]). On the other
hand, a conjugate duality theory in vector optimization has been developed by
Tanino and Sawaragi (see [14], [17] and [19]), by introducing some new concepts of
conjugate maps and set-valued subgradients, based on Pareto efficiency or on some
weak orderings.

In this paper we focus on the construction of set-valued mappings on the basis of
the so-called Fenchel duality which allow us to propose new variational principles
for vector equilibrium problems. The set-valued mappings depend on the data, but
not on the solution sets of the vector equilibrium problems.

In Section 2 we introduce some notions and results regarding conjugate duality
in vector optimization based on weak orderings. In Section 3, by using a special
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perturbation function, we introduce a Fenchel-type dual problem for a vector opti-
mization problem with set constraints. In Section 4 we formulate some variational
principles for vector equilibrium problems. The set-valued mappings we introduce
here are formulated by means of the Fenchel-type dual and depends on the data, but
not on the solution sets of the vector equilibrium problems. In the last section we
obtain as a particular case gap functions for the weak vector variational inequalities.

2. Mathematical preliminaries

Let Y be a real topological vector space partially ordered by a pointed closed
convex cone C with a nonempty interior int C in Y. For any ξ, µ ∈ Y, we use the
following ordering relations:

ξ ≤ µ ⇔ µ− ξ ∈ C;
ξ < µ ⇔ µ− ξ ∈ int C;

ξ ≮ µ ⇔ µ− ξ /∈ int C.

The relations ≥, > and ≯ are defined similarly. Next we introduce the notions of
weak maximum and weak supremum of a set Z given in the space Y , obtained as an
extension of Y by adding two imaginary points +∞ and −∞, respectively. These
two elements must fulfill −∞ < y < +∞ for y ∈ Y. Further we make the following
conventions

(±∞) + (±∞) = ±∞,

(±∞) + y = y + (±∞) = ±∞ for all y ∈ Y,

λ(±∞) = ±∞ for λ > 0 and λ(±∞) = ∓∞ for λ < 0.

The sum +∞+ (−∞) is not considered, since we can avoid it.
For a given set Z ⊆ Y , we define the set A(Z) of all points above Z and the set

B(Z) of all points below Z by

A(Z) =
{

y ∈ Y | y > y′ for some y′ ∈ Z
}

and
B(Z) =

{
y ∈ Y | y < y′ for some y′ ∈ Z

}
,

respectively. Clearly, A(Z) ⊆ Y ∪ {+∞} and B(Z) ⊆ Y ∪ {−∞}.
Definition 2.1. A point ŷ ∈ Y is said to be a weak maximal point of Z ⊆ Y if
ŷ ∈ Z and ŷ /∈ B(Z), that is, if ŷ ∈ Z and there is no y′ ∈ Z such that ŷ < y′.

The set of all weak maximal points of Z is called the weak maximum of Z and is
denoted by WMaxZ.

Definition 2.2. A point ŷ ∈ Y is said to be a weak supremal point of Z ⊆ Y if
ŷ /∈ B(Z) and B({ŷ}) ⊆ B(Z), that is, if there is no y ∈ Z such that ŷ < y and if
the relation y′ < ŷ implies the existence of some y ∈ Z such that y′ < y.

The set of all weak supremal points of Z is called the weak supremum of Z and
is denoted by WSupZ. Remark that WMaxZ = Z ∩WSupZ. Moreover it holds
−WMax(−Z) = WMinZ and −WSup(−Z) = WInf Z, where the weak minimum
and the weak infimum are defined analogously to the weak maximum and weak
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supremum, respectively. More about these concepts can be found in the works [18]
and [19].

In the following we define the conjugate mapping and subgradient of a set-valued
mapping by using the notions of weak supremum and weak maximum of a set. Let
X be another real topological vector space and let L(X ,Y ) be the space of all linear
continuous operators from X to Y. For x ∈ X and l ∈ L(X ,Y ), 〈l, x〉 denotes the
value of l at x.

Definition 2.3 (see [19]). Let G : X ⇒ Y be a set-valued mapping.
(i) The set-valued mapping G∗ : L(X ,Y ) ⇒ Y defined by

G∗(T ) = WSup
⋃

x∈X

[
〈T, x〉 −G(x)

]
, for T ∈ L(X ,Y )

is called the conjugate mapping of G.
(ii) The set-valued mapping G∗∗ : X ⇒ Y defined by

G∗∗(x) = WSup
⋃

T∈L(X ,Y )

[
〈T, x〉 −G∗(T )

]
, for x ∈ X

is called the biconjugate mapping of G.
(iii) T ∈ L(X ,Y ) is said to be a subgradient of the set-valued mapping G at

(x0; y0) if y0 ∈ G(x0) and

〈T, x0〉 − y0 ∈ WMax
⋃

x∈X

[
〈T, x〉 −G(x)

]
.

The set of all subgradients of G at (x0; y0) is called the subdifferential of G at
(x0; y0) and is denoted by ∂G(x0; y0). If ∂G(x0; y0) 6= ∅ for every y0 ∈ G(x0), then
G is said to be subdifferentiable at x0.

