Journal of Nonlinear and Convex Analysis Volume 8, Number 1, 2007, 11–34

STRONG CONVERGENCE TO COMMON FIXED POINTS OF FAMILIES OF NONEXPANSIVE MAPPINGS IN BANACH SPACES

K. NAKAJO, K. SHIMOJI, AND W. TAKAHASHI

ABSTRACT. Let *C* be a nonempty closed convex subset of a uniformly convex Banach space *E* whose norm is uniformly Gâteaux differentiable. Let $\{T_n\}$ and \mathcal{T} be families of nonexpansive mappings of *C* into itself such that $\emptyset \neq F(\mathcal{T}) \subset \bigcap_{n=1}^{\infty} F(T_n)$, where $F(T_n)$ is the set of all fixed points of T_n and $F(\mathcal{T})$ is the set of all common fixed points of \mathcal{T} . We consider a sequence $\{x_n\}$ generated by $x \in C$, $x_n = \alpha_n x + (1 - \alpha_n)T_n x_n$ ($\forall n \in \mathbf{N}$), where $\{\alpha_n\} \subset (0, 1)$ and then give the conditions of $\{\alpha_n\}$, $\{T_n\}$ and \mathcal{T} under which $\{x_n\}$ converges strongly to a common fixed point of \mathcal{T} . We also consider a sequence $\{x_n\}$ generated by $x_1 = x \in C$, $x_{n+1} = \alpha_n x + (1 - \alpha_n)T_n(\beta_n x + (1 - \beta_n)x_n)$ ($\forall n \in \mathbf{N}$), where $\{\alpha_n\} \subset [0, 1)$ and $\{\beta_n\} \subset [0, 1)$ and then give the conditions of $\{\alpha_n\}$, $\{\beta_n\}$, $\{T_n\}$ and \mathcal{T} under which $\{x_n\}$ converges strongly to a common fixed point of \mathcal{T} . Using these results, we improve and extend well-known strong convergence theorems.

1. INTRODUCTION

Throughout this paper, let E be a real Banach space with norm $\|\cdot\|$ and let **N** be the set of all positive integers. Let C be a nonempty closed convex subset of E. Then, a mapping $T: C \longrightarrow C$ is called nonexpansive if

$$||Tx - Ty|| \le ||x - y|| \ (\forall x, y \in C).$$

Browder [4] considered a sequence $\{x_n\}$ as follows:

(1.1)
$$x \in C, \ x_n = \alpha_n x + (1 - \alpha_n) T x_n \ (\forall n \in \mathbf{N}),$$

where $\{\alpha_n\} \subset (0,1)$ and he proved the first strong convergence theorem in the framework of a Hilbert space. Shioji and Takahashi [28], and Suzuki [30] also proved strong convergence theorems of Browder's type for one-parameter nonexpansive semigroups. Recently, authors [19] obtained a theorem which generalizes the results of [4, 30], simultaneously. In a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable, Shioji and Takahashi [26, 28, 29] and Nakajo [17] proved strong convergence theorems of Browder's type. On the other hand, Halpern [8] considered the following process: $x_1 = x \in C$ and

(1.2)
$$x_{n+1} = \alpha_n x + (1 - \alpha_n) T x_n \; (\forall n \in \mathbf{N}),$$

where $\{\alpha_n\} \subset [0, 1)$. Wittmann [38] proved a strong convergence theorem of Halpern's type in the framework of a Hilbert space and then, several authors [3, 12, 10, 11, 13, 22, 25] proved strong convergence theorems. In a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable, Shioji and

Copyright (C) 2007 Yokohama Publishers http://www.ybook.co.jp

²⁰⁰⁰ Mathematics Subject Classification. Primary 49M05, 47H05, 47H09, 47H20.

Key words and phrases. Strong convergence, Browder's type, Halpern's type, uniformly convex Banach space, nonexpansive mapping, accretive operator, W-mapping, nonexpansive semigroup.

Takahashi [24, 27, 28, 29], Kamimura and Takahashi [14, 15], Shimoji and Takahashi [23], Takahashi, Tamura and Toyoda [36] and Kimura, Takahashi and Toyoda [16] and Nakajo [17] proved the strong convergence theorems of Halpern's type.

