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NONEXPANSIVE SET-VALUED MAPPINGS IN METRIC AND
BANACH SPACES

S. DHOMPONGSA, W. A. KIRK, AND B. PANYANAK∗

Abstract. We extend recent homotopy results of Sims, Xu, and Yuan for set-
valued maps to a CAT(0) setting. We also introduce an ultrapower approach to
proving fixed point theorems for nonexpansive set-valued mappings, both in this
setting and in Banach spaces. This method provides an efficient way of recovering
all of the classical Banach space results.

1. Introduction

In [24], Sims, Xu and Yuan obtain homotopic invariance theorems for nonex-
pansive set-valued mappings in Banach spaces having Opial’s property. They base
their results on the fact that if T is a multivalued nonexpansive mapping having
nonempty compact values, then the demiclosedness principle for I − T is valid in
such spaces. (If C is a nonempty closed convex subset of a Banach space X and if T
maps points of C to nonempty closed subsets of X, then T is said to be demiclosed
on C if the graph of T is closed in the product topology of (X, σ)× (X, ‖·‖) where σ
and ‖·‖ denote the weak and strong topologies, respectively). One objective of this
paper is to show that the results of [24] extend to CAT(0) spaces (see below) de-
spite the fact that no weak topology is present. The results we obtain are set-valued
analogs of single-valued results found in [14].

We also introduce a new approach to the classical fixed point theorems for nonex-
pansive mappings in Banach spaces by reformulating the arguments in an ultrapower
context. This approach seems to illuminate many underlying ideas.

2. CAT(0) spaces

A metric space is a CAT(0) space (the term is due to M. Gromov – see, e.g., [2],
p. 159) if it is geodesically connected, and if every geodesic triangle in X is at least
as ‘thin’ as its comparison triangle in the Euclidean plane. For a precise definition
and a detailed discussion of the properties of such spaces, see Bridson and Haefliger
[2] or Burago, et al. [4]. It is well-known that any complete, simply connected
Riemannian manifold having non-positive sectional curvature is a CAT(0) space.
Other examples include the classical hyperbolic spaces, Euclidean buildings (see
[3]), the complex Hilbert ball with a hyperbolic metric (see [10]; also inequality
(4.3) of [23] and subsequent comments), and many others.
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Let (xn) be a bounded sequence in a complete CAT(0) space X and for x ∈ X
set

r (x, (xn)) = lim sup
n→∞

d (x, xn) .

The asymptotic radius r ((xn)) of (xn) is given by

r ((xn)) = inf {r (x, (xn)) : x ∈ X} .

The asymptotic center A ((xn)) of (xn) is the set

A ((xn)) = {x ∈ X : r (x, (xn)) = r ((xn))} .

Recall that a bounded sequence (xn) is regular if r (xn) = r (un) for every sub-
sequence (un) of (xn) . It is easy to see that every bounded sequence in X has a
regular subsequence (see, e.g., [9], p. 166).

It is known (see, e.g., [6], Proposition 7) that in a CAT(0) space, A ((xn)) con-
sists of exactly one point. We will also need the following important fact about
asymptotic centers.

Proposition 2.1. If K is a closed convex subset of X and if (xn) is a bounded
sequence in K, then the asymptotic center of (xn) is in K.

Proof. Let x ∈ X be the asymptotic center of (xn) . It is known that the nearest
point projection P : X → K exists and is nonexpansive ([2], p. 177). If x /∈ K then
r (x, (xn)) < r (P (x) , (xn)) , and we would have a contradiction. ¤

3. A fixed point theorem

Let C be a subset of a complete CAT(0) space X. We use D (·, ·) to denote the
Hausdorff distance on the set B (C) of nonempty bounded closed subsets of C. Thus
for A,B ∈ B (C) ,

D (A,B) = inf {ρ > 0 : A ⊆ Nρ (B) and B ⊆ Nρ (A)}
where Nρ (S) = {x ∈ C : dist (x, S) ≤ ρ} .

A set-valued mapping T : C → 2X\∅ satisfying

D (T (x) , T (y)) ≤ kd (x, y)

is called a contraction if k ∈ [0, 1) and nonexpansive if k = 1.