Next we recall some notions and results from the conjugate duality theory in
vector optimization introduced and investigated in [19]. Let X and Y be real
topological vector spaces. Assume that Y is the extended space of Y and h is a
function from X to Y ∪ {+∞}. We consider the vector optimization problem

(P ) WInf{h(x)|x ∈ X}.
Let U be another real topological vector space, the so-called perturbation space.
Let Φ : X × U → Y ∪ {+∞} be the perturbation function, namely fulfilling

Φ(x, 0) = h(x), ∀x ∈ X.

The perturbed problem of (P ) is

(Pu) WInf
{

Φ(x, u)| x ∈ X
}

,

where u ∈ U is the so-called perturbation variable.

Definition 2.4. The set-valued mapping W : U ⇒ Y defined by

W (u) = WInf(Pu) = WInf
{

Φ(x, u)| x ∈ X
}

is called the value mapping of (P ).
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It is clear that WInf(P ) = W (0). The conjugate mapping of Φ is

Φ∗(T, Λ) = WSup
{
〈T, x〉+ 〈Λ, u〉 − Φ(x, u)| x ∈ X, u ∈ U

}

for T ∈ L(X ,Y ) and Λ ∈ L(U,Y). Then

−Φ∗(0,Λ) = −WSup
{
〈Λ, u〉 − Φ(x, u)| x ∈ X, u ∈ U

}

= WInf
{

Φ(x, u)− 〈Λ, u〉| x ∈ X, u ∈ U
}

.

A dual problem to (P ) can be defined as follows

(D) WSup
⋃

Λ∈L(U,Y )

[
− Φ∗(0,Λ)

]
.

Since Λ 7→ −Φ∗(0,Λ) is a set-valued mapping, the dual problem is not an usual
vector optimization problem.

Proposition 2.1 ([19, Proposition 5.1] (Weak duality)). For any x ∈ X and Λ ∈
L(U, Y ) it holds

Φ(x, 0) /∈ B
(
− Φ∗(0,Λ)

)
.

Definition 2.5 ([19, Definition 5.2]). The primal problem (P ) is said to be stable
if the value mapping W is subdifferentiable at 0.

Theorem 2.1 ([19, Theorem 5.1], [15, Theorem 3.1]). If the problem (P ) is stable,
then

WInf(P ) = WSup(D) = WMax(D).

Let us notice that some results on conjugate duality for set-valued vector opti-
mization problems has been given by Song in [15]. Moreover, some stability criteria
can be found in [15], [16] and [19].

3. Fenchel duality for vector optimization

In this section we specialize the theory described above and introduce, by using a
special perturbation function, a Fenchel-type dual problem to the vector optimiza-
tion problem with set constraints. Let the spaces X and Y be the same as in Section
2. Assume that h is a function from X to Y ∪ {+∞} and G ⊆ X. We consider the
vector optimization problem

(Pc) WInf{h(x)|x ∈ G}.
We choose as perturbation space U := X and consider the perturbation function
Φ : X ×X → Y ∪ {+∞} defined by

Φ(x, u) =

{
h(x + u), if x ∈ G;
+∞, otherwise.

For the proof of the next proposition we need the following obvious relations.

Remark 3.1. Let g : X → Y be a function and Z ⊆ X. The following assertions are
true:
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(i) For any y ∈ Y it holds

{g(x) + y| x ∈ Z} = {g(x)| x ∈ Z}+ y;

(ii) For any set A ⊆ Y it holds
⋃

x∈Z

[A + g(x)] = A +
⋃

x∈Z

{g(x)}.

Proposition 3.1. Let T ∈ L(X ,Y ) . Then

Φ∗(0, T ) = WSup
{

h∗(T ) + {−〈T, x〉| x ∈ G}
}

.

Proof. Let T ∈ L(X ,Y ) be fixed. By definition

Φ∗(0, T ) = WSup{〈T, u〉 − Φ(x, u)| x ∈ X, u ∈ X}
= WSup{〈T, u〉 − h(x + u)| x ∈ G, u ∈ X}.

We set ū := x + u and, by applying Remark 3.1 and Proposition 2.6 in [19], we
obtain

Φ∗(0, T ) = WSup
{
{〈T, ū〉 − h(ū)| ū ∈ X}+ {−〈T, x〉| x ∈ G}

}

= WSup
{

WSup{〈T, ū〉 − h(ū)| ū ∈ X}+ {−〈T, x〉| x ∈ G}
}

= WSup
{

h∗(T ) + {−〈T, x〉| x ∈ G}
}

. ¤

Consequently, we can introduce the following dual problem to (Pc)

(Dc) WSup
⋃

T∈L(X ,Y )

WInf
{
− h∗(T ) + {〈T, x〉| x ∈ G}

}
.

Proposition 3.2 (Weak duality). For any x ∈ G and any T ∈ L(X ,Y ) it holds

h(x) /∈ B
(
− Φ∗(0, T )

)
.

Proposition 3.3. If the primal problem (Pc) is stable, then

WInf(Pc) = WSup(Dc) = WMax(Dc).