In this paper, for families $\{T_n\}$ and \mathcal{T} of nonexpansive mappings of C into itself such that $\emptyset \neq F(\mathcal{T}) \subset \bigcap_{n=1}^{\infty} F(T_n)$, we consider a sequence $\{x_n\}$ generated by $x \in C, x_n = \alpha_n x + (1 - \alpha_n)T_n x_n \ (\forall n \in \mathbf{N})$, where $\{\alpha_n\} \subset (0, 1)$ and then give the conditions of $\{\alpha_n\}, \{T_n\}$ and \mathcal{T} under which $\{x_n\}$ converges strongly to a common fixed point of \mathcal{T} . We also consider a sequence $\{x_n\}$ generated by $x_1 =$ $x \in C, x_{n+1} = \alpha_n x + (1 - \alpha_n)T_n(\beta_n x + (1 - \beta_n)x_n) \ (\forall n \in \mathbf{N})$, where $\{\alpha_n\} \subset [0, 1)$ and $\{\beta_n\} \subset [0, 1)$ and then give the conditions of $\{\alpha_n\}, \{\beta_n\}, \{T_n\}$ and \mathcal{T} under which $\{x_n\}$ converges strongly to a common fixed point of \mathcal{T} . Using these results, we improve and extend well-known strong convergence theorems.

2. Preliminaries

Let *E* be a Banach space. We write $x_n \to x$ to indicate that a sequence $\{x_n\}$ converges strongly to *x*. Let *C* be a subset of *E* and let $T: C \longrightarrow E$. *T* is called nonexpansive if $||Tx - Ty|| \leq ||x - y||$ holds for each $x, y \in C$. We denote by F(T) the set of all fixed points of *T*. We define the modulus δ_E of convexity of *E* as follows: δ_E is a function of [0,2] into [0,1] such that $\delta_E(\varepsilon) = \inf\{1 - ||x + y||/2 : ||x|| \leq 1, ||y|| \leq 1, ||x - y|| \geq \varepsilon\}$ for every $\varepsilon \in [0,2]$. *E* is called uniformly convex if $\delta_E(\varepsilon) > 0$ for each $\varepsilon > 0$. *E* is called strictly convex if ||x + y||/2 < 1 for all $x, y \in E$ with ||x|| = ||y|| = 1 and $x \neq y$. In a strictly convex Banach space *E*, we have that if $||x|| = ||y|| = ||\lambda x + (1 - \lambda)y||$ for $x, y \in E$ and $\lambda \in (0, 1)$, then x = y. It is known that a uniformly convex Banach space is strictly convex. Let *C* be a nonempty closed convex subset of *E* and let *T* be a nonexpansive mapping of *C* into itself. We know that if *E* is strictly convex, F(T) is closed and convex. Let $G = \{g: [0, \infty) \longrightarrow [0, \infty): g(0) = 0, g:$ continuous, strictly increasing, convex}. Xu [39] proved the following result.

Lemma 2.1. Let E be a uniformly convex Banach space. Then, for every bounded subset B of E, there exists $g_B \in G$ such that

(2.1)
$$\|\lambda x + (1-\lambda)y\|^2 \le \lambda \|x\|^2 + (1-\lambda)\|y\|^2 - \lambda(1-\lambda)g_B(\|x-y\|)$$

for all $x, y \in B$ and $0 \le \lambda \le 1$.

Let E be a Banach space and let E^* be the dual space of E. A set-valued mapping J of E into E^* defined by

$$J(x) = \{x^* \in E^* : (x, x^*) = ||x||^2 = ||x^*||^2\} \ (\forall x \in E)$$

is called the duality mapping on E. E is said to be smooth provided the limit

(2.2)
$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t}$$

exists for every $x, y \in S(E)$, where $S(E) = \{x \in E : ||x|| = 1\}$. And the norm of E is said to be uniformly Gâteaux differentiable if for each $y \in S(E)$, (2.2) is attained uniformly for $x \in S(E)$. It is known that the duality mapping $J : E \longrightarrow 2^{E^*}$ is single valued and norm to weak^{*} uniformly continuous on bounded subsets of E

when E has a uniformly Gâteaux differentiable norm. The following lemma is well known; for example, see [33].

