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RELATIONSHIPS BETWEEN APPROXIMATE JACOBIANS AND
CODERIVATIVES

N. M. NAM AND N. D. YEN

ABSTRACT. Relationships between the concept of approximate Jacobian for vector-
valued functions in finite-dimensional Euclidean spaces, which was introduced by
V. Jeyakumar and D. T. Luc, and the concept of coderivative, which was intro-
duced by B. Mordukhovich, are discussed in this paper. Our investigation shows
clearly that coderivative and approximate Jacobian are very different concepts.
They have a little in common. From the papers cited in the list of references one
can note that these concepts require different methods of study, and they give
results of quite different forms.

1. INTRODUCTION

The role of set-valued derivatives of functions and multifunctions has been rec-
ognized widely in the literature (see [1] and [20]).

Coderivative in the sense of Mordukhovich (see [13] and [20]) is one type of set-
valued derivatives. As shown by Mordukhovich and other authors, it is very useful
for the development of nonsmooth analysis and its applications. Coderivatives allow
one to characterize the openness, metric regularity, and Lipschitzian properties of
functions and multifunctions (see [12]). For the applications of coderivatives in
stability and sensitivity analysis of optimization problems and variational systems
we refer to [14]-[16]. In order to define coderivative, one uses the (nonconvex)
normal cone in the sense of Mordukhovich [10]. Basic definitions and calculus rules
concerning coderivatives in finite-dimensional Euclidean spaces can be found in [13].
An infinite-dimensional version of the coderivative theory and its applications was
given in [17, 18].

The concept of approximate Jacobian and the corresponding notion of general-
ized subdifferential were introduced by Jeyakumar and Luc in [3] and [4]. Using
this concept one can obtain new types of open mapping theorems [5, 6], Lagrange
multiplier rules [22], and sufficient conditions for the metric regularity and for the
Aubin property of implicit multifunctions [7] which are applicable for continuous,
non-Lipschitzian systems.

It is of interest to study the relationships between the concept of coderivative
and the concept of approximate Jacobian. Note that some remarks on the relation-
ships between the Mordukhovich subdifferential and the Jeyakumar-Luc (J-L, for
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brevity) generalized subdifferential have been given in [21] and [22]. The aim of this
paper is to study the question in a broader context. After giving some preliminaries
in Section 2, in Section 3 we discuss the relationships between the Mordukhovich
subdifferential and the J-L generalized subdifferential. Then, in Section 4, we in-
vestigate the relationships between coderivatives and approximate Jacobians. Some
examples, which help us to compare the concept of coderivative with the concept
of approximate Jacobian, are given in Section 5.

For an Euclidean space Z, the symbol || - ||, (-,-) and Bz denote, respectively,
the norm, the inner product and the closed unit ball in Z. The closed ball with
center a and radius ¢ is denoted by B(a,d). For a subset M C Z, we denote by
intM, M, coM, and coneM the interior, the closure, the convex hull and the cone
generated by M, respectively. For simplicity of notation, the closure of the last two
sets are denoted, respectively, by coM and coneM. The negative dual cone of M
is denoted by M*, that is M* = {w € Z : (w,z) <0 Vz € M}. The distance from
a € Z to M C Z is denoted by d(a, M). By convention, d(a,l) = +oo. If A is a
linear operator then A* stands for the conjugate of A. The space of linear operators
from R™ to R™ (which is identified with the set of (m x n)—matrices) is denoted by
L(R™ R™).

2. DEFINITIONS AND PRELIMINARIES

We first recall some facts from [2] and [13] which will be needed in the sequel.
For a multifunction F' : R™ = R™, let
gphF = {(z,y) e R" xR™ : y € F(z)}.

The Kuratowski-Painlevé upper limit of F' as x — T is a subset of R™ defined by
setting

limsup F(z) = {y € R™ : 3 sequences z*

T—T
with y, € F(2F) Vk =1,2,...}.

=T, Yk — Y,

Let © C R™. Denote

Pz,Q)={weq : |z —w|=d=Q)}.
The Mordukhovich normal cone to Q at T € 0 is defined by the formula
(2.1) N(z,Q) = limsup[cone(z — P(z,))].

r—x

If 7 ¢ Q, then one puts N(z,Q) = (. In general, N(%, () is a nonconvex cone. So
it is not a dual of any tangent object. B
The Clarke tangent cone To(T,Q) to Q at T € Q is defined by the formula

Te(@,Q) ={uecR® : Vak(€ Q) —Z, Vit |0, Jup — u such that
2 4 tyup € Q for all k}.