Remark 3.2. According to Proposition 2.6 in [19], one can use for Φ∗(0, T ) the
following equivalent formulations

Φ∗(0, T ) = WSup
{
{〈T, u〉 − h(u)| u ∈ X}+ {−〈T, x〉| x ∈ G}

}

= WSup
{

h∗(T ) + {−〈T, x〉| x ∈ G}
}

= WSup
{

h∗(T ) + WSup{−〈T, x〉| x ∈ G}
}

.

The following result deals with the stability of the problem (Pc), assuming that
its objective function has the form h(x) = 〈C, x〉, C ∈ L(X ,Y ) .

Proposition 3.4. Let C ∈ L(X ,Y ) and the objective function h : X → Y be
defined by h(x) = 〈C, x〉, x ∈ X. Then the problem (Pc) is stable.
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Proof. Let W : X ⇒ Y be the value mapping of (Pc)

W (y) = WInf{Φ(x, y)| x ∈ X}
= WInf{〈C, x + y〉| x ∈ G} = 〈C, y〉+ WInf{〈C, x〉| x ∈ G}.

Let z ∈ W (0) be fixed. By definition, ∂W (0; z) 6= 0 means that there exists T ∈
L(X ,Y ) such that (see Definition 2.3(iii))

(3.1) −z ∈ WMax
⋃

y∈X

[〈T, y〉 −W (y)].

Let us show that (3.1) holds. By applying Remark 3.1 we have

W ∗(T ) = WSup
⋃

y∈X

[〈T, y〉 −W (y)]

= WSup
⋃

y∈X

[〈T, y〉 − 〈C, y〉 −WInf{〈C, x〉| x ∈ G}]

= WSup
{
−WInf{〈C, x〉| x ∈ G}+ {〈T − C, y〉| y ∈ X}

}
.

Taking T = C, in view of Corollary 2.3 in [19], one has

W ∗(C) = WSup WSup{−〈C, x〉| x ∈ G}
= WSup{−〈C, x〉| x ∈ G} = −WInf{〈C, x〉| x ∈ G} = −W (0).

This means that −z ∈ W ∗(C) = WSup
⋃

y∈X

[〈C, y〉 −W (y)]. On the other hand, as

−z = 〈C, 0〉 − z ∈ ⋃
y∈X

[〈C, y〉 −W (y)], it follows that

−z ∈ WMax
⋃

y∈X

[〈C, y〉 −W (y)].

In other words, W is subdifferentiable at 0. ¤

4. Variational principles for vector equilibrium problems

In the following we assume that K is a nonempty convex set in X and f : K×K →
Y is a bifunction such that f(x, x) = 0, ∀x ∈ K. We consider the vector equilibrium
problem which consists in finding x ∈ K such that

(V EP ) f(x, y) ≮ 0, ∀y ∈ K.

By Kp we denote the solution set of (V EP ).
We say that a variational principle (see [4], [5]) holds for (V EP ) if there exists

a set-valued map G : K ⇒ Y, depending on the data of (V EP ) but not on its
solution set such that the solution set of (V EP ) is contained in the solution set of
the set-valued optimization problem

(PG) WMin
⋃

x∈K

G(x).

(PG) is nothing else than the problem of finding x0 ∈ K such that

G(x0) ∩WMin
⋃

x∈K

G(x) 6= ∅.
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Auchmuty ([6]) was the first who proposed variational principles as generaliza-
tions of the concept of gap functions for variational inequalities. Later, Blum and
Oettli ([8]) introduced variational principles also for equlibrium problems. Varia-
tional principles for vector equilibrium problems have been investigated by Ansari,
Konnov and Yao in [4] and [5] as generalizations of the above mentioned variational
principles.

In this section we give variational principles for (V EP ) obtained on the basis of
the Fenchel-type duality introduced in the previous section. Let us notice that the
Fenchel duality has been used by the authors in [1] and [2], when constructing gap
functions for scalar equilibrium problems.

One can easily notice that x̄ ∈ K is a solution to (V EP ) if and only if 0 is a weak
minimal point of the set {f(x̄, y)| y ∈ K}. For a fixed x ∈ K consider the following
vector optimization problem

(P V EP ;x) WInf
{

f(x, y)| y ∈ K
}

.

Further let be f̃ : X ×X → Y

f̃(x, y) =

{
f(x, y), if (x, y) ∈ K ×K;
+∞, otherwise.

The Fenchel-type dual of (P V EP ;x) introduced in Section 3 turns out to be

(DV EP ;x) WSup
⋃

T∈L(X ,Y )

WInf
{
{f̃(x, y)− 〈T, y〉| y ∈ X}+ {〈T, y〉| y ∈ K}

}

= WSup
⋃

T∈L(X ,Y )

WInf
{
{f(x, y)− 〈T, y〉| y ∈ K}+ {〈T, y〉| y ∈ K}

}
.

