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ITERATIVE CONSTRUCTION OF FIXED POINTS OF NEARLY
ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

R. P. AGARWAL, DONAL O’REGAN, AND D. R. SAHU

Abstract. In this paper we introduce a new iteration process whose rate of
convergence is similar to the Picard iteration process and faster than other fixed
point iteration processes. We then apply it to deal with the problem of approx-
imation of fixed points of nearly asymptotically nonexpansive mappings. Our
iteration process is independent from Mann [Proc. Amer. Math. Soc. 4 (1953),
506-610] and Ishikawa [Proc. Amer. Math. Soc. 4 (1974), 147-150] iteration
processes.

1. Introduction

Let C be a nonempty subset of a normed space X and T : C → C a mapping.
Then T is said to be Lipschitzian if for each n ∈ N, there exists a positive number
kn such that

‖Tnx− Tny‖ ≤ kn‖x− y‖ for all x, y ∈ C.

A Lipschitzian mapping T is said to be uniformly k-Lipschitzian if kn = k for
all n ∈ N and asymptotically nonexpansive (cf. [13]) if kn ≥ 1 for all n ∈ N with
lim

n→∞ kn = 1.

It is easy to see that every nonexpansive mapping T (i.e., ‖Tx − Ty‖ ≤ ‖x −
y‖ for all x, y ∈ C) is asymptotically nonexpansive with sequence {1} and every
asymptotically nonexpansive mapping is uniformly k-Lipschitzian with k = sup

n∈N
kn.

The class of nearly Lipschitzian mappings is an important generalization of the
class of Lipschitzian mappings and was introduced by Sahu in [28].

Let C be a nonempty subset of a Banach space X and fix a sequence {an} in
[0,∞) with an → 0. A mapping T : C → C is said to be nearly Lipschitzian with
respect to {an} if for each n ∈ N, there exists a constant kn ≥ 0 such that

‖Tnx− Tny‖ ≤ kn(‖x− y‖+ an) for all x, y ∈ C.(1.1)

The infimum of constants kn for which (1.1) holds is denoted by η(Tn) and called
the nearly Lipschitz constant.

A nearly Lipschitzian mapping T with sequence {(an, η(Tn)} is said to be

(i) nearly nonexpansive if η(Tn) = 1 for all n ∈ N,
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(ii) nearly asymptotically nonexpansive if η(Tn) ≥ 1 for all n ∈ N and
lim

n→∞ η(Tn) = 1,

(iii) nearly uniformly k-Lipschitzian if η(Tn) ≤ k for all n ∈ N,

(iv) nearly uniform k-contraction if η(Tn) ≤ k < 1 for all n ∈ N.

Example 1.1. Let X = R, C = [0, 1] and T : C → C be a mapping defined by

Tx =
{

1
2 if x ∈ [0, 1

2 ],
0 if x ∈ (1

2 , 1].

Clearly, T is discontinuous and a non-Lipschitzian mapping. However, it is a
nearly nonexpansive mapping and hence nearly asymptotically nonexpansive. In-
deed, for a sequence {an} with a1 = 1

2 and an → 0, we have

‖Tx− Ty‖ ≤ ‖x− y‖+ a1 for all x, y ∈ C

and
‖Tnx− Tny‖ ≤ ‖x− y‖+ an for all x, y ∈ C and n ≥ 2,

since
Tnx =

1
2

for all x ∈ [0, 1] and n ≥ 2.

Indeed, Sahu in [28] initiated the fixed theory of nearly Lipschitzian mappings
by establishing a nearly contraction principle for demicontinuous nearly contrac-
tion mappings and an existence theorem for demicontinuous nearly asymptotically
nonexpansive mappings.

On the other hand, the following fixed point iteration processes have been exten-
sively studied by many authors for approximating either fixed points of nonlinear
mappings (when these mappings are already known to have fixed points) or solutions
of nonlinear operator equations:

(a) The Mann iteration process (see, for example [22], [26]) is defined as
follows: For C a convex subset of a linear space X and T a mapping of C into itself,
the sequence {xn} is generated from x1 ∈ C, and is defined by

(M) xn+1 = (1− αn)xn + αnTxn = M(xn, αn, T ), n ∈ N,

where {αn} is a real sequence in [0,1] which satisfies the conditions:

(i) 0 ≤ αn < 1,

(ii)
∑∞

n=1 αn = ∞.

(b) The Ishikawa iteration process (see, for example [15], [26]) is defined as
follows: with C and T as in (a), the sequence {xn} is generated from x1 ∈ C, and
is defined by

(I)
{

xn+1 = (1− αn)xn + αnTyn,
yn = (1− βn)xn + βnTxn, n ∈ N,

where {αn} and {βn} are real sequences in [0,1] which satisfy the conditions:

(i
′
) 0 ≤ αn ≤ βn < 1,
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(ii
′
) lim

n→∞βn = 0,

(iii
′
)

∞∑

n=1

αnβn = ∞.

(c) The modified Mann iteration process (see, for example [30, 31]) is
defined as follows: with C and T as in (a), the sequence {xn} is generated from
x1 ∈ C, and is defined by

xn+1 = (1− αn)xn + αnTnxn, n ∈ N,(1.2)

where {αn} is a real sequence in [0,1] which satisfies the condition 0 < a ≤ αn ≤
b < 1 for all n ∈ N.

It is clear that the process (M) is not a special case of the process (I) because of
condition (i

′
).

It is well known that the process (M) does not converge to fixed points of Lipschitz
pseudocontractive mapping T even if the domain of T is a compact convex subset
of a Hilbert space (see [8]). Indeed, the process (I) was introduced by Ishikawa [15]
to deal with the problem of approximation of fixed points of Lipschitz pseudocon-
tractive mappings with compact convex domain in Hilbert spaces.

