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APPROXIMATION OF CONVEX FUNCTIONS IN ASPLUND
GENERATED SPACES

SHAOXIONG CHEN, LINXIN CHENG, AND MARIÁN FABIAN

Abstract. This paper shows that every continuous convex function defined on
an Asplund generated space can be represented as the point-wise limit of a non-
decreasing sequence of continuous convex functions which are locally affine at all
points of dense open sets.

The aim of this note is to prove the following approximation statement:

Theorem 1. Suppose that f is a continuous convex function on an Asplund gener-
ated space X. Then there exists a sequence f1, f2, . . . of convex functions on X such
that

(i) fn(x) ↑ f(x) as n →∞ for every x ∈ X; and

(ii) for every n ∈ N there is an open dense set in X on which fn is locally affine.

This is an extension of a result from [1] which dealt with Asplund spaces. We
should note that the functions fn above are Fréchet differentiable on open dense
sets even if the space X is not Asplund.

Our notation and terminology is standard and follows the books [5, 6] and [8].
We just recall that a Banach space X is called Asplund generated provided that it
contains the image of an Asplund space, under a linear continuous mapping, as a
dense subset.

We shall profit from the following simple fact.

Lemma 2. Let ϕ be a convex function defined on an open interval containing
[0, 1]. Assume that it is differentiable at 0 and 1 and that ϕ′(0) = ϕ′(1). Then
ϕ(1) = ϕ(0) + ϕ′(0).

Proof. The subdifferential inequality for convex functions yields

ϕ′(0) = ϕ′(0)(1− 0) ≤ ϕ(1)− ϕ(0) ≤ ϕ′(1)(1− 0) = ϕ′(0).

¤

We recall that a function p : Y → [0,+∞) is called sublinear if p(y1 + y2) ≤
p(y1) + p(y2) and p(ty) = tp(y) for all y, y1, y2 ∈ Y and all t ≥ 0. Our theorem will
follow from its special case, when all the functions involved are sublinear:
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Proposition 3. Let Y be an Asplund generated space, and p : Y → [0,+∞) be
a sublinear continuous function. Then there exist sublinear functions pn : Y →
[0,+∞), n ∈ N, such that

(i) pn ↑ p as n →∞ for every y ∈ Y ; and

(ii) for every n ∈ N there is an open dense set in X on which pn is locally affine.

Proof. Find an Asplund space X and a linear bounded mapping T : X → Y with
dense range; note that T ∗ is then one-to-one. Put

D = {y∗ ∈ Y ∗; 〈y∗, y〉 ≤ 1 whenever y ∈ Y and p(y) ≤ 1} and C = T ∗(D).

Note that Hahn-Banach theorem yields that p(·) = sup〈D, ·〉. Also D and C are
bounded weak∗ closed, convex sets. For n ∈ N we find a maximal set Mn ⊂ C such
that ‖ξ1 − ξ2‖ > 1

n whenever ξ1, ξ2 ∈ Mn and are different; such a set exists owing
to Zorn’s lemma. Proceeding subsequently for n = 1, 2, . . ., we can arrange that
M1 ⊂ M2 ⊂ · · · . Fix any n ∈ N. Let Cn denote the weak∗ closed convex hull of Mn

and put Dn = T ∗−1(Cn)∩D. Further define functions qn : X → [0,+∞), pn : Y →
[0,+∞) by

qn(·) = sup〈Mn, ·〉 (= sup〈Cn, ·〉), pn(·) = sup〈Dn, ·〉.
Clearly, these functions are sublinear and moreover pn ◦ T = qn. Also, p1 ≤ p2 ≤
· · · ≤ p. Fix any 0 6= y ∈ Y . We shall show that pn(y) → p(y) as n → ∞. Since
p is continuous, pn ≤ p, and pn’s are subadditive, it is enough to consider the case
when y = Tx for some x ∈ X. Let ε > 0 be arbitrary. Take n ∈ N so that n > 2‖x‖

ε .
Find η ∈ D so that p(y)− 〈η, y〉 < ε/2. Find ξ ∈ Mn so that ‖T ∗η − ξ‖ ≤ 1

n . Find
η1 ∈ Dn so that T ∗η1 = ξ. Then

0 ≤ p(y)−pn(y) = (p(y)−〈η, y〉)+(〈T ∗η, x〉−〈ξ, x〉)+(〈η1, y〉−pn(y)
)

< ε
2 + ε

2 = ε.