For convenience and brevity we work in an ultrapower setting. This seems to
be a new approach in this context. Let U be a nontrivial ultrafilter on the natural
numbers N. Fix p ∈ X, and let X̃ denote the metric space ultrapower of X over
U relative to p. Thus the elements of X̃ consist of equivalence classes [(xi)]i∈N for
which

lim
U

d (xi, p) < ∞,

with (ui) ∈ [(xi)] if and only if limU d (xi, ui) = 0. Note that X̃ is also a CAT(0)
space ([2], p. 187).

For C ⊆ X, let
C̃ = {x̃ = [(xn)] : xn ∈ C for each n} ,
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and for x ∈ X, let ẋ = [(xn)] where xn = x for each n ∈ N. Finally, let Ẋ and Ċ

denote the respective canonical isometric copy of X and C in X̃.

A nonexpansive set-valued mapping T : C → B (X) induces a nonexpansive
set-valued mapping T̃ defined on C̃ as follows:

T̃ (x̃) =
{

ũ ∈ X̃ : ∃ a representative (un) of ũ with un ∈ T (xn) for each n
}

.

To see that T̃ is nonexpansive (and hence well-defined), let x̃, ỹ ∈ C̃, with x̃ =
[(xn)] and ỹ = [(yn)] . Then

D
(
T̃ (x̃) , T̃ (ỹ)

)
≤ lim

U
D (T (xn) , T (yn))

≤ lim
U

d (xn, yn)

= dU (x̃, ỹ) .

The following fact (see, e.g., [11], Proposition 1) will be needed.

(3.1) If S ⊆ C is compact, then Ṡ = S̃.

We will also need the well-known fact that if C ⊆ X is closed and if T : C → B (C)
is a set-valued contraction mapping, then T has a fixed point. (This fact holds for
all complete metric spaces, see [21]).

Next we have a result that is analogous to Proposition 7 of [16] for Banach spaces
satisfying the Opial property. The proof is an adaptation of the one given in [16].

Proposition 3.1. x is the asymptotic center of a regular sequence (xn) ⊂ X if and
only if ẋ is the unique point of Ẋ which is nearest to x̃ := [(xn)] in the ultrapower
X̃.

Proof. (⇒) Suppose x is the asymptotic center of (xn) , and suppose dU (ẏ, x̃) ≤
dU (ẋ, x̃) for some y ∈ X. Choose a subsequence (un) of (xn) such that

lim
n→∞ d (y, un) = lim inf

n→∞ d (y, xn) .

Using the fact that (xn) is regular we have

lim
n→∞ d (y, un) ≤ lim

U
d (y, xn)

= dU (ẏ, x̃)

≤ dU (ẋ, x̃)

≤ lim sup
n→∞

d (x, xn)

= r ((xn))

= lim sup
n→∞

d (x, un) .

Thus lim
n→∞d (y, un) ≤ lim sup

n→∞
d (x, un) , and y = x by uniqueness of the asymptotic

center.
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(⇐) Suppose ẋ is the unique point of Ẋ which is nearest to x̃ := [(xn)] , and
suppose y is the asymptotic center of (xn) . Then by the implication (⇒) ẏ is the
unique point of Ẋ which is nearest to x̃, whence ẋ = ẏ; thus x = y. ¤

With the above observation, we are in a position to prove the fixed point theorem
we will need in the next section. Here K (X) denotes the family of nonempty
compact subsets of X, and we use D to denote the usual Hausdorff metric on
K (X) .

Theorem 3.2. Let K be a closed convex subset of a complete CAT(0) space X,
and let T : K → K (X) be a nonexpansive mapping. Suppose dist (xn, T (xn)) → 0
for some bounded sequence (xn) ⊂ K. Then T has a fixed point.

