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Abstract. Two new theorems of alternative for invex infine inequality systems
are proved. One of these theorems is applied to characterize optimal solution
of nonsmooth scalar-valued fractional minimax programming problem with in-
equality, equality and abstract constraints. An existence theorem and Karush-
Kuhn-Tucker (KKT) type optimality conditions are established.

1. Introduction

There has been an urge to find a class of functions for which Karush Kuhn-Tucker
(KKT) necessary optimality conditions become sufficient too. This urge led sev-
eral authors in the past to study convexity and its various generalizations. Among
them, the most significant is the concept of invexity, introduced by Hanson [7] for
differentiable functions. It was shown by Ben-Israel and Mond [4] that a differen-
tiable function is invex if and only if every stationary point of the function is its
global minimizer. This property of invex functions make their study significant.
Later, Reliand [11] extended invexity to locally Lipschitz nonsmooth vector-valued
functions. However, the notion of invexity is suitable for optimization problems in-
volving inequality constraints only but not for optimization problems with equality
constraints. This motivated Sach et al. [12] to define a new class of nonsmooth
infine functions which forms a subclass of invex functions and is also appropriate
for optimization problems with equality constraints. Invex functions are also useful
in deriving theorems of alternative for various systems of inequalities. For more
details, one can refer to [5, 10, 12]. These theorems are used as principal tools in
developing necessary optimality conditions for constrained optimization problems.
These observations make the study of nonsmooth locally Lipschitz invex infine vec-
tor functions important and interesting.

The aim of this paper is twofold. First, we prove two theorems of alternative
for systems involving infinite inequalities, finite equalities and abstract constraints
under suitable V-invex infine hypotheses. Second, as an application of one of these
theorems, we derive necessary and sufficient optimality conditions for nonsmooth
fractional minimax problems.

The rest of the paper is organized as follows. In section 2, we introduce the
notion of V-invex infine function using Clarke generalized gradient [6]. Example is
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given to support the definition. Section 3 is devoted to prove the main theorem of
the paper, that is, the theorem of alternative involving V-invex infine inequalities,
equalities and abstract constraints. Relaxing the assumptions of this theorem, we
obtain another theorem of alternative for a different system in the same setup. We
use these theorems to obtain conditions which ensure the existence of solution for
minimax optimization problem in section 4, while in section 5, we present necessary
and sufficient optimality conditions for fractional minimax programming problems.
Some concluding remarks are given in section 6.

2. Vector invex infine function

In this section, we introduce a new class of nonsmooth locally Lipschitz V-invex
infine functions. We begin with some basic definitions and notations that will be
used throughout the paper.

Let f : <n −→ < be a locally Lipschitz function at x0 ∈ <n, that is, there exists
a constant L > 0 such that for any x, x′ in some neighborhood of x0,

|f(x)− f(x′)| 5 L‖x− x′‖.
For x0 ∈ <n, the Clarke directional derivative of f at x0 in the direction d [6] is
defined as

fo(x0, d) = lim
x→x0

sup
λ↓0

f(x + λd)− f(x)
λ

and the Clarke subdifferential of f at x0 is defined as
∂f(x0) = {ξ ∈ <n : fo(x0, d) = 〈ξ, d〉, ∀d ∈ <n},

where 〈., .〉 denotes the inner product in <n. It is well known that for any d ∈ <n,
fo(x0, d) = max

ξ∈∂f(x0)
〈ξ, d〉

and ∂f(x0) is a nonempty compact convex subset of <n.

Let S be a closed subset of <n and x0 ∈ S. The Clarke tangent cone to S at x0

is given by
TS(x0) = {d ∈ <n : dS

o(x0, d) = 0},
where dS(x0) is the distance metric defined as

dS(x0) = inf
x∈S

‖x− x0‖.
The Clarke normal cone to S at x0 is given by

NS(x0) = {v ∈ <n : 〈v, d〉 5 0, ∀ d ∈ TS(x0)}.
In the following, we assume that f = (f1, f2, . . . , fp) is a nonsmooth vector-valued

function defined on <n such that each fi is locally Lipschitz real-valued function.

The generalized gradient of f at x0, [6], is the set
∂f(x0) = ∂f1(x0)× ∂f2(x0)× . . .× ∂fp(x0).

