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AN APPLICATION OF THE RESOLVENT METHOD TO
RIGIDITY THEORY FOR HOLOMORPHIC MAPPINGS

MARINA LEVENSHTEIN, SIMEON REICH, AND DAVID SHOIKHET

Abstract. Let f be the generator of a one-parameter continuous semigroup of
holomorphic self-mappings of the open unit disk ∆ in the complex plane. We
use the resolvent method to show that if for some boundary point τ of ∆, the

angular limit \ lim
z→τ

f(z)

|z−τ |3 = 0, then f vanishes identically in ∆.

We denote by Hol(∆, D) the set of all holomorphic functions on the open unit
disk ∆ = {z : |z| < 1} which map ∆ into a set D ⊂ C, and by Hol(∆) the set of all
holomorphic self-mappings of ∆.

A family S = {Ft}t≥0 ⊂ Hol(∆) is called a one-parameter continuous semi-
group on ∆ (a semigroup, in short) if

(i) Ft(Fs(z)) = Ft+s(z) for all t, s ≥ 0
and

(ii) lim
t→0+

Ft(z) = z for all z ∈ ∆.

It follows from a result of E. Berkson and H. Porta [3] that each semigroup
is differentiable with respect to t ∈ R+ = [0,∞). So, for each one-parameter
continuous semigroup S = {Ft}t≥0 ⊂ Hol(∆), the limit

lim
t→0+

z − Ft(z)
t

= f(z), z ∈ ∆,

exists and defines a holomorphic mapping f ∈ Hol(∆,C). This mapping f is called
the (infinitesimal) generator of S = {Ft}t≥0 .

Recall that τ ∈ ∆ is a fixed point of F ∈ Hol(∆) if either F (τ) = τ , where
τ ∈ ∆, or lim

r→1−
F (rτ) = τ , where τ ∈ ∂∆ = {z : |z| = 1}. If F is not an

automorphism of ∆ with an interior fixed point, then by the Schwarz–Pick lemma
and the Julia–Wolff–Carathéodory theorem, there is a unique fixed point τ ∈ ∆
such that for each z ∈ ∆, lim

n→∞Fn(z) = τ , where the n-th iterate Fn of F is defined

by F1 = F, Fn = F ◦ Fn−1, n = 2, 3, . . .. Moreover, if τ ∈ ∆, then |F ′(τ)| < 1,
and if τ ∈ ∂∆, then the so-called angular derivative at the point τ , F ′(τ) ∈ (0, 1].
This point is called the Denjoy–Wolff point (or sink point) of F . We say that
a function f ∈ Hol(∆,C) has an angular limit L at a point τ ∈ ∂∆ and write
L := ∠ lim

z→τ
f(z) if f(z) → L as z → τ in each nontangential approach region

Γτ,k =
{

z ∈ ∆ : |z−τ |
1−|z| < k

}
, where k > 1. In a similar way, we define the angular

derivative at τ as ∠ lim
z→τ

f ′(z).
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The problem of finding conditions for a holomorphic function f on ∆ to coincide
identically with a given function g when they behave similarly in a neighborhood
of a point of ∆ was studied by many mathematicians. For example, if for some
point τ ∈ ∆, a holomorphic self-mapping f of ∆ satisfies the equalities f(τ) = τ
and f ′(τ) = 1, then f is the identity mapping I on ∆ by the Schwarz lemma. In
the boundary case (τ ∈ ∂∆) the problem was studied for g = I in the papers of
F. Bracci, R. Tauraso and F. Vlacci [4], D. M. Burns and S. G. Krantz [5], and R.
Tauraso [15]. In particular, it has been shown in [4] and [5] that if a holomorphic
self-mapping of ∆ coincides with the identity up to the third order of expansion at
a boundary point, then it is, in fact, the identity mapping.

For a constant mapping g the following facts are known. If f ∈ Hol(∆,∆), then
the conditions lim

r→1−
f(rτ) = τ and lim

r→1−
f ′(rτ) = 0 for some τ ∈ ∂∆ imply that

f ≡ τ by the Julia–Wolff–Carathéodory theorem. S. Migliorini and F. Vlacci [10]
proved that if the image of a holomorphic function f on ∆ is contained in a wedge
of angle πα, 0 < α ≤ 2, with vertex at the origin, and f satisfies the equality
∠ lim

z→τ

f(z)
(z−τ)α = 0, then f ≡ 0.

More recently, M. Elin, M. Levenshtein, D. Shoikhet and R. Tauraso have estab-
lished in [7] a new rigidity principle for holomorphic generators of one-parameter
continuous semigroups. We formulate this principle as the Theorem below and
present a different proof of it, based on the resolvent method which plays an im-
portant rôle in the study of nonlinear semigroups (see, for example, [2], [11] and
[13]).

Let f be a function defined on ∆. Consider the equation

(1) w = z + sf(z), w ∈ ∆, s > 0.

If Js := (I + sf)−1 (s > 0) is a well-defined (single-valued) self-mapping of ∆, it is
called the (nonlinear) resolvent of f and for each w ∈ ∆ and s > 0, the solution
of equation (1) is then z = Js(w). It has been established in [12] that Js (s > 0)
is a well-defined holomorphic self-mapping of ∆ if and only if f is a holomorphic
generator. Moreover, the set of null points of a generator coincides with the set of
fixed points of its resolvent (see [13], Lemma 8.2). So for the study of the null point
sets of generators (for instance, to determine their structure, to solve the existence
problem and to find methods for approximating null points), it is often convenient
to investigate the fixed point sets of their resolvents. We take this approach in our
proof. For other recent applications of the resolvent method see, for example, [8]
and [9] and the references therein.

