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NONOCCURRENCE OF GAP FOR NONCONVEX
NONAUTONOMOUS VARIATIONAL PROBLEMS

ALEXANDER J. ZASLAVSKI

Abstract. In our recent work we established nonoccurrence of the Lavrentiev
phenomenon for two classes of unconstrained nonconvex variational problems.
For the first class of integrands we showed the existence of a minimizing sequence
of Lipschitzian functions while for the second class we established that an infimum
on the full admissible class is equal to the infimum on a set of Lipschitzian
functions with the same Lipschitzian constant. In this paper we generalize these
results for classes of constrained variational problems.

1. Introduction

The Lavrentiev phenomenon in the calculus of variations was discovered in [10].
There it was shown that it is possible for the variational integral of a two-point
Lagrange problem to possess an infimum on the dense subclass of C1 admissible
functions that is strictly greater than its minimum value on the admissible class.
Since this classical work the Lavrentiev phenomenon is of great interest [1-4, 6-8,
11, 12, 16]. Mania [12] simplified the original example of Lavrentiev. Ball and Mizel
[3, 4] demonstrated that the Lavrentiev phenomenon can occur with fully regular
integrands. Nonoccurrence of the Lavrentiev phenomenon was studied in [1, 2, 7,
8, 11, 16]. Clarke and Vinter [7] showed that the Lavrentiev phenomenon cannot
occur when a variational integrand f(t, x, u) is independent of t. Sychev and Mizel
[16] considered a class of integrands f(t, x, u) which are convex with respect to
the last variable. For this class of integrands they established that the Lavrentiev
phenomenon does not occur. In [17] we established nonoccurrence of Lavrentiev
phenomenon for two classes of unconstrained nonconvex nonautonomous variational
problems with integrands f(t, x, u). For the first class of integrands we showed the
existence of a minimizing sequence of Lipschitzian functions while for the second
class we established that an infimum on the full admissible class is equal to the
infimum on a set of Lipschitzian functions with the same Lipschitzian constant. In
this paper we generalize these results for classes of constrained variational problems.

Assume that (X, || · ||) is a Banach space. Let −∞ < τ1 < τ2 < ∞. Denote
by W 1,1(τ1, τ2;X) the set of all functions x : [τ1, τ2] → X for which there exists a
Bochner integrable function u : [τ1, τ2] → X such that

x(t) = x(τ1) +
∫ t

τ1

u(s)ds, t ∈ (τ1, τ2]
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(see, e.g., [5]). It is known that if x ∈ W 1,1(τ1, τ2;X), then this equation defines
a unique Bochner integrable function u which is called the derivative of x and is
denoted by x′.

We denote by mes(Ω) the Lebesgue measure of a Lebesgue measurable set Ω ⊂
R1.

Let a, b ∈ R1 satisfy a < b. Suppose that f : [a, b]×X ×X → R1 is a continuous
function such that the following assumptions hold:

(A1)

(1.1) f(t, x, u) ≥ φ(||u||) for all (t, x, u) ∈ [a, b]×X ×X,

where φ : [0,∞) → [0,∞) is an increasing function such that

(1.2) lim
t→∞φ(t)/t = ∞;

(A2) for each M, ε > 0 there exist Γ, δ > 0 such that

|f(t, x1, u)− f(t, x2, u)| ≤ ε max{f(t, x1, u), f(t, x2, u)}
for each t ∈ [a, b], each u ∈ X satisfying ||u|| ≥ Γ and each x1, x2 ∈ X satisfying

||x1 − x2|| ≤ δ, ||x1||, ||x2|| ≤ M ;

(A3) for each M, ε > 0 there exists δ > 0 such that

|f(t, x1, y1)− f(t, x2, y2)| ≤ ε

for each t ∈ [a, b] and each x1, x2, y1, y2 ∈ X satisfying

||xi||, ||yi|| ≤ M, i = 1, 2 and ||x1 − x2||, ||y1 − y2|| ≤ δ.

Remark 1.1. If X = Rn, then (A3) follows from the continuity of f .

Many examples of integrands which satisfy (A1)-(A3) are given in [17].
For each z1, z2, z3 ∈ X denote by A(z1, z2, z3) the set of all functions v ∈

W 1,1(a, b;X) such that

(1.3) v(a) = z1, v(b) = z2, (b− a)−1

∫ b

a
v(t)dt = z3

and denote by AL(z1, z2, z3) the set of all v ∈ A(z1, z2, z3) for which there is Mv > 0
such that

(1.4) ||v′(t)|| ≤ Mv for almost every t ∈ [a, b].

Clearly for each v ∈ W 1,1(a, b;X) the function f(t, v(t), v′(t)), t ∈ [a, b] is measur-
able. Set

(1.5) I(v) =
∫ b

a
f(t, v(t), v′(t))dt, v ∈ W 1,1(a, b;X).

For each z1, z2, z3 ∈ X we consider the variational problem

(P) I(v) → min, v ∈ A(z1, z2, z3).

Note that variational problems of this type with the constraint (1.3) arise in con-
tinuum mechanics [9, 13-15].