We recall below definitions of invex and infine vector-valued functions from [12].

Definition 2.1. f is said to be invex at x0 ∈ S if for any x ∈ S and A =
(ξ1, ξ2, . . . , ξp) ∈ ∂f(x0), ξi ∈ ∂fi(x0), i = 1, 2, . . . , p, there exists η ∈ TS(x0)
such that
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fi(x)− fi(x0) = 〈ξi, η(x,A)〉.
Definition 2.2. f is said to be infine at x0 ∈ S if for any x ∈ S and A =
(ξ1, ξ2, . . . , ξp) ∈ ∂f(x0), ξi ∈ ∂fi(x0), i = 1, 2, . . . , p, there exists η ∈ TS(x0)
such that

fi(x)− fi(x0) = 〈ξi, η(x,A)〉.
Observe that, in the above definitions, vector η depends on vector x and the matrix
A. We now introduce the notion of V-invexity and V-infineness.

Definition 2.3. f is said to be V-invex at x0 ∈ S if for any x ∈ S and A =
(ξ1, ξ2, . . . , ξp) ∈ ∂f(x0), ξi ∈ ∂fi(x0), i = 1, 2, . . . , p, there exist η ∈ TS(x0) and
θi ∈ <+\{0} such that

fi(x)− fi(x0) = θi(x, ξi)〈ξi, η(x,A)〉.
Definition 2.4. f is said to be V-infine at x0 ∈ S if for any x ∈ S and A =
(ξ1, ξ2, . . . , ξp) ∈ ∂f(x0), ξi ∈ ∂fi(x0), i = 1, 2, . . . , p, there exist η ∈ TS(x0) and
θi ∈ <\{0} such that

fi(x)− fi(x0) = θi(x, ξi)〈ξi, η(x,A)〉.
In definitions 2.3 and 2.4, vector η depends on x and A while θi depends on x and
ξi. Following example illustrates the notion of V-invexity.

Example 2.5. Consider f1(x) =
{

x, x = 0
2x, x < 0 and f2(x) = x2 + |x| defined

over <. Let x0 = 0. Then ∂f1(x0) = [1, 2] and ∂f2(x0) = [−1, 1]. The vector
function (f1, f2) is not invex at x0 with respect to a common η in the sense of
definition 2.1, for if, A = [1,−1]T and x = −1/2, we cannot find η for which
(f1, f2) is invex. However, (f1, f2) is V-invex in the sense of definition 2.3. For
x = 0, A = [ξ1, ξ2]T , ξ1 ∈ [1, 2] and ξ2 ∈ [−1, 1], we can take η = x/2, θ1 = θ2 = 1.
For x < 0, A = [ξ1, ξ2]T , ξ1 ∈ [1, 2] and ξ2 ∈ [−1/2, 1], take η = 2x, θ1 = θ2 = 1
whereas for ξ2 ∈ [−1,−1/2), take η = 2x, θ1 = 1 and θ2 = (1− x)/2. Observe that
in all the cases θ1 and θ2 are positive.

Remark 2.6. If θi(x, ξi) = 1, ∀ ξi ∈ ∂fi(x0), i = 1, 2, . . . , p, then definitions 2.3 and
2.4 reduce to invex and infine functions respectively, of Sach et al. [12]. Moreover,
if η does not depend on the matrix A and θi too is independent of the vector ξi

then the notion of V-invexity introduced here coincides with the V-invexity defined
by Bector et al. [3].

Remark 2.7. The above definitions could also be given using the generalized Jaco-
bian, Jf(x0), of f at x0, [6], which is defined as the convex hull of all limits of the
form

A = lim
xi→x0;xi∈Df

f ′(xi)

where Df is the set of all x where f ′(x) exists. However, it is well known that
Jf(x0) ⊂ ∂f(x0) and there are functions f for which Jf(x0) 6= ∂f(x0). Thus, if
the concepts of invexity and infineness are defined in terms of Jf(x0), instead of
∂f(x0), we would be restricting the class of functions. Therefore, we consider the
two definitions with ∂f(x0) so as to study wider class of optimization problems.
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Definition 2.8. Let f = (f1, f2, . . . , fp), g = (g1, g2, . . . , gq) and h = (h1, h2, . . . , hr)
be vector-valued functions defined on <n such that each fi, gj , hk, i = 1, 2, . . . , p, j =
1, 2, . . . , q and k = 1, 2, . . . , r is locally Lipschitz real-valued function. Then ((f, g);h)
is said to be V-invex infine at x0 ∈ S if for any x ∈ S and A ∈ ∂f(x0)× ∂g(x0)×
∂h(x0), there exists η ∈ TS(x0) such that (f, g) is V-invex and h is V-infine at x0

with respect to η ≡ η(x,A).