In view of Proposition 2.6 in [19], the dual becomes

(DV EP ;x) WSup
⋃

T∈L(X ,Y )

WInf
{
− f∗K(T ;x) + {〈T, y〉| y ∈ K}

}
,

where f∗K(·;x) : L(X ,Y ) ⇒ Y is defined by f∗K(T ;x) = WSup{〈T, y〉 − f(x, y)| y ∈
K}. For any x ∈ K we introduce the following mapping

γp(x) :=
⋃

T∈L(X ,Y )

[
− Φ∗p(0, T ;x)

]
,

where Φ∗p(0, T ;x) = WSup
{

f∗K(T ;x) + {−〈T, y〉| y ∈ K}
}

. This can be rewritten
as

γp(x) =
⋃

T∈L(X ,Y )

[
−WSup

{
f∗K(T ;x) + {−〈T, y〉| y ∈ K}

}]

=
⋃

T∈L(X ,Y )

WInf
{
− f∗K(T ;x) + {〈T, y〉| y ∈ K}

}

=
⋃

T∈L(X ,Y )

WInf
{
{f(x, y)− 〈T, y〉| y ∈ K}+ {〈T, y〉| y ∈ K}

}
.
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We consider the following optimization problem

(Pγ) WSup
⋃

x∈K

γp(x),

which delivers, as proved in the following, a variational principle for (V EP ).

Lemma 4.1. For any x ∈ K, if z ∈ γp(x), then z ≯ 0.

Proof. Let x ∈ K be fixed and

z ∈ γp(x) =
⋃

T∈L(X ,Y )

WInf
{
{f(x, y)− 〈T, y〉| y ∈ K}+ {〈T, y〉| y ∈ K}

}
.

Then exists T ∈ L(X ,Y ) such that

z ∈ WInf
{
{f(x, y)− 〈T , y〉| y ∈ K}+ {〈T , y〉| y ∈ K}

}
.

We assume that z > 0. This can be equivalently written as

z > f(x, x)− 〈T , x〉+ 〈T , x〉,
which leads to a contradiction. ¤
Theorem 4.1. Let the problem (P V EP ;x) be stable for each x ∈ Kp. Then

(i) x̄ ∈ K is a solution to (V EP ) if and only if 0 ∈ γp(x̄);
(ii) Kp ⊆ Kp

γ , where Kp
γ denotes the solution set of (Pγ).

Proof. (i) If x̄ ∈ K is a solution to (V EP ), then by Proposition 3.3 one has

0 ∈ WInf(P V EP ; x̄) = WMax(DV EP ; x̄).

Whence

0 ∈ WMax
⋃

T∈L(X ,Y )

WInf
{
− f∗K(T, x̄) + {〈T, y〉| y ∈ K}

}
.

Consequently, 0 ∈ γp(x̄). Let us now assume that

0 ∈ γp(x̄) =
⋃

T∈L(X ,Y )

WInf
{
− f∗K(T, x̄) + 〈T, y〉| y ∈ K}

}

=
⋃

T∈L(X ,Y )

WInf
{
{f(x̄, y)− 〈T, y〉| y ∈ K}

+ {〈T, y〉| y ∈ K}
}

.

Thus exists T ∈ L(X ,Y ) such that

0 ∈ WInf
{
{f(x̄, y)− 〈T , y〉| y ∈ K}+ {〈T , y〉| y ∈ K}

}
.

Assume that 0 /∈ WInf{f(x̄, y)| y ∈ K}. Then one must have

0 /∈ WMin{f(x̄, y)| y ∈ K}
and so there exists y′ ∈ K such that f(x̄, y′) < 0 or, equivalently, f(x̄, y′)−〈T , y′〉+
〈T , y′〉 < 0, which leads to a contradiction.
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(ii) Let x̄ ∈ Kp. In view of (i) we have 0 ∈ γp(x̄). On the other hand, by Lemma
4.1, if z ∈ γp(x) for x ∈ K, then z ≯ 0. In conclusion, from z ∈ ⋃

x∈K

γp(x) follows

z ≯ 0. This means that

0 ∈ WMax
⋃

x∈K

γp(x) ⊆ WSup
⋃

x∈K

γp(x),

which means that x̄ ∈ Kp
γ . ¤

Remark 4.1. Let X = Rn and Y = R. Then the linear continuous operator T ∈
L(Rn,R) can be identified with a n-dimensional vector. In this case for a given set
Z ⊆ R we have (cf. [18])

ŷ ∈ WSupZ if and only if ŷ > y, ∀y ∈ Z and if y′ < ŷ, then ∃y ∈ Z
such that y′ < y.

In other words WSupZ is nothing else than the usual concept of the supremum of
the set Z in R.

Assume that ϕ : X×X → R∪{+∞} is a bifunction satisfying ϕ(x, x) = 0, ∀x ∈
K. Consider the equilibrium problem which consists in finding x ∈ K such that

(EP ) ϕ(x, y) ≥ 0, ∀y ∈ K,

which is a special case of (V EP ). Taking in the formulation of (DV EP ;x) the func-
tion ϕ instead of f̃ , the dual becomes

sup
T∈Rn

inf
{
{ϕ(x, y)− 〈T, y〉| y ∈ Rn}+ {〈T, y〉| y ∈ K}

}
(DEP ;x)

= sup
T∈Rn

{
inf

y∈Rn
{ϕ(x, y)− 〈T, y〉}+ inf

y∈K
〈T, y〉

}

= sup
T∈Rn

{
− ϕ∗y(x, T ) + inf

y∈K
〈T, y〉

}
,

where ϕ∗y(x, T ) := sup
y∈Rn

{〈T, y〉 − ϕ(x, y)} is the conjugate function of ϕ(x, ·) : X →
R ∪ {+∞} with respect to the variable y for a fixed x. The function γp turns out
in this case to be

γEP (x) := −v(DEP ;x) = inf
T∈Rn

{
ϕ∗y(x, T ) + sup

y∈K
〈−T, y〉

}
,

where v(DEP ;x) is the optimal objective value of the problem (DEP ;x). This is
nothing else than the gap function introduced in [2].