Proof. By passing to a subsequence we may suppose (xn) is regular. Let x be the
asymptotic center of (xn). By Proposition 3.1 ẋ is the unique point of Ẋ which is
nearest to x̃ := [(xn)] . By Proposition 2.1, x ∈ K and also ẋ ∈ K̇. Since x̃ ∈ T̃ (x̃),
x̃ must lie in a ρ-neighborhood of T̃ (ẋ) for ρ = D

(
T̃ (x̃) , T̃ (ẋ)

)
. Since T̃ (ẋ) is

compact, dist
(
x̃, T̃ (ẋ)

)
= dU (x̃, u̇) for some u̇ ∈ T̃ (ẋ) . But since T̃ (ẋ) ⊂ Ẋ, if

u̇ 6= ẋ we have the contradiction

dU (x̃, u̇) > dU (x̃, ẋ) ≥ D
(
T̃ (x̃) , T̃ (ẋ)

)
= ρ.

Therefore ẋ = u̇ ∈ T̃ (ẋ) . However T̃ (ẋ) = T̃ (x) , so by (3.1) this in turn implies
x ∈ T (x) . ¤
Remark 3.3. Convexity of K is needed the preceding argument only to assure that
the asymptotic center of (xn) lies in K. The theorem actually holds under the weaker
assumption that K is closed and contains the asymptotic centers of all of its regular
sequences.

4. Homotopic invariance

The following is an analog of Theorem 3.1 of [24].

Theorem 4.1. Let C be a nonempty closed convex subset of a complete CAT(0)
space X, with int(C) 6= ∅, let {Tt}0≤t≤1 be a family of λ-contractions from C to
K (X) which is equi-continuous in t ∈ [0, 1] over C. Assume that some Tt has a
fixed point in C, and assume every Tt is fixed point free on ∂C. Then Tt has a fixed
point in C for each t ∈ [0, 1] .

Proof. Let V = {t ∈ [0, 1] : Tt has a fixed point in C} . Then V is nonempty by as-
sumption. We show that V is both open and closed in [0, 1] and therefore conclude
that V = [0, 1] . The proof that V is open in [0, 1] is identical to the one given in
the proof of Lemma 3.1 of [24]. To show that V is closed, assume (tn) ⊂ V is such
that tn → t0. Then for each n there exists xn ∈ C such that xn ∈ Ttn (xn) . By
equi-continuity we have

dist (xn, Tt0 (xn)) ≤ D (Ttn (xn) , Tt0 (xn)) → 0.

By Theorem 3.2, Tt0 has a fixed point in C, so t0 ∈ V. ¤
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We now turn to an analog of Theorem 4.1 of [24].

Theorem 4.2. Let C be a nonempty bounded closed convex subset of a complete
CAT(0) space X. Suppose T,G : C → K (X) are two set-valued nonexpansive map-
pings and suppose there exists a homotopy H : [0, 1]× C → K (X) such that

(1) H (0, ·) = T (·) and H (1, ·) = G (·) ;

(2) for each t ∈ [0, 1] , H (t, ·) is a set-valued nonexpansive mapping from C to
K (X) ;

(3) H (t, x) is equi-continuous in t ∈ [0, 1] over C;

(4) for each sequence (tn) in [0, 1]with

inf
x∈C

dist (x,H (tn, x)) > 0,

lim
n→∞tn = t0 implies infx∈C dist (x,H (t0, x)) > 0.

Then T has a fixed point in C if and only if G has a fixed point in C.

Proof. Assume T has a fixed point in C, and let

V = {t ∈ [0, 1] : there exists x ∈ C such that x ∈ H (t, x)} .

We can show that V is closed as in the proof of Theorem 4.1. Suppose V is not open.
Then there exists t0 ∈ V and a sequence (tn) ⊂ [0, 1] \V such that limn→∞ tn = t0.
Since tn /∈ V, dist(x,H (tn, x)) > 0 for all n ∈ N and x ∈ C. We claim that

inf
x∈C

dist (x,H (tn, x)) > 0 for all n ∈ N.

Otherwise, there exists a sequence (xm) ⊂ C such that

lim
m→∞ dist (xm,H (tn, xm)) = 0,

and by Theorem 3.2 H (tn, ·) has a fixed point. But this contradicts tn /∈ V, so we
have the claim. Condition (4) now implies

inf
x∈C

dist (x,H (t0, x)) > 0,

which in turn implies t0 /∈ V and this is a contradiction. Therefore V is open in
[0, 1] , and hence V = [0, 1] , from which the conclusion follows. ¤

The other results of [24], including the alternative principles, carry over the
present setting as well.