From now onwards we will be writing η instead of η(x,A) and θi instead of
θi(x, ξi) without any ambiguity.

3. Theorems of alternative

Theorems of alternative play pivotal role in deriving necessary optimality condi-
tions of Karush Kuhn-Tucker type for nonsmooth nonconvex optimization problems.
Various types of theorems of alternative for various systems of inequalities have
been studied in the past. Here, we would like to mention few of them related to the
present work. Jeyakumar et al. [8] discussed the theorems by considering systems
of infinite inequalities involving convexlike and concavelike functions. Brandāo et
al. [5] studied the theorem for system of finite inequalities and abstract constraints
involving nonsmooth invex functions. Later, Luu et al. [10] used standard separation
theorem of convex sets and Motzkin’s theorem of alternative of Schmitendorf [13]
to discuss theorem of alternative for system with infinite inequalities only. More re-
cently, Sach et al. [12] derived theorems with systems consisting of finite inequality
constraints, equality constraints and abstract constraints under invex infine condi-
tions. In this section, two new theorems of alternative for the systems involving
infinite inequalities, finite equalities and abstract constraints are derived under V-
invex infine hypotheses. It can be observed that the related theorems of Luu et
al. (Theorem 3.3, [10]) and Sach et al. (Theorem 4.1 and Theorem 4.2, [12]) are
particular cases of the theorems of alternative presented in this section.

Before proving the theorems, we define the following notations. Let Y be a
compact subset of <l and S be a nonempty closed subset of <n. Let F (., y), y ∈ Y be
locally Lipschitz real-valued function, g = (g1, g2, . . . , gm) and h = (h1, h2, . . . , hp)
be vector-valued functions with locally Lipschitz components defined over <n. Let
J = {1, 2, . . . , m} and K = {1, 2, . . . , p} be the index sets. For x0 ∈ S, denote

Y0 = {y0 ∈ Y : F (x0, y0) = sup
y∈Y

F (x0, y)},
J0 = {j ∈ J : gj(x0) = 0}.

Further, assume that for each x ∈ S, the function y −→ F (x, .) is upper semicon-
tinuous on Y . Upper semicontinuity of F (x, .) along with compactness of Y ensures
that Y0 is nonempty.

Theorem 3.1. Assume the following:

(1) The system

(3.1) (∃x ∈ <n)(∀y ∈ Y ) F (x, y) 5 0, g(x) 5 0, h(x) = 0, x ∈ S

has a solution x0.
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(2) Jourani’s constraint qualification (JCQ)(see, [9]) is satisfied at x0, that is,
∀ (βJ0 , γK), βj = 0, j ∈ J0 and γk ∈ <, k ∈ K, not all zeroes,

0 /∈
∑

j∈J0

βj∂gj(x0) +
∑

k∈K

γk∂hk(x0) + NS(x0).

(3) For each y ∈ Y0, ((F (., y), gJ0(.)); hK(.)) be V-invex infine at x0 on S.
Then either the system

(I) (∃x ∈ <n)(∀y ∈ Y )

(3.2) F (x, y) < 0, g(x) 5 0, h(x) = 0, x ∈ S

has a solution
or,

(II) ∃ vectors y1, y2, . . . , yn+1 in Y0, λ = (λ1, λ2, . . . , λn+1) ≥ 0, βj = 0, j ∈
J0, γk ∈ <, k ∈ K such that ∀x ∈ S

n+1∑

i=1

λiF (x, yi) +
∑

j∈J0

βjgj(x) +
∑

k∈K

γkhk(x) = 0

but never both.

Proof. Observe that systems (I) and (II) cannot hold together. Assume that system
(I) has no solution. Consider the optimization problem

(P ) minimize φ(x), φ(x) = sup
y∈Y

F (x, y)

subject to gj(x) 5 0, j ∈ J,
hk(x) = 0, k ∈ K,

x ∈ S.