The next theorem is our first main result.
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Theorem 1.2. Let z1, z2, z3 ∈ X. Then

inf{I(x) : x ∈ A(z1, z2, z3)} = inf{I(x) : x ∈ AL(z1, z2, z3)}.
Theorem 1.2 is proved in Section 3.
Now we present out second main result.
Let a, b ∈ R1, a < b. Suppose that f : [a, b] × X × X → R1 is a continuous

function which satisfies the following assumptions:
(B1) There is an increasing function φ : [0,∞) → [0,∞) such that

f(t, x, u) ≥ φ(||u||) for all (t, x, u) ∈ [a, b]×X ×X,(1.6)

lim
t→∞φ(t)/t = ∞.(1.7)

(B2) For each M > 0 there exist positive numbers δ, L and an integrable nonneg-
ative scalar function ψM (t), t ∈ [a, b] such that for each t ∈ [a, b], each u ∈ X and
each x1, x2 ∈ X satisfying

||x1||, ||x2|| ≤ M, ||x1 − x2|| ≤ δ

the following inequality holds:

|f(t, x1, u)− f(t, x2, u)| ≤ ||x1 − x2||L(f(t, x1, u) + ψM (t)).

(B3) For each M > 0 there is L > 0 such that for each t ∈ [a, b] and each
x1, x2, u1, u2 ∈ X satisfying ||xi||, ||ui|| ≤ M , i = 1, 2 the following inequality holds:

|f(t, x1, u1)− f(t, x2, u2)| ≤ L(||x1 − x2||+ ||u1 − u2||).
Remark 1.3. It is not difficult to see that if (B1)-(B3) hold with each ψM bounded,
then f satisfies (A1)-(A3). Clearly, (A1) and (B1) are identical.

Many examples of integrands which satisfy (B1)-(B3) are given in [17].
Clearly for each x ∈ W 1,1(a, b;X) the function f(t, x(t), x′(t)), t ∈ [a, b] is mea-

surable.
For each x ∈ W 1,1(a, b;X) set

I(x) =
∫ b

a
f(t, x(t), x′(t))dt.

We continue to study the variational problem (P) with z1, z2, z3 ∈ X.
The next theorem is our second main result.

Theorem 1.4. Let M > 0. Then there exists K > 0 such that for each z1, z2, z3 ∈
X satisfying ||z1||, ||z2||, ||z3|| ≤ M and each x(·) ∈ A(z1, z2, z3) the following asser-
tion holds:

If mes{t ∈ [a, b] : ||x′(t)|| > K} > 0, then there exists y ∈ A(z1, z2, z3) such that
I(y) < I(x) and ||y′(t)|| ≤ K for almost every t ∈ [a, b].

In [17] analogs of Theorems 1.2 and 1.4 were established for the variational prob-
lem

I(v) → min,

v ∈ W 1,1(a, b;X), v(a) = z1, v(b) = z2,

where z1, z2 ∈ X and the integrand f satisfies either (A1)-(A3) or (B1)-(B3). There
we use the following strategy of the proof. We choose a large positive constant
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N0 and a constant N1 which is essentially larger than N0. Then we a consider an
admissible function v ∈ W 1,1(a, b;X) which satisfies the constraints v(a) = z1 and
v(a) = z2. We define

E1 = {t ∈ [a, b] : ||v′(t)|| ≥ N1},
E2 = {t ∈ [a, b] : ||v′(t)|| ≤ N0},
E3 = [a, b] \ (E1 ∪ E2)

and
h0 =

∫

E1

v′(t)dt

and assume that mes(E1) is positive. Then we define a measurable function ξ :
[a, b] → X by

ξ(t) = 0, t ∈ E1, ξ(t) = v′(t), t ∈ E3,

ξ(t) = v′(t) + (mes(E2))−1h0, t ∈ E2

and define u ∈ W 1,1(a, b;X) by

u(τ) =
∫ τ

0
ξ(t)dt + z1, τ ∈ [a, b].

It follows from the construction of ξ, u that u satisfies u(a) = z1 and u(b) = z2.
Then in [17] we compare I(v) and I(u). It turns out that for the first class of
integrands I(u) ≤ I(v) + ε, where ε is a given positive number while for the second
class I(u) < I(v). It is not difficult to see that the function u defined above does
not necessarily satisfy the third constraint

(b− a)−1

∫ b

a
u(t)dt = z3.

Hence for the classes of constrained variational problems considered in this paper
the problem of the construction of ξ and u becomes much more difficult.

The paper is organized as follows. Section 2 contains auxiliary results for Theorem
1.2 which is proved in Section 3. Our second main result (Theorem 1.4) is proved
in Section 5. Section 4 contains auxiliary results for Theorem 1.4.

2. Auxiliary results for Theorem 1.2

In this section we assume that the continuous function f : [a, b] ×X ×X → R1

satisfies (A1)-(A3).
Let z1, z2, z3 ∈ X. Set

(2.1) M0 = inf{I(v) : v ∈ A(z1, z2, z3)}.
Lemma 2.1. M0 is a finite number.

Proof. Clearly M0 ≥ 0. Set

(2.2) z4 = 2z3 − 2−1(z1 + z2)

and define a function v : [a, b] → X as follows:

(2.3) v(t) = z1 + 2(t− a)(b− a)−1(z4 − z1), t ∈ [a, 2−1(a + b)],
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v(t) = z4 + [(t− 2−1(b + a))/(2−1(b− a))](z2 − z4), t ∈ [2−1(a + b), b].
Clearly

(2.4) v ∈ W 1,1(a, b;X), v(a) = z1, v(b) = z2.

By (2.3)
∫ b

a
v(t)dt =

∫ (a+b)/2

a
v(t)dt +

∫ b

(a+b)/2
v(t)dt

= 2−1(b− a)z1 +

(∫ (a+b)/2

a
2(t− a)(b− a)−1dt

)
(z4 − z1)

+ 2−1(b− a)z4 +

[∫ b

(a+b)/2
(t− (b + a)/2)((b− a)/2)−1dt

]
(z2 − z4)

= 2−1(b− a)z1 + 4−1(b− a)(z4 − z1) + +2−1(b− a)z4 + 4−1(z2 − z4)

= 2−1(b− a)z4 + 4−1(z1 + z2).