Example 4.1. Let u : X → Y ∪ {+∞} be a given function and the bifunction
f̃ : dom u×X → Y ∪{+∞} defined by f̃(x, y) = u(y)−u(x), where dom u := {x ∈
X| u(x) ∈ Y }. We assume that K ×K ⊆ dom f̃ . Then (V EP ) becomes the vector
optimization problem of finding x ∈ K such that

(P̃u) f̃(x, y) = u(y)− u(x) ≮ 0, ∀y ∈ K.

For any x ∈ K, γp turns out to be

γ̃p(x) = −u(x) +
⋃

T∈L(X ,Y )

WInf
{
{u(y)− 〈T, y〉| y ∈ X}+ {〈T, y〉| y ∈ K}

}
.
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Assuming the stability of (P̃u), by Proposition 3.3, it holds

(4.1) WInf(P̃u) = WSup(D̃u) = WMax(D̃u),

where (D̃u) is the Fenchel-type dual problem to (P̃u).

Let x̄ ∈ K be a solution to (P̃u). From (4.1) follows

u(x̄) ∈
⋃

T∈L(X ,Y )

WInf
{
{u(y)− 〈T, y〉| y ∈ X}+ {〈T, y〉| y ∈ K}

}
.

In other words 0 ∈ γ̃p(x̄). The inverse implication follows analogously (see the proof
of Theorem 4.1). On the other hand, by Proposition 3.3 and Proposition 2.6 in
[19], one has WSup

⋃
x∈K

γ̃p(x) = {0}. If x̄ ∈ K solves (P̃u), then as shown before,

0 ∈ γ̃p(x̄). This means that x̄ ∈ Kp
γ and so Kp ⊆ Kp

γ . In other words, for this
particular form of the vector equilibrium problem the assertions of Theorem 4.1
are automatically fulfilled. Thus the latter proves to be a natural generalization of
some results which hold for some special cases of (V EP ).

Example 4.2 (see [16]). Let X = R, Y = R2, C = R2
+ and the vector-valued

function ϕ1 : R→ R2 ∪ {+∞} be given by

ϕ1(x) =

{
(x, 0), if x ∈ [0, 1],
+∞, otherwise.

For the bifunction f1 : R2 → R2 ∪ {+∞}

f1(x, y) =

{
ϕ1(y)− ϕ1(x), if (x, y)T ∈ [0, 1]× [0, 1],
+∞, otherwise,

we consider the vector equilibrium problem of finding x ∈ K = [0, 1] such that

(V EP1) f1(x, y) = ϕ1(y)− ϕ1(x) ≮ 0, ∀y ∈ K.

According to γp, we have ∀x ∈ R

γp1(x) =
⋃

T∈L(R,R2)

WInf
{
{ϕ1(y)− ϕ1(x)− 〈T, y〉| y ∈ K}+ {〈T, y〉| y ∈ K}

}
.

This can be written as (see Remark 3.2)

γp1(x) = −ϕ1(x)−
⋃

T∈L(R,R2)

WSup
{
{〈T, y〉 − ϕ1(y)| y ∈ K}

+ {−〈T, y〉| y ∈ K}
}

= −ϕ1(x)−
⋃

T∈L(R,R2)

WSup
{

WSup{〈T, y〉 − ϕ1(y)| y ∈ K}

+ WSup{−〈T, y〉| y ∈ K}
}

.
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Notice that the linear continuous operator T ∈ L(R,R2) can be represented as
T = (α, β)T ∈ R2. Using the notations

ψ1(T ) : = WSup{〈T, y〉 − ϕ1(y)| y ∈ K} = WSup{(α− 1, β)y| y ∈ [0, 1]},
ψ2(T ) : = WSup{−〈T, y〉| y ∈ K} = WSup{(−α,−β)y| y ∈ [0, 1]},

one can find for any T = (α, β)T ∈ R2 how the sets ψ1(T ), ψ2(T ) and WSup{ψ1(T )
+ψ2(T )} are looking.

(i) If α ≥ 1 and β ≥ 0, then

ψ1(T ) = {(x, y)T ∈ R2| (x = α− 1, y ≤ β) ∨ (y = β, x ≤ α− 1)},
ψ2(T ) = {(x, y)T ∈ R2| (x = 0, y ≤ 0) ∨ (y = 0, x ≤ 0)}.

Whence WSup{ψ1(T ) + ψ2(T )} = ψ1(T ).
(ii) If α > 1 and β < 0, then

ψ1(T ) =
{

(x, y)T ∈ R2| (x = α− 1, y ≤ β) ∨ (y = 0, x ≤ 0)

∨
(
y =

β

α− 1
x, 0 ≤ x ≤ α− 1

)}
,

ψ2(T ) =
{

(x, y)T ∈ R2| (x = 0, y ≤ 0) ∨ (y = −β, x ≤ −α)

∨
(
y =

β

α
x, −α ≤ x ≤ 0

)}
.

