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ON MUTUALLY NEAREST POINTS OF UNBOUNDED SETS IN
BANACH SPACES

CHONG LI AND J. MYJAK

Abstract. Let A(X) (resp. C(X)) denote the family of all nonempty closed
(resp. nonempty closed convex) subsets of a strictly convex and Kadec (resp. uni-
formly convex) Banach space X and let A(X) be endowed with the hρ-topology.
Let G ∈ A(X) and consider the minimization problem minx∈A,z∈G ‖x − z‖,
denoted by min(A, G). It is proved that the set of all subsets A ∈ AG(X)
(resp. A ∈ CG(X)) such that the minimization problem min(A, G) is well-posed
is a dense Gδ-subset in AG(X) (resp. CG(X)) provided that G is a relatively
weakly compact closed (resp. a bounded closed) subset of X, where AG(X) is
the closure of the set {A ∈ A(X) : λAG > 0} with respect to the hρ-topology and
CG(X) = C(X)∩AG(X). In particular, in the case when X is uniformly convex it
is also proved that the set of all subsets A ∈ AG(X) such that the minimization
problem min(A, G) fails to be well-posed is a σ-porous set in AG(X). Similar re-
sults are given for the family of all nonempty closed boundedly relatively compact
subsets of X. The case when G is unbounded is also considered.

1. Introduction

Let X be a real Banach space. Let Ab(X) (resp. Cb(X)) denote the family of all
nonempty closed bounded (resp. nonempty closed bounded convex) subsets of X.
Let h denote the Hausdorff distance. It is well-known that the space (Ab(X), h) is
a complete metric space.

For closed disjoint subsets A and G of X, we set

λAG := inf{‖z − x‖ : x ∈ A, z ∈ G}.
A pair (x0, z0) with x0 ∈ A, z0 ∈ G is called a solution of the minimization

problem, denoted by min(A,G), if ‖x0 − z0‖ = λAG. Moreover, any sequence
{(xn, zn)} with xn ∈ A, zn ∈ G, such that limn→∞ ‖xn − zn‖ = λAG is called a
minimizing sequence for min(A,G)). A minimization problem is said to be well-
posed if it has a unique solution and every minimizing sequence converges strongly
to this solution.

For a given closed subset G of X, let C̄b
G(X) stand for the closure (under the

Hausdorff distance) of the set {A ∈ Cb(X) : λAG > 0}. In [2], it is proved that the
set of all A ∈ C̄b

G(X) such that the minimization problem min(A,G) is well-posed is
a dense Gδ-subset of C̄b

G(X), provided that X is a uniformly convex Banach space.
Recently (see [11], [12] and [13]), this result has been extended to the framework of

strongly convex and/or strictly convex Banach spaces also for the class of nonempty
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compact, nonempty convex compact or nonempty closed bounded subsets of X,
provided that each class under consideration is endowed with Hausdorff distance.
For further related results, see [14–19].

In this note we will study similar problem for the class of unbounded sets endowed
with the hρ-topology (see [1]). Since in the class Ab(X) the hρ-topology is weaker
than the topology generated by the Hausdorff distance, the results presented here
are independent of those mentioned above.

2. Preliminaries and main results

Recall that a function d : X×X → [0,+∞] is called a semimetric ( pseudometric,
gauge) in X if d(x, x) = 0, d(x, y) = d(y, x) and d(x, y) ≤ d(x, z) + d(z, y) for every
x, y, z ∈ X. The d ball of radius ε centered at y is the set Ud(y, ε) =

{
x ∈ X :

d(x, y) < ε
}
.

A family
{
dρ : ρ ∈ Γ

}
of gauges on X is called separating if for each pair of points

x, y ∈ X, x 6= y there is ρ ∈ Γ such that dρ(x, y) > 0. The topology having for a
subbasis the family

{
Udρ(x, ε) : ρ ∈ Γ, x ∈ X, ε > 0

}
is called the gauge topology

in X induced by
{
dρ : ρ ∈ Γ

}
. Obviously this topology is Hausdorff if the family of

gauges is separating.
Let X be a Banach space and let A be a subset of X. Then, as usual, A stands

for the closure of A, diam A for the diameter of A, coA for the closed convex hull of
A, and d(x,A) for the distance from x to A. By S(x, r) we denote the closed ball in
X with center x and radius r. In particular S stands for S(0, 1). By R we denote
the set of all reals and by N the set of all positive integers. Moreover, we set

