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FIXED POINT THEOREM FOR ASYMPTOTICALLY REGULAR
SEMIGROUPS IN METRIC SPACES WITH UNIFORM NORMAL

STRUCTURE

JEN-CHIH YAO AND LU-CHUAN ZENG

Abstract. In the present paper, we introduce the property (∗) for a semigroup
T = {T (t) : t ∈ G} of selfmappings on a metric space (X, d). For example,
each semigroup T = {T (t) : t ∈ G} on X has the property (∗) in the case when
(X, d) is a complete bounded metric space with property (P). See, e.g. [1] for the
concept of property (P). The purpose of this paper is to establish a fixed point
theorem for an asymptotically regular semigroup with property (∗) in a metric
space with uniform normal structure.

1. Introduction

Let C be a nonempty subset of a Banach space X. A mapping T : C → C is
said to be a Lipschitizan mapping if for each integer n ≥ 1 there exists a constant
kn > 0 such that

‖Tnx− Tny‖ ≤ kn‖x− y‖ for all x, y ∈ C.

A Lipschitizian mapping T is said to be uniformly k−Lipschitzian if kn = k for all
n ≥ 1 and nonexpansive if kn = 1 for all n ≥ 1, respectively. Moreover, a mapping
T : C → C is called asymptotically regular [11], if

lim
n→∞ ‖T

n+1x− Tnx‖ = 0 for all x ∈ C.

Edelstein and O’Brien [4] proved that if T is nonexpansive then the averaged
mappings Ta = aI + (1 − a)T where a ∈ (0, 1) and I is the identity operator of X
are asymptotically regular on C, i.e.,

lim
n→∞ ‖T

n+1
a x− Tn

a x‖ = 0 for all x ∈ C.

Recently Kuczumow [12] proved the following result.

Theorem 1.1 (cf. [12, Theorem 3.2]). Let X be a Banach space with rX(1) > 0
and with the nonstrict Opial property, C a nonempty weakly compact convex subset
of X and T = {T (t) : t ∈ G} an asymptotically regular semigroup with

lim inf
t→∞ |T (t)| = k < 1 + rX(1),
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where rX(·) is the Opial’s modulus of X and |T (t)| is the exact Lipschitzian constant
of T (t). Then there exists z in C such that T (t)z = z for all t ∈ G.

It is well known that Kirk [11] proved the following theorem: if C is a weakly
compact convex subset of a Banach space with normal structure, then every non-
expansive selfmapping T on C has a fixed point. A nonempty convex subset C of a
normed linear space is said to have normal structure if each bounded convex subset
K of C consisting of more than one point contains a nondiameter point, i.e. an
x ∈ K such that

sup{‖x− y‖ : y ∈ K} < sup{‖u− v‖ : u, v ∈ K} = diamK.

Four years later, in 1969 Kijima and Takahashi [10] eatablished the metric space
version of this classical fixed point theorem. Subsequently many authors success-
fully generalized certain fixed point theorems and structure properties of Banach
spaces to metric spaces. For example, Khamsi [9] defined normal and uniform nor-
mal structure for metric spaces and proved that if (X, d) is a complete bounded
metric space with uniform normal structure, then it has the fixed point property for
nonexpansive mappings and a kind of intersection property which extends a result
of Maluta [16] to metric spaces.

In view of these facts, we naturally put forth an open question whether one
may establish the existence result on the fixed points of asymptotically regular
semigroups in metric spaces. To solve this problem, we now recall the new and
novel method of Lim and Xu [14].

Definition 1.2 ([14]). A metric space (X, d) is said to have property (P) if given
any two bounded sequences {xn} and {zn} in X, one can find some z ∈ ⋂∞

n=1ad{zj :
j ≥ n} such that lim supn→∞ d(z, xn) ≤ lim supj→∞ lim supn→∞ d(zj , xn).

They then proved a fixed point theorem for uniformly Lipschitzian mappings
in a complete bounded metric space with both property (P ) and uniform normal
structure which extends Khamsi’s theorem and is also the metric space version of
Casini and Maluta’s theorem [2].

Lim and Xu’s method [14] gives us a new idea for establishing the existence result
on the fixed points of asymptotically regular semigroups in metric spaces.