Remark 4.3. In view of Remark 4.3, in both Theorems 4.1 and 4.2 the assumption
of convexity can be replaced by the assumption that C contains the asymptotic
center of each of its regular sequences.
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5. Banach spaces

As we shall see, the ultrapower approach used in proving Theorem 3.2 also pro-
vides a very efficient method for proving the classical Banach space fixed point
theorems for nonexpansive set-valued mappings.

Let C be a subset of a Banach space X. We will use 2C , B (C) , K (C) , and
KC (C) to denote respectively the family of all subsets of C, the family of nonempty
bounded closed subsets of C, the family of nonempty compact subsets of C, and
the family of nonempty compact convex subsets of C. As before we use D (·, ·) to
denote the Hausdorff distance on B (C) .

We adopt all the notation and definitions of Sections 2 and 3, but with the
distance d replaced with the norm ‖·‖ .

Recall that a Banach space is said to have the Opial property if given whenever
(xn) converges weakly to x ∈ X,

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖ for each y ∈ X with y 6= x.

Now let U be a nontrivial ultrafilter over the natural numbers N and let X̃ denote
the Banach space ultrapower of X over U . We will use the standard notation for
this setting, see for example [1] or [12].

As in the CAT(0) case, a nonexpansive set-valued mapping T : C → B (X)
induces a nonexpansive set-valued mapping T̃ defined on C̃ as follows:

T̃ (x̃) =
{

ũ ∈ X̃ : ∃ a representative (un) of ũ with un ∈ T (xn) for each n
}

.

The following simple idea, which is extracted from the proof of Theorem 3.2,
is the basis for all of our Banach space results. Recall that a set C is said to be
(uniquely) proximinal if each point x ∈ X has a (unique) nearest point in C.

Lemma 5.1. Let K be a subset of a Banach space X, suppose T : K → 2X\∅ is
nonexpansive, and suppose there exists x0 ∈ K such that x0 ∈ T (x0) . Suppose C is
a subset of K for which T : C → K (C) , and suppose C is uniquely proximinal in
K. Then T has a fixed point in C. Indeed, the point of C which is nearest to x0 is
a fixed point of T.

Proof. If x0 ∈ C we are finished. Otherwise let x be the unique point of C nearest to
x0. We assert that x ∈ T (x) . Since x0 ∈ T (x0) , x0 must lie in a ρ-neighborhood of
T (x) for ρ = D (T (x0) , T (x)) . Therefore, since T (x) is compact, dist (x0, T (x)) =
‖x0 − u‖ ≤ ρ for some u ∈ T (x) . But since T (x) ⊂ C, if u 6= x,

‖x0 − u‖ > ‖x0 − x‖ ≥ D (T (x) , T (x0)) = ρ,

and we have a contradiction. Therefore u = x ∈ T (x) . ¤

The preceding lemma quickly yields the following result. Notice that boundedness
of C is not needed. This observation may be known, but we are not aware of an
explicit citation.
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Theorem 5.2. Let X be a uniformly convex Banach space, and let C be a closed
convex subset of X. If T : C → K (C) is a nonexpansive mapping that satisfies

(5.1) dist (xn, T (xn)) → 0 as n →∞
for some bounded sequence (xn) in C, then T has a fixed point.

Proof. Let x̃ = [(xn)] ∈ C̃. As we have observed, T̃ : C̃ → 2C̃\∅ is nonexpansive.
Also (5.1) implies x̃ ∈ T̃ (x̃) . Since uniform convexity is a super property, X̃ is
uniformly convex and then x̃ has a unique nearest point ẋ ∈ Ċ. Since T̃ : Ċ →
K

(
Ċ

)
, Lemma 5.1 implies there exists ẋ ∈ Ċ such that ẋ ∈ T̃ (ẋ) . However by

(3.1) T̃ (ẋ) = ˙T (x), and this in turn implies that x ∈ T (x) . ¤

If X has the Opial property, the assumption that T : C → K (C) can be weakened
to T : C → K (X) . For this we will make use of the following fact.