Let S1 = {x ∈ <n : gJ(x) 5 0, hK(x) = 0, x ∈ S} denote the feasible solution
set of the problem (P ). Since (3.1) has a solution so, S1 is nonempty. Also, (3.2)
has no solution, hence, sup

y∈Y
F (x, y) = 0, ∀x ∈ S1. Therefore, φ(x) = 0, ∀ x ∈ S1.

Moreover, by assumption 1, x0 is a solution of (3.1) which implies x0 ∈ S1 and
F (x0, y) 5 0 thereby implying that φ(x0) = 0, that is, φ(.) attains its minimum at
x0. Therefore, x0 is a local minimizer of (P ).

Invoking the necessary optimality conditions from Clarke [6], there exists λ′0 =
0, β′j = 0 (j ∈ J0), γ′k ∈ < (k ∈ K), not all zeroes, such that

0 ∈ λ′0∂φ(x0) +
∑

j∈J0

β′j∂gj(x0) +
∑

k∈K

γ′k∂hk(x0) + NS(x0).

(JCQ) ensures that λ′0 6= 0. In particular, for λ′0 = 1,

0 ∈ ∂φ(x0) +
∑

j∈J0

β′j∂gj(x0) +
∑

k∈K

γ′k∂hk(x0) + NS(x0),

implying that
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0 ∈ co
{ ⋃

y∈Y0

∂F (x0, y)
}

+
∑

j∈J0

β′j∂gj(x0) +
∑

k∈K

γ′k∂hk(x0) + NS(x0).

Thus, there exist yi ∈ Y0 and λ′i = 0, i = 1, 2, . . . , n + 1,
n+1∑

i=1

λ′i = 1 such that

(3.3) 0 ∈
n+1∑

i=1

λ′i∂F (x0, yi) +
∑

j∈J0

β′j∂gj(x0) +
∑

k∈K

γ′k∂hk(x0) + NS(x0).

Consequently,

−
( n+1∑

i=1

λ′iξyi +
∑

j∈J0

β′j ξ̄j +
∑

k∈K

γ′k
¯̄ξk

)
∈ NS(x0)

for some ξyi ∈ ∂F (x0, yi), i = 1, 2, . . . , n + 1, ξ̄j ∈ ∂gj(x0), j ∈ J0 and ¯̄ξk ∈
∂hk(x0), k ∈ K.

Applying V-invexity infineness of ((F (., y), gJ0(.));hK(.)) at x0, we have that for any
x ∈ S, there exist vectors η ∈ TS(x0), θyi , ϕj ∈ <+\{0}, i = 1, 2, . . . , n + 1, j ∈ J0

and ψk ∈ <\{0}, k ∈ K, such that

n+1∑

i=1

λi[F (x, yi)− F (x0, yi)] +
∑

j∈J0

βj [gj(x)− gj(x0)] +
∑

k∈K

γk[hk(x)− hk(x0)] = 0,

where λi = λ′i/θyi , i = 1, 2, . . . , n + 1, βj = β′j/ϕj , j ∈ J0 and γk = γ′k/ψk, k ∈ K.
Therefore, for any x ∈ S, we obtain,

n+1∑

i=1

λiF (x, yi) +
∑

j∈J0

βjgj(x) +
∑

k∈K

γkhk(x) =

n+1∑

i=1

λiF (x0, yi) +
∑

j∈J0

βjgj(x0) +
∑

k∈K

γkhk(x0) = 0.

This proves the result. ¤

We illustrate the above theorem by an example.

Example 3.2. Consider F (x, y) = −(1/2)y2
1−(1/2)y2

2 +y1x1+y2x2 where y ∈ Y =
[−1, 1]×[−1, 1], g(x) = x1+(1/2)x2 and h(x) = −x1+(1/2)x2 defined over <2. The
assumptions of the theorem are satisfied at the point x0 = (0, 0) with Y0 = {(0, 0)}
and η = x. We observe that system (I) is not satisfied but system (II) is solvable
for λ > 0, β = 0 and γ = 0.