In this paper we introduce the property (∗) for a semigroup T = {T (t) : t ∈ G}
of selfmappings on a metric space (X, d). For example, each semigroup T = {T (t) :
t ∈ G} on X has the property (∗) in the case when (X, d) is a complete bounded
metric space with property (P ). The purpose of the present paper is to establish
a fixed point theorem for asymptotically regular semigroups with property (∗) in a
complete bounded metric space with uniform normal structure.

2. Preliminaries

Throughout this paper, (X, d) will denote a metric space. Let G be an unbounded
subset of [0,∞) such that

t + h ∈ G for all t, h ∈ G, and

t− h ∈ G for all t, h ∈ G with t ≥ h.
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For example, we may let G = [0,∞) or G = N, the set of nonnegative integers. Let
T = {T (t) : t ∈ G} be a one-parameter family of selfmappings on X. Then T is
called a (one-parameter) semigroup on X if the following conditions are satisfied:

(i) T (0)x = x for all x ∈ X;

(ii) T (s + t)x = T (s)T (t)x for all s, t ∈ G and x ∈ X;

(iii) for each x ∈ X, a mapping t → T (t)x from G into X is continuous when G
has the relative topology of [0,∞) ;

(iv) for each t ∈ G, T (t) : X → X is continuous.

A semigroup T = {T (t) : t ∈ G} on X is said to be asymptotically regular at a
point x ∈ X if

lim
t→∞ d(T (t + h)x, T (t)x) = 0

for each h ∈ G. If T is asymptotically regular at each x ∈ X, then T is called an
asymptotically regular semigroup on X.

For each t ∈ G, let us write

k(t) = sup{d(T (t)x, T (t)y)/d(x, y) : x, y ∈ X and x 6= y}
which is called the exact Lipschitzian constant of T (t).

A semigroup T = {T (t) : t ∈ G} on X is called a uniformly Lipschitzian (or
uniformly k−Lipschitzian) semigroup if

sup{k(t) : t ∈ G} = k < ∞.

The simplest uniformly Lischitzian semegroup is a semigroup of iterates of a map-
ping T : X → X with

sup{kn : n ∈ N} = k < ∞,

where
kn = sup{d(Tnx, Tny)/d(x, y) : x, y ∈ X and x 6= y}.

In this case T is called a uniformly k−Lipschitzian mapping. In a natural way this
kind of semigroup appears in the problem of stability of the fixed point property
for nonexpansive mappings. In [12] one also can find the interesting construction of
the uniformly Lipschitzian mapping with

lim inf
n→∞ kn < lim sup

n→∞
kn.

It is remarkable that the concept of asymptotic regularity is due to F. E. Browder
and W. V. Petryshyn [1]. In [15] and [17] one can find two very interesting examples
of asymptotically regular mappings without fixed points. By the Ishikawa result [8]
(see also [4]) in the problem of stability of the fixed point property for nonexpansive
mappings in Banach spaces, it is sufficient to consider asymptotically regular and
nonexpansive mappings which become asymptotically regular and uniformly Lips-
chitzian mappings in each equivalent norm to the original norm. In addition, we
remind the reader that recently many authors (e.g. [12, 6]) have deeply investigated
the existence of fixed points for asymptotically regular semigroups of selfmappings
in Banach spaces under various conditions.

Let F be a nonempty family of subsets of X. Following Khamsi [9], we say that
F defines a convexity structure on X if F is stable by intersection and that F has
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Property (R) if any decreasing sequence {Cn} of closed bounded nonempty subsets
of X with Cn ∈ F has a nonvoid intersection. Recall that a subset of X is said to
be admissible (cf. [3]) if it is an intersection of closed balls. We denote by A(X) the
family of all asmissible subsets of X. It is easy to see that A(X) defines a convexity
structure in X. Thuoughout the rest of this paper, we will assume that any other
convexity structure F on X contains A(X).

Let M be a bounded subset of X. Following Lim and Xu [14], we adopt the
following notations:

B(x, r) is the closed ball centered at x with radius r,

r(x,M) = sup{d(x, y) : y ∈ M} for x ∈ X,

δ(M) = sup{r(x,M) : x ∈ M},
R(M) = inf{r(x,M) : x ∈ M}.