Consequently we have

WSup{ψ1(T ) + ψ2(T )} =
{

(x, y)T ∈ R2| (x = α− 1, y ≤ β)

∨ (y = −β, x ≤ −α) ∨
(
y =

β

α
x, −α ≤ x ≤ 0

)

∨
(
y =

β

α− 1
x, 0 ≤ x ≤ α− 1

)}
.

If α = 1 and β < 0, then one can easily see that

WSup{ψ1(T ) + ψ2(T )} =
{

(x, y)T ∈ R2| (x = 0, y ≤ 0)

∨ (y = −β, x ≤ −α) ∨
(
y =

β

α
x, −α ≤ x ≤ 0

)}
.

(iii) If 0 < α < 1 and β ≥ 0, then

ψ1(T ) =
{

(x, y)T ∈ R2| (x = 0, y ≤ 0) ∨ (y = β, x ≤ α− 1)

∨
(
y =

β

α− 1
x, α− 1 ≤ x ≤ 0

)}
,

ψ2(T ) = {(x, y)T ∈ R2| (x = 0, y ≤ 0) ∨ (y = 0, x ≤ 0)}.
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As a consequence one has WSup{ψ1(T ) + ψ2(T )} = ψ1(T ). If additional,
α = 0 and β ≥ 0, then it holds

WSup{ψ1(T ) + ψ2(T )} =
{

(x, y)T ∈ R2| (x = 0, y ≤ 0)

∨ (y = β, x ≤ α− 1) ∨
(
y =

β

α− 1
x, α− 1 ≤ x ≤ 0

)}
.

(iv) If 0 < α < 1 and β < 0, then

ψ1(T ) = {(x, y)T ∈ R2| (x = 0, y ≤ 0) ∨ (y = 0, x ≤ 0)},
ψ2(T ) =

{
(x, y)T ∈ R2| (x = 0, y ≤ 0) ∨ (y = −β, x ≤ −α)

∨
(
y =

β

α
x, −α ≤ x ≤ 0

)}
.

Hence WSup{ψ1(T ) + ψ2(T )} = ψ2(T ). Moreover, if α = 0 and β < 0, then
it holds

WSup{ψ1(T ) + ψ2(T )} = {(x, y)T ∈ R2| (x = 0, y ≤ β)

∨ (y = −β, x ≤ 0)}.
(v) If α < 0 and β ≥ 0, then

ψ1(T ) =
{

(x, y)T ∈ R2| (x = 0, y ≤ 0) ∨ (y = β, x ≤ α− 1)

∨
(
y =

β

α− 1
x, α− 1 ≤ x ≤ 0

)}
,

ψ2(T ) =
{

(x, y)T ∈ R2| (x = −α, y ≤ −β) ∨ (y = 0, x ≤ 0)

∨
(
y =

β

α
x, 0 ≤ x ≤ −α

)}
.

and we get further

WSup{ψ1(T ) + ψ2(T )} =
{

(x, y)T ∈ R2| (x = −α, y ≤ −β)

∨ (y = β, x ≤ α− 1) ∨
(
y =

β

α− 1
x, α− 1 ≤ x ≤ 0

)

∨
(
y =

β

α
x, 0 ≤ x ≤ −α

)}
.

(vi) Finally, if α < 0 and β < 0, then

ψ1(T ) = {(x, y)T ∈ R2| (x = 0, y ≤ 0) ∨ (y = 0, x ≤ 0),

ψ2(T ) = {(x, y)T ∈ R2| (x = −α, y ≤ −β) ∨ (y = −β, x ≤ −α)}.
and in this case we have WSup{ψ1(T ) + ψ2(T )} = ψ2(T ).

Summarizing all above cases, we obtain the complete description of the mapping
γp1 .
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In the following we deal with another class of vector equilibrium problems, the
so-called dual vector equilibrium problem. The dual vector equilibrium problem is
the problem of finding x ∈ K such that

(DV EP ) f(y, x) ≯ 0, ∀y ∈ K.

Variational principles for (DV EP ) can be given in a similar way to the ones for
(V EP ). Indeed, let us denote by Kd the solution set of (DV EP ). One can notice
that x̂ ∈ K is a solution to (DV EP ) if and only if 0 is a weak maximal point of the
set {f(y, x̂)| y ∈ K}. For any x ∈ K we consider the vector optimization problem

(PDV EP ;x) WSup{f(y, x)| y ∈ K} = −WInf{−f(y, x)| y ∈ K}.
Instead of considering (PDV EP ;x), we work with the vector optimization problem

(P̃DV EP ;x) WInf{−f(y, x)| y ∈ K}.
By using the function f̂ : X ×X → Y ,

f̂(x, y) =

{
−f(y, x), if (x, y) ∈ K ×K;
+∞, otherwise,

the Fenchel-type dual to (P̃DV EP ;x) can be written as

WSup
⋃

Λ∈L(X ,Y )

WInf
{
{f̂(x, y)− 〈Λ, y〉| y ∈ X}+ {〈Λ, y〉| y ∈ K}

}
(D̃DV EP ;x)

=WSup
⋃

Λ∈L(X ,Y )

WInf
{
{−f(y, x)− 〈Λ, y〉| y ∈ K}+ {〈Λ, y〉| y ∈ K}

}
.