Assumptions 1 and 2 of the above theorem can be replaced by existence of a
solution of an unconstrained optimization problem. For this, we define a scalar-
valued function



INVEX SYSTEM WITH APPLICATIONS TO MINIMAX OPTIMIZATION 53

Θ(.) = max
{

sup
y∈Y

F (., y), max
j∈J

gj(.), max
k∈K

|hk(.)|
}

on S.

Theorem 3.3. Assume the following:

1′. Function Θ(.) attains its minimum on S at a point x0 ∈ S.
2′. For each y ∈ Y1, ((F (., y), gJ1(.)); hK1(.)) is V-invex infine at x0 on S,

where

Y1 = {y0 ∈ Y : F (x0, y0) = Θ(x0)},
J1 = {j ∈ J : gj(x0) = Θ(x0)},
K1 = {k ∈ K : |hk(x0)| = Θ(x0)}.

Then either the system

(I′) (∃x ∈ <n)(∀y ∈ Y )

F (x, y) 5 0, g(x) 5 0, h(x) = 0, x ∈ S

has a solution

or,

(II′) ∃ vectors y1, y2, . . . , yn+1 in Y1, λ = (λ1, λ2, . . . , λn+1) = 0, βj = 0, j ∈
J1, γk ∈ <, k ∈ K1, not all zeroes, and a scalar ε > 0 such that ∀x ∈ S

n+1∑

i=1

λiF (x, yi) +
∑

j∈J1

βjgj(x) +
∑

k∈K1

γkhk(x) > ε

but never both.

Proof. Observe that systems (I′) and (II′) cannot hold together. Assume that system
(I′) has no solution. Then, Θ(x) > 0, ∀x ∈ S. Since Θ(.) attains minimum at
x0 ∈ S, there exists ε′ > 0 such that Θ(x0) > ε′. By optimality of x0, we have,

0 ∈ ∂Θ(x0) + NS(x0).

Following on the lines of proof of Theorem 4.1 of Sach et al. [12] and using Levin’s
theorem (see, chapter 2, Clarke [6]), we get the existence of vectors y1, y2, . . . , yn+1

in Y1 and multipliers (λ′, β′, γ′) where (λ′, β′) = 0 and γ′ ∈ <, not all zeroes, such
that

0 ∈
n+1∑

i=1

λ′i∂F (x0, yi) +
∑

j∈J1

β′j∂gj(x0) +
∑

k∈K1

γ′k∂hk(x0) + NS(x0).

Applying V-invexity infineness of ((F (., y), gJ1(.));hK1(.)) on S, we obtain
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n+1∑

i=1

λiF (x, yi) +
∑

j∈J1

βjgj(x) +
∑

k∈K1

γkhk(x)

=
n+1∑

i=1

λiF (x0, yi) +
∑

j∈J1

βjgj(x0) +
∑

k∈K1

γkhk(x0)

= Θ(x0)
{n+1∑

i=1

λi +
∑

j∈J1

βj +
∑

k∈K1

γkak

}
> ε,

where λi, βj and γk are same as defined in Theorem 3.1, ak = sign(hk(x0)) and

ε = ε′
{n+1∑

i=1

λi +
∑

j∈J1

βj +
∑

k∈K1

γkak

}
. ¤

Example 3.4. Consider F (x, y) = 1/2y2−yx, where y ∈ Y = [−1, 1], g(x) = x3−1
and h(x) = |x| − 1 defined over <. We observe that assumption 1 of Theorem 3.1
does not hold. Moreover, Jourani’s constraint qualification is also not satisfied. The
function Θ, given by

Θ(x) =
{ |x|+ 1/2, x 5 1.4311

x3 − 1, x > 1.4311 ,

attains minimum at x0 = 0. Observe that Y1 = {−1, 1} while J1 and K1 are
empty. Also, system (I′) does not hold but system (II′) is solvable for any ε > 0
with λ1 = λ2 = ε.

4. Existence theorem for minimax problem

In this section, we investigate the existence of a solution of nonsmooth minimax
problem (P ) using theorem of alternative proved in the previous section.

Definition 4.1. (x0, y0) ∈ S1 × Y is solution of the minimax problem (P ) if it
satisfies the following

min
x∈S1

F (x, y0) = sup
y∈Y

min
x∈S1

F (x, y) = min
x∈S1

sup
y∈Y

F (x, y) = sup
y∈Y

F (x0, y).