This proves (i).
Let us prove (ii). Fix any n ∈ N. Let Gn denote the set of all points in X where

qn is Fréchet differentiable; this is a dense set as X is Asplund. Fix any x ∈ Gn.
We observe that

sup
h∈BX

[
pn(Tx + tTh)+pn(Tx− tTh)− 2pn(Tx)

]

= sup
h∈BX

[
qn(x + th) + qn(x− th)− 2qn(x)

]

= o(t)

for t ↓ 0. And, as TX = Y , we get that pn is Gâteaux differentiable (even differen-
tiable in a stronger sense) at Tx and T ∗(p′n(Tx)) = q′n(x).

Fix now any point x0 ∈ Gn and denote

y0 = Tx0, q′n(x0) = x∗0, p′n(y0) = y∗0.

Šmulyan’s lemma, see [5, Theorem I.1.4 (i)] yields α > 0 such that the slice

S(Cn, x0, α) :=
{
x∗ ∈ Cn; 〈x∗, x0〉 > 〈x∗0, x0〉 − α

}
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has norm diameter less than 1
n . Since the subdifferential mapping ∂pn : Y → 2Y ∗

is norm to weak∗ upper semicontinuous, there exists an open ball U ⊂ Y such that
U 3 Tx0 and

∂pn(U) ⊂ S(Dn, y0, α) :=
{
y∗ ∈ Dn; 〈y∗, y0〉 > 〈y∗0, y0〉 − α

}
.

Fix for a while any y ∈ U ∩ T (Gn) and find x ∈ Gn so that y = Tx. Then
p′n(y) = p′n(y0). Indeed, since pn is differentiable at y and p′n(y) ∈ S(Dn, y0, α), we
have that q′n(x) = T ∗(p′n(y)) ∈ T ∗(S(Dn, y0, α)) = S(Cn, x0, α). But the latter slice
has diameter less than 1

n , and Šmulyan’s lemma [5, Theorem I.1.4] easily implies
that the (Fréchet) derivatives q′n(x0) and q′n(x) must belong to Mn. Therefore
q′n(x) = q′n(x0), and so p′n(y) = T ∗−1(q′n(x)) = T ∗−1(q′n(x0)) = p′n(y0). Now, as pn

is convex, Lemma applied for ϕ(t) := pn(y0 + t(y − y0)), t ∈ IR, yields that

pn(y) = pn(y0) + p′n(y0)(y − y0)(1)

This holds for every y ∈ U ∩ T (Gn). And as the latter set is dense in U (Yes, the
density of Gn implies the density of T (Gn) in Y .), and pn is continuous, (1) is valid
for every y ∈ U . This means that pn is affine on U . Finally, as T (Gn) was dense in
Y , the proof of (ii) is finished. ¤
Proof of Theorem 1. By adding a suitable constant to f , we may and do assume

that f(0) = −1. Let p : X × IR → [0,+∞) be the Minkowski functional of the
epigraph epi f :=

{
(x, t) ∈ X × IR; f(x) ≤ t

}
, that is,

p(x, t) = inf
{
λ > 0; f(x

λ) ≤ t
λ

}
, (x, t) ∈ X × IR.

From the continuity of f find δ > 0 so small that sup f(δBX) < −1
2 . We observe that

for every x ∈ δBX and every t ∈ (−1,+∞) we have (x, t) ∈ epi f and so p(x, t) ≤ 1.
Hence, p is continuous. Let pn : X × IR → [0,+∞), n ∈ N, be the functions found
in Proposition for our p. We may and do assume that pn(0,−1) > p(0,−1)−1 (= 0)
for all n ∈ N. Fix any n ∈ N for a while. Consider any fixed x ∈ X and put

fn(x) = inf
{
t ∈ IR; pn(x, t) ≤ 1

}
;

then pn(x, f(x)) ≤ p(x, f(x)) = 1 and so fn(x) ≤ f(x). Also, pn(x, fn+1(x)) ≤
pn+1