Lemma 2.2. Let E be a smooth Banach space. Then, for any $x, y \in E$,

$$||x||^2 - ||y||^2 \ge 2(x - y, J(y)).$$

Let μ be a continuous, linear functional on l^{∞} . We call μ a Banach limit when μ satisfies $\|\mu\| = \mu(1) = 1$ and $\mu_n(a_{n+1}) = \mu_n(a_n)$ for all $\{a_n\} \in l^{\infty}$. We know that $\liminf_{n\to\infty} a_n \leq \mu_n(a_n) \leq \limsup_{n\to\infty} a_n$ for every $\{a_n\} \in l^{\infty}$; see [33]. We have the following result from [37]; see also [6] and [33].

Lemma 2.3. Let C be a convex subset of E whose norm is uniformly Gâteaux differentiable and let $z \in C$. Let $\{x_n\} \subset E$ be a bounded sequence and let μ be a Banach limit. Then, $\mu_n ||x_n - z||^2 = \min_{y \in C} \mu_n ||x_n - y||^2$ if and only if $\mu_n(y - z, J(x_n - z)) \leq 0$ for all $y \in C$.

Let C be a convex subset of E and let K be a nonempty subset of C. Let P be a retraction of C onto K, that is, Px = x for every $x \in K$. P is said to be sunny if P(Px + t(x - Px)) = Px for each $x \in C$ and $t \ge 0$ with $Px + t(x - Px) \in C$. We know the following result; see[5, 21, 33].

Lemma 2.4. Let C be a convex subset of a smooth Banach space E and let K be a nonempty subset of C. Let P be a retraction of C onto K. Then, P is sunny and nonexpansive if and only if $(x - Px, J(y - Px)) \leq 0$ for every $x \in C$ and $y \in K$. Hence, there is at most one sunny nonexpansive retraction of C onto K.

3. Lemmas

Let E be a Banach space and let C be a subset of E. Let $\{T_n\}$ and \mathcal{T} be families of nonexpansive mappings of C into itself such that $\emptyset \neq F(\mathcal{T}) \subset \bigcap_{n=1}^{\infty} F(T_n)$, where $F(T_n)$ is the set of all fixed points of T_n and $F(\mathcal{T})$ is the set of all common fixed points of \mathcal{T} . Motivated by [19] and [20], we consider the following conditions of $\{T_n\}$ and \mathcal{T} :

- (I) For each bounded sequence $\{z_n\} \subset C$, $\lim_{n\to\infty} ||z_n T_n z_n|| = 0$ implies $\lim_{n\to\infty} ||z_n T z_n|| = 0$ for every $T \in \mathcal{T}$.
- (II) For every bounded sequence $\{z_n\} \subset C$, $\lim_{n\to\infty} ||z_{n+1} T_n z_n|| = 0$ implies $\lim_{n\to\infty} ||z_n T_m z_n|| = 0$ for all $m \in \mathbf{N}$.
- (III) There exists $\{a_n\} \subset [0,\infty)$ with $\sum_{n=1}^{\infty} a_n < \infty$ such that for every bounded subset B of C, there exists $M_B > 0$ such that $||T_n x T_{n+1} x|| \le a_n M_B$ holds for all $n \in \mathbf{N}$ and $x \in B$.

We have the following results for nonexpansive mappings.

Lemma 3.1. Let C be a nonempty closed convex subset of E and let T be a nonexpansive mapping of C into itself with $F(T) \neq \emptyset$. Then, the following hold:

- (i) $\{T_n\}$ with $T_n = T$ ($\forall n \in \mathbf{N}$) and $\mathcal{T} = \{T\}$ satisfy the condition (I) with $\bigcap_{n=1}^{\infty} F(T_n) = F(\mathcal{T}) = F(T);$
- (ii) $\{T_n\}$ with $T_n = T$ ($\forall n \in \mathbf{N}$) and $\mathcal{T} = \{T\}$ satisfy the condition (III) with $a_n = 0$ ($\forall n \in \mathbf{N}$).