The set No(Z, Q) := (Tc (T, 2))* is called the Clarke normal cone to Q at Z. Relation
between the Clarke normal cone and the Mordukhovich normal cone (see [2, Prop.
2.5.7]) is as follows

(2.2) N¢(z,§2) = oN(z, Q).
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The Bouligand (contingent) tangent cone to Q at z € Q is defined by
T(x,Q) ={uecR® : Ju, —u, 3t |0 such that
x + tpu, € Q for all k}.
The negative dual cone to T(z,€2) is denoted by N(z,Q). If z ¢ Q then one puts
N(z,Q) = (. It is well known (see [p.254]13) that
* —
N(z,Q) = {z* € R" : limsup @y -2 <0},
where y(€ Q) — = means y — = and y € Q.
Proposition 2.1 ([8]). For any Q C R", any T € Q, one has
(2.3) N(z,Q) = limsup N (z, Q).
T—T
Proposition 2.2. Let F : R" = R™, (Z,y) € gphF'. The multifunction D*F(Z,y) :
R™ = R"™ defined by
D*F(z,y)(y") ={z" e R" : (¢, —y") € N((Z,9), gphF)}
is called the coderivative of F' at (Z,y). By convention, D*F(Z,y)(y*) = 0 for all
(Z,y) ¢ gphF and y* € R™. When F is single-valued, one writes D* F(T) instead
of D*F(Z,y), where y = F(Z). The corresponding Clarke coderivative is
DoF(z,y)(y*) ={z" e R" : (2%, —y") € No((7,7), gphF)}.

The graph of DEF (7, 7)(-) is a closed convex cone in the product space R™ xR™. If
F has convex graph then the Clarke coderivative and the Mordukhovich coderivative
coincide, i.e.,

D*F(z,9)(y") = DoF(z,y)(y") for all (7,y) € gphF, y* € R™.

If F' is a strictly differentiable vector-valued function, then the two coderivatives
also coincide. Namely, if f : R®™ — R"™ is strictly differentiable at Z, then

D*f()(y*) = Do f(T)(y") forall y* € R™.
Recall that f : R™ — R™ is said to be strictly differentiable at T if there exists
A € L(R™,R™) such that

lim flx+tu) — f(z) — tAu

—0 YueR",
r—x, t]0 t

provided that the convergence is uniform for v in compact sets. Except for the
just described two situations, the graph of the Mordukhovich coderivative is often
smaller than the graph of the Clarke coderivative.
Let ¢ : R" - R = RU {+o00}. Let
domyp = {x € R" : —00 < p(x) < +00}.
The formula
Fr) = Bpla) = {n € R : u > p(x)}
defines the epigraphical multifunction of p. Clearly,

gphF = epip := {(z,n) € R" xR : = p(a)}.
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Definition 2.3. Let T € domy. The set
nrp(®) = D E,(@, p(®))(1) |
={a" eR" : (27, 1) € N((Z, ¢(7)), epip)}
is called the Mordukhovich subdifferential of ¢ at T, and the set
Op(T) = D Ey(T, ¢(7))(0) '
={z" eR" : (2",0) € N((7, (7)), epip)}
is called the Mordukhovich singular subdifferential of ¢ at T. If T ¢ domep then
we put dyp(T) = 037¢(T) = 0. The Clarke subdifferential dc¢ () and the Clarke

singular subdifferential 0 (%) are defined similarly; instead of D* (resp. N(:))
one considers Df (resp. N¢(-)).

If o is strictly differentiable at Z, then dc@(Z) = Iy (T) = {VOp(T)}. For any
lower semicontinuous function ¢ and for any Z € domep, from (2.2) it follows that

(2.4) dop(T) = co[Onre(T) + Iy (T)].