For every x ∈ K we define the following mapping

γd(x) :=
⋃

Λ∈L(X ,Y )

Φ∗d(0,Λ; x),

where Φ∗d(0,Λ; x) = WSup
{
{f(y, x) + 〈Λ, y〉| y ∈ K}+ {−〈Λ, y〉| y ∈ K}

}
.

To the problem (DV EP ) we associate the set-valued vector optimization problem

(Dγ) WInf
⋃

x∈K

γd(x),

which represents the starting point in formulating a variational principle for
(DV EP ).

Lemma 4.2. For any x ∈ K, if z ∈ γd(x), then z ≮ 0.

Proof. Let x ∈ K be fixed and

z ∈ γd(x) =
⋃

Λ∈L(X ,Y )

WSup
{
{f(y, x) + 〈Λ, y〉| y ∈ K}+ {−〈Λ, y〉| y ∈ K}

}
.

Consequently, there exists Λ̃ ∈ L(X ,Y ) such that

z ∈ WSup
{
{f(y, x) + 〈Λ̃, y〉| y ∈ K}+ {−〈Λ̃, y〉| y ∈ K}

}
.
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Let z < 0. In other words

z < f(x, x) + 〈Λ̃, x〉 − 〈Λ̃, x〉.
This contradicts the fact that z is a weak supremal element of the set

{
{f(y, x) +

〈Λ̃, y〉| y ∈ K}+ {−〈Λ̃, y〉| y ∈ K}
}

. ¤

Theorem 4.2. Let the problem (P̃DV EP ;x) be stable for each x ∈ Kd. Then
(i) x̃ ∈ K is a solution to (DV EP ) if and only if 0 ∈ γd(x̃);
(ii) Kd ⊆ Kd

γ , where Kd
γ denotes the solution set of (Dγ).

Proof. (i) Let x̃ ∈ K be a solution to (DV EP ). Then, by Proposition 3.3, it follows
that

0 ∈ WSup(PDV EP ; x̃) = −WInf(P̃DV EP ; x̃) = −WMax(D̃DV EP ; x̃).

Therefore

0 ∈ WMin
⋃

Λ∈L(X ,Y )

WSup
{
{f(y, x̃) + 〈Λ, y〉| y ∈ K}+ {−〈Λ, y〉| y ∈ K}

}
.

In other words we have 0 ∈ γd(x̃). Let now 0 ∈ γd(x̃). Then there exists Λ̃ ∈ L(X ,Y )
such that

0 ∈ WSup
{
{f(y, x̃) + 〈Λ̃, y〉| y ∈ K}+ {−〈Λ̃, y〉| y ∈ K}

}
.

If 0 /∈ WSup(PDV EP ; x̃), then 0 /∈ WMax(PDV EP ; x̃). Whence there exists ỹ ∈ K

such that f(ỹ, x̃) > 0 or, equivalently, f(ỹ, x̃) + 〈Λ̃, ỹ〉 − 〈Λ̃, ỹ〉 > 0. But this leads
to a contradiction.

(ii) Let x̃ ∈ Kd. Taking into account (i), one has 0 ∈ γd(x̃). By Lemma 4.2 we
obtain that

0 ∈ WMin
⋃

x∈K

γd(x) ⊆ WInf
⋃

x∈K

γd(x),

which means x̃ ∈ Kd
γ . ¤

Under some (generalized) convexity and monotonicity assumptions the relations
between the solution sets of (V EP ) and (DV EP ) have been investigated in [5] and
[13]. In this way we can relate the mapping γd to the vector equilibrium problem
(V EP ). Before doing this, let us recall some definitions and preliminary results.

Definition 4.1 ([5, Definition 2.1]). A function f : K ×K → Y is called
(i) monotone if, for all x, y ∈ K, we have

f(x, y) + f(y, x) ≤ 0;

(ii) pseudomonotone if, for all x, y ∈ K, we have

f(x, y) ≮ 0 implies f(y, x) ≯ 0

or, equivalently,

f(x, y) > 0 implies f(y, x) < 0.

Definition 4.2 ([5, cf. Definition 2.2]). A function h : K → Y is called
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(i) quasiconvex if, for all α ∈ Y, the set L(α) = {x ∈ K| h(x) ≤ α} is convex;
(ii) explicitly quasiconvex if h is quasiconvex and, for all x, y ∈ K such that

h(x) < h(y), we have

h(zt) < h(y), for all zt = tx + (1− t)y and t ∈ (0, 1);

(iii) hemicontinuous if, for any x, y ∈ K and t ∈ [0, 1], the mapping t 7→ h(tx +
(1− t)y) is continuous at 0+.

Proposition 4.1 ([5, Proposition 2.1]). Let K be a nonempty convex subset of a
Hausdorff topological vector space X and let f : K ×K → Y be a bifunction such
that f(x, x) = 0, ∀x ∈ K.