Lemma 3.2. Let C be a nonempty closed convex subset of a uniformly convex Banach space E and let S and T be nonexpansive mappings of C into itself such that $F(S) \cap F(T) \neq \emptyset$. Let $\{\gamma_n\} \subset [a,b]$ for some $a, b \in (0,1)$ with $a \leq b$. Then, the following hold:

- (i) $\{T_n\}$ with $T_n = \gamma_n S + (1 \gamma_n)T$ ($\forall n \in \mathbf{N}$) and $\mathcal{T} = \{\frac{S+T}{2}\}$ satisfy the condition (I) with $\bigcap_{n=1}^{\infty} F(T_n) = F(\mathcal{T}) = F(S) \cap F(T);$
- (ii) $\{T_n\}$ with $T_n = \gamma_n S + (1 \gamma_n)T$ ($\forall n \in \mathbf{N}$) such that $\sum_{n=1}^{\infty} |\gamma_n \gamma_{n+1}| < \infty$ and $\mathcal{T} = \{\frac{S+T}{2}\}$ satisfy the conditions (I) and (III) with $a_n = |\gamma_n \gamma_{n+1}|$ ($\forall n \in \mathbf{N}$) and $\bigcap_{n=1}^{\infty} F(T_n) = F(\mathcal{T}) = F(S) \cap F(T)$.

Proof. Since E is strictly convex, we have $\bigcap_{n=1}^{\infty} F(\gamma_n S + (1 - \gamma_n)T) = F(\frac{S+T}{2}) = F(S) \cap F(T).$

(i). Let $\{z_n\}$ be a bounded sequence in C such that $\lim_{n\to\infty} ||z_n - T_n z_n|| = 0$ and let $z \in \bigcap_{n=1}^{\infty} F(T_n)$. There exists $g \in G$ such that

$$\begin{aligned} \|z_n - z\|^2 &\leq \{\|z_n - T_n z_n\| + \|T_n z_n - z\|\}^2 \leq \|z_n - T_n z_n\| \cdot M + \|T_n z_n - z\|^2 \\ &\leq \|z_n - T_n z_n\| \cdot M + \gamma_n \|S z_n - z\|^2 \\ &+ (1 - \gamma_n) \|T z_n - z\|^2 - \gamma_n (1 - \gamma_n) g(\|S z_n - T z_n\|) \\ &\leq \|z_n - T_n z_n\| \cdot M + \|z_n - z\|^2 - \gamma_n (1 - \gamma_n) g(\|S z_n - T z_n\|) \end{aligned}$$

for all $n \in \mathbf{N}$, where $M = \sup_{n \in \mathbf{N}} \{ \|z_n - T_n z_n\| + 2\|z_n - z\| \}$. So, we get $\lim_{n \to \infty} \|S z_n - T z_n\| = 0$. Since

 $||z_n - Sz_n|| \le ||z_n - T_n z_n|| + ||T_n z_n - Sz_n|| = ||z_n - T_n z_n|| + (1 - \gamma_n) ||Sz_n - Tz_n||$ for every $n \in \mathbf{N}$, we obtain $\lim_{n \to \infty} ||z_n - Sz_n|| = 0$ and hence, $\lim_{n \to \infty} ||z_n - Tz_n|| = 0$. O. Therefore, $\lim_{n \to \infty} ||z_n - \frac{S+T}{2}z_n|| = 0$. (ii). By (i), (I) holds. Let $z \in F(S) \cap F(T)$. We have

$$||T_n x - T_{n+1} x|| = ||\{\gamma_n S x + (1 - \gamma_n) T x\} - \{\gamma_{n+1} S x + (1 - \gamma_{n+1}) T x\}||$$

$$\leq |\gamma_n - \gamma_{n+1}| \cdot ||S x - T x|| \leq |\gamma_n - \gamma_{n+1}| \cdot \{2||x - z||\}$$

for every $n \in \mathbf{N}$ and $x \in C$. So, for each bounded subset B of C, there exists $M_B > 2 \cdot \sup_{x \in B} ||x - z||$ such that $||T_n x - T_{n+1} x|| \le a_n M_B$ for all $n \in \mathbf{N}$ and $x \in B$, where $a_n = |\gamma_n - \gamma_{n+1}|$ ($\forall n \in \mathbf{N}$). So, (III) holds.