Under some mild conditions, the Clarke subdifferential dc¢(Z) can be computed
via the Clarke-Rockafellar directional derivatives. If ¢ : R™ — R is a continuous
function, then the Clarke-Rockafellar directional derivative o!(Z,u) of ¢ at T in
direction w is defined [2, p. 97] by setting

tu') —
(2.5) ©!(Z,u) = lim limsup inf pla + t) go(x)
el0 z—7z, t|0 WEu+teBrn t

Proposition 2.4 (See [2, p. 97]). One has 0cp(T) = 0 if and only if p! (F,0) =
—o00. Otherwise, one has

(2.6) dop(T) = {z* € R™ : o (T, u) > (z*,u) YueR"}
and
(2.7) ol (T, u) = sup{(z*,u) : z* € Icp(T)} Yu € R".

If ¢ is locally Lipschitz at Z, then
SOT (ja ’LL) =¢° (ja ’LL)
for every u € R", where

t —
©°(Z,u) = limsup plo +tu) — o)
2—T, 10 3

is the generalized directional derivative of ¢ at T in direction w in the sense of Clarke
[2]. Since 0F¢(z) = {0} (see [2, Proposition 2.9.7]) and 93¢ (ZT) C OF ¢(T), we
deduce that 037¢(T) = {0}.

We now recall the concept of approximate Jacobian and the corresponding notion
of generalized subdifferential introduced by Jeyakumar and Luc (see [3, 4]).

Definition 2.5. Let f : R™ — R™ be a continuous vector-valued function. A closed
subset Jf(z) C L(R™,R™) is called an approzimate Jacobian of f at T € R™ if

(2.8) (y* o /)T (m,u) < sup (y*,Au), VYu€R" Vy* € R™,
A f(T)
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where (y* o f)(z) = (y*, f(z)) is the composite function of y* and f, and

(0" o f)* (@) = limsup L HEF tut> — ("o H@
t10

is the upper Dini directional derivative of y*o f at T in direction u. An approximate
Jacobian of f at T is said to be minimal if it contains no proper (closed) subset
which is also an approximate Jacobian of f at z.

If f:R™ — R™ is Fréchet differentiable at T with the Fréchet derivative f'(T),
then Jf(z) = {f'(Z)} is an approximate Jacobian of f at T.

Definition 2.6. Let ¢ : R” — R be a continuous function. If Jy(Z) is an approx-
imate Jacobian of ¢ at T then one writes dp(T) for Jp(T) and calls dp(Z) a J-L
subdifferential of ¢ at T. A J-L subdifferential of ¢ at T is said to be minimal if it
contains no proper (closed) subset which is also a J-L subdifferential of f at .

Note that the function ¢ considered in Example 3.1 below does not have any
minimal J-L subdifferential at * = 0.

If f = ¢, a real-valued function, then (2.8) is equivalent to the following pair of
conditions:

p(T + tu) — o(T)

(2.9) lim sup < sup (z*,u) YueR"
a t 2% €9¢(T)

and

(2.10) liminf PEFMW =@ o e ) vue R

t10 t - z*edp(T)
In the next section we will deal with Mordukhovich and J-L subdifferentials of

real-valued functions. Coderivatives and approximate Jacobians of vector-valued
functions will be studied in Sections 4 and 5.

3. MORDUKHOVICH SUBDIFFERENTIALS AND J-L. SUBDIFFERENTIALS

In this section we study the following question: Is any Mordukhovich subdiffer-
ential a J-L subdifferential?
Let us begin with a well-known example (see [5]).

Example 3.1. Let ¢(z) = /3, 2 € R. Then d¢(0) = [a, +00), where o € R is an
arbitrarily chosen number, is a J-L subdifferential of ¢ at 0. Indeed, substituting
T =0,u=1and u = —1 into (2.9) and (2.10) we see that both conditions are
satisfied. Using (2.3) we get

N((0,0),epip) = {(z*,0) € R? : z* > 0}.

Therefore Opr¢(0) = 0 and 957¢(0) = [0, 4+00). So dare(0) is not a J-L subdifferen-
tial of ¢ at 0.

This example shows that the above question should be formulated as follows:

QUESTION 1: If a Mordukhovich subdifferential is nonempty, is it a J-L subdiffer-
ential?

The next three examples and Proposition 3.5 below are in favor of a positive
answer to Question 1.
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Example 3.2. Let ¢(x) = |z| for all x € R. Note that ¢ is a convex, Lipschitzian
function on R. Using (2.1) or (2.3) we obtain N((0,0),epip) = {(z*,y*) € R?
|z*| < —y*}. Hence Opp(0) = [—1,1]. Since d¢(0) := {—1,1} is a J-L subdiffer-
ential of ¢ at 0, we conclude that dy;p(0) is a J-L subdifferential of ¢ at 0, but
it is not a minimal subdifferential. (Note that d¢(0) = {—1,1} is a minimal J-L
subdifferential of ¢ at 0).