For a bounded subset A of X, we define the admissible hull of A, denoted by
ad(A), as the intersection of all those admissible subsets of X which contain A, i.e.,

ad(A) =
⋂
{B : A ⊆ B ⊆ X with B admissible}.

Proposition 2.1 ([14]). For a point x ∈ X and a bounded subset A of X, we have

r(x,ad(A)) = r(x,A).

Definition 2.2 ([9]). A metric space (X, d) is said to have normal (resp. uniform
normal) structure if there exists a convexity structure F on X such that R(A) <
δ(A) (resp. R(A) < c · δ(A) for some constant c ∈ (0, 1)) for all A ∈ F which is
bounded and consists of more than one point. It is also said that F is normal (resp.
uniformly normal).

If we define normal structure coefficient Ñ(X) of X (with respect to a given
convexity structure F ) as the number

sup
{

R(A)
δ(A)

}
,

where the supremum is taken over all bounded A ∈ F with δ(A) > 0, then X has
uniform normal structure if and only if Ñ(X) < 1.

Khamsi proved the following result that will be very useful in the proof of our
main theorem in Section 3.

Proposition 2.3 ([9]). Let X be a complete bounded metric space and F be a
convexity structure of X with uniform normal structure. Then F has the property
(R).

We now introduce the following property for a semigroup of selfmappings on a
metric space (X, d).

Definition 2.4. Let (X, d) be a metric space and T = {T (t) : t ∈ G} be a semigroup
on X. Let us write the set

ω(∞) = {{tn} : {tn} ⊂ G and tn ↑ ∞}.
T is said to have property (∗) if for each x ∈ X and each {tn} ∈ ω(∞), the

following conditions are satisfied:
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(i) the sequence {T (tn)x} is bounded;

(ii) for any sequence {zn} in ad{T (tn)x : n ≥ 1} there exists some z ∈⋂∞
n=1ad{zj : j ≥ n} such that

lim sup
n→∞

d(z, T (tn)x) ≤ lim sup
j→∞

lim sup
n→∞

d(zj , T (tn)x).

Remark 2.5. If X is a complete bounded metric space with property (P), then each
semigroup T = {T (t) : t ∈ G} on X has property (∗).
Remark 2.6. If X has property (R), then

⋂∞
n=1ad{zj : j ≥ n} 6= ∅. Also if X is a

weakly compact convex subset of a normed linear space, then admissible hulls are
closed convex and

⋂∞
n=1ad{zj : j ≥ n} 6= ∅ by the weak compactness of X. Also X

possesses property (P). This fact follows directly from the weak lower semicontinuity
of the functional lim supn→∞ ‖xn−x‖. Therefore each semigroup T = {T (t) : t ∈ G}
on X has property (∗). Indeed it is easy to see that {T (tn)x} is bounded for each
x ∈ X and each {tn} ⊂ ω(∞). Clearly, ad{T (tn)x : n ≥ 1} ⊂ X is bounded. Hence
for each {zn} in ad{T (tn)x : n ≥ 1}, by the property (P) of X, we know that there
exists z ∈ ⋂∞

n=1ad{zj : j ≥ n} such that

lim sup
n→∞

d(z, T (tn)x) ≤ lim sup
j→∞

lim sup
tn→∞

d(zj , T (tn)x).

3. Main result

The following lemma will play an important role in the proof of our main result
in the sequel.

Lemma 3.1. Let (X, d) be a complete bounded metric space with uniform normal
structure and T = {T (t) : t ∈ G} be a semigroup on X with property (∗). Then
for each x ∈ X, each {tn} ∈ ω(∞) and for any constant c̄ > Ñ(X), the normal
structure coefficient with respect to the given convexity structure F , there exists
some z ∈ ⋂∞

n=1ad{zj : j ≥ n} satisfying the properties:

(i) lim supn→∞ d(z, T (tn)x) ≤ c̄ ·A({T (tn)x}) where

A({T (tn)x}) = lim sup
n→∞

{d(T (ti)x, T (tj)x), i, j ≥ n}

is the asymptotic diameter of {T (tn)x};
(ii) d(z, y) ≤ lim supn→∞ d(T (tn)x, y) for all y ∈ X.