A(X) — the family of all nonempty closed subsets,
Ab(X) — the family of all nonempty closed bounded subsets,
D(X) — the family of all nonempty closed boundedly compact subsets,
Db(X) — the family of all nonempty compact subsets,
C(X) — the family of all nonempty closed convex subsets,
Cb(X) — the family of all nonempty closed bounded convex subsets,
K(X) — the family of all nonempty closed convex boundedly compact subsets,
Kb(X) — the family of all nonempty convex compact subsets.
For A,B ∈ A(X), we define

(2.1) e(A,B) = inf{ε > 0 : A ⊂ B + εS}
and

(2.2) h(A,B) = max {e(A,B), e(B,A)} .

Note that h is allowed to take value +∞. If A,B ∈ Ab(X) then h is the well-known
Hausdorff distance. Obviously

(2.3) e(A,B) =

{
supa∈A d(a,B) if A 6= ∅
0 if A = ∅.

Now we introduce the hρ-topology on the space A(X) (cf. [1]). For ρ > 0 and
A,B ∈ A(X), we define

(2.4) hρ(A,B) = max
{
e(A ∩ ρS,B), e(B ∩ ρS,A)

}
.
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Clearly, for any ρ > 0 and A,B ∈ A(X),

(2.5) hρ(A,B) ≤ h(A,B).

Clearly hρ is a gauge in A(X) and the family
{
hρ : ρ > 0

}
is separating.

For A ∈ A(X), ρ > 0 and r > 0 we define

(2.6) Uρ(A, r) =
{
B ∈ A(X) : hρ(A,B) < r

}
.

Clearly, the family
{Uρ(A, r) : ρ > 0, r > 0

}
is the neighbourhood basis of the

point A and the corresponding (gauge) topology on A(X) is called hρ-topology on
A(X). Note that the sequence {An} converges to A in hρ-topology iff hρ(An, A) → 0
for every ρ > 0. It is easy to verify that the set Ab(X) is dense in the space A(X)
with respect to the hρ-topology. The next proposition describes some relationship
between the convergences in the hρ-topology and in the topology generated by the
Hausdorff distance.

Proposition 2.1. Let {An} be a sequence of sets from C(X) and let A0 ∈ Cb(X).
Then the following conditions are equivalent:

(i) {An} converges to A0 in the hρ-topology.
(ii) There exist M > 0 and some integer n0 such that ‖An‖ ≤ M for n ≥ n0

and {An} converges to A0 with respect to the Hausdorff distance.

Proof. The implication (ii) ⇒ (i) follows immediately from (2.5). We need only to
prove (i) ⇒ (ii). Let ρ0 > 0 and let n∗ be such that A0 ∩ ρ0 S 6= ∅ and

(2.7) hρ0(An, A0) < 1 for each n ≥ n∗.

Let b ∈ A0 ∩ ρ0 S. From (2.7) it follows that b ∈ An +S for every n ≥ n∗. Thus, for
every n ≥ n∗, we can choose an ∈ An and cn ∈ S such that b = an + cn. Obviously
the sequence {an} is bounded.

Further, for every k ∈ N, let mk be such that hk(An, A0) < 1 for each n ≥ mk.
This means that

(2.8) An ∩ k S ⊂ A0 + S for each n ≥ mk.

Suppose that the first statement of condition (ii) does not hold. Then, for every
k ∈ N, there exists nk ≥ max{k, mk} and a point xnk

∈ Ank
such that ‖xnk

‖ > k.
Without loss of generality we can assume that k ≥ supn∈N ‖an‖. Since the set Ank

is convex and ank
, xnk

∈ Ank
satisfy that ‖ank

‖ ≤ k, xnk
> k, there is ynk

∈ Ank

such that ‖ynk
‖ = k. By (2.8) the sequence {ynk

} is bounded, a contradiction. Thus
the first statement of condition (ii) holds. Obviously, if ρ > M then hρ(An, A) =
h(An, A) for each n ≥ n0. This implies that h(An, A0) → 0 as n → ∞. The proof
is complete. ¤
Remark 2.1. The assumption about convexity of sets An, n ∈ N, and boundedness
of A0 in Proposition 2.1 cannot be dropped as shown by the examples bellow.