Example 3.3. Let p(z) = —|z| for all x € R. Note that ¢ is a concave, Lipschitzian
function on R. Using (2.1) or (2.3) we have

N((0,0),epip) = {(z",y*) € R? : [2*| = [y* [} U{(z",y") € R® : & > |y"}.
Hence 0p¢(0) = {—1,1}. Tt is easily verified that dp(0) := {—1,1} is a minimal
J-L subdifferential of ¢ at 0. Thus the Mordukhovich subdifferential of ¢ at 0 is a
minimal J-L subdifferential of ¢ at 0.

Example 3.4. Let ¢(z) = 0 for z € (—00,0] and ¢(x) = z'/2 for z € (0,+00).
Note that ¢ is a nonconvex, nonconcave, non-Lipschitzian function on R. Using
(2.3) we can show that

N((0,0),epip) = {(z*,y*) e R* : * >0, y* <0}.

So Ome(0) = 057¢(0) = [0,+00). Direct verification shows that conditions (2.9)
and (2.10) are satisfied with d¢(0) := [0, +00). Thus dpr¢(0) is a J-L subdifferential
of ¢ at 0. It is easy to see that this J-L subdifferential is not minimal.

Proposition 3.5. If ¢ : R" — R is locally Lipschitz at T, then Oye(T) is a J-L
subdifferential of ¢ at T.

Proof. By (2.4), (2.6) and (2.7) we have

=) — ofF
ey 2E T ) = (2
t10 t

< ¢°(T,u)

= max{(z*,u) : z* € Ocp(T)}
= max{(z*,u) : z* € Iyp(T)}.
On the other hand,
P@ 1) —p(@) o e £~ el2)
t r—T, t|0 t
= _(po(fa —’LL)
= —max{(z*,—u) : z* € dcp(T)}
= min{(x*,u) : x* € Ip(T)}.
The properties (2.9) and (2.10) have been established for 9p(T) := dyp(T). So
Onp(T) is a J-L subdifferential of ¢ at Z. O

lim infy |

The next example gives a negative answer for Question 1.

Example 3.6. Let () = 2%sin(1/x) for € (—00,0) and p(z) = —2'/3 for
x € [0,+00). Then ¢ is a continuous function which is not locally Lipschitz at 0.
We claim that dp;(0) # 0, but it is not a J-L subdifferential of ¢ at 0. Indeed, it

is easy to see that N((0,0),epiy) = {0}. Since
epip = {(x,y) : y—2?sin(1/z) >0, 2 <0} U{(z,y) : y+2/3>0, = >0},
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by the formula for computing the Bouligand tangent cone for inequality systems
defined by differentiable functions (see, for instance, [1, p. 124]) we have
T((z, o(x)), epip) = {(v1,v2) € R? : (—2asin(1/z)+cos(1/z))vi4vs > 0} ifz <0,

~

1
T((z,o(x)),epip) = {(v1,v2) € R? : gxd/?’vl +v2 >0} ifz>0.
Therefore

N((z, (), epip) = {A\*(2zsin(1/z) — cos(1/z),—1) : \* >0} ifax <0,

N((z, (), epip) = {)\*(—éxﬁ/?ﬁ —1) : X*>0} ifz>0.

Applying (2.3) we deduce that
N((0,0),epip) = {(¢*, y*) € R? : —|a*| > 5"} U (=00,0] x {0}.

Then 0p¢(0) = [—1,1]. Note that (2.10), where T := 0, fails to hold for u = 1
because the left-hand-side is —oo, while the right-hand-side is —1. Thus 9;¢(0) is
a nonempty convex compact set which is not a J-L subdifferential of ¢ at 0.

It is worthy observing that, in Examples 3.1 and 3.6, the set 0p(0) := dpre(0) U
037¢(0) is a J-L subdifferential of ¢ at 0 (despite to the fact that Onre(0) does
not have the property). One may wish to know whether it is true that for any
continuous function ¢ : R® — R and for any € R", the union of the Mordukhovich
subdifferential and the Mordukhovich singular subdifferential

Op(T) := Onrp(T) U Opjep(T)

is a J-L subdifferential of v at T? We leave this question as unresolved.