Proof. For each integer n ≥ 1, let An =ad({T (tj)x : j ≥ n}). Then {An} is a
decreasing sequence of admissible subsets of X hence A :=

⋂∞
n=1 An 6= ∅ by Propo-

sition 2.3. From Proposition 2.1, it is not difficult to see that δ(An) = δ({T (ti)x :
i ≥ n}). Indeed observe that

δ(An) = sup{r(y, An) : y ∈ An} = sup
y∈An

sup
j≥n

d(y, T (tj)x)

= sup
j≥n

sup
y∈An

d(y, T (tj)x) = sup
j≥n

r(T (tj)x,An)

= sup
j≥n

sup
i≥n

d(T (tj)x, T (ti)x)

= δ({T (ti)x : i ≥ n}).
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On the other hand for any z ∈ A and any y ∈ X, we have

sup
j≥n

d(y, T (tj)x) = r(y, An) ≥ r(y, A) ≥ d(y, z).

Therefore,
d(y, z) ≤ lim sup

n→∞
d(y, T (tn)x)

from which (ii) follows.
We now claim that for each n ≥ 1, there exists zn ∈ An such that

(3.1) r(zn, An) ≤ c̄δ({T (tj)x : j ≥ n}).
Indeed if δ({T (tj)x : j ≥ n}) = 0, then using δ(An) = δ({T (tj)x : j ≥ n}),
we conclude that (3.1) holds. Without loss of generality, we may assume that
δ({T (tj)x : j ≥ 0}) > 0. Then for c̄ > Ñ(X), we choose ε > 0 so small satisfying
the following:

(3.2) Ñ(X)δ({T (tj)x : j ≥ n}) + ε ≤ c̄δ({T (tj)x : j ≥ n}).
By the definition of R(An), one can find zn ∈ An such that

r(zn, An) < R(An) + ε ≤ Ñ(X)δ(An) + ε

= Ñ(X)δ({T (tj)x : j ≥ n}) + ε

≤ c̄δ({T (tj)x : j ≥ n}).
This shows that (3.1) holds. Obviously it follows from (3.1) that for each n ≥ 1,

lim sup
j→∞

r(zn, xj) ≤ c̄δ({T (tj)x : j ≥ n})

which implies

(3.3) lim sup
n→∞

lim sup
j→∞

r(zn, T (tj)x) ≤ c̄ ·A({T (tn)x})

where A({T (tj)x}) = lim supn→∞{d(T (ti)x, T (tj)x) : i, j ≥ n}. Noticing

zn ∈ An ⊂ ad{T (ti)x : j ≥ 1} for each n ≥ 1,

we know that property (∗) yields a point z ∈ ⋂∞
n=1ad{zj : j ≥ n} such that

lim sup
j→∞

d(z, T (tj)x) ≤ lim sup
n→∞

lim sup
j→∞

r(zn, T (tj)x).

Since {zj : j ≥ n} ⊂ An, z ∈ A =
⋂∞

n=1ad{T (tj)x : j ≥ n} and satisfies

lim sup
j→∞

d(z, T (tj)x) ≤ c̄ ·A({T (tj)x}

by (3.3). Therefore (i) holds. ¤
We are now in a position to prove the main result of this section.

Theorem 3.2. Let (X, d) be a complete bounded metric space with uniform normal
structure and let T = {T (t) : t ∈ G} be an asymptotically regular semigroup on X
with property (∗) and satisfying

(lim inf
t→∞ k(t)) · (lim sup

t→∞
k(t)) < Ñ(X)−1.

Then there exists some z ∈ X such that T (t)z = z for all t ∈ G.
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Proof. At first, we write

k = lim inf
t→∞ k(t) and k̂ = lim sup

t→∞
k(t).

Let us choose a constant c̄ such that Ñ(X) < c̄ < 1 and k · k̂ < c̄−1/2. We can
select a sequence {tn} ∈ ω(∞) such that {tn+1 − tn} ∈ ω(∞) and lim

n→∞ k(tn) = k.

Indeed it is easy to choose {tn} ⊂ ω(∞) such that limn→∞ k(tn) = k. Then take
tn1 = t1, tn2 = t2 and γ = t2 − t1. Since {tn} increases monotonely to +∞, there is
n3 > n2 such that

tn3 − tn2 > max(3γ, tn3 − tn2).
Similarly, for n3, there exists n4 > n3 such that

tn4 − tn3 > max(3γ, tn3 − tn2).