Together with (2.2) this equality implies that

(b− a)−1

∫ b

a
v(t)dt = 2−1z4 + 4−1(z1 + z2) = z3.

Combined with (2.4) this implies that v ∈ A(z1, z2, z3). In view of (2.3) the set

{(v(t), v′(t)) : t ∈ [a, b] \ {(a + b)/2}}
is bounded. It follows from this fact and assumption (A3) that the function
f(t, v(t), v′(t)), t ∈ [a, b] \ {2−1(a + b)} is bounded. Therefore M0 ≤ I(v) < ∞.
Lemma 2.1 is proved. ¤
Lemma 2.2. There exists a number M1 > 0 such that for each v ∈ A(z1, z2, z3)
satisfying I(v) ≤ M0 + 2 the following inequality holds:

||v(t)|| ≤ M1 for all t ∈ [a, b].

For the proof of Lemma 2.2 see Lemma 2.1 of [17].

Lemma 2.3 (17, Lemma 2.2). Let ε,M > 0. Then there exist Γ, δ > 0 such that

|f(t, x1, u)− f(t, x2, u)| ≤ ε min{f(t, x1, u), f(t, x2, u)}
for each t ∈ [a, b], each u ∈ X satisfying ||u|| ≥ Γ and each x1, x2 ∈ X satisfying

||x1||, ||x2|| ≤ M, ||x1 − x2|| ≤ δ.

3. Proof of Theorem 1.2

Set

(3.1) M0 = inf{I(v) : v ∈ A(z1, z2, z3)}.
By Lemma 2.1 M0 is a finite number. Let ε ∈ (0, 1). In order to prove the theorem
it is sufficient to show that for each v ∈ A(z1, z2, z3) satisfying I(v) ≤ M0 + 1 there
is u ∈ AL(z1, z2, z3) such that I(u) ≤ I(v) + ε.
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By Lemma 2.2 there is M1 > 0 such that

(3.2) ||v(t)|| ≤ M1, t ∈ [a, b]

for all v ∈ A(z1, z2, z3) satisfying I(v) ≤ M0 + 2.
Choose a positive number ε0 such that

(3.3) 8ε0(M0 + 4) < ε

and a positive number γ0 such that

(3.4) γ0 < 1 and 32γ0(M0 + 2) < b− a.

Relation (1.2) implies that there is N > 1 such that

(3.5) φ(t)/t ≥ γ−1
0 for all t ≥ N.

In view of Lemma 2.3 there are

(3.6) δ0 ∈ (0, 1), N0 > N

such that for each t ∈ [a, b], each y ∈ X satisfying ||y|| ≥ N0 and each x1, x2 ∈ X
satisfying

(3.7) ||x1||, ||x2|| ≤ M1 + 2, ||x1 − x2|| ≤ δ0

the following inequality holds:

(3.8) |f(t, x1, y)− f(t, x2, y)| ≤ ε0 min{f(t, x1, y), f(t, x2, y)}.
By (A3) there exists

(3.9) δ1 ∈ (0, δ0)

such that

(3.10) |f(t, x1, y1)− f(t, x2, y2)| ≤ (8(b− a + 1))−1ε

for each t ∈ [a, b] and each x1, x2, y1, y2 ∈ X satisfying

(3.11) ||x1||, ||x2|| ≤ M1 + 2, ||y1||, ||y2|| ≤ N0 + 1,

||x1 − x2||, ||y1 − y2|| ≤ δ1.

It follows from (A3) that there is

(3.12) M2 > sup{f(t, y, 0) : t ∈ [a, b], y ∈ X and ||y|| ≤ M1 + 1}.
Choose a positive number γ1 such that

(3.13) 96 · 32γ1(M0 + M1 + 4) < δ1 min{1, b− a}.
By (1.2) there is a number N1 such that

(3.14) N1 > N0 + M2 + 4 and φ(t)/t ≥ γ−1
1 for all t ≥ N1.

Assume that

(3.15) v ∈ A(z1, z2, z3) and I(v) ≤ M0 + 2.

It follows from (3.15) and the choice of M1 that the inequality (3.2) holds. Set

E1 = {t ∈ [a, b] : ||v′(t)|| ≥ N1},(3.16)

E2 = {t ∈ [a, b] : ||v′(t)|| ≤ N0},
E3 = [a, b] \ (E1 ∪ E2).
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Relations (1.1), (1.5), (3.14), (3.15), and (3.16) imply that∥∥∥∥
∫

E1

v′(t)dt

∥∥∥∥ ≤
∫

E1

‖v′(t)‖dt ≤
∫

E1

γ1φ(‖v′(t)‖)dt(3.17)

≤ γ1

∫

E1

f(t, v(t), v′(t))dt ≤ γ1I(v) ≤ γ1(M0 + 2).

Now we estimate mes(E2). It follows from (3.16), the choice of N (see (3.5)), (3.6),
(1.1), (1.5), and (3.15) that

mes(E1 ∪ E3) ≤ N−1
0

∫

E1∪E3

||v′(t)||dt ≤ γ0N
−1
0

∫

E1∪E3

φ(||v′(t)||)dt(3.18)

≤ γ0N
−1
0

∫

E1∪E3

f(t, v(t), v′(t))dt ≤ γ0N
−1
0 I(v)

≤ γ0I(v) ≤ γ0(M0 + 2).