4. CODERIVATIVES AND APPROXIMATE JACOBIANS

Coderivatives are homogeneous multifunctions. But for the coderivative D* f(Z)(-)
of a continuous vector-valued function f : R™ — R™ at T € R” it may happen that
there does not exist any closed subset A C L(R"™,R™) such that

(4.1) D f(z)(y*) ={A%y" : Ae A}.

So it is impossible to compare the concept of coderivative with the concept of
approximate Jacobian. To overcome this difficulty, we introduce the following defi-
nition.

Definition 4.1. A nonempty closed set A C L(R™,R™) of linear operators is said

to be a representative of the coderivative mapping D* f(z)(-) if

(4.2) sup (¥, u) = sup (A*y*,u) VueR" Vy* e R™.
z*eD* f(T)(y*) AeA

From the separation theorem it follows that (4.2) is equivalent to the condition
(4.3) coD*f(z)(y*) =co{A™y" : Ae A} Vy" e R™.

If f is strictly differentiable at Z, then A := {f/(Z)} is a representative of the
coderivative mapping D* f(Z)(+).
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If f:R* — R™ is locally Lipschitz at T, i.e., there exists £ > 0 such that
|f(2) — f(x)]] < {2’ — x| for all z,2" in a neighborhood of Z, then the compact
set

Jpf(7) = { lim f(a®) {a*} C Qp,2f — 7,

called the B — derivative, is an approximate Jacobian of f at T. Here

Qs = {z € R" : Ithe Fréchet derivative f'(x) of f at z}.
Note that the larger set

Jof () = cof lim F(@*): {2"} € Q2 — 7},
which is the Clarke generalized Jacobian of f at T, is also an approximate Jacobian
of f at Z. In the case m = 1, one has Jo f(T) = o f(T) (see [2]).
Proposition 4.2. If a function f : R™ — R™ is locally Lipschitz at T, then the set
A := Jpf(T) is a representative of the coderivative mapping D* f(Z)(-).
Proof. According to [13, formula (2.23)], we have
{4 : A€ Jof(@)} = coD* f(@)(y") Vy' € R,
Since Jo f () = coJp f(T), it follows that
coD* f(T)(y") = {A"y" : A€ colpf(T)}.

Hence (4.3) is valid if we choose Jf(Z) = Jpf(Z). This shows that A = Jpf(T) is
a representative of the coderivative mapping D* f(Z)(-). O

Proposition 4.3. If f is locally Lipschitz at T and if A is a representative of the
coderiwative mapping D* f(Z)(-), then Jf(Z) := A is an approximate Jacobian of f
at T.

Proof. Let y* € R™ be given arbitrarily. According to [[13], Proposition 2.11], we
have

(4.4) D*f(@)(y*) = Om(y” o £)(@).
Since y* o f is locally Lipschitz at Z, it holds
(y* o [)°(T,u) = sup{(z*,u) : 2" € Ic(y" o f)(T)} VueR"™
Combining this with (2.4) and (4.4) gives
(y" o f)°(z,u) = sup{(z™,u) : 2" € D*f(@)(y")} = sup{(A"y", u) : A€ A}
Therefore

(5" 0 )" (7,u) < (4" 0 f)°(x,u) = sup{(y", Au) : A€ A}.
Since this holds for every y* € R™ and u € R", we conclude that Jf(Z) = A is an
approximate Jacobian of f at T. O

In connection with Proposition 4.3 it is natural to raise the following question.
QUESTION 2: Is it true that if f : R™ — R™ s a continuous vector-valued function
and A is a representative for the coderivative mapping D* f(Z)(-) : R™ =2 R"™, then
Jf(Z) := A is an approzimate Jacobian of f at T?

Combining the next proposition with Proposition 4.3 we get an affirmative answer
for Question 2.
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Proposition 4.4. If the coderivative mapping D* f(Z)(-) : R™ = R™ of a continu-
ous function f : R™ — R™ admits a representative J f(zT) C L(R™,R™), then f is
locally Lipschitz at T.