Proposition 5.3 ([16]). Let X be a Banach space that has the Opial property.
Then x ∈ X is the weak limit of a regular sequence (xn) ⊂ X if and only if ẋ is the
unique point of Ẋ which is nearest to x̃ := [(xn)] in the ultrapower X̃.

Theorem 5.4. Let X be a Banach space that has the Opial property, and let C be
a weakly compact subset of X. If T : C → K (X) is a nonexpansive mapping that
satisfies

(5.2) dist (xn, T (xn)) → 0 as n →∞
for some bounded sequence (xn) in C, then T has a fixed point.

Proof. By passing to a subsequence if necessary we may suppose that (xn) is regular
and converges weakly, say to x ∈ C. By Proposition 5.3 ẋ is the unique point of Ẋ
which is nearest to x̃. The proof is now identical to the proof of Theorem 3.2 upon
replacing dU with ‖·‖U . ¤

As a corollary of the preceding results we have the classical results of both Lim
and Lami Dozo.

Theorem 5.5 ([18], [19]). Suppose X is either a uniformly convex Banach space,
or a reflexive Banach space that has the Opial property. Let C be a bounded closed
convex subset of X, and suppose T : C → K (C) is nonexpansive. Then T has a
fixed point.

Proof. Fix z ∈ C, and for each n ≥ 1, consider the contraction mapping Tn : C →
K (C) defined by

Tn (x) =
1
n

z +
(

1− 1
n

)
T (x) , x ∈ C.

Then by Nadler’s theorem [21], for each n ≥ 1 there exists xn ∈ C such that
xn ∈ Tn (xn) . Moreover

dist (xn, T (xn)) ≤ 1
n

diam (C) → 0 as n →∞.

¤
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We now turn to an extension of Lim’s theorem to inward mappings. The inward
set IC (x) of x relative to C is the set

IC (x) = {x + c (u− x) : u ∈ C and c ≥ 1} .

A mapping T : C → B (X) is said to be weakly inward if T (x) is in the closure
IC (x) of IC (x) for each x ∈ C.

The following two facts will be needed.

Lemma 5.6 ([8], Corollary 2). Suppose C is a closed convex subset of a Banach
space X and suppose T : C → K (X) is a weakly inward contraction on C. Then T
has a fixed point in C.

Lemma 5.7. Let X be a uniformly convex Banach space, let C be a closed convex
subset of X, and suppose x0 ∈ X. Let x be the unique point of C which is nearest
to x0. Then x is the unique point of IC (x) which is nearest to x0.

Proof. Suppose not, and let y be the unique point of IC (x) which is nearest to x0.

Then, since C ⊆ IC (x) and y ∈ IC (x)\C, it must be the case that

‖y − x0‖ < ‖x− x0‖ .

By the continuity of ‖·‖ there exists z ∈ IC (x) \C such that ‖z − x0‖ < ‖x− x0‖ .
This implies z = (1− α) x + αw for some w ∈ C and α > 1. Hence

‖w − x0‖ ≤ 1
α
‖z − x0‖+

(
1− 1

α

)
‖x− x0‖ < ‖x− x0‖ ,

a contradiction. ¤

The following theorem was first proved for inward mappings independently by
Downing and Kirk [8] and by Reich [22]. The slightly more general formulation
below is due to H. K. Xu (see [25], Theorem 3.4). Our proof is much shorter than
the one given in [25] (although it depends on deeper facts).

Theorem 5.8. Let C be a bounded closed convex subset of a uniformly convex
Banach space X, and suppose T : C → K (X) is nonexpansive and weakly inward
on C. Then T has a fixed point.