Combined with (3.16) and (3.4) this inequality implies that

(3.19) mes(E2) ≥ (b− a)− γ0(M0 + 2) ≥ (31/32)(b− a).

Set

(3.20) g1 =
∫

E1

v′(t)dt, g2 =
∫ b

a

(∫

E1∩[a,t]
v′(s)ds

)
dt.

It is not difficult to see that there is c ∈ [a, b] such that

(3.21) mes(E2 ∩ [a, c]) = mes(E2 ∩ [c, b]).

Set

(3.22) β1 =
∫

E2∩[a,c]
(b− s)ds, β2 =

∫

E2∩[c,b]
(b− s)ds.

It follows from (3.21) and (3.22) that

β1 − β2 =
∫

E2∩[a,c]
(b− s)ds−

∫

E2∩[c,b]
(b− s)ds(3.23)

≥
∫

E2∩[a,c]
(b− s)ds− (b− c) mes (E2 ∩ [c, b]) =

∫

E2∩[a,c]
(c− s)ds.

By (3.19) and (3.21)

mes(E2 ∩ [a, c]) = mes(E2)/2 ≥ (31/64)(b− a).

This implies that

(3.24) c ≥ a + (b− a)/3.

It follows from (3.16) and (3.19) that

mes(E2 ∩ [a, a + (b− a)/4]) ≥ (b− a)/4− mes (E1 ∪ E3)(3.25)

= (b− a)/4− [b− a−mes(E2)]

≥ (b− a)/4− 32−1(b− a)

≥ 8−1(b− a).
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Relations (3.23), (3.24), and (3.25) imply that

β1 − β2 ≥
∫

E2∩[a,c]
(c− s) ≥

∫

E2∩[a,a+(b−a)/4]
(c− s)ds(3.26)

≥ 12−1(b− a) mes (E2 ∩ [a, a + (b− a)/4]) ≥ (b− a)2/96.

Define

h1 = 2(β2 − β1)−1mes(E2)−1[β2g1 − 2−1mes(E2)g2],(3.27)

h2 = 2(β1 − β2)−1mes(E2)−1[β1g1 − 2−1mes(E2)g2].(3.28)

Clearly h1, h2 are well defined. Define a measurable function ξ : [a, b] → X by

ξ(t) = 0, t ∈ E1, ξ(t) = v′(t), t ∈ E3,(3.29)

ξ(t) = v′(t) + h1, t ∈ E2 ∩ [a, c],

ξ(t) = v′(t) + h2, t ∈ E2 ∩ [c, b].

Clearly the function ξ is Bochner integrable. Define a function u : [a, b] → X by

(3.30) u(τ) =
∫ τ

0
ξ(t)dt + z1, τ ∈ [a, b].

It follows from (3.16), (3.20), (3.21), (3.27), (3.28), and (3.29) that
∫ b

a
ξ(t)dt =

∫

E1

ξ(t)dt +
∫

E2

ξ(t)dt +
∫

E3

ξ(t)dt =
∫

E2

ξ(t)dt +
∫

E3

ξ(t)dt

=
∫

E3

v′(t)dt +
∫

E2

v′(t)dt + mes(E2 ∩ [a, c])h1 + mes(E2 ∩ [c, b])h2

=
∫

E3

v′(t)dt +
∫

E2

v′(t)dt + 2−1mes(E2)(h1 + h2)

=
∫

E3

v′(t)dt +
∫

E2

v′(t)dt + g1 =
∫ b

a
v′(t)dt.

Combined with (3.15) and (3.30) this equality implies that

(3.31) u(b) = z2.

Relations (3.16), (3.29) and (3.30) imply that for each t ∈ [a, b]

u(t) = z1 +
∫

[a,t]∩E1

ξ(s)ds +
∫

[a,t]∩E2

ξ(s)ds +
∫

[a,t]∩E3

ξ(s)ds

= z1 +
∫

[a,t]∩E3

v′(s)ds +
∫

[a,t]∩E2

v′(s)ds

+ mes(E2 ∩ [a, c] ∩ [a, t])h1 + mes(E2 ∩ [c, b] ∩ [a, t])h2.

This equality, (3.16) and (3.31) imply that for each t ∈ [a, c]

(3.32) u(t) = z1 +
∫

[a,t]\E1

v′(s)ds + mes(E2 ∩ [a, t])h1
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and that for each t ∈ (c, b]

(3.33) u(t) = z1 +
∫

[a,t]\E1

v′(s)ds + 2−1 mes(E2)h1 + mes(E2 ∩ [c, t])h2.

It follows from (3.32) and (3.33) that
∫ b

a
u(t)dt =(b− a)z1 +

∫ b

a

(∫

[a,t]\E1

v′(s)ds

)
dt(3.34)

+
(∫ c

a
mes (E2 ∩ [a, t])dt

)
h1 + 2−1(b− c) mes(E2)h1

+
(∫ b

c
mes(E2 ∩ [c, t])dt

)
h2.

By the Fubini theorem

(3.35)
∫ c

a
mes(E2 ∩ [a, t])dt =

∫

E2∩[a,c]
(c− s)ds,

∫ b

c
mes(E2 ∩ [c, t])dt =

∫

E2∩[c,b]
(b− s)ds.