(i) If f is pseudomonotone, then Kp ⊆ Kd;
(ii) If f(x, ·) is explicitly quasiconvex and f(·, y) is hemicontinuous for all x, y ∈

K, then Kd ⊆ Kp.

By using Theorem 4.2 and Proposition 4.1 one can easily verify the following
assertion.

Proposition 4.2. Let all the assumptions of Proposition 4.1 and Theorem 4.2 be
fulfilled. Then

(i) x̃ ∈ K is a solution to (V EP ) if and only if 0 ∈ γd(x̃);
(ii) Kp ⊆ Kd

γ .

5. Gap functions for weak vector variational inequalities

This section deals with the construction of gap functions for the weak vector
variational inequality problem. To this end we use the results given in the previous
sections for the vector equilibrium problems. As before, let X and Y be real topo-
logical spaces, K is a convex subset of X and F : X → L(X ,Y ) a given mapping.
The weak vector variational inequality problem consists in finding x ∈ K such that

(WV V I) 〈F (x), y − x〉 ≮ 0, ∀y ∈ K.

Definition 5.1 ([9, Definition 5(ii)]). A set-valued mapping ψ : X ⇒ Y is said to
be a gap function for the problem (WV V I) if it satisfies the following conditions

(i) 0 ∈ ψ(x) if and only if x ∈ K solves (WV V I);
(ii) 0 ≯ ψ(y), ∀y ∈ K.

As one has that x̄ ∈ K is a solution to (WV V I) if and only if 0 is a weak minimal
point of the set {〈F (x̄), y − x̄〉| y ∈ K}, let us consider the vector optimization
problem

(PWV V I ;x) WInf{〈F (x), y − x〉| y ∈ K}.
We take in the definition of γp for any x ∈ K, f(x, y) := 〈F (x), y − x〉 and

then define the gap function as being −γp. Thus one gets the following set-valued
mapping

ψp(x) :=
⋃

T∈L(X ,Y )

WSup
{
{〈T, y〉 − 〈F (x), y − x〉| y ∈ X}+ {−〈T, y〉| y ∈ K}

}

=
⋃

T∈L(X ,Y )

WSup
{
{〈T − F (x), y〉| y ∈ X}+ {−〈T, y〉| y ∈ K}

}
+ 〈F (x), x〉.
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Theorem 5.1. The mapping ψp is a gap function for the problem (WV V I).

Proof. (i) Since y → 〈F (x), y − x〉 is a linear mapping, Proposition 3.4 ensures the
stability of the problem (PWV V I ;x) for any x ∈ K. Thus the first condition in the
definition of a gap function follows from Theorem 4.1(i).

(ii) By Lemma 4.1, for any y ∈ K and any z ∈ −ψp(y) one has z ≯ 0. It follows
that 0 ≯ ψp(y), ∀y ∈ K. ¤

The relations between (WV V I) and the so-called Minty weak vector variational
inequality have been investigated by several authors (see [11], [13], [20] and [21]).
This is the problem which consists in finding x ∈ K such that

(MWV V I) 〈F (y), x− y〉 ≯ 0, ∀y ∈ K.

As done in Section 4, (MWV V I) can be related to the following vector optimization
problem

(PMWV V I ;x) WInf{〈F (y), y − x〉| y ∈ K},
in the sense that x ∈ K is a solution to (MWV V I) if and only if 0 is a weak
minimal point of the set {〈F (y), y − x〉| y ∈ K}. Taking in the formula of γd,
f̂(x, y) := 〈F (x), y − x〉, this becomes the following mapping

ψd(x) =
⋃

Λ∈L(X ,Y )

WSup
{
{〈F (y), x− y〉+ 〈Λ, y〉| y ∈ X}+ {−〈Λ, y〉| y ∈ K}

}
.

From Theorem 4.2(i) and Lemma 4.2 one has the following assertion.

Theorem 5.2. Let the problem (PMWV V I ;x) be stable for any solution x ∈ K to
(MWV V I). Then ψd is a gap function for the problem (MWV V I).

Next we give some conditions which guarantee that the mapping ψd is also a gap
function for (WV V I). To this end we need first the following definitions.

Definition 5.2. [21] Let F : K → L(X ,Y ) be a given function.
(i) F is weakly C-pseudomonotone on K if for each x, y ∈ K, we have

〈F (x), y − x〉 ≮ 0 implies 〈F (y), x− y〉 ≯ 0;

(ii) F is v-hemicontinuous if for each x, y ∈ K and t ∈ [0, 1], the mapping
t 7→ 〈F (x + t(y − x)), y − x〉 is continuous at 0+.

Proposition 5.1. [21, Lemma 2.1]
Let X, Y be Banach spaces and let K be a nonempty convex subset of X. Assume
that F : K → L(X ,Y ) is weakly C-pseudomonotone on K and v-hemicontinuous.
Then x ∈ K is a solution to (WV V I) if and only if it is also a solution to
(MWV V I).

Combining Proposition 5.1 and Theorem 5.2 one gets the following result.

Proposition 5.2. Let the assumptions of Proposition 5.1 and Theorem 5.2 be ful-
filled. Then ψd is a gap function for (WV V I).
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