First we quote [4, Theorem 2.4(4)], a result which we are going to use in the
proof of the Theorem.

Proposition. Let F be a holomorphic self-mapping of ∆. If there exists τ ∈ ∂∆
such that lim

r→1−
F (rτ) = τ , lim

r→1−
F ′(rτ) = 1 and lim

r→1−
F ′′(rτ) = lim

r→1−
F ′′′(rτ) = 0,

then F ≡ I.
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Theorem. Let f ∈ Hol(∆,C) be the generator of a one-parameter continuous semi-
group. Suppose that for some τ ∈ ∂∆,

(2) ∠ lim
z→τ

f(z)
|z − τ |3 = 0.

Then f ≡ 0 in ∆.

Proof. Since f is a holomorphic generator of a one-parameter semigroup, equation
(1) has a unique solution z = Js(w). Moreover, the mapping Js (the resolvent of f)
is a well-defined holomorphic self-mapping of ∆ for all s > 0.

We claim that τ is the Denjoy–Wolff point of Js for each s > 0. Indeed, by
our assumption, ∠ lim

z→τ
f(z) = ∠ lim

z→τ
f ′(z) = 0. Consequently, if f does not vanish

identically in ∆, then τ is the Denjoy–Wolff point of the corresponding semigroup
(see Lemma 3 in [6]) and f admits the representation

(3) f(z) = (z − τ)(1− zτ)g(z), z ∈ ∆,

where g ∈ Hol(∆,C) and Re g(z) ≥ 0 for all z ∈ ∆ (see [3]). This implies, in
particular, that f has no interior null point. So, by equality (1), Js (s > 0) has no
interior fixed point. Suppose that ς ∈ ∂∆ is the common boundary Denjoy–Wolff
point of all the resolvents Js (s > 0) [13, Theorem 8.3(ii)], that is, ∠ lim

z→ς
Js(z) = ς

and 0 < ∠ lim
z→ς

J ′s(z) ≤ 1. By the Julia–Wolff–Carathéodory theorem (see, for

example, [14]),
|ς − Js(z)|2
1− |Js(z)|2 ≤

|ς − z|2
1− |z|2 , z ∈ ∆.

Hence
1
s

[
|ς − Js(z)|2(1− |z|2)− (1− |Js(z)|2)|ς − z|2

]
≤ 0, s > 0.

A calculation shows that the limit as s → 0+ of the left-hand side of this inequality
exists and equals −2Re[f(z)(z − ς)(1 − zς)]. Consequently, Re f(z)

(z−ς)(1−zς) ≥ 0.

Denote h(z) := f(z)
(z−ς)(1−zς) . Then

(4) f(z) = (z − ς)(1− zς)h(z), z ∈ ∆,

where h ∈ Hol(∆,C) and Re h(z) ≥ 0 for all z ∈ ∆. By Theorem 2.1 in [1], the
generator f has a unique representation of this form. So, comparing (3) with (4),
we conclude that ς = τ , as claimed.

Next, we show that for all s > 0,

(5) lim
r→1−

J ′s(rτ) = 1 and lim
r→1−

J ′′s (rτ) = lim
r→1−

J ′′′s (rτ) = 0.

Note that Js(rτ) tends to τ nontangentially as r → 1−. Indeed, by Julia’s lemma,

|1− Js(rτ)τ |2
1− |Js(rτ)|2 ≤ α

(1− r)2

1− r2
,

where α := ∠ lim
z→τ

1−|Js(z)|
1−|z| . Hence,
( |Js(rτ)− τ |

1− |Js(rτ)|
)2

≤ α
1− r

1 + r
· 1− |Js(rτ)|2
(1− |Js(rτ)|)2
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= α
1 + |Js(rτ)|

1 + r
· 1− r

1− |Js(rτ)| <
2α

1 + r
· 1− r

1− |Js(rτ)| → 1 as r → 1−.

For w ∈ ∆, we find from (1) that

J ′s(w) =
1

1 + sf ′(Js(w))
, J ′′s (w) = −s

f ′′(Js(w))(J ′s(w))2

1 + sf ′(Js(w))
and

J ′′′s (w) = −s
f ′′′(Js(w))(J ′s(w))3 + 3f ′′(Js(w))J ′s(w)J ′′s (w)

1 + sf ′(Js(w))
.

By our assumption, ∠ lim
z→τ

f (j)(z) = 0, j = 1, 2, 3. Consequently, for each s > 0,

equalities (5) do hold.
Now it follows from the Proposition that Js ≡ I and, by equality (1), f ≡ 0. ¤

Remark 1 (M. Elin). The proof of the Theorem can also be concluded by observing
that since

w = Js(w) + sf(Js(w)),
we have

w − Js(w)
(w − τ)3

= s
f(Js(w))

(Js(w)− τ)3
·
(

Js(w)− τ

w − τ

)3

for all w ∈ ∆.

Remark 2. Note that condition (2) in the Theorem cannot be replaced by the re-
quirement that ∠ lim

z→τ

f(z)
|z−τ |3−ε = 0 for some ε > 0.

Indeed, the function f(z) = −(1 − z)3, for example, is a generator and for each
ε > 0, ∠ lim

z→1

f(z)
|z−1|3−ε = 0. However, f does not vanish in ∆.
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