In view of (3.20), (3.21), (3.22), (3.27), (3.28), (3.34), and (3.35)
∫ b

a
u(t)dt = (b− a)z1 +

∫ b

a

(∫

[a,t]\E1

v′(s)ds

)
dt +

(∫

E2∩[a,c]
(c− s)ds

)
h1

+ 2−1(b− c)mes(E2)h1 +

(∫

E2∩[c,b]
(b− s)ds

)
h2

= (b− a)z1 +
∫ b

a

(∫

[a,t]\E1

v′(s)ds

)
dt +

(∫

E2∩[a,c]
(b− s)ds

)
h1

+

(∫

E2∩[c,b]
(b− s)ds

)
h2

= (b− a)z1 +
∫ b

a

(∫

[a,t]\E1

v′(s)ds

)
dt + β1h1 + β2h2

= (b− a)z1 +
∫ b

a

(∫

[a,t]\E1

v′(s)ds

)
dt

+ 2(β2 − β1)−1mes(E2)−1[2−1mes(E2)](β2 − β1)g2

= (b− a)z1 +
∫ b

a

(∫

[a,t]\E1

v′(s)ds

)
dt + g2

= (b− a)z1 +
∫ b

a

(∫

[a,t]
v′(s)ds

)
dt =

∫ b

a
v(t)dt.
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This equality, (3.15), (3.30), and (3.31) imply that

(3.36) u ∈ A(z1, z2, z3).

It follows from (3.17), (3.19), (3.20), (3.22), (3.26), (3.27), and (3.28) that

||h1||, ||h2|| ≤ (β1 − β2)−12 mes(E2)−1(β1||g1||+ β2||g1||+ 2−1 mes E2||g2||)
(3.37)

≤ 96(b− a)−34((b− a)2||g1||+ (b− a)||g2||)
≤ (b− a)−34 · 96((b− a)2γ1(M0 + 2) + (b− a)2γ1(M0 + 2))

= (8 · 96)(b− a)−1γ1(M0 + 2).

Now we show that

(3.38) ‖u(t)− v(t)‖ ≤ δ1 for all t ∈ [a, b].

Let s ∈ (a, b]. By (3.13), (3.15), (3.16), (3.17), (3.29), (3.30), (3.36), and (3.37)

‖v(s)− u(s)‖ =
∥∥∥∥
∫ s

a
[v′(t)− ξ(t)]dt

∥∥∥∥ ≤
∥∥∥∥∥
∫

[a,s]∩E1

[v′(t)− ξ(t)]dt

∥∥∥∥∥

+

∥∥∥∥∥
∫

[a,s]∩E2

[v′(t)− ξ(t)]dt

∥∥∥∥∥ +

∥∥∥∥∥
∫

[a,s]∩E3

[v′(t)− ξ(t)]dt

∥∥∥∥∥

≤
∫

E1

‖v′(t)‖dt + ‖h1‖mes(E2) + ‖h2‖mes(E2)

≤ γ1(M0 + 2) + 2(b− a)8 · 96(b− a)−1γ1(M0 + 2)

< γ1(M0 + 2)32 · 96 < δ1.

Thus (3.38) holds. It follows from (3.2), (3.6), (3.9), and (3.38) that

(3.39) ‖u(t)‖ ≤ M1 + 1 for all t ∈ [a, b].

We estimate I(u)− I(v). In view of (1.5) and (3.16)

(3.40) I(u)− I(v) =
3∑

i=1

∫

Ei

[f(t, u(t), u′(t))− f(t, v(t), v′(t))]dt.

By (3.12), (3.29), (3.30), and (3.39) for almost every t ∈ E1

(3.41) f(t, u(t), u′(t)) = f(t, u(t), ξ(t)) = f(t, u(t), 0) < M2.

Relations (1.1), (3.16), and (3.14) imply that for almost every t ∈ E1

f(t, v(t), v′(t)) ≥ φ(‖v′(t)‖) ≥ N1 > M2 + 4.

Combined with (3.41) this inequality implies that

(3.42)
∫

E1

[f(t, u(t), u′(t))− f(t, v(t), v′(t))]dt ≤ 0.

Let t ∈ E2 and v′(t), u′(t) exist. It follows from (3.16) that

(3.43) ‖v′(t)‖ ≤ N0.
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In view of (3.13), (3.30), (3.29), and (3.37)
(3.44)
‖u′(t)−v′(t)‖ = ‖ξ(t)−v′(t)‖ ≤ max{‖h1‖, ‖h2‖} ≤ (8 ·96)(b−a)−1γ1(M0+2) < δ1.

Relations (3.6), (3.9), (3.43), and (3.44) imply that

(3.45) ‖u′(t)‖ ≤ N0 + 1.

By (3.2), (3.38), (3.39), (3.43), (3.44), (3.45), and the choice of δ1 (see (3.9)-(3.11))

|f(t, v(t), v′(t))− f(t, u(t), u′(t))| ≤ (8(b− a + 1))−1ε.

Since this inequality holds for almost every t ∈ E2 we obtain that

(3.46)
∣∣∣∣
∫

E2

[f(t, u(t), u′(t))− f(t, v(t), v′(t))]dt

∣∣∣∣ ≤ 8−1ε.

Let t ∈ E3 and u′(t) and v′(t) exist. By (3.16)

(3.47) ‖v′(t)‖ ≥ N0.

In view of (3.29) and (3.30)

|f(t, v(t), v′(t))− f(t, u(t), u′(t))| = |f(t, v(t), v′(t))− f(t, u(t), v′(t))|.
It follows from this equality, (3.2), (3.9), (3.38), (3.39), (3.47), and the choice of δ0,
N0 (see (3.6)-(3.8)) that

|f(t, v(t), v′(t))− f(t, u(t), u′(t))| ≤ ε0f(t, v(t), v′(t)).