(
x, fn+1(x)

)
= 1 and so fn(x) ≤ fn+1(x). Note that fn(x) > −∞. Indeed,

otherwise we would have

(0 <) pn(0,−1) = lim
t→−∞ pn( x

−t ,−1
)

= lim
t→−∞

1
−tpn(x, t) ≤ lim

t→−∞
1
−t = 0,

a contradiction. Thus fn(x) ∈ IR. Doing so for every x ∈ X, we get a function
fn : X → IR, with fn ≤ f . Let us prove that fn(x) → f(x) as n → ∞. Assume,
by contrary that there exists ∆ > 0 such that fn(x) ≤ f(x) − ∆ for all n ∈ IN.
Then p(x, f(x) − ∆) = limn→∞ pn(x, f(x) − ∆) ≤ 1 and so (x, f(x) − ∆) ∈ epi f ,
i.e., f(x) −∆ ≥ f(x), a contradiction. The function fn is also convex. Indeed, for
xi ∈ X, αi > 0, i = 1, 2, with α1 + α2 = 1, we have

pn

(
α1x1 + α2x2, α1fn(x1) + α2fn(x2)

) ≤ α1pn(x1, fn(x1)) + α2pn(x2, fn(x2)) = 1,

and so fn(α1x1 + α2x2) ≤ α1fn(x1) + α2fn(x2).
Now from Proposition we have that pn is locally affine on an open dense subset

Gn ⊂ X × IR. Let Hn ⊂ X be the set of all x ∈ X such that (x, fn(x)) ∈ Gn. It
is easy to check that Hn is an open set. We shall show that it is dense in X. So
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fix any 0 6= x0 ∈ X and any ε > 0. Find (x, t) ∈ Gn so that ‖x− x0‖ < ε
2 and 0 <

p(x, t)−1 < ε
2‖x0‖ ; this can be done as Gn is dense in X. Put (x1, t1) = 1

pn(x,t)(x, t).
The positive homogeneity of pn guarantees that pn(x1, t1) = 1. Hence t1 = fn(x1)
and so x1 ∈ Hn. Moreover

‖x1 − x0‖ ≤
∥∥∥x1 − x0

pn(x, t)

∥∥∥ +
∥∥∥ x0

pn(x, t)
− x0

∥∥∥
≤ ‖x− x0‖+ ‖x0‖

(
pn(x, t)− 1

)
< ε

2 + ‖x0‖ ε
2‖x0‖ = ε.

It remains to show that fn is locally affine on Hn. Fix any x0 ∈ Hn. Thus
(x0, fn(x0)) ∈ Gn and pn(x0, fn(x0)) = 1. Then for all x ∈ X close enough to x0 we
have

1 = pn(x, fn(x)) = pn(x0, fn(x0)) + p′n(x0, fn(x0))
(
(x, fn(x))− (x0, fn(x0))

)

= 1 + p′n(x0, fn(x0))(x− x0, 0) + p′n(x0, fn(x0))(0, fn(x)− fn(x0)),

and so, putting

A(·) = p′n(x0, fn(x0))(·, 0), ξ = p′n(x0, fn(x0))(0, 1),

we have that

1 = 1 + A(x− x0) + ξ(fn(x)− fn(x0)).(2)

Also, for τ > 0 small enough we have

1 < pn(x0, fn(x0)− τ) = pn(x0, fn(x0)) + p′n(x0, fn(x0))(0,−τ) = 1− τξ,

and hence ξ < 0. Thus (2) yields that

fn(x) = fn(x0) +
1
ξ
A(x− x)

for all x ∈ X close to x0, We thus proved that fn is affine in the vicinity of x0. ¤

Remark 4. We do not know if our Theorem can be extended to some larger sub-
classes of weak Asplund spaces. In particular, we would like to clarify the situation
in Banach spaces whose dual norm is strictly convex, and in subspaces of Asplund
gererated spaces. Note that both classes have, of course, fragmentable dual unit
ball, see [6, page 99] and [6, Theorems 5.1.10 (i), 5.2.3].
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