An operator $A \subset E \times E$ is called accretive if for $(x_1, y_1), (x_2, y_2) \in A$, there exists $j \in J(x_1 - x_2)$ such that $(y_1 - y_2, j) \geq 0$, where J is the duality mapping of E. An accretive operator A is said to satisfy the range condition if $\overline{D(A)} \subset R(I + \lambda A)$ for all $\lambda > 0$, where D(A) is the domain of A, $R(I + \lambda A)$ is the range of $I + \lambda A$ and $\overline{D(A)}$ is the closure of D(A). An accretive operator A is said to be m-accretive if $R(I + \lambda A) = E$ for every $\lambda > 0$. If A is accretive, then we can define, for each r > 0, a mapping $J_r : R(I + rA) \longrightarrow D(A)$ by $J_r = (I + rA)^{-1}$. J_r is called the resolvent of A. We know that J_r is nonexpansive for all r > 0 and $A^{-1}0 = F(J_r)$ for every r > 0. We also define the Yosida approximation A_r by $A_r = (I - J_r)/r$ for each r > 0; see [33, 34] for more details. We have the following result for the resolvents [18].

Lemma 3.3. Let $A \subset E \times E$ be an accretive operator. Let $r, \lambda > 0$ and $D(A) \subset R(I + \lambda A)$. Then, $\frac{1}{\lambda} ||(I - J_{\lambda})J_r x|| \leq \frac{1}{r} ||(I - J_r)x||$ holds for every $x \in R(I + rA)$.

We also have the following result for the resolvents [7].

Lemma 3.4. Let $A \subset E \times E$ be an accretive operator and let $r, \lambda > 0$. For each $x \in R(I + rA) \cap R(I + \lambda A), ||J_{\lambda}x - J_{r}x|| \leq \frac{|\lambda - r|}{\lambda} ||x - J_{\lambda}x||$ holds.

We get the following results for the resolvents by Lemmas 3.3 and 3.4.

Lemma 3.5. Let C be a nonempty closed convex subset of E and let $A \subset E \times E$ be an accretive operator with $\overline{D(A)} \subset C \subset \cap_{\lambda>0} R(I + \lambda A)$ and $A^{-1}0 \neq \emptyset$. Then, the following hold:

- (i) $\{T_n\}$ with $T_n = J_{\lambda_n}$ ($\forall n \in \mathbf{N}$) with $\{\lambda_n\} \subset (0, \infty)$ and $\liminf_{n \to \infty} \lambda_n > 0$ and $\mathcal{T} = \{J_1\}$ satisfy the condition (I) and $\bigcap_{n=1}^{\infty} F(T_n) = F(\mathcal{T}) = A^{-1}0$;
- (ii) $\{T_n\}$ with $T_n = J_{\lambda_n}$ ($\forall n \in \mathbf{N}$) with $\{\lambda_n\} \subset (0, \infty)$, $\liminf_{n \to \infty} \lambda_n > 0$ and $\sum_{n=1}^{\infty} |\lambda_n - \lambda_{n+1}| < \infty$ and $\mathcal{T} = \{J_1\}$ satisfy the conditions (I) and (III) with $a_n = |\lambda_n - \lambda_{n+1}|$ ($\forall n \in \mathbf{N}$) and $\bigcap_{n=1}^{\infty} F(T_n) = F(\mathcal{T}) = A^{-1}0$;
- (iii) $\{T_n\}$ with $T_n = J_{\lambda_n}$ ($\forall n \in \mathbf{N}$), where $\{\lambda_n\} \subset (0, \infty)$ and $\lim_{n \to \infty} \lambda_n = \infty$ and $\mathcal{T} = \{J_1\}$ satisfy the conditions (I) and (II) with $\bigcap_{n=1}^{\infty} F(T_n) = F(\mathcal{T}) = A^{-1}0$.