By this inequality which holds for almost every t ∈ E3, (3.3) and (3.15)∣∣∣∣
∫

E3

[f(t, u(t), u′(t))− f(t, v(t), v′(t))]dt

∣∣∣∣ ≤
∫

E3

ε0f(t, v(t), v′(t))dt ≤ ε0I(v)

≤ ε0(M0 + 2) < ε/8.

Combined with (3.42) and (3.46) this inequality implies that I(u) − I(v) ≤ ε/2.
This completes the proof of Theorem 1.2.

4. Auxiliary results for Theorem 1.4

In this section we assume that the continuous function f : [a, b] ×X ×X → R1

satisfies (B1)-(B3).
For each z1, z2, z3 ∈ X set

U(z1, z2, z3) = inf{I(x) : x ∈ A(z1, z2, z3)}.
Lemma 4.1. Let M > 0. Then there is M1 > 0 such that

U(z1, z2, z3) ≤ M1 for each z1, z2, z3 ∈ X satisfying ||z1||, ||z2||, ||z3|| ≤ M.

Proof. Set

(4.1) M1 = sup{f(s, z, u) : s ∈ [a, b], z, u ∈ X

and ||z||, ||u|| ≤ 8M(1 + (b− a)−1)}(b− a).
By (B3) M1 is finite. Assume that z1, z2, z3 ∈ X and

(4.2) ||z1||, ||z2||, ||z3|| ≤ M.
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Define z4 ∈ X by (2.2) and define a function v : [a, b] → X by (2.3). It was shown
in the proof of Lemma 2.1 that (2.4) holds. It follows from (2.2) and (2.3) that

||v(t)|| ≤ 3M for all t ∈ [a, b],(4.3)

||v′(t)|| ≤ 8M(b− a)−1 for a.e. t ∈ [a, b].(4.4)

Relations (4.1), (4.3), and (4.4) imply that for a.e. t ∈ [a, b]

f(t, v(t), v′(t)) ≤ M1/(b− a).

This inequality and (2.4) imply that

U(z1, z2, z3) ≤ I(v) ≤ M1.

¤

Lemma 4.2. Let M > 0. Then there is M0 > 0 such that for each z1, z2, z3 ∈
X satisfying ||z1||, ||z2||, ||z3|| ≤ M and each x ∈ A(z1, z2, z3) satisfying I(x) ≤
U(z1, z2, z3) + 1 the inequality ||x(t)|| ≤ M0 holds for all t ∈ [a, b].

For the proof of this lemma see Lemma 5.2 of [17].

5. Proof of Theorem 1.4

Let M > 0. By Lemma 4.1 there is M1 > 0 such that

(5.1) U(z1, z2, z3) ≤ M1 for each z1, z2, z3 ∈ X satisfying ||z1||, ||z2||, ||z3|| ≤ M.

In view of Lemma 4.2 there is M0 > 0 such that for each z1, z2, z3 ∈ X and each
x ∈ A(z1, z2, z3) satisfying

(5.2) ||z1||, ||z2||, ||z3|| ≤ M, I(x) ≤ U(z1, z2, z3) + 1

the following inequality holds:

(5.3) ||x(t)|| ≤ M0, t ∈ [a, b].

By (B2) there are δ0, L0 > 0 and an integrable scalar function ψ0(t) ≥ 0, t ∈ [a, b]
such that for each t ∈ [a, b], each u ∈ X and each x1, x2 ∈ X satisfying

(5.4) ||x1||, ||x2|| ≤ M0 + 8, ||x1 − x2|| ≤ δ0

the following inequality holds:

(5.5) |f(t, x1, u)− f(t, x2, u)| ≤ ||x1 − x2||L0(f(t, x1, u) + ψ0(t)).

Choose a positive number γ0 such that

(5.6) γ0 < 1 and 64γ0(M1 + 1) < b− a.

In view of (B1) and (1.7) there is K0 > 1 such that

(5.7) φ(t)/t ≥ γ−1
0 for all t ≥ K0.

Set

(5.8) ∆0 = sup{f(t, z, 0) : t ∈ [a, b], z ∈ X and ||z|| ≤ M0 + 8}.
(B3) implies that ∆0 is finite.
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It follows from (B3) that there is L1 > 1 such that for each t ∈ [a, b] and each
x1, x2, u1, u2 ∈ X satisfying

(5.9) ||x1||, ||x2||, ||u1||, ||u2|| ≤ K0 + M0 + 12

the following inequality holds:

(5.10) |f(t, x1, u1)− f(t, x2, u2)| ≤ L1(||x1 − x2||+ ||u1 − u2||).
Choose a number γ1 ∈ (0, 1) such that

(5.11) 96 · 8γ1(M1 + 2) < (min{1, b− a})min{1, δ0/8},

γ1 <(96 · 64L1(b− a + 1 +
∫ b

a
ψ0(t)dt) + 64(5.12)

+ (1 + (b− a)−1)96 · 64L0(b− a + 1 + M1 +
∫ b

a
ψ0(t)dt))−1.

By (B1) and (1.7) there is a number K > 0 such that

(5.13) K > 8∆0 + K0 + 2,

(5.14) φ(t)/t ≥ γ−1
1 for all t ≥ K.