We now recall the definition of concavelike function as given by Jeyakumar et
al. [8].

Definition 4.2. F (x, .) is said to be concavelike on Y if for any β ∈ (0, 1), y1, y2 ∈
Y there exists y3(β, y1, y2) ∈ Y such that for any x ∈ S1

βF (x, y1) + (1− β)F (x, y2) 5 F (x, y3).

Following theorem ensures the existence of a solution of the problem (P ) under
invex infine and concavelike assumptions.

Theorem 4.3. Suppose there exists x0 ∈ S1 such that sup
y∈Y

F (x0, y) = v =

min
x∈S1

sup
y∈Y

F (x, y), and let (P ) satisfy (JCQ) at x0. Assume that for each y ∈ Y0,

((F (., y), gJ0(.)); hK(.)) is V-invex infine at x0 on S, and for each x ∈ S1, F (x, .)
is concavelike on Y . Then there exists y0 ∈ Y such that (x0, y0) is a solution of
(P ).
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Proof. We know that

(4.1) min
x∈S1

sup
y∈Y

F (x, y) = sup
y∈Y

min
x∈S1

F (x, y).

Thus, we have to prove that

sup
y∈Y

min
x∈S1

F (x, y) = min
x∈S1

sup
y∈Y

F (x, y).

Define F1(x, y) = F (x, y)− v. Then ((F1(., y), gJ0(.));hK(.)) is V-invex infine at x0

on S. Also the system

(∃x ∈ <n)(∀y ∈ Y ) F1(x, y) 5 0, x ∈ S1

has a solution x0. Further, the following system

(∃x ∈ S1)(∀y ∈ Y )F1(x, y) < 0

is inconsistent. For, if this system is consistent, then there exists x̄ ∈ S1 such that
for any y ∈ Y, F1(x̄, y) < 0 which implies that

(4.2) sup
y∈Y

F (x̄, y) < v = sup
y∈Y

F (x0, y).

But v = min
x∈S1

sup
y∈Y

F (x, y) = sup
y∈Y

F (x0, y) 5 sup
y∈Y

F (x, y) for any x ∈ S1 and hence, in

particular, holds true for x̄ ∈ S1 which contradicts the inequality (4.2).

It follows from Theorem 3.1 that there exist vectors y1, y2, . . . , yn+1 and λ = (λ1, λ2,

. . . , λn+1) ≥ 0 (we can take
n+1∑

i=1

λi = 1) such that

n+1∑

i=1

λiF1(x, yi) = 0, ∀x ∈ S1,

where yi ∈ Y0 = {ȳ ∈ Y : F (x0, ȳ) = sup
y∈Y

F (x0, y)}, implying

(4.3) min
x∈S1

n+1∑

i=1

λiF (x, yi) = v = min
x∈S1

sup
y∈Y

F (x, y).

Since F (x, .) is concavelike on Y , by induction, there exists y0 ∈ Y such that for
any x ∈ S1,

n+1∑

i=1

λiF (x, yi) 5 F (x, y0).

Therefore,

(4.4) min
x∈S1

n+1∑

i=1

λiF (x, yi) 5 sup
y∈Y

min
x∈S1

F (x, y).

Combining (4.1), (4.3) and (4.4), we obtain
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min
x∈S1

F (x, y0) = sup
y∈Y

min
x∈S1

F (x, y) = min
x∈S1

sup
y∈Y

F (x, y) = sup
y∈Y

F (x0, y).

Hence, the invex concavelike minimax problem (P ) has a solution. ¤

5. Invex fractional minimax problem

This section is devoted to study an important class of fractional minimax opti-
mization problems. Such problems arise naturally in modeling various conflicting
situations, for example, in the formulation of rational approximation problems with
respect to Chebyshev norm, in continuous rational games, in multiobjective pro-
gramming, in parametric estimation problems, in minimum risk problems, to name
the few. For a detailed discussion on minimax optimization problems and their
applications, readers can refer to [1, 14, 15] and references cited therein. Optimal-
ity conditions for fractional minimax programming problems were earlier studied by
Jeyakumar et al. [8] and Bector et al. [2]. In this section, we establish necessary and
sufficient optimality conditions for fractional minimax problem in terms of Clarke
generalized gradient under nonsmooth invex infine constraints.