In recent papers (see, e.g. [6, 10, 34, 36, 37]) the condition (i
′
) 0 ≤ αn ≤ βn < 1

has been replaced by the general condition (i0) 0 ≤ αn, βn < 1. With this general
setting, the process (I) is a natural generalization of the process (M).

Remark 1.2. If the process (M) is convergent, then the process (I) with condition
(i0) is also convergent under suitable conditions on αn and βn.

Let C be a nonempty subset of a linear space X and T : C → X a mapping
with F (T ) = {x : Tx = x} 6= ∅. Then these iteration processes are included in the
following more general iteration process:

(GI) xn+1 = f(xn, T ), n ∈ N.

In fact, by setting f(xn, T ) = M(xn, αn, T ), (GI) reduces to the Mann process
iteration. The iteration process (GI) also includes the modified Mann iteration
process.

We say that the iterative sequence {xn} defined by (GI) for the mapping T with
F (T ) 6= ∅ has property (D1) if lim

n→∞ ‖xn − p‖ for all p ∈ F (T ). Also {xn} has

property (D2) if lim
n→∞ ‖xn − Txn‖ = 0.

The properties (D1) ∼ (D2) play important role in the approximation of fixed
points of nonexpansive and asymptotically nonexpansive mappings by means of the
Mann and Ishikawa iteration processes (see [1, 4, 5, 7, 9, 10, 12, 14, 16, 18, 19, 21,
23, 25, 27, 30, 31, 32, 34, 35]) in Banach spaces under suitable geometric structures.

It is well known that the Picard iteration process is faster than the Mann itera-
tion process for contraction mappings (see Proposition 3.1). This brings us to the
following open problem:

Problem 1.3. Is it possible to develop an iteration process whose rate of conver-
gence is similar to the Picard iteration process and faster than the Mann iteration
process for contraction mappings?
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In this paper, motivated by Problem 1.3, we introduce a new iteration process
which provides a positive solution to Problem 1.3 and then this new iteration pro-
cess is applied to deal with the problem of approximation of fixed points of non-
Lipschitzian nearly asymptotically nonexpansive mappings T : C → C in a Banach
space X.

More precisely, conditions on C,X and T are discussed in section 3 (see Theorem
3.8) which guarantee that our iterative sequence {xn} enjoys properties (D1) ∼
(D2). In particular, strong convergence of our iteration process for nearly nonex-
pansive mappings is discussed in a strictly convex Banach space. Our iteration
process is independent of the Ishikawa [15] and Mann [22] iteration processes and
is of independent interest.

2. Preliminaries

Let X be a Banach space and let X∗ be its dual. The value of f ∈ X∗ at x ∈ X
will be denoted by 〈x, f〉. Then the multivalued mapping J : X → 2X∗

defined by

J(x) := {f ∈ X∗ : 〈x, f〉 = ||x||2 = ||f ||2}
is called the normalized duality mapping.

Recall that a Banach space X is said to be smooth provided the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x and y in S = {x ∈ X : ‖x‖ = 1}. In this case, the norm of X is
said to be Gâteaux differentiable. It is well known that if X is smooth, then J is
single-valued. The norm of X is said to be Fréchet differentiable if for each x ∈ S,
this limit is attained uniformly for y ∈ S. In this case

1
2
‖x‖2 + 〈h, J(x)〉 ≤ 1

2
‖x + h‖2 ≤ 1

2
‖x‖2 + 〈h, J(x)〉+ b(‖h‖)(2.1)

for all bounded x, h in X, where J(x) = ∂ 1
2‖x‖2 is the Fréchet derivative of the

functional 1
2‖.‖2 at x ∈ X, and b(.) is a function defined on [0,∞) such that lim

t↓0
b(t)/t = 0.

A Banach space X is said to satisfy Opial condition (see [24]) if for each sequence
{xn} in X which converges weakly to a point x ∈ X, we have

lim inf
n→∞ ‖xn − x‖ < lim inf

n→∞ ‖xn − y‖ for all y ∈ X.

A Banach space X is said to have the Kadec-Klee property if for every sequence
{xn} in X and each point x ∈ X,

xn ⇀ x and ‖xn‖ → ‖x‖ imply xn → x.

Let X be a Banach space. A mapping T with domain D(T ) and range R(T ) in
X is said to be demiclosed at a point p ∈ D(T ) if whenever {xn} is a sequence in
D(T ) which converges weakly to a point z ∈ D(T ) and {Txn} converges strongly
to p, then Tz = p.

The modulus of convexity of a Banach space X is defined by

δX(ε) = inf{1− ‖x + y

2
‖ : ‖x‖, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε}
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for all ε ∈ [0, 2]. X is said to be uniformly convex if δX(0) = 0 and δX(ε) > 0 for
all 0 < ε ≤ 2.

Throughout this paper the set of all weak subsequential limits of {xn} will be
denoted by ωw({xn}).
Proposition 2.1 ( Limaye [20]). Let {xn} be a bounded sequence in reflexive Banach
space X and An = co({xn}k≥n). If ∩∞n=1An = ∩∞n=1co({xn, xn+1, · · · }) = {x}, then
xn ⇀ x.

Proposition 2.2 (Dunford and Schwartz [11]). A subset of a reflexive Banach space
X is compact in the weak topology of X iff it is bounded in the strong topology.

Proposition 2.3 (Bruck [2]). Let {xn} be a sequence in a weakly compact subset
of a Banach space X. Then co(ωw({xn})) = ∩∞n=1co({xk}k≥n).

Combining Propositions 2.1 and 2.3, we obtain the following useful result:

Proposition 2.4. Let {xn} be a bounded sequence in reflexive Banach space X. If
ωw({xn}) = {x}, then xn ⇀ x.