Example 2.1. Let {xn} ⊂ X be a sequence satisfying ‖xn‖ → ∞ and let x0 ∈ X.
Then define {An} ⊆ A(X) as follows.

A0 = {x0} and An = {x0, xn}, n = 1, 2, . . . .

Obviously, An converges to A0 in the hρ-topology but h(An, A0) → +∞.
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Example 2.2. Let X = R× R. Define, for n ∈ N,

A0 = {(x, 0) : x ∈ R} and An = {(x, x/n) : x ∈ R}.
Obviously {An} converges to A0 in the hρ-topology but h(An, A0) = +∞ for every
n ∈ N.

Definition 2.1. X is said to be
(i) strictly convex if, for any x1, x2 ∈ S, the condition ‖x1 + x2‖ = 2 implies

that x1 = x2;
(ii) uniformly convex if, for any sequences {xn}, {yn} ⊆ S, the condition

limn→∞ ‖xn + yn‖ = 2 implies that limn→∞ ‖xn − yn‖ = 0;
(iii) (sequentially) Kadec if, for any sequence {xn} ⊆ S and x ∈ S, the condition

xn → x weakly implies that limn→∞ ‖xn − x‖ = 0.

For a given set G ∈ A(X), we denote by AG(X) the closure of the set {A ∈
A(X) : λAG > 0} with respect to the hρ-topology. Further, by CG(X), DG(X)
and KG(X) we denote the intersections of AG(X) with C(X), D(X) and K(X),
respectively. Then the main results are stated as follows.

Theorem 2.1. Let G ∈ Ab(X). Suppose that X is a uniformly convex Banach
space. Then the set of all F ∈ CG(X) such that the minimization problem min(F, G)
is well-posed is a dense Gδ-subset in CG(X) with respect to the hρ-topology.

Remark 2.2. The statement of Theorem 2.1 remains true with AG(X) in the place
of CG(X).

Theorem 2.2. Suppose that X is a strictly convex, Kadec Banach space. Let G
be a nonempty closed relatively weakly compact subset of X. Then the set of all
F ∈ KG(X) (resp. F ∈ DG(X), F ∈ AG(X)) such that the minimization problem
min(F, G) is well-posed is a dense Gδ-subset in KG(X) (resp. DG(X), AG(X)) with
respect to the hρ-topology.

Theorem 2.3. Suppose that X is a uniformly convex Banach space. Let G ∈ A(X).
Then the set of all F ∈ CG(X) such that the minimization problem min(F, G) fails
to be well-posed is a set of the first Bair category in CG(X) with respect to the
hρ-topology.

Theorem 2.4. Suppose that X is a strictly convex, Kadec Banach space. Let G be
a nonempty closed, relatively boundedly weakly compact subset of X. Then the set of
all F ∈ KG(X) such that the minimization problem min(F, G) fails to be well-posed
is a set of the first Bair category in KG(X) with respect to the hρ-topology.

3. Proofs of the main results

Let F, G ∈ A(X) and σ > 0. We set ‖A‖ = supa∈A ‖a‖ and

LF (G, σ) := {g ∈ G : d(g, F ) ≤ λFG + σ}.
Obviously the set LF (G, σ) is nonempty, closed and LF (G, σ1) ⊆ LF (G, σ2) if σ1 ≤
σ2. The following characterization of well-posedness is direct but very useful (see
[2]).
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Proposition 3.1. Let G, F ∈ A(X). Then the problem min(F, G) is well-posed if
and only if

inf
σ>0

diamLG(F, σ) = 0 and inf
σ>0

diamLF (G, σ) = 0.

Proposition 3.2. Let G ∈ Ab(X). Let m > 0 and let ρ > ‖G‖ + m. Then, for
every A, B ∈ A(X) with λAG ≤ m and λBG ≤ m, we have

(3.1) |λAG − λBG| ≤ hρ(A,B).

Proof. Let A, B ∈ A(X) be such that λAG ≤ m and λBG ≤ m. Let ε > 0 be such
that

(3.2) ‖G‖+ m + ε < ρ.

Choose b ∈ B and a ∈ A such that

λBG > d(b,G)− ε and ‖a− b‖ < d(b, A) + ε.