Assume that

(5.15) z1, z2, z3 ∈ X, ||z1||, ||z2||, ||z3|| ≤ M,

(5.16) x ∈ A(z1, z2, z3),

(5.17) mes{t ∈ [a, b] : ||x′(t)|| > K} > 0.

We show that there is u ∈ A(z1, z2, z3) such that I(u) < I(x) and ||u′(t)|| ≤ K for
almost every t ∈ [a, b].

We may assume without loss of generality that

(5.18) I(x) ≤ U(z1, z2, z3) + 1.

Relations (5.1), (5.15), and (5.18) imply that

(5.19) I(x) ≤ M1 + 1.

In view of (5.15), (5.16) and (5.18) and the choice of M0 (see (5.2), (5.3))

(5.20) ||x(t)|| ≤ M0, t ∈ [a, b].

Set

E1 = {t ∈ [a, b] : ||x′(t)|| ≥ K},
E2 = {t ∈ [a, b] : ||x′(t)|| ≤ K0},(5.21)

E3 = [a, b] \ (E1 ∪ E2).

Set

(5.22) g1 =
∫

E1

x′(t)dt, g2 =
∫ b

a

(∫

E1∩[a,t]
x′(s)ds

)
dt,
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(5.23) d =
∫

E1

||x′(t)||dt.

It follows from (5.17) and (5.21) that

(5.24) d > 0.

Clearly

(5.25) ||g1|| ≤ d, ||g2|| ≤ d(b− a).

By (1.6), (5.14), (5.19), (5.21), and (5.23)

d =
∫

E1

||x′(t)||dt ≤
∫

E1

γ1φ(||x′(t)||)dt ≤ γ1

∫ b

a
φ(||x′(t)||)dt(5.26)

≤ γ1

∫ b

a
f(t, x(t), x′(t))dt ≤ γ1(M1 + 1).

Now we estimate mes(E2). It follows from (1.6), (5.7), (5.13), (5.19), (5.21), and
the inequality K0 > 1 that

mes(E1 ∪ E3) ≤ K−1
0

∫

E1∪E3

||x′(t)||dt ≤ K−1
0

∫

E1∪E3

γ0φ(||x′(t)||)dt(5.27)

≤ γ0K
−1
0

∫ b

a
φ(||x′(t)||)dt ≤ γ0

∫ b

a
φ(||x′(t)||)dt

≤ γ0

∫ b

a
f(t, x(t), x′(t))dt ≤ γ0(M1 + 1).

Together with (5.21) this inequality implies that

(5.28) mes(E2) ≥ b− a− γ0(M1 + 1).

Relations (5.6) and (5.28) imply that

(5.29) mes(E2) ≥ (31/32)(b− a).

It is not difficult to see that there is c ∈ [a, b] such that

(5.30) mes(E2 ∩ [a, c]) = mes(E2 ∩ [c, b]).

Set

(5.31) β1 =
∫

E2∩[a,c]
(b− s)ds, β2 =

∫

E2∩[c,b]
(b− s)ds.

As in the proof of Theorem 1.1 (see (3.23)-(3.26)) we can show that

(5.32) β1 − β2 ≥
∫

E2∩[a,c]
(c− s)ds ≥ (b− a)2/96.

Define

(5.33) h1 = 2(β2 − β1)−1mes(E2)−1[β2g1 − 2−1mes(E2)g2],

(5.34) h2 = 2(β1 − β2)−1mes(E2)−1[β1g1 − 2−1mes(E2)g2].

Clearly h1, h2 are well defined. Define a measurable function ξ : [a, b] → X by

ξ(t) = 0, t ∈ E1, ξ(t) = x′(t), t ∈ E3,(5.35)
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ξ(t) = x′(t) + h1, t ∈ E2 ∩ [a, c],

ξ(t) = x′(t) + h2, t ∈ E2 ∩ [c, b].

Clearly the function ξ is Bochner integrable. Define a function u : [a, b] → X by

(5.36) u(τ) =
∫ τ

0
ξ(t)dt + z1, τ ∈ [a, b].

As in the proof of Theorem 1.2 we can show that

u ∈ A(z1, z2, z3)

(see (3.31)-(3.36)). In view of (5.25), (5.29), (5.31), (5.32), (5.35), and (5.36) for
almost every t ∈ E2

||x′(t)− u′(t)|| = ||x′(t)− ξ(t)|| ≤ max{||h1||, ||h2||}(5.37)

≤ 96(b− a)−24(b− a)−1[(b− a)2||g1||+ (b− a)||g2||]
≤ 4 · 96(b− a)−32(b− a)2d = 8 · 96(b− a)−1d.

Combined with (5.11), (5.21), and (5.26) this relation implies that for almost every
t ∈ E2

||u′(t)|| ≤ ||x′(t)||+ 8 · 96(b− a)−1d(5.38)

≤ K0 + 8 · 96(b− a)−1γ1(M1 + 1)
≤ K0 + 1.

Relations (5.13), (5.21), (5.35), (5.36), and (5.38) imply that

(5.39) ||u′(t)|| ≤ K for almost every t ∈ [a, b].

We show that I(u) < I(x). Let s ∈ (a, b]. It follows from (5.16), (5.21), (5.23),
(5.35), (5.36), (5.37), and the inclusion u ∈ A(z1, z2, z3) that

||x(s)− u(s)|| = ||
∫ s

a
[x′(t)− u′(t)]dt|| = ||

∫ s

a
[x′(t)− ξ(t)]dt||

≤ ||
∫

[a,s]∩E1

[x′(t)− ξ(t)]dt||+ ||
∫

[a,s]∩E2

[x′(t)− ξ(t)]dt||

+ ||
∫

[a,s]∩E3

[x′(t)− ξ(t)]dt||

≤
∫

E1

||x′(t)||dt + ||
∫

[a,s]∩E2

[x′(t)− ξ(t)]dt||

≤
∫

E1

||x′(t)||dt + (b− a)(||h1||+ ||h2||)

≤ d + 16 · 96d ≤ 32 · 96d.