Proof. Let C := {xn} be a bounded set. Note that X is reflexive, C is a weakly
compact set by Proposition 2.2. Let An = co({xk}k≥n). It follows from Proposition
2.3 that co(ωw({xn})) = ∩∞n=1co({xk}k≥n). Thus, ∩∞n=1An = ∩∞n=1co({xk}k≥n) =
{x}. Therefore, xn ⇀ x by Proposition 2.1 ¤

In what follows, we shall make use of the following lemmas.

Lemma 2.5 (Osilike and Aniagbosor [25]). Let {δn}, {βn} and {γn} be three se-
quences of nonnegative numbers such that

βn ≥ 1 and δn+1 ≤ βnδn + γn for all n ∈ N.

If
∑∞

n=1(βn − 1) < ∞ and
∑∞

n=1 γn < ∞, then lim
n→∞ δn exists.

Lemma 2.6 (Schu [31]). Let X be a uniformly convex Banach space and let 0 <
a ≤ αn ≤ b < 1 for all n ∈ N. Let {xn} and {yn} be sequences in X such that
lim sup

n→∞
‖xn‖ ≤ r, lim sup

n→∞
‖yn‖ ≤ r and lim

n→∞ ‖(1−αn)xn +αnyn‖ = r hold for some

r ≥ 0. Then lim
n→∞ ‖xn − yn‖ = 0.

Lemma 2.7 (Kaczor [17]). Let X be a real reflexive Banach space such that its
dual X∗ has the Kadec-Klee property. Let {xn} be a bounded sequence in X and
x, y ∈ ωw({xn}). Suppose lim

n→∞ ‖txn + (1 − t)x − y‖ exists for all t ∈ [0, 1]. Then
x = y.

Lemma 2.8 (Sahu and Beg [29]). Let X be a uniformly convex Banach space sat-
isfying the Opial condition, C a nonempty closed convex (not necessarily bounded)
subset of X and T : C → C a uniformly continuous nearly asymptotically nonex-
pansive mapping. Then I − T is demiclosed at zero.

Lemma 2.9. Let C be a nonempty convex subset of a Banach space X and let
Gn : C → X (n = 1, 2, . . .) be mappings with

⋂
n∈N F (Gn) 6= ∅ such that

‖Gnx−Gny‖ ≤ Ln||x− y||+ ρn for all x, y ∈ C and n ∈ N,(2.2)

where {Ln} and {ρn} are sequences of real numbers such that
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(i) Ln ≥ 1 for each n ∈ N and
∑∞

n=1(Ln − 1) < ∞,

(ii) ρn ≥ 0 for each n ∈ N and
∑∞

n=1 ρn < ∞.

Let {xn} be a sequence in C generated from x1 ∈ C and defined by

xn+1 = Gnxn for all n ∈ N.

Then we have the following:

(a) lim
n→∞ ‖xn − p‖ exists for all p ∈ ⋂

n∈N F (Gn);

(b) if X is uniformly convex, it follows that lim
n→∞ ‖txn + (1 − t)v1 − v2‖ exists

for all v1, v2 ∈
⋂

n∈N F (Gn) and t ∈ [0, 1];
(c) if X is a real uniformly convex Banach space with Fréchet differentiable

norm, it follows that lim
n→∞〈xn, J(v1−v2)〉 exists for all v1, v2 ∈

⋂
n∈N F (Gn).

Proof. (a) Let v ∈ ⋂
n∈N F (Gn). Observe that

‖xn+1 − v‖ = ‖Gnxn − v‖ ≤ Ln‖xn − v‖+ ρn for all n ∈ N,

so it follows from Lemma 2.5 that lim
n→∞ ‖xn − v‖ exists.

(b) Set

an(t) := ‖txn + (1− t)v1 − v2‖, n ∈ N.

Then lim
n→∞ an(0) = ‖v1−v2‖ and lim

n→∞ an(1) = lim
n→∞ ‖xn−v2‖ exist. It now remains

to show that the proposition is true for t ∈ (0, 1). Define

Sn,m := Gn+m−1Gn+m−2 . . . Gn for all n,m ∈ N.

Then xn+m = Sn,mxn, Sn,mv = v for all v ∈ ⋂
n∈N F (Gn) and

‖Sn,mx− Sn,my‖ ≤
( n+m−1∏

j=n

Lj

)(
‖x− y‖+

n+m−1∑

i=n

ρi

)

for all x, y ∈ C.
It is well known (see [3], p. 108) that

‖tx + (1− t)y‖ ≤ 1− 2t(1− t)δX(‖x− y‖)(2.3)
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for all t ∈ [0, 1] and for all x, y ∈ X such that ‖x‖ ≤ 1, ‖y‖ ≤ 1. Set

Hn,m : =
n+m−1∏

j=n

Lj , Hn :=
∞∏

j=n

Lj ;

σn,m : =
n+m−1∑

i=n

ρi, σn :=
∞∑

i=n

ρi;

bn,m : =
[
Sn,m(txn + (1− t)v1)− tSn,mxn − (1− t)Sn,mv1

]
||xn − v1||;

cn,m : =
[
Sn,mv1 + Sn,mxn − 2Sn,m(txn + (1− t)v1)

]
σn,m;

dn,m : = Hn,m ×
[
t||xn − v1||+ σn,m

]
×

[
(1− t)||xn − v1||+ σn,m

]
;

dn : = Hn ×
[
t||xn − v1||+ σn

]
×

[
(1− t)||xn − v1||+ σn

]
;

en,m : =
[
tSn,mv1 + (1− 2t)Sn,m(txn + (1− t)v1)− (1− t)Sn,mxn

]
σn,m;

un,m : =
[
Sn,mv1 − Sn,m(txn + (1− t)v1)

]
/
[
Hn,m(t‖xn − v1‖+ σn,m)

]
;

vn,m : =
[
Sn,m(txn + (1− t)v1)− Sn,mxn

]
/
[
Hn,m((1− t)‖xn − v1‖+ σn,m)

]
.