Then

(3.3) λAG − λBG ≤ d(a,G)− d(b,G) + ε ≤ ‖a− b‖+ ε ≤ d(b, A) + 2ε.

Obviously

‖b‖ ≤ d(b,G) + ‖G‖ ≤ λBG + ε + ‖G‖ ≤ ‖G‖+ m + ε.

From this and (3.2) it follows immediately that

d(b, A) ≤ sup
y∈B∩ρS

d(y, A) ≤ hρ(A,B).

Using the last inequality in (3.3) we get

λAG − λBG ≤ hρ(A,B) + 2ε.

Since ε > 0 is arbitrary, we have

λAG − λBG ≤ hρ(A,B).

Changing the order of A and B, we obtain (3.1). ¤

Given G ∈ A(X) and k ∈ N define

(3.4) Lk =
{

F ∈ CG(X) : inf
σ>0

diamLG(F, σ) < εk and inf
σ>0

diamLA(G, σ) < εk

}
,

where εk = 1/k.

Lemma 3.1. Let G ∈ Ab(X). Then for every k ∈ N the set Lk is open in CG(X)
with respect to the hρ-topology.

Proof. Fix k ∈ N and let A ∈ Lk. Set

(3.5) θ = max
{

inf
σ>0

diamLG(A, σ), inf
σ>0

diamLA(G, σ)
}

.

Fix m > λAG and take η > 0 such that

(3.6) λAG + η < m, θ + 2η < εk.
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Let ã ∈ A be such that

(3.7) d(ã, G) < λAG +
η

2
and let

ρ > ‖G‖+ ‖ã‖+ m.

By (3.5), there exists σ1 > 0 such that

(3.8) ‖G‖+ m + σ1 < ρ

and
max

{
diamLG(A, σ1), diamLA(G, σ1)

}
< θ + η.

Fix σ2 ∈ (0, σ1) and set

(3.9) δ = min
{1

3
(σ1 − σ2),

η

2

}
.

We will show that

(3.10) Uρ(A, δ) ∩ CG(X) ⊆ Lk,

where Uρ(A, δ) is given by (2.6) (with δ in place of r).
Let B ∈ Uρ(A, δ) ∩ CG(X). Note that ã ∈ A ∩ ρS ⊆ B + δS. It follows from

conditions (3.7) and (3.6) that

(3.11) λBG ≤ d(ã, G) + δ < λAG +
η

2
+ δ ≤ λAG + η ≤ m.

This means that A, B satisfy the hypotheses of Proposition 3.2 and consequently
the condition (3.1) holds.

Let g ∈ LB(G, σ2), i.e., g ∈ G and

(3.12) d(g, B) ≤ λBG + σ2.

Let b ∈ B be such that

(3.13) ‖g − b‖ < d(g, B) + δ.

From the last inequality, (3.12), (3.11). (3.9) and (3.8), we have

‖b‖ ≤ ‖g‖+ d(g, B) + δ ≤ ‖G‖+ λBG + σ2 + δ ≤ ‖G‖+ m + σ1 < ρ.

Hence b ∈ B ∩ ρS and

(3.14) d(b, A) ≤ sup
y∈B∩ρS

d(y, A) ≤ hρ(A,B).

Consequently, by (3.13), (3.14), (3.12), (3.1) and (3.9) we get

d(g, A) ≤ ‖g − b‖+ d(b, A) ≤ d(g, B) + δ + hρ(A,B)

≤ λBG + σ2 + δ + hρ(A,B) ≤ λAG + σ2 + δ + 2hρ(A,B)
≤ λAG + σ2 + 3δ ≤ λAG + σ1.

This shows that LB(G, σ2) ⊆ LA(G, σ1) because g ∈ LB(G, σ2) is arbitrary. Conse-
quently

(3.15) diamLG(B, σ2) ≤ diamLG(A, σ1) < εk.

Now, let b ∈ LG(B, σ2) i.e. b ∈ B and

(3.16) d(b,G) ≤ λBG + σ2.
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Obviously ‖b‖ ≤ ‖G‖+ λBG + σ2 and by (3.11), (3.8) and the choice of σ2 we have
‖b‖ ≤ ρ. From this and the fact that A ∩ ρS 6= ∅ it follows easily that

(3.17) d(b, A) ≤ hρ(A,B) < δ.