Proof. From (4.3) it follows that coD*f(z)(0) = {0}. Hence D*f(z)(0) = {0}.
By [11, Proposition 2.8|, this implies that the multifunction x — {f(z)} is pseudo-

Lipschitz around (Z, f(Z)). Since f is a single-valued mapping, f is locally Lipschitz
at 7. U

5. MORE EXAMPLES

Let us consider some more examples where we compute the Mordukhovich sub-
differentials and coderivatives of nonsmooth functions.

Example 5.1. Let f : R — R? be defined by the formula f(z) = (|z|*/2, —|z|) for
all x € R. Then f is a continuous function which is not locally Lipschitz at 0, and
gph f = {(,|z|"/?,—|z|) : = € R}. Using (2.3) and the formula for the normal

cone N (z, ) recalled in Section 2, we can show that

~

N((0,0,0),gphf) = N((0,0,0), gphf) = R x (=00, 0] x R.
Hence, for every y* = (yi,vy3) € R2,
R if y7 >0,
D*f(0)(y*) =
FOw") {(Z) if 47 <0,

Since f is not locally Lipschitz at T = 0, Proposition 4.4 shows that the coderivative
mapping D* f(0)(-) has no representative in the form of a set of linear operators. A
direct calculation shows that, for every y* = (yi,y5) € R? and u € R, it holds

400 if y} >0, u#0

Woe PO =9 if oyt <0, u#0
0 it y7 <0, u=0.

If we choose Jf(0) = (—00,0] x R, T = 0, and let Au = (au, fu) for every A =
(a, ) € Jf(0), u € R, then (2.8) is not fulfilled because sup (y*, Au) = 0 if
AeJf(0)
yi > 0, w > 0, y3 = 0, while (y* o f)*(0,u) = +oo. Similarly, if we chose
Jf(0) =[0,+00) xR and T = 0, then (2.8) does not hold because sup (y*, Au) =0
AeJf(0)
if yf >0, u <0, y5 = 0, while (y* o f)T(0,u) = 400. Thus, the chosen sets
Jf(0) are not approximate Jacobians for f at 0. However, a set like Jf(0) :=
{(=00,—1]U[2,+00)} x R is an approximate Jacobian of f at 0.

Example 5.2. Let f : R — R? be given by the formula f(z) = (—|z|"/3,2/?) for
all x € R. Then f is a continuous function which is not locally Lipschitz at 0, and
gph f = {(z, —|z|'/3,2'/3) : z € R}. Applying (2.3) and the formula for the normal
cone N (x,9) recalled in Section 2, we can show that

~

N((0,0,0),gphf) = N((0,0,0),gphf) =R x W,
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where W = {y* = (y},y3) € R? : —yf < y3 < yi}. Therefore, for every y* =
(v1,y3) € R,
. . Rif yf <ws < -1
D*f(0)(y*) = P !
() otherwise.

The coderivative mapping D* f(0)(-) has no representative in the form of a set of
linear operators. It is not difficult to show that, for every y* = (y,v3) € R? and
u € R, it holds

0 if u=20
0 ifys=yi=0, u#0
0 it y5—y; =0, u>0

+oo if y3—y7 >0, u>0
—oo if y53 -y <0, u>0
0 if y3+9y7=0, u<0
—oo if y3+y7 >0, u<0
(oo if y5 +yi <0, u<O.

(v o /)T(0,u) =

A direct verification using (2.8) shows that the set
Jf0) ={(a,—a) : a <0}U{(a,ar) : @ >0}

is an approximate Jacobian of f at 0 if we embed J£(0) into L(R,R?) by setting
Au = (au, fu) for any A = (o, 3) € Jf(0) and u € R.

Example 5.3 (See also [11, p. 65]). Let f(x) = |z1]| — |22| for all z = (1, 72) € R?
and T = (0,0). This function is neither convex, nor concave. It is not subdifferen-
tially regular (see [13]) at T = (0,0). In order to compute the coderivative mapping
D*f(Z)(-) : R = R? we have to define the normal cone N(Z,gphf). Note that

gphf = {(z1,72,t) : t = f(z1,72)}
= {(z1,22,t) : 1 >0, 22>0, t =z — 22}
U{(z1,72,t) : 21 >0, 22 <0, t =x1 + 72}
U{(l‘l,l‘Q,t) 21 <0, 2950, t=—1q —I—:Ez}
U{(z1,m2,t) : ©1 <0, 29 >0, t = —x1 — 22}.
Denote the four polyhedral convex sets in the last union by I'1, I'o, I's, and Iy,
respectively. Let z = (z1, xz2,t) € gphf.