Proof. As in the proof of Theorem 5.5, approximate T with the contraction map-
pings Tn. Each of the mapping Tn is also weakly inward and by Lemma 5.6 has a
fixed point xn. Since the sequence (xn) satisfies dist (xn, T (xn)) → 0. Let x̃ = [(xn)] ,
and let ẋ be the unique point of Ċ which is nearest x̃. Since T̃ is nonexpansive there
exists a point ỹ ∈ T̃ (ẋ) such that ‖ỹ − x̃‖U ≤ ‖ẋ− x̃‖U , and since T̃ is weakly in-
ward on Ċ, ỹ ∈ IĊ (ẋ). Lemma 5.7 implies ỹ = ẋ. Thus ẋ ∈ T̃ (ẋ) and the conclusion
follows. ¤

Finally we remark that it is possible to use this approach to prove the following
theorem of Kirk and Massa ([15]; also see [13]). We omit the details because the ul-
trapower proof is not appreciably shorter than the one given in [15] (which also uses
nonstandard techniques). Indeed, this result has recently been extended to spaces
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X for which εβ(X) < 1, where εβ(X) denotes the characteristic of noncompact
convexity for the separation measure of noncompactness (see [7]).

Theorem 5.9. Suppose C is a nonempty bounded closed convex subset of a Banach
space X, and suppose T : C → KC (C) is nonexpansive. Suppose also that the
asymptotic center in C of each bounded sequence in X is nonempty and compact.
Then T has a fixed point.

Remark 5.10. It might be worth noting that Lemma 5.1 holds for mappings taking
only closed values if it is assumed that the space is uniformly convex.

Lemma 5.11. Let K be a subset of a uniformly convex Banach space X, suppose
T : K → 2X\∅ is nonexpansive, and suppose there exists x0 ∈ K such that x0 ∈
T (x0) . Suppose C is a closed convex subset of K for which T : C → B (C) . Then
the point of C which is nearest to x0 is a fixed point of T.

Proof. If x0 ∈ C we are finished. Otherwise let x be unique the point of C nearest
to x0. We assert that x ∈ T (x) . Suppose not. Since x0 ∈ T (x0) , x0 must lie in
a ρ-neighborhood of T (x) for ρ = D (T (x0) , T (x)) . If dist (x0, T (x)) > ‖x0 − x‖
we have a contradiction as in the proof of Lemma 5.1. On the other hand, if
dist (x0, T (x)) = ‖x− x0‖ , then there exists a sequence (un) ⊂ T (x) such that

‖x0 − un‖ → ‖x0 − x‖ as n → ∞. Since
∥∥∥∥x0 − x + un

2

∥∥∥∥ > ‖x0 − x‖ , the uniform

convexity of X yields ‖x− un‖ → 0 as n →∞. Since T (x) is closed, x ∈ T (x) . ¤
Remark 5.12. In Theorems 3.1 and 4.1 of [24] the domain of the mappings is as-
sumed to be weakly compact and convex. However weak compactness suffices – the
convexity assumption may be dropped. To see this one could either use Theorem
5.4 in lieu of the demiclosedness principal in the proofs of those theorems, or ob-
serve that convexity is not needed in the proof of the demiclosedness principal itself
(Lemma 2.1 of [24])

Remark 5.13. For an analog of Theorem 5.8 in a CAT(0) space, see [5]. In fact,
Theorem 5.8 extends to the uniformly convex hyperbolic metric spaces in the sense
of Reich and Shafrir [23]. Such spaces include both the CAT(0) spaces and uniformly
convex Banach spaces.

6. Weak convergence in CAT(0) spaces

We conclude with a question. A comparison of Propositions 3.1 and 5.3 clearly
suggests that the following would be a reasonable way to define weak convergence
in a CAT(0) space, especially since it does indeed coincide with weak convergence
in a Hilbert space.

Definition 6.1. A sequence [net] (xn) in X is said to converge weakly to x ∈ X
if x is the unique asymptotic center of (un) for every subsequence [subnet] (un) of
(xn) .

This notion of convergence was first introduced in metric spaces by T. C. Lim
[20], who called it ∆-convergence. (T. Kuczumow [17] introduced a similar notion
of convergence in Banach spaces which he called ‘almost convergence’.)
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This raises a very fundamental question: For what CAT(0) spaces, aside from
Hilbert space, does the notion convergence in Definition 6.1 actually correspond to
convergence relative to some topology? Specifically, when is there a topology τ on
X such that a net (xα) converges to x in the sense of Definition 6.1 if and only if
(xα) is τ -convergent to x?
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