Let a ∈ A be such that ‖b− a‖ < δ. Then, by (3.16), (3.1) and (3.9) we obtain

d(a,G) ≤ d(b,G) + δ ≤ λBG + σ2 + δ ≤ λAG + σ2 + 2δ ≤ λAG + σ1.

This means that a ∈ LA(G, σ1) and so b ∈ LA(G, σ1) + δS. Since b ∈ LG(B, σ2) is
arbitrary, LB(G, σ2) ⊆ LA(G, σ1) + δS, which implies

(3.18) diamLB(G, σ2) ≤ diamLA(G, σ1) + 2δ < εk.

From (3.12) and (3.18) it follows that B ∈ Lk. Since B ∈ Uρ(A, δ) ∩ CG(X) is
arbitrary, the proof of Lemma 3.1 is complete. ¤

The following example shows that Lemma 3.1 may fail if G ∈ A(X).

Example 3.1. Let X = R × R. Define G = {(−1, 0)}⋃⋃∞
n=1{(2n, 2)}. Let A0 =

[0,+∞) × {0} and An = {(t, t/(2n)) : t ∈ [0, 2n]} for each n ∈ N. Obviously
An → A0 in the hρ-topology, A0 ∈ Lk but An /∈ Lk for each k ∈ N. This means
that, for arbitrary k ∈ N, the set Lk is not open with respect to the hρ-topology.

Lemma 3.2. Let G ∈ A(X). Then, for every k ∈ N, the set Cb
G(X) ∩ Lk is

contained in the set intLk, where intLk denotes the interior of Lk with respect to
the hρ-topology.

Proof. Let A ∈ Cb(X) ∩ Lk. Then, by Proposition 2.1, there exist M > 0, ρ̄ > 0
and ε̄ > 0 such that

‖B‖ ≤ M for each B ∈ Uρ̄(A, ε̄) ∩ CG(X).

Indeed, otherwise, then, for every k ∈ N, there is Bk ∈ Uk(A, 1/k) such that ‖Bk‖ ≥
k, which is a contradiction by Proposition 2.1. Let ρ > M and let δ > 0 be defined
as in the proof of Lemma 3.1. Using the similar arguments as in the proof of Lemma
3.1 one can show that Uρ(A, δ) ∩ CG(X) ⊆ Lk, which completes the proof. ¤
Remark 3.1. Note that Lemma 3.2 fails if the class Cb

G(X) is replaced by Ab
G(X) or

Db
G(X) showed by the following examples.

Example 3.2. Let X be a Banach space and let x0 ∈ X such that ‖x0‖ = 1. Let
xn = (n + 1)x0 for n ∈ N. Define

G =
{4

3
x0

}
∪

∞⋃

n=1

{
x ∈ X : ‖x− xn‖ =

1
3

}
,

A0 = {x0} and An = {x0, xn}, n ∈ N.

Clearly An → A0 in hρ-topology and A0 ∈ Lk but An /∈ Lk for each k ∈ N. This
means that A0 /∈ intLk for each k ∈ N.

Let V(G) denote the set of all F ∈ Ab
G(X) such that the minimization problem

min(F, G) is well-posed. Define

VC(G) = Cb(X) ∩ VB(G), VD(G) = Db(X) ∩ VB(G), VK(G) = Kb(X) ∩ VB(G).

The following observations are known (see [2], [12], [13]).
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Proposition 3.3. Let G ∈ A(X). Then the following assertions hold.
(i) If X is uniformly convex, then VC(G) is a dense Gδ-subset of Cb

G(X).
(ii) If X is strictly convex Kadec and G is relatively boundedly weakly compact,

then VB(G) (resp. VD(G), VK(G)) is a dense Gδ-subset of Ab
G(X) (resp.

Db
G(X), Kb

G(X)).

Now we are ready to prove the main theorems. Here we only give the proofs of
Theorems 2.1 and 2.3 because the proofs of Theorems 2.2 and 2.4 are almost the
same as Theorems 2.1 and 2.3 respectively.

Proof of Theorem 2.1. For k ∈ N, let Lk be defined by (3.4). Let

(3.17) L0 =
⋂

k≥1

Lk.