We first state the conditions under which the ratio of two invex functions with
respect to a common η is also invex.

Consider the functions φ(.) and ψ(.) defined on S. Then their ratio is invex at
x0 ∈ S if any of the following conditions are satisfied:

(1) φ = 0, ψ > 0 and (φ,−ψ) is invex at x0;
(2) φ = 0, ψ < 0 and (−φ,−ψ) is invex at x0;
(3) φ 5 0, ψ > 0 and (φ, ψ) is invex at x0;
(4) φ 5 0, ψ < 0 and (−φ, ψ) is invex at x0;

Observe that the ratio of the two invex functions with respect to same η ∈ TS(x0)
is invex with respect to the vector η̄ ∈ TS(x0), given by η̄ = ψ(x0) (η/ψ).

We consider the following fractional minimax problem

(FP ) minimize sup
y∈Y

{φ(x, y)/ψ(x, y)}
subject to gj(x) 5 0, j = 1, 2, . . . , m,

hk(x) = 0, k = 1, 2, . . . , p,
x ∈ S,

where Y is a compact subset of <m and S is a closed subset of <n. Assume
φ, ψ, gj , hk are locally Lipschitz functions on S and φ(x, y) = 0, ψ(x, y) >
0, ∀(x, y) ∈ S × Y . For each x ∈ S, y −→ φ(x, .)/ψ(x, .) is upper semicontinuous
on Y . Let S1 denote the feasible set of (FP ) and F (x, y) = φ(x, y)/ψ(x, y). There-
fore, the fractional minimax problem (FP ) is equivalent to the ordinary minimax
problem (P1)
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(P1) minimize f(x), f(x) = sup
y∈Y

F (x, y)

subject to gj(x) 5 0, j = 1, 2, . . . , m,
hk(x) = 0, k = 1, 2, . . . , p,

x ∈ S.
This problem is identical to the problem (P ) studied in sections 3 and 4.

Theorem 5.1 (Necessary Optimality Conditions). If (x0, y0) ∈ S × Y is an opti-
mal solution of the problem (FP ) and (JCQ) holds at x0, then there exist vectors
y1, y2, . . . , yn+1 in Y0, λ = (λ1, λ2, . . . , λn+1) ≥ 0, βj = 0, j ∈ J0, γk ∈ <, k ∈ K
such that

0 ∈
n+1∑

i=1

λi/ψ(x0, yi) [∂φ(x0, yi)− F (x0, yi)∂ψ(x0, yi)]

+
m∑

j=1

βj∂gj(x0) +
p∑

k=1

γk∂hk(x0) + NS(x0),

βjgj(x0) = 0, j ∈ J.

Proof. Since (x0, y0) is a solution of (FP ), x0 is a solution of the problem (P1).
Repeating the arguments of the theorem of alternative (Theorem 3.1), we have,
from (3.3)

0 ∈
n+1∑

i=1

λi∂F (x0, yi) +
∑

j∈J0

βj∂gj(x0) +
∑

k∈K

γk∂hk(x0) + NS(x0)

which can be rewritten as

0 ∈
n+1∑

i=1

λi∂F (x0, yi) +
m∑

j=1

βj∂gj(x0) +
p∑

k=1

γk∂hk(x0) + NS(x0),

where λ = (λ1, λ2, . . . , λn+1) ≥ 0, βj = 0 (j ∈ J0), βj = 0 (j ∈ J\J0), γk ∈ < (k ∈
K). Applying Clarke’s [6] quotient rule of subdifferentiability to F (x0, yi), i =
1, 2, . . . , n + 1, we have,

0 ∈
n+1∑

i=1

λi/ψ(x0, yi) [∂φ(x0, yi)− F (x0, yi)∂ψ(x0, yi)]

+
m∑

j=1

βj∂gj(x0) +
p∑

k=1

γk∂hk(x0) + NS(x0).