Repeating this process, we can obtain a subsequence {tni} ⊂ {tn} such that {tni+1−
tni}∞i=1 ∈ ω(∞) and limi→∞ k(tni) = limn→∞ k(tn) = k. Replacing {tni} by {tn},
we get the above statement.

Observe that

{d(T (tj)x, T (ti)x) : i, j ≥ n} = {d(T (tj)x, T (ti)x), j > i ≥ n}
⋃
{0}

for each n ∈ N and x ∈ X, and

{k(tj − ti) : j > i ≥ n} ⊂ {k(t) : G 3 t ≥ tn+1 − tn}.
(Indeed, for any j > i ≥ n, we have

tj − ti ≥ tj − tj−1 ≥ tj−1 − tj−2 ≥ · · · ≥ ti+1 − ti ≥ tn+1 − tn.

Hence k(tj − ti) ∈ {k(t) : G 3 t ≥ tn+1 − tn}.)
Now fix an x0 ∈ X. Then by Lemma 3.1, we can inductively construct a sequence

{xl}∞l=1 ⊂ X such that for each integer l ≥ 0,

(a) xl+1 ∈
⋂∞

n=1ad{T (ti)xl : i ≥ n};
(b) lim supn→∞ d(T (tn)xl, xl+1) ≤ c̄ ·A({T (tn)xl}),

where A({T (tn)xl}) = lim supn→∞{d(T (ti)xl, T (tj)xl) : i, j ≥ n};
(c) d(xl+1, y) ≤ lim suptn→∞ d(T (tn)xl, y) for all y ∈ X.

Write for each l ≥ 0,

Dl = lim sup
n→∞

d(xl+1, T (tn)xl) and θ = c̄ · kk̂ < 1.

Observe that for each i > j ≥ 1,

d(T (ti)xl, T (tj)xl) = d(T (tj)xl, T (tj)T (ti − tj)xl)

≤ k(tj) · d(xl, T (ti − tj)xl)(3.4)

≤ k(tj) · lim sup
n→∞

d(T (tn)xl−1, T (ti − tj)xl) (by (c)).

By virtue of the asymptotic regularity of T = {T (t) : t ∈ G} on X, we see that

lim
n→∞ d(T (tn)xl−1, T (tn + ti − tj)xl−1) = 0,
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which implies

lim sup
n→∞

d(T (tn)xl−1, T (ti − tj)xl) ≤ lim sup
n→∞

d(T (tn)xl−1, T (tn + ti − tj)xl−1)

+ lim sup
n→∞

d(T (tn + ti − tj)xl−1, T (tn + ti − tj)xl)

≤ lim sup
n→∞

d(T (ti − tj)T (tn)xl−1, T (ti − tj)xl)(3.5)

≤ k(ti − tj) · lim sup
n→∞

d(xl, T (tn)xl−1)

≤ k(ti − tj) ·Dl−1.

Then it follows from (3.4) and (3.5) that for each i > j ≥ 1,

(3.6) d(T (ti)xl, T (tj)xl) ≤ k(tj) · k(ti − tj) ·Dl−1,

which implies for each n ≥ 1,

sup{d(T (ti)xl, T (tj)xl) : i, j ≥ n} = sup{d(T (ti)xl, T (tj)xl) : i > j ≥ n}
≤ sup{k(tj) · k(ti − tj) ·Dl−1 : i > j ≥ n}
≤ Dl−1 · sup{k(tj) : j ≥ n} · sup{k(ti − tj) : i > j ≥ n}(3.7)

≤ Dl−1 · sup{k(tj) : j ≥ n} · sup{k(t) : G 3 t ≥ tn+1 − tn}.
Hence by using (b) and (3.7), we have

Dl = lim sup
n→∞

d(xl+1, T (tn)xl) ≤ c̄A({T (tn)xl})
= c̄ · lim sup

n→∞
{d(T (ti)xl, T (tj)xl) : i, j ≥ n}

≤ c̄ ·Dl−1 · lim sup
n→∞

k(tn) · lim sup
n→∞

{k(t) : G 3 t ≥ tn+1 − tn}(3.8)

≤ c̄ ·Dl−1 · lim
n→∞ k(tn) · lim sup

s→∞
{k(t) : G 3 t ≥ s}

= c̄ · kk̂ ·Dl−1 = θDl−1 ≤ · · ·
= θlD0.