Then, for F ∈ CG(X), by Proposition 3.1, the minimization problem min(F, G)
is well-posed if and only if F ∈ L0. By virtue of Lemma 3.1 it suffices to show
that each Lk is dense in CG(X) with respect to the hρ-topology. For this end,
let Vb

0(G) denote the set of all F ∈ Cb
G(X) such that the minimization problem

min(F, G) is well-posed. Then, by Proposition 3.3, the set Vb
0(G) is dense in Cb

G(X)
with respect to the Hausdorff distance and so it is dense in Cb

G(X) with respect
to the hρ-topology. Since the set Cb

G(X) is dense in CG(X) with respect to the
hρ-topology, it follows that Vb

0(G) is dense in CG(X) with respect to hρ-topology.
Clearly Vb

0(G) ⊆ Lk. Hence Lk is dense in CG(X) with respect to the hρ-topology.
The proof is complete. ¤
Proof of Theorem 2.3. Let Lk and L0 be defined by (3.4) and (3.17), respectively.
Then, for F ∈ CG(X), the minimization problem min(F, G) is not well-posed if and
only if F ∈ CG(X) \ L0. Since

CG(X) \ L0 =
∞⋃

k=1

(CG(X) \ Lk),

it suffices to verify that each CG(X) \ Lk is nowhere dense in CG(X). Let F ∈
CG(X) \ Lk and let Uρ(F, ε) be any open neighbourhood of F in CG(X). Then,
as in the proof of Theorem 2.1, one can verify that there exists a bounded set
A ∈ Uρ(F, ε) such that the minimization problem min(A,G) is well-posed; hence
A ∈ Lk. By Lemma 3.2, there exists an open neighbourhood of A, say U(A), such
that U(A) ⊆ Lk; that is, U(A) ∩ CG(X) \ Lk = ∅. This shows that CG(X) \ Lk is
nowhere dense in CG(X) and the proof is complete. ¤

4. A porosity result

Let {dρ : ρ ∈ Γ} be a family of gauges on X. Assume that X is endowed with the
topology generated by {dρ}ρ∈Γ. Moreover assume that Γ is an ordered set and for
every ρ1, ρ2 ∈ Γ, ρ1 ≤ ρ2 we have

dρ1(x, y) ≤ dρ2(x, y) for all x, y ∈ X.

A subset Y of X is said to be porous in X if there exist s ∈ (0, 1], r0 > 0 and
ρ0 ∈ Γ such that for every x ∈ X, r ∈ (0, r0] and ρ ∈ Γ with ρ ≥ ρ0, there is a point
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y ∈ X such that Udρ(y, sr) ⊆ Udρ(x, r)∩ (X \ Y ). A subset Y is said to be σ-porous
in X if it is a countable union of sets which are porous in X.

Theorem 4.1. Suppose that X is a uniformly convex Banach space. Let G ∈
Ab(X). Then the set AG(X) \ V(G) is σ-porous in AG(X).

To prepare the proof of Theorem 4.1, we will need the following version of
Steckin’s lens lemma (see [2, 13]) and some other lemmas.

Lemma 4.1. Let X be a uniformly convex Banach space. Let r0 > 0 be arbitrary.
Then for every ε > 0 there exists δ(ε) > 0 such that for every 0 < δ ≤ δ(ε),
0 < r ≤ r0, and x, y ∈ X satisfying 0 < ‖x− y‖ ≤ r/2 we have

diamD(x, y, r, δ) < ε,

where

(4.1) D(x, y, r, δ) =
{

z ∈ X : ‖z − y‖ ≤ r − ‖x− y‖(1− δ) and ‖z − x‖ ≥ r
}

.

Let G ∈ Ab(X) be fixed. Denote by V(G) the set of all F ∈ AG(X) such that the
minimization problem min(F, G) is well-posed. For F ∈ V(G), let (fF , gF ) denote
the unique solution to the problem min(F, G). For α ∈ [0, 1], set

uF,α = (1− α)fF + αgF

and
Fα = F ∪ {uF,α}.

Now define
Ã =

⋂

n∈N

⋂

k∈N

⋃

F∈V(G)

⋃

α∈[0,1/2]

Uρn(Fα, γF,α,k),

where
ρn = n, γF,α,k =

1
k

min
{

d
(
uF,α, F

)
, 1

}
.

Lemma 4.2. Let X be a uniformly convex Banach space. Let G ∈ Ab(X). Then
Ã ⊆ V(G).