Also, it is observed that βjgj(x0) = 0, j ∈ J . ¤

Theorem 5.2 (Sufficient Optimality Conditions). Assume that there exists (x0, y1,
y2, . . . , yn+1, λ0, β0, γ0) such that x0 ∈ S1, yi ∈ Y0, i = 1, 2, . . . , n + 1, λ0 =
(λ0

1, λ
0
2, . . . , λ

0
n+1) ≥ 0, β0 = (β0

1 , β0
2 , . . . , β0

m) = 0, γ0 = (γ0
1 , γ0

2 , . . . , γ0
p) ∈ <p
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satisfying

0 ∈
n+1∑

i=1

λ0
i /ψ(x0, yi)[∂φ(x0, yi)− F (x0, yi)∂ψ(x0, yi)] +

m∑

j=1

β0
j ∂gj(x0)(5.1)

+
p∑

k=1

γ0
k∂hk(x0) + NS(x0)

βjgj(x0) = 0, j ∈ J.

Let (φ, −ψ) be invex at x0 on S, ((φ(., y)/ψ(., y), g(.)); h(.)) be V-invex infine
on S. Then there exists y0 ∈ Y such that (x0, y0) is an optimal solution for the
fractional minimax problem (FP ).

Proof. From (5.1) we have,

0 =
n+1∑

i=1

λ0
i /ψ(x0, yi)[ξ0

yi
− F (x0, yi)ξ̄0

yi
] +

m∑

j=1

β0
j
¯̄ξ0
j +

p∑

k=1

γ0
k ξ̃0

k + z0,

where ξ0
yi
∈ ∂φ(x0, yi), ξ̄0

yi
∈ ∂ψ(x0, yi), i = 1, 2, . . . , n + 1, yi ∈ Y0,

¯̄ξ0
j ∈

∂gj(x0), j ∈ J, ξ̃0
k ∈ ∂hk(x0), k ∈ K and z0 ∈ NS(x0). Therefore, for η ∈ TS(x0),

n+1∑

i=1

λ0
i /ψ(x0, yi)〈ξ0

yi
− F (x0, yi)ξ̄0

yi
, η〉+

m∑

j=1

β0
j 〈 ¯̄ξ0

j , η〉(5.2)

+
p∑

k=1

γ0
k〈ξ̃0

k, η〉+ 〈z0, η〉 = 0.

Now, suppose that x0 is not a solution of (P1). Then there exists x̄ ∈ S1 such that

sup
y∈Y

F (x̄, y) < sup
y∈Y

F (x0, y) = F (x0, yi), i = 1, 2, . . . , n + 1

which implies

φ(x̄, yi)− F (x0, yi)ψ(x̄, yi) < 0, i = 1, 2, . . . , n + 1.

By invexity of φ(., yi)− F (x0, yi)ψ(., yi), we have,

〈ξ0
yi
− F (x0, yi)ξ̄0

yi
, η〉 < 0

which implies

n+1∑

i=1

λ0
i /ψ(x0, yi)〈ξ0

yi
− F (x0, yi)ξ̄0

yi
, η〉 < 0.

For x ∈ S1, β0
j gj(x) 5 β0

j gj(x0) and γ0
khk(x) = γ0

khk(x0), which by V-invexity
infineness leads to

m∑

j=1

β0
j 〈 ¯̄ξ0

j , η〉 5 0
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and
p∑

k=1

γ0
k〈ξ̃0

k, η〉 = 0.

Further,
〈z0, η > 5 0.

Combining the above arguments, we obtain

n+1∑

i=1

λ0
i /ψ(x0, yi)〈ξ0

yi
− F (x0, yi)ξ̄0

yi
, η〉+

m∑

j=1

β0
j 〈 ¯̄ξ0

j , η〉

+
p∑

k=1

γ0
k〈ξ̃0

k, η〉+ 〈z0, η〉 < 0

which contradicts (5.2). Therefore, x0 is the solution of the problem (P1). Hence,
there exists y0 ∈ Y such that (x0, y0) is a solution of (FP ). ¤

6. Concluding remarks

As noted by Sach et al. [12], we also observe that to study applications of invexity
ideas in optimization problems, explicit formulae of η is not required. The existence
of vector η is sufficient enough to obtain the optimality conditions. This observation
motivated us to introduce the notion of V-invex infine functions for nonsmooth case
where η depends on x and A while θi depends on x and ξi. Also, V-invexity infine-
ness is weaker as compared to the earlier ideas of invexity and/or infineness. We
established an existence theorem and optimality conditions for fractional minimax
programming problem involving functions belonging to the newly defined class. Ap-
plications of theorems of alternative established in this paper can also be explored
for various optimization problems involving different solution concepts.
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