Then ‖un,m‖ ≤ 1 and ‖vn,m‖ ≤ 1 and it follows from (2.3) that

2t(1− t)δX(‖un,m − vn,m‖) ≤ 1− ‖tun,m + (1− t)vn,m‖.(2.4)

Observe that

‖un,m − vn,m‖ =
‖bn,m − cn,m‖

cn,m
,

and

‖tun,m + (1− t)vn,m‖ =
||t(1− t)(||xn − v1||)(Sn,mv1 − Sn,mxn) + en,mσn,m||

dn,m
.

From (2.4), we obtain

2t(1− t)dn,mδX

( ||bn,m − cn,m||
dn,m

)

≤ dn,m − ‖t(1− t)(‖xn − v1‖)(v1 − xn+m) + en,mσn,m‖.(2.5)

Also notice

dn,m = Hn,m[t(1− t)||xn − v1||2 + (||xn − v1||+ σn,m)σn,m]
≤ Hndn

so for some constant K1 > 0, it follows from (2.5) that

2dn,mδX

( ||bn,m − cn,m||
dn,m

)
≤ Hn

(
||xn − v1||2 +

K1σn

t(1− t)

)

−‖xn − v1‖ ‖xn+m − v1‖+
‖en,m‖σn

t(1− t)
.(2.6)
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Let d =: sup{dnHn : n ∈ N}. Since X is uniformly convex, then δX(s)/s is nonde-
creasing and hence it follows from (2.6) that

2dδX

( ||bn,m − cn,m||
d

)
≤ Hn

(
||xn − v1||2 +

K1σn

t(1− t)

)

−‖xn − v1‖ ‖xn+m − v1‖+
K2σn

t(1− t)
(2.7)

for some constant K2 > 0. Since lim
n→∞ ‖xn−v1‖ exists we have that lim

n→∞ ‖xn−v1‖ =

lim
n→∞ ‖xn+m − v1‖. Since δX(0) = 0 and lim

n→∞Hn = 1, then the continuity of δX

yields from (2.7) that lim
m,n→∞ ||bn,m − cn,m|| = 0. Since

||bn,m|| ≤ ||bn,m − cn,m||+ ||cn,m||
≤ ||bn,m − cn,m||+ K3σn

for some constant K3 > 0, it follows that lim
m,n→∞ ||bn,m|| = 0. Observe that

an+m(t)

≤ ‖txn+m + (1− t)v1 − v2 + [Sn,m(txn + (1− t)v1)− tSn,mxn − (1− t)Sn,mv1]‖
+ ‖ − [Sn,m(txn + (1− t)v1)− tSn,mxn − (1− t)Sn,mv1]‖

= ‖Sn,m(txn + (1− t)v1)− Sn,mv2‖
+ ‖Sn,m(txn + (1− t)v1)− tSn,mxn − (1− t)Sn,mv1‖

≤ Hn,m(an(t) + σn,m) + ‖Sn,m(txn + (1− t)v1)− tSn,mxn − (1− t)Sn,mv1‖
≤ Hn(an(t) + σn) + ‖Sn,m(txn + (1− t)v1)− tSn,mxn − (1− t)Sn,mv1‖.

Hence lim sup
m→∞

am(t) ≤ lim inf
n→∞ Hn(an(t) + σn) + lim

m,n→∞ ||bn,m|| = lim inf
n→∞ an(t), com-

pleting the proof of Part (b).

(c) It follows from (2.1) that
1
2
‖v1 − v2‖2 + t〈xn − v1, J(v1 − v2)〉

≤ 1
2
a2

n(t) ≤ 1
2
‖v1 − v2‖2 + t〈xn − v1, J(v1 − v2)〉+ b(t‖xn − v1‖).

Thus,

1
2
‖v1 − v2‖2 + t lim sup

n→∞
〈xn − v1, J(v1 − v2)〉 ≤ 1

2
lim

n→∞ a2
n(t)

≤ 1
2
‖v1 − v2‖2 + t lim inf

n→∞ 〈xn − v1, J(v1 − v2)〉+ o(t).

Hence lim sup
n→∞

〈xn, J(v1 − v2)〉 ≤ lim inf
n→∞ 〈xn − v1, J(v1 − v2)〉 +

o(t)
t

. On letting

t → 0+, we see that lim
n→∞〈xn, J(v1 − v2)〉 exists. ¤

Lemma 2.10. Let X be a reflexive Banach space satisfying the Opial condition, C
a nonempty closed convex subset of X and T : C → X a mapping such that



ITERATIVE CONSTRUCTION OF FIXED POINTS OF NEARLY 69

(i) F (T ) 6= ∅,
(ii) I − T is demiclosed at zero.

Let {xn} be a sequence in C satisfying the following properties:

(D1) lim
n→∞ ‖xn − p‖ exists for all p ∈ F (T );

(D2) lim
n→∞ ‖xn − Txn‖ = 0.

Then {xn} converges weakly to a fixed point of T .

Proof. Notice since X is reflexive and {xn} is bounded by (D1) that {xn} has a
weakly convergent subsequence {xnj}. Suppose {xnj} converges weakly to p. Since
{xnj} ⊂ C and C is weakly closed, then p ∈ C. From (D2), lim

n→∞ ||xn − Txn|| = 0

and since I − T is demiclosed at zero, we have (I − T )p = 0, so that p ∈ F (T ). To
complete the proof, we show that {xn} converges weakly to a fixed point of T , so
it suffices to show that ωw({xn}) consists of exactly one point, namely, p. Suppose
there exists another subsequence {xnk

} of {xn} which converges weakly to some
q 6= p. As in the case of p, we must have q ∈ C and q ∈ F (T ). It follows from (D1)
that lim

n→∞ ||xn − p|| and lim
n→∞ ||xn − q|| exist. Since X satisfies the Opial condition,

we have

lim
n→∞ ||xn − p|| = lim

j→∞
||xnj − p|| < lim

j→∞
||xnj − q|| = lim

n→∞ ||xn − q||,

lim
n→∞ ||xn − q|| = lim

k→∞
||xnk

− q|| < lim
k→∞

||xnk
− p|| = lim

n→∞ ||xn − p||,
which is a contradiction. Hence p = q so ωw({xn}) is a singleton. Thus, {xn}
converges weakly to p. ¤

Lemma 2.11. Let C be a nonempty closed convex subset of a real Banach space X
and T : C → C a mapping such that

(i) F (T ) 6= ∅,
(ii) I − T is demiclosed at zero.