Proof. Let F ∈ Ã. By virtue of Proposition 3.1, it suffices to show that

(4.2) lim
δ→0+

diamLG(F, δ) = 0 and lim
δ→0+

diamLF (G, δ) = 0.

By the definition of Ã, for each n, k ∈ N, there exist Fnk ∈ V(G) and αnk ∈ [0, 1/2]
such that

(4.3) hρn(F, F̃nk) ≤ δnk,

where

F̃nk = Fnk ∪ {unk}, unk = (1− αnk)fFnk
+ αnkgFnk

, δnk = γFnk,αnk,k.

For notational convenience, set

λnk = λFnkG, λ̃nk = λ eFnkG
, r̄ = λFG + 1, r∗ = ‖G‖+ λFG + 1.

Observe that

(4.4) λ̃nk =
(
1− αnk

)
λnk, d(unk, Fnk) = αnkλnk, δnk ≤ 1

k
αnkλnk.
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Without loss of generality we can assume that αnk > 0 for all n, k ∈ N.
We claim that

(4.5) LG(F̃nk, 4δnk) = {unk} for all k > 4 and n > r∗.

To see this, let f ∈ LG(F̃nk, 4δnk), where k > 4 and n > r∗. Using (4.4) we obtain

(4.6) d(f,G) ≤ λ̃nk + 4δnk ≤ (1− αnk)λnk +
4
k

αnkλnk < λnk.

This means that f /∈ Fnk and so f = unk. Thus (4.5) holds.
On the other hand, by Proposition 3.2, we have

(4.7) |λFG − λ̃nk| ≤ hρn(F, F̃nk) ≤ δnk.

Now we can show that

(4.8) diamLG(F, δnk) ≤ 4δnk for all k > 4 and n > r∗.

Indeed, let k > 4, n > r∗ and let f ∈ LG(F, δnk) be arbitrary. Since hρn(F, F̃nk)) ≤
δnk, there exists f̄ ∈ F̃nk such that ‖f − f̄‖ ≤ 2δnk. By the definition of LG(F, δnk)
and (4.7) we have

d(f̄ , G) ≤ ‖f − f̄‖+ d(f,G) ≤ λFG + 3δnk < λnk + 4δnk.

Thus f̄ ∈ LG(F̃nk, 4δnk) and from (4.4) it follows that f̄ = unk. Consequently, for
any f1, f2 ∈ LG(F, δnk), we have

‖f1 − f2‖ ≤ ‖f1 − unk‖+ ‖unk − f2‖ ≤ 4δnk.

Then (4.8) is proved whence the first relation of (4.2) follows immediately.
To complete the proof, it remains to verify the second relation of (4.2). Let

D(x, y, r, δ) be defined by (4.1). We claim that

(4.9) L eFnk
(G, 3δnk) ⊆ D

(
fFnk

, unk, λnk, 4/k
)

for all k > 4 and n > r∗.

In fact, using (4.4), for arbitrary g ∈ L eFnk
(G, 3δnk), we obtain

d(g, F̃nk) ≤ λ̃nk + 3δnk = (1− αnk)λnk + 3δnk.

Now, taking fnk ∈ F̃nk such that

(4.10) ‖g − fnk‖ ≤ (1− αnk)λnk + 4δnk,

we have

d(fnk, G) ≤ ‖g − fnk‖ ≤ (1− αnk)λnk + 4δnk ≤ λnk − (1− 4/k)αnkλnk < λnk.

This implies that fnk = unk. Hence, by (4.10) and (4.4), we have

‖g − unk‖ = ‖g − fnk‖ ≤ (1− αnk)λnk + 4δnk

≤ (1− αnk)λnk +
4
k
αnkλnk = λnk − (1− 4/k)‖unk − fFnk

‖.
Since ‖g − fFnk

‖ ≥ λnk, it follows that g ∈ D(fFnk
, unk, λnk, 4/k) and so (4.9) is

proved.
Finally, for arbitrary g ∈ LF (G, δnk) using (4.3) and Proposition 3.2, we have

d(g, F̃nk) ≤ d(g, F ) + δnk ≤ λFG + 2δnk ≤ λ̃nk + 3δnk.
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This means that
LF (G, δnk) ⊂ L eFnk

(
G, 3δnk

)
.