Hence by the asymptotic regularity of T on X, we have for each integer n ≥ 1,

d(xl+1, xl) ≤d(xl+1, T (tn)xl) + d(xl, T (tn)xl)

≤d(xl+1, T (tn)xl) + lim sup
m→∞

d(T (tm)xl−1, T (tn)xl)

≤d(xl+1, T (tn)xl) + lim sup
m→∞

d(T (tm)xl−1, T (tm + tn)xl−1)(3.9)

+ lim sup
m→∞

d(T (tn + tm)xl−1, T (tn)xl)

≤d(xl+1, T (tn)xl) + k(tn) · lim sup
m→∞

d(T (tm)xl−1, xl)

=d(xl+1, T (tn)xl) + k(tn) ·Dl−1,

which implies

d(xl+1, xl) ≤ lim sup
n→∞

d(xl+1, T (tn)xl) + Dl−1 · lim sup
n→∞

k(tn)

= Dl + kDl−1.
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It follows from (3.8) that

d(xl+1, xl) ≤ Dl + kDl−1 ≤ (θl + kθl−1)D0 ≤ θl−1 · 2D0max{θ, k}.
Clearly {xl} is a Cauchy sequence and hence is convergent as X is complete. Let
z = liml→∞ xl. Then for each s ∈ G, by the continuity of T (s) we have

lim
l→∞

d(T (s)xl, T (s)z) = 0.

On the other hand, from (3.9) we have actually proven the following inequality:

d(T (tn)xl, xl) ≤ k(tn) ·Dl−1 ≤ k(tn) · θl−1D0.

Since limn→∞ k(tn) = k, it follows that

lim sup
n→∞

d(z, T (tn)z) ≤d(z, xl) + lim sup
n→∞

d(xl, T (tn)xl)

+ lim sup
n→∞

d(T (tn)xl, T (tn)z)

≤d(z, xl) + lim sup
n→∞

k(tn) · θl−1D0

+ lim sup
n→∞

k(tn) · d(xl, z)

≤(1 + k) · d(z, xl) + kθl−1D0 → 0 as l →∞,

i.e., limn→∞ d(z, T (tn)z) = 0. Hence for each s ∈ G, by the continuity of T (s), we
deduce

lim
n→∞ d(T (s + tn)z, T (s)z) = 0.

Note that for each s ∈ G,

d(z, T (s)z) ≤d(z, xl+1) + d(xl+1, T (tn)xl) + d(T (tn)xl, T (s)z)

≤d(z, xl+1) + d(xl+1, T (tn)xl) + d(T (tn)xl, T (tn + s)xl)

+ d(T (s + tn)xl, T (s)z)

≤d(z, xl+1) + d(xl+1, T (tn)xl) + d(T (tn)xl, T (tn + s)xl)(3.10)

+ d(T (s + tn)xl, T (s + tn)z) + d(T (s + tn)z, T (s)z)

≤d(z, xl+1) + d(xl+1, T (tn)xl) + d(T (tn)xl, T (tn + s)xl)

+ k(tn) · d(T (s)xl, T (s)z) + d(T (s + tn)z, T (s)z).

By taking the superior limit in both sides of (3.10) as n →∞, we have

d(z, T (s)z) ≤d(z, xl+1) + lim sup
n→∞

d(xl+1, T (tn)xl) + k · d(T (s)xl, T (s)z)

≤d(z, xl+1) + Dl + k · d(T (s)xl, T (s)z)(3.11)

≤d(z, xl+1) + θl ·D0 + k · d(T (s)xl, T (s)z).

Then by taking the limit in both sides of (3.11) as l →∞, we have d(z, T (s)z) = 0,
i.e., T (s)z = z for each s ∈ G. ¤

From Remark 2.5 and Theorem 3.2, we immediately obtain the following result.
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Corollary 3.3. Let (X, d) be a complete bounded metric space with both property
(P) and uniform normal structure and let T = {T (t) : t ∈ G} be an asymptotically
regular semigroup on X satisfying

(lim inf
t→∞ k(t)) · (lim sup

t→∞
k(t)) < Ñ(X)−1.

Then there exists some z ∈ X such that T (t)z = z for all t ∈ G.
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