Let {xn} be a sequence in C which satisfies property (D2). Suppose {xn} satisfies
one of the following:

(a) X is uniformly convex with Fŕechet differentiable norm and

(2.8) lim
n→∞〈xn, J(p− q)〉 exists for all p, q ∈ F (T );

(b) X is reflexive, X∗ has the Kadec-Klee property and lim
n→∞ ‖txn +(1− t)p−q‖

exists for all t ∈ [0, 1] and for all p, q ∈ ωw({xn}).

Then {xn} converges weakly to a fixed point of T .

Proof. We show that ωw({xn}) has exactly one point. Let u, v ∈ ωw({xn}) with
u 6= v. Then for some subsequences {xni} and {xnj} of {xn}, we have xni ⇀
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u and xnj ⇀ v. By (D2), lim
n→∞ ‖xn − Txn‖ = 0, which implies by demiclosedness of

I − T at zero that u, v ∈ ωw({xn}) ⊂ F (T ).
(a) From (2.8), we have

〈u, J(p− q)〉 = d (say), and 〈v, J(p− q)〉 = d,

so

〈u− v, J(p− q)〉 = 0 for all p, q ∈ F (T ).(2.9)

From (2.9) we obtain that

‖u− v‖2 = 〈u− v, J(u− v)〉 = 0,

a contradiction. Hence ωw({xn}) is a singleton. Therefore, {xn} converges weakly
to a fixed point of T .

(b) By assumption, lim
n→∞ ‖txn + (1− t)u− v‖ exists. Lemma 2.7 guarantees that

u = v, a contradiction. Hence ωw({xn}) is a singleton. Therefore, {xn} converges
weakly to a fixed point of T . ¤

3. S-iteration process and convergence analysis

First, we introduce a new iteration process:
For C a convex subset of a linear space X and T a mapping of C into itself, the

iterative sequence {xn} of our iteration process is generated from x1 ∈ C, and is
defined by

(3.1)
{

xn+1 = (1− αn)Txn + αnTyn,
yn = (1− βn)xn + βnTxn, n ∈ N,

where {αn} and {βn} are real sequences in (0,1) satisfying the condition:

(3.2)
∞∑

n=1

αnβn(1− βn) = ∞.

The iterative sequence {xn} is well defined since C is convex. We will call it the
S-iteration process. It is easy to see that neither the process (M) nor the process
(I) reduces to our iteration process and vice verse. Thus, the S-iteration process is
independent of the Mann [22] and Ishikawa [15] iteration processes.

Throughout the paper we use the following notation for the S-iteration {xn}
associated with the mapping T :

xn+1 = S(xn, αn, βn, T ), n ∈ N,

where S(xn, αn, βn, T ) = (1− αn)Txn + αnT [(1− βn)xn + βnTxn].
Next, we compare the rate of convergence of the Picard, Mann and S-iteration

processes for contraction mappings.

Proposition 3.1. Let C be a nonempty closed convex subset of a Banach space X
and T : C → C a contraction mapping with Lipschitz constant k and a unique fixed
point p. For u1 = v1 = w1 ∈ C, define sequences {un}, {vn} and {wn} in C as
follows:

Picard iteration : un+1 = Tun, n ∈ N;



ITERATIVE CONSTRUCTION OF FIXED POINTS OF NEARLY 71

Mann iteration : vn+1 = (1− αn)vn + αnTvn, n ∈ N;
S-iteration : wn+1 = (1− αn)Twn + αnTyn,

yn = (1− βn)wn + βnTwn, n ∈ N,
where {αn} and {βn} are real sequences in (0, 1). Then we have the following:

(a) ‖un+1 − p‖ ≤ k‖un − p‖ for all n ∈ N;

(b) ‖vn+1 − p‖ ≤ ‖vn − p‖ for all n ∈ N;

(c) ‖wn+1 − p‖ ≤ k‖wn − p‖ for all n ∈ N.

Proof. Part (a) is obvious.

(b) Now part (b) follows from

‖vn+1 − p‖ = ‖(1− αn)(vn − p) + αn(Tvn − p)‖
≤ (1− αn)‖vn − p‖+ kαn‖vn − p‖
≤ [1− (1− k)αn]‖vn − p‖ for all n ∈ N.

(c) For all n ∈ N, we have

‖wn+1 − p‖ ≤ (1− αn)k‖wn − p‖+ αnk‖yn − p‖
≤ k[(1− αn)‖wn − p‖+ αn((1− βn)‖wn − p‖+ kβn‖wn − p‖)]
= k[1− (1− k)αnβn]‖wn − p‖.

¤

Remark 3.2. The rate convergence of our iteration process is similar to the Pi-
card iteration process, but faster than the Mann iteration process for contraction
mappings. This provides a positive answer of Problem 1.3.

Before presenting the main results of this section, we give definitions and a propo-
sition:

Definition 3.3. Let C be a convex subset of a linear space X and T : C → C a
mapping. Then the modified S-iteration process is a sequence {xn} generated from
x1 ∈ C, and is defined by

xn+1 = S(xn, αn, βn, Tn), n ∈ N,(3.3)

where {αn} and {βn} are sequences in (0, 1).