Combining the last inclusion and (4.9), we obtain

(4.11) LF (G, δnk) ⊆ D
(
fFnk

, unk, λnk, 4/k
)

for all k > 4 and n > r∗.

From (4.11) and Lemma 4.1 the second relation of (4.2) follows. The proof is
complete. ¤

Proof of Theorem 4.1. For n, k, l ∈ N, set

Ank = AG(X) \
⋃

F∈V(G)

⋃

α∈[0,1/2]

Uρn(Fα, γF,α,k)

and
Al

nk = {F ∈ Ank : 1/l < λFG < l}.
By Lemma 4.2, we have

AG(X) \ V(G) ⊆ AG(X) \ Ã =
⋃

n∈N

⋃

k∈N

⋃

l∈N
Al

nk.

To complete the proof it suffices to show that Al
nk is porous in AG(X) for every

n, k, l ∈ N.
Let n, k, l ∈ N. Define

r0 =
1
2l

, s =
1
4k

, ρ0 = 2(l + ‖G‖).

Let F ∈ Al
nk, 0 < r ≤ r0 and ρ ≥ ρ0 be arbitrary. Let η be such that

(4.12) 0 < η <
r

4
and

1
l
− η < λFG < l + η.

By Theorem 2.1, there exists F̂ ∈ V(G) such that

(4.13) hρ(F, F̂ ) < η.

Taking fη ∈ F such that
d(fη, G) ≤ λFG + η,

we have
‖fη‖ ≤ ‖G‖+ λFG + η < ρ.

Hence, by (4.13),
fη ∈ F ∩ ρS ⊂ F̂ + ηS,

which in turns implies that

(4.14) λ bFG
≤ d(fη, G) + η ≤ λFG + 2η < 2l.

Thus we can apply Proposition 3.2 to conclude that

(4.15) |λ bFG
− λFG| ≤ hρ(F, F̂ ) < η.

From (4.15), (4.12) and (4.13), it follows that

hρ(F, F̂ ) <
r

4
and

1
l

< λ bFG
< l.
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In particular this implies that λ bFG
> 2r. Set

û1/2 = (f bF + g bF )/2.

Observe that ‖û1/2‖ < ρ because ‖g bF ‖ ≤ ‖G‖ < ρ and ‖f bF ‖ ≤ ‖f bF − g bF ‖+ ‖g bF ‖ ≤
λ bF ,G

+ ‖G‖ ≤ 2l + ‖G‖ < ρ.

Putting F̂1/2 = F̂ ∪ {û1/2} we have

hρ(F̂1/2, F ) ≥ hρ(F̂1/2, F̂ )− hρ(F̂ , F )

≥ d(û1/2, F̂ )− r/4 = (1/2)λ bFG
− r/4 ≥ 3r/4.

It follows that there exists α ∈ [0, 1/2] such that hρ(F̂α, F ) = 3r/4. Since, for each
A ∈ Uρ(F̂α, sr),

hρ(A,F ) ≤ hρ(A, F̂α) + hρ(F̂α, F ) ≤ sr + 3r/4 ≤ r,

we have that
Uρ(F̂α, sr) ⊆ Uρ(F, r).

Thus, in order to complete the proof, we need to show that

Uρ(F̂α, sr) ⊆ AG(X) \ Al
nk.

Since Al
nk ⊆ Ank and Ank ∩ Uρ

(
F̂α, γ bFα,α,k

)
= ∅, It suffices to show that

(4.16) Uρ(F̂α, sr) ⊆ Uρ

(
F̂α, γ bFα,α,k

)
.

From relations hρ(F̂α, F ) = 3r/4 and hρ(F, F̂ ) < r/4 it follows that

(4.17) hρ

(
F̂α, F̂

) ≥ hρ

(
F̂α, F

)− hρ

(
F, F̂

) ≥ r/2.

Moreover, since ‖u bF ,α
‖ < ρ we have

(4.18) d(u bF ,α
, F̂ ) = hρ

(
F̂α, F̂

)

By (4.17), (4.18) and equality s = 1/(4k), we have

sr ≤ 2shρ(F̂α, F̂ ) ≤ d(u bF ,α
, F̂ )/k.

Since d(u bF ,α
, F̂ ) < 1, this implies that sr ≤ γ bFα,α,k

and so (4.16) holds. The proof
is complete. ¤

Similar result can be given for the class DG(X).
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