If z belongs to the relative interior of I'y (resp., 'y, I's, and I'y), then N(z, gphf) =
{A(1,-1,-1) : A €R} (resp., N(z,gphf) = {A(1,1,-1) : X € R}, N(z,gphf) =
{A(=1,1,-1) : A€ R}, and N(z,gphf) = {A(—=1,—-1,-1) : A€ R}).

If z1 > 0 and z9 = 0, then z € I'y NI'9. Since

f(z,Fl) = {(v1,v9,0) € R : 0v9>0, 0=0v; —vg — al,

using the Farkas Lemma (see [19, p. 200]) we get

~

N(Zvr‘l) = {(771777270) = _)‘(0’ 170) - M(lv _17 _1) DA > 07 ne R}
Similarly,

~

N(z,T3) = {(m,m2,0) = =N (0,-1,0) — p/(1,1,-1) : N >0, ' € R}.
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As N(z,gphf) = N(2,T'1) N N(z,T3), we can deduce that
N(z,gphf) = {(—p. pt— A1) © 20> A >0},

It is clear that this Fréchet normal cone does not depend on the position of z # 0
in the half-line I'y N T's.
If 1 < 0 and xo =0, then z € I'3 NI['y. Arguing similarly as the above, we get

N(z,gphf) = {(m, A — o, 18) © 20> A >0}
If z1 =0 and x5 > 0, then z € I'y NI’y and

N(z,gphf) = {(=A — pt, j1, p1) : =241 > A > 0},
If z1y =0 and 2 < 0, then z € 'y N I'g and

N(z,8phf) = {(=A = p, —pt, o) = —2u > X > 0}.
If 1 =0 and x2 = 0, then z = (7,0) e 'y NT'e N3N Ty. Since
T((z,0),T;) = {(v1,v2,0) : v1 >0, v2 >0, 0=v; —v2 — a},
by the Farkas Lemma we have
N((%,0),T1) = {~=X1(1,0,0) — A2(0,1,0) — pu(1, =1, —1) : Ay >0, Ay >0, p € R}.

In a similar way we can find the normal cones N ((%,0),I;) (i = 2,3,4). Then, using

the formula
4

N((%,0),gphf) = ﬂ

we can show that N((z,0), gphf) = {(0,0,0)}.
Combining all the above results with formula (2.3), we obtain

N((7,0),gphf) = limsup N(z,gphf)

2—(T,0
:cone{()l,—l,—l), (1,1,-1), (-1,1,-1), (~1,-1,-1)}
U{(=ps b= A1) = 2> X >0}
U{(s A — pop) = 20> A >0}
U{(=A — gy pp) = =200 > A >0}
U{(=A =g, —p,p0) © =20 > A >0}

Consequently,

({(v", =), (" 9), (=y% ), (=y*, —y")}
U{(=A"+y*, —y*) : 2¢* > \* >0}
U{(=A"+y*, ") : 2y > \* >0}

for y* >0,

D*f(@)(y") = ¢ {w* =y, ("9, (v "), (=y",—y")}
U{(y*, —y* =A%) : —=2y* > \* >0}
U{(=y"y" + A7)« =2y 2 A" > 0}

for y* <0,
({(0,0)} for y*=0.
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Thus, for every y*, D*f(0)(y*) is a nonempty (usually nonconvex) compact set.
By the same method, we can obtain

N((z,0),epif) :limsup]/\\f(z,epif)
z—(T,0)
= cone{(1,~1,-1), (1,1,~1), (=1,1,-1), (=1,~1,-1)}
U{(=A —ps o) = =20 > A > 0}
UL(=A = gty =g, 1) = =2 > A > 0}

Therefore

oif(@) = {a*: (¢, —1) € N((7.0),cpif)}
{( ), 1 1) ( 171)7 ( 17—1)}
U{(=A* +1,—1) : 23 A > 0 U{(=A +1,1) : 2> \* >0}
={(\1) : =1 <N <1 U{(\,-1) : =1 <\ <1}

Thus 0y f(T) is a nonconvex compact set. This set is a J-L subdifferential of f at
z. But it is not a minimal J-L subdifferential, because

af(f) = {(17 *1)a (*17 1)}
is also a J-L subdifferential of f at T (see [4]).
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