Definition 3.4. Let C be a nonempty subset of a Banach space X, T : C → C a
mapping and k > 0 a real number. Then T will said to be asymptotic k-Lipschitzian
if there exists a sequence {an} in [0,∞) with an → 0 such that

‖Tnx− Tny‖ ≤ (k + an)‖x− y‖ for all x, y ∈ C and n ∈ N.

We will say an asymptotic k-Lipschitzian is asymptotic k-contraction if k ∈ (0, 1).
We note that every asymptotic k-Lipschitzian with sequence {an} is uniformly L-
Lipschitzian with L = sup

n∈N
{k + an}. It is obvious that an asymptotic 1-Lipschitzian

mapping with sequence {an} is asymptotically nonexpansive.
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Proposition 3.5. Let C be a nonempty bounded subset of a Banach space X and
T : C → C an asymptotic k-contraction mapping with sequence {an}. Then T is a
nearly uniformly k-contraction with sequence {an}.
Proof. By the definition of asymptotic k-contraction mapping,

‖Tnx− Tny‖ ≤ (k + an)‖x− y‖
≤ k‖x− y‖+ andiam(C)

for all x, y ∈ C and n ∈ N. ¤
By Proposition 3.5, we have the following implications:

contraction ⇒ asymptotic k-contraction ⇒ nearly uniformly k-contraction.

The following example shows that a nearly uniformly k-contraction is not neces-
sarily a contraction.

Example 3.6. Let X = R, C = [0, 1] and T : C → C be a mapping defined by

Tx =
{

x
2 if x ∈ [0, 1),
0 if x = 1.

It is obvious that T is a non-Lipschitzian discontinuous mapping. Hence it is not
a contraction. However, it is a nearly uniformly 1

2 -contraction with sequence { 1
2n }.

Indeed,

‖Tnx− Tny‖ ≤ 1
2n
‖x− y‖+

1
2n

≤ 1
2
‖x− y‖+

1
2n

for all n ∈ N and x, y ∈ C.

Our first result shows that the sequence {xn} defined by (3.3) converges strongly
to fixed points of nearly uniformly k-contraction mappings in a Banach space.

Theorem 3.7. Let C be a nonempty closed convex subset of a Banach space X
and T : C → C a nearly uniformly k-contraction mapping with sequence {an} and
F (T ) 6= ∅ such that

∑∞
n=1 an < ∞. For x1 ∈ C, let {xn} be the sequence defined by

(3.3), where {αn} and {βn} are sequences in (0, 1). Then the following hold:

(a) ‖xn+1 − p‖ ≤ k‖xn − p‖+ k(1 + k)an for all n ∈ N;

(b) {xn} converges strongly to a fixed point of T .

Proof. Let p ∈ F (T ). Then

‖xn+1 − p‖ ≤ (1− αn)‖Tnxn − p‖+ αn‖Tnyn − p‖
≤ (1− αn)k(‖xn − p‖+ an) + αnk(‖yn − p‖+ an)
≤ k[(1− αn)‖xn − p‖+ αn‖yn − p‖+ an]
≤ k[(1− αn)‖xn − p‖+ αn[(1− βn)‖xn − p‖

+βnk(‖xn − p‖+ an)] + an]
≤ k[1− αn + αn[(1− βn) + kβn]]‖xn − p‖+ k(1 + k)αnan

= k[1− (1− k)αnβn]‖xn − p‖+ k(1 + k)αnan
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≤ k‖xn − p‖+ k(1 + k)an(3.4)
≤ ‖xn − p‖+ k(1 + k)an.

Using Lemma 1 of Tan and Xu [34], we have that lim
n→∞ ‖xn−p‖ exists. Set lim

n→∞ ‖xn−
p‖ = d > 0. It follows from (3.4) that

d ≤ kd,

a contradiction. Therefore, {xn} converges strongly to a fixed point of T . ¤
We now show that the modified S-iteration process converges weakly to fixed

points of nearly asymptotically nonexpansive mappings in uniformly convex Banach
spaces. We begin with the following theorem which shows that the sequence {xn}
defined by (3.3) has properties (D1) ∼ (D2).

Theorem 3.8. Let C be a nonempty closed convex subset of a uniformly convex
Banach space X, T : C → C a nearly asymptotically nonexpansive mapping with
sequence {(an, η(Tn)} and F (T ) 6= ∅ such that

∑∞
n=1 an < ∞ and

∑∞
n=1(η(Tn) −

1) < ∞. Let {xn} be the modified S-iteration defined by (3.3), where {αn} and {βn}
are sequences of real numbers in (0, 1) such that 0 < a ≤ αn, βn ≤ b < 1. Then the
following hold:

(a) lim
n→∞ ‖xn − p‖ = lim

n→∞ ‖yn − p‖ exists for p ∈ F (T );

(b) lim
n→∞ ‖xn − Tnxn‖ = 0;

(c) if T is uniformly continuous, it follows that {xn} has property (D2).

Proof. (a) Let p ∈ F (T ). For each n ∈ N, define a mapping Gn : C → C by

Gnx = (1− αn)Tnx + αnTn((1− βn)x + βnTnx), x ∈ C.

Hence xn+1 = Gnxn for all n ∈ N. Set η := sup
n∈N

η(Tn). Observe that

‖Gnx−Gny‖ ≤ (1− αn)‖Tnx− Tny‖
+αn‖Tn((1− βn)x + βnTnx)− Tn((1− βn)y + βnTny)‖

≤ η(Tn)[(1− αn)(‖x− y‖+ an)
+αn(‖(1− βn)(x− y) + βn(Tnx− Tny)‖+ an)]

≤ η(Tn)[(1− αn)‖x− y‖+ αn((1− βn)‖x− y‖
+βnη(Tn)(‖x− y‖+ an)) + an)]

≤ η(Tn)[(1− αn)‖x− y‖+ αnη(Tn)‖x− y‖+ (1 + η(Tn))an]
≤ Ln‖x− y‖+ ρn for all x, y ∈ C and n ∈ N,

where Ln = η(Tn)2 and ρn = η(1 + η)an. Moreover,
∞∑

n=1

(Ln − 1) =
∞∑

n=1

(η(Tn) + 1)(η(Tn)− 1) ≤ (1 + η)
∞∑

n=1

(η(Tn)− 1) < ∞

and
∑∞

n=1 ρn < ∞. It is easily seen that F (T ) ⊆ F (Gn). It follows from Lemma
2.9(a) that lim

n→∞ ‖xn − p‖ exists. Set d := lim
n→∞ ‖xn − p‖. Since

‖Tnxn − p‖ ≤ η(Tn)(‖xn − p‖+ an) for all n ∈ N,
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we have that
lim sup

n→∞
‖Tnxn − p‖ ≤ d.