Therefore

(5.40) ||x(s)− u(s)|| ≤ 32 · 96d for all s ∈ [a, b].
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In view of (5.21)

(5.41) I(u)− I(x) =
3∑

i=1

∫

Ei

[f(t, u(t), u′(t))− f(t, x(t), x′(t))]dt.

By (5.11), (5.20), (5.26), (5.35), (5.36), and (5.40) for almost every t ∈ E1

f(t, u(t), u′(t)) = f(t, u(t), 0)

≤ sup{f(t, z, 0) : z ∈ X and ||z|| ≤ M0 + 32 · 96γ1(M1 + 1)}
≤ sup{f(t, z, 0) : z ∈ X and ||z|| ≤ M0 + 8}.

Combined with (5.8) this inequality implies that for almost every t ∈ E1

(5.42) f(t, u(t), u′(t)) ≤ ∆0.

It follows from (B1), (1.6), (5.13), (5.14), and (5.21) that for almost every t ∈ E1

f(t, x(t), x′(t)) ≥ φ(||x′(t)||) ≥ ||x′(t)|| ≥ K > 8∆0.

Together with (5.42) this inequality implies that for almost every t ∈ E1

(5.43) f(t, x(t), x′(t))− f(t, u(t), u′(t)) ≥ 3f(t, x(t), x′(t))/4.

The inequality (5.43) implies that

(5.44)
∫

E1

[f(t, u(t), u′(t))− f(t, x(t), x′(t))]dt ≤ −(3/4)
∫

E1

f(t, x(t), x′(t))dt.

By (5.11), (5.20), (5.26), and (5.40) for all t ∈ [a, b]

(5.45) ||u(t)|| ≤ ||x(t)||+ 32 · 96d ≤ M0 + 32 · 96γ1(M1 + 1) ≤ M0 + 8.

It follows from (5.20), (5.21), (5.38), (5.45), and the choice of L1 (see (5.9), (5.10))
that for almost every t ∈ E2

|f(t, x(t), x′(t))− f(t, u(t), u′(t))| ≤ L1(||x(t)− u(t)||+ ||x′(t)− u′(t)||).
Combined with (5.37) and (5.40) this inequality implies that for almost every t ∈ E2

|f(t, x(t), x′(t))− f(t, u(t), u′(t))| ≤ L1(32 · 96d + 8 · 96(b− a)−1a)

≤ L132 · 96d(1 + (b− a)−1).

Therefore

(5.46)
∣∣∣∣
∫

E2

[f(t, x(t), x′(t))− f(t, u(t), u′(t))]dt

∣∣∣∣ ≤ L132 · 96(1 + b− a).

Relations (5.1), (5.26), and (5.40) imply that for all t ∈ [a, b]

||x(t)− u(t)|| ≤ 32 · 96d ≤ 32 · 96γ1(M1 + 1) ≤ δ0.

By this inequality, (5.20), (5.35), (5.36), (5.45), and the choice of δ0, L0, ψ0 (see
(5.4) and (5.5)) for all t ∈ E3

|f(t, x(t), x′(t))− f(t, u(t), u′(t))| = |f(t, x(t), x′(t))− f(t, u(t), x′(t))|
≤ L0(f(t, x(t), x′(t)) + ψ0(t))||x(t)− u(t)||.

Together with (5.40) this inequality implies that for almost all t ∈ E3∣∣f(t, x(t), x′(t))− f(t, u(t), u′(t))
∣∣ ≤ 32 · 96dL0(f(t, x(t), x′(t)) + ψ0(t)).
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Therefore combined with (5.19) this inequality implies that

∣∣∣∣
∫

E3

[f(t, x(t), x′(t))− f(t, u(t), u′(t))dt

∣∣∣∣ ≤ L032 · 96d(I(x) +
∫ b

a
ψ0(t)dt)

(5.47)

≤ 32 · 96L0d(M1 + 1 +
∫ b

a
ψ0(t)dt).

In view of (5.4), (5.41), (5.46), and (5.47)

I(u)− I(x) ≤(−3/4)
∫

E1

f(t, x(t), x′(t))dt + 32 · 96L1d(1 + b− a)(5.48)

+ 32 · 96L0d(M1 + 1 +
∫ b

a
ψ0(t)dt).

It follows from (B1), (1.7), (5.14) and (5.21) that for all t ∈ E1

f(t, x(t), x′(t)) ≥ φ(||x′(t)||) ≥ γ−1
1 ||x′(t)||.

Combined with (5.23) this inequality implies that

(5.49)
∫

E1

f(t, x(t), x′(t))dt ≥ γ−1
1

∫

E1

||x′(t)||dt = γ−1
1 d.

By (5.12), (5.48), and (5.49)

I(u)− I(x) ≤ −2−1γ−1
1 d + 32 · 96L1d(1 + b− a) + 32 · 96L0d(M1 + 1 +

∫ b

a
ψ0(t)dt)

d(−γ−1
1 /2 + 32 · 96L1(1 + b− a) + 32 · 96L0(M1 + 1 +

∫ b

a
ψ0(t)dt)) < 0.
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