Also

‖yn − p‖ ≤ (1− βn)‖xn − p‖+ βn‖Tnxn − p‖
≤ (1− βn)‖xn − p‖+ βnη(Tn)(‖xn − p‖+ an)
≤ η(Tn)‖xn − p‖+ η(Tn)an,

which yields

lim sup
n→∞

‖yn − p‖ ≤ d.(3.5)

Hence

lim sup
n→∞

‖Tnyn − p‖ ≤ lim sup
n→∞

(η(Tn)(‖yn − p‖+ an)) ≤ d.(3.6)

Since

d = lim
n→∞ ‖xn+1 − p‖ = lim

n→∞ ‖(1− αn)(Tnxn − p) + αn(Tnyn − p)‖,
it follows from Lemma 2.6 that

lim
n→∞ ‖T

nxn − Tnyn‖ = 0.(3.7)

Form (3.3) and (3.7), we have

‖xn+1 − Tnxn‖ = αn‖Tnyn − Tnxn‖
≤ b‖Tnyn − Tnxn‖ → 0 as n →∞.(3.8)

Hence

‖xn+1 − Tnyn‖ ≤ ‖xn+1 − Tnxn‖+ ‖Tnxn − Tnyn‖ → 0 as n →∞.

Now

‖xn+1 − p‖ ≤ ‖xn+1 − Tnyn‖+ ‖Tnyn − p‖
≤ ‖xn+1 − Tnyn‖+ η(Tn)(‖yn − p‖+ an),(3.9)

which gives from (3.9) that

d ≤ lim inf
n→∞ ‖yn − p‖.(3.10)

From (3.5) and (3.10), we obtain

d = lim
n→∞ ‖yn − p‖ = lim

n→∞ ‖(1− βn)(xn − p) + βn(Tnxn − p)‖.(3.11)

(b) Apply Lemma 2.6 in (3.11), and we obtain that lim
n→∞ ‖xn − Tnxn‖ = 0.

(c) By (3.8), we have

‖xn+1 − xn‖ ≤ ‖xn+1 − Tnxn‖+ ‖Tnxn − xn‖ → 0 as n →∞.

Also observe that

‖xn − Txn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − Tn+1xn+1‖
+‖Tn+1xn+1 − Tn+1xn‖+ ‖Tn+1xn − Txn‖

≤ ‖xn − xn+1‖+ ‖xn+1 − Tn+1xn+1‖+ η(Tn+1)(‖xn+1 − xn‖
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+an+1) + ‖Tn+1xn − Txn‖.(3.12)

Since lim
n→∞ ‖Txn − Tn+1xn‖ = 0 by the uniform continuity of T, it follows from

(3.12) that ‖xn − Txn‖ → 0 as n →∞. ¤
Theorem 3.9. Let X be a uniformly convex Banach space X satisfying the Opial
condition, C a nonempty closed convex subset of X and T : C → C a uniformly
continuous nearly asymptotically nonexpansive mapping with sequence {(an, η(Tn))}
and F (T ) 6= ∅ such that

∑∞
n=1 an < ∞ and

∑∞
n=1(η(Tn) − 1) < ∞. Let {αn} and

{βn} be two sequences in (0, 1) such that 0 < a ≤ αn, βn ≤ b < 1 for all n ∈ N and
given x1 ∈ C, let {xn} be the sequence in C defined by (3.3). Then {xn} converges
weakly to a fixed point of T .

Proof. Note that X reflexive since it is uniformly convex. Observe that

(i) F (T ) 6= ∅ by assumption,

(ii) {xn} has properties (D1) ∼ (D2) by Theorem 3.8,

(iii) I − T is demiclosed at zero by Lemma 2.8.

Therefore, {xn} converges weakly to a fixed point of T by Lemma 2.10. ¤
It is well known that there exist classes of uniformly convex Banach spaces with-

out the Opial condition (e.g., Lp spaces, p 6= 2). Therefore, Theorem 3.9 is not true
for such Banach spaces. We now show that Theorem 3.9 is valid if the assump-
tion that X satisfies the Opial condition is replaced by either (a) X has Fréchet
differentiable norm or (b) X∗ has the Kadec-Klee property.

Theorem 3.10. Let X be a real uniformly convex Banach space with Fréchet dif-
ferentiable norm, C a nonempty closed convex subset of X and T : C → C a
uniformly continuous nearly asymptotically nonexpansive mapping with sequence
{(an, η(Tn))} and F (T ) 6= ∅ such that I − T is demiclosed at zero,

∑∞
n=1 an < ∞

and
∑∞

n=1(η(Tn)− 1) < ∞. Let {αn} and {βn} be two sequences in (0, 1) such that
0 < a ≤ αn, βn ≤ b < 1 for all n ∈ N and given x1 ∈ C, let {xn} be the sequence in
C defined by (3.3). Then {xn} converges weakly to a fixed point of T .

Proof. Observe that

(i) {xn} has properties (D1) ∼ (D2) by Theorem 3.8,

(ii) I − T is demiclosed at zero by assumption,

(iii) lim
n→∞〈xn, J(p− q)〉 exists for all p, q ∈ F (T ) by Lemma 2.9(c).

Hence the result follows from Lemma 2.11. ¤
Theorem 3.11. Let X be a real uniformly convex Banach space such that X∗ has
the Kadec-Klee property, C a nonempty closed convex subset of X and T : C → C
a uniformly continuous nearly asymptotically nonexpansive mapping with sequence
{(an, η(Tn))} and F (T ) 6= ∅ such that I − T is demiclosed at zero,

∑∞
n=1 an < ∞

and
∑∞

n=1(η(Tn)− 1) < ∞. Let {αn} and {βn} be two sequences in (0, 1) such that
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0 < a ≤ αn, βn ≤ b < 1 for all n ∈ N and given x1 ∈ C, let {xn} be the sequence in
C defined by (3.3). Then {xn} converges weakly to a fixed point of T .

Proof. As in proof of Theorem 3.10, we have the following:

(i) {xn} has properties (D1) ∼ (D2);

(ii) I − T is demiclosed at zero by assumption;

(iii) lim
n→∞ ‖txn + (1− t)p− q‖ exists for all p, q ∈ F (T ) and t ∈ [0, 1] by Lemma

2.9(b).

Hence Theorem 3.11 follows from Lemma 2.11. ¤
We conclude this paper with strong convergence of the S-iteration process to fixed

points of nearly asymptotically nonexpansive mappings in a strictly convex Banach
space.

Let X be a Banach space and let C be a nonempty closed convex bounded subset
of X with diameter diam(C) > 0. For 0 ≤ ε ≤ 1, we define the number δ(C, ε) > 0
by

δ(C, ε) =
1
d

inf{max{‖x‖, ‖y‖} − ‖x + y‖
2

: x, y ∈ C, ‖x− y‖ ≥ dε},
where d := diam(C). The following lemmas were proved in Takahashi and Tsukiyama
[33].

Lemma 3.12. Let X be a Banach space and C a nonempty compact convex subset
of X with d = diam(C) > 0. Let x, y ∈ C with ‖x − y‖ ≥ dε for some 0 ≤ ε ≤ 1.
Then

‖λx + (1− λ)y‖ ≤ max{‖x‖, ‖y‖} − 2λ(1− λ)dδ(C, ε) for all λ ∈ [0, 1].

Lemma 3.13. Let X be a strictly convex Banach space and C a nonempty compact
convex subset of X with diam(C) > 0. If lim

n→∞ δ(C, εn) = 0, then lim
n→∞ εn = 0.

Theorem 3.14. Let C be a nonempty compact convex subset of a strictly convex
Banach space X and T : C → C a uniformly continuous nearly nonexpansive
mapping with sequence {an} such that

∑∞
n=1 an < ∞. Let {xn} be the sequence in

C generated from x1 ∈ C, and defined by (3.3), where {αn} and {βn} are sequences
in (0, 1) such that limn→∞ αnβn(1−βn) exists and limn→∞ αnβn(1−βn) 6= 0. Then
{xn} converges strongly to a fixed point of T .

Proof. By Schauder’s fixed point theorem we obtain that F (T ) 6= ∅. Let p ∈ F (T ).
By (3.3), we have

‖Tnxn − p‖ ≤ ‖xn − p‖+ an,

‖yn − p‖ = ‖(1− βn)(xn − p) + βn(Tnxn − p)‖
≤ (1− βn)‖xn − p‖+ βn(‖xn − p‖+ an)
≤ ‖xn − p‖+ an,

and

‖xn+1 − p‖ = ‖(1− αn)(Tnxn − p) + αn(Tnyn − p)‖
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≤ (1− αn)(‖xn − p‖+ an) + αn(‖yn − p‖+ an)
= (1− αn)‖xn − p‖+ αn‖yn − p‖+ an(3.13)
≤ ‖xn − p‖+ 2an.(3.14)

Apply Lemma 2.5, and we obtain from (3.14) that lim
n→∞ ‖xn − p‖ exists.

Set d := diam(C) and εn := ‖xn − Tnxn‖/d. Then 0 ≤ εn ≤ 1. Using (3.13) and
Lemma 3.12, we have

‖xn+1 − p‖ ≤ (1− αn)‖xn − p‖+ αn‖(1− βn)(xn − p) + βn(Tnxn − p)‖+ an

≤ (1− αn)‖xn − p‖+ αn max{‖xn − p‖, ‖Tnxn − p‖}
−2αnβn(1− βn)dδ(C, εn) + an

≤ ‖xn − p‖ − 2αnβn(1− βn)dδ(C, εn) + 2an

which yields

2d
m∑

n=1

αnβn(1− βn)δ(C, εn) ≤
m∑

n=1

(‖xn − p‖ − ‖xn+1 − p‖) + 2
m∑

n=1

an

= ‖x1 − p‖ − ‖xm+1 − p‖+ 2
m∑

n=1

an

≤ ‖x1 − p‖+ 2
m∑

n=1

an for all m ∈ N.

Since
∑∞

n=1 an < ∞ we have that
∑∞

n=1 αnβn(1− βn)δ(C, εn) < ∞. The condition
limn→∞ αnβn(1 − βn) 6= 0 implies that limn→∞ δ(C, εn) = 0. By Lemma 3.13, we
have limn→∞ εn = 0. Thus,

lim
n→∞ ‖xn − Tnxn‖ = 0.(3.15)

Since T is uniformly continuous, it follows from (3.15) that

lim
n→∞ ‖xn − Txn‖ = 0.(3.16)

By the compactness of C, there is a subsequence {xni} of {xn} such that

lim
i→∞

xni = v.(3.17)

Since T is continuous, it follows from (3.16) that v ∈ F (T ). Since lim
n→∞ ‖xn − p‖

exists for all p ∈ F (T ), we conclude from (3.17) that lim
n→∞xn = v ∈ F (T ). ¤
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