Proof. We know that J_r is a nonexpansive mapping of C into itself for all r > 0 and $\bigcap_{n=1}^{\infty} F(J_{\lambda_n}) = F(J_1) = A^{-1}0$; see [33].

(i). Let $\{z_n\}$ be a bounded sequence in C such that $\lim_{n\to\infty} ||z_n - J_{\lambda_n} z_n|| = 0$. We have

$$\begin{aligned} \|z_n - J_1 z_n\| &\leq \|z_n - J_{\lambda_n} z_n\| + \|J_{\lambda_n} z_n - J_1 J_{\lambda_n} z_n\| + \|J_1 J_{\lambda_n} z_n - J_1 z_n\| \\ &\leq 2\|z_n - J_{\lambda_n} z_n\| + \frac{1}{\lambda_n} \|z_n - J_{\lambda_n} z_n\| \end{aligned}$$

for every $n \in \mathbf{N}$ by Lemma 3.3. From $\inf_{n \in \mathbf{N}} \lambda_n > 0$, we get $\lim_{n \to \infty} ||z_n - J_1 z_n|| = 0$. So, (I) holds.

(ii). From (i), (I) holds. By Lemma 3.4, we have

$$\|J_{\lambda_n}x - J_{\lambda_{n+1}}x\| \le \frac{|\lambda_n - \lambda_{n+1}|}{\lambda_n} \|x - J_{\lambda_n}x\| \le \frac{|\lambda_n - \lambda_{n+1}|}{c} \{2\|x - u\|\}$$

for every $n \in \mathbf{N}$ and $x \in C$, where $u \in A^{-1}0$ and $c = \inf_{n \in \mathbf{N}} \lambda_n (> 0)$. So, for each bounded subset B of C, there exists $M_B > \frac{2}{c} \sup_{x \in B} ||x - u||$ such that $||T_n x - T_{n+1} x|| \le a_n M_B$ for all $n \in \mathbf{N}$ and $x \in B$, where $a_n = |\lambda_n - \lambda_{n+1}|$ ($\forall n \in \mathbf{N}$). So, (III) holds.

(iii). As in the proof of (i), (I) holds. Further, let $\{z_n\}$ be a bounded sequence in C such that $\lim_{n\to\infty} ||z_{n+1} - J_{\lambda_n} z_n|| = 0$ and fix $m \in \mathbb{N}$. Then, by Lemma 3.3 we have

$$\begin{aligned} \|z_{n+1} - J_{\lambda_m} z_{n+1}\| &\leq \|z_{n+1} - J_{\lambda_n} z_n\| + \|J_{\lambda_n} z_n - J_{\lambda_m} J_{\lambda_n} z_n\| \\ &+ \|J_{\lambda_m} J_{\lambda_n} z_n - J_{\lambda_m} z_{n+1}\| \\ &\leq 2\|z_{n+1} - J_{\lambda_n} z_n\| + \frac{\lambda_m}{\lambda_n} \|z_n - J_{\lambda_n} z_n\| \end{aligned}$$

and hence $||z_{n+1} - J_{\lambda_m} z_{n+1}|| \to 0$. So, (II) holds.

Let C be a nonempty closed convex subset of E. Let S_1, S_2, \ldots be infinite nonexpansive mappings of C into itself and let β_1, β_2, \ldots be real numbers such

that $0 \leq \beta_i \leq 1$ for every $i \in \mathbf{N}$. Then, for any $n \in \mathbf{N}$, Takahashi [32] (see also [23, 34, 35] introduced a mapping W_n of C into itself as follows:

$$\begin{array}{rcl} U_{n,n+1} &=& I, \\ U_{n,n} &=& \beta_n S_n U_{n,n+1} + (1-\beta_n) I, \\ U_{n,n-1} &=& \beta_{n-1} S_{n-1} U_{n,n} + (1-\beta_{n-1}) I, \\ &\vdots \\ U_{n,k} &=& \beta_k S_k U_{n,k+1} + (1-\beta_k) I, \\ &\vdots \\ U_{n,2} &=& \beta_2 S_2 U_{n,3} + (1-\beta_2) I, \\ W_n &=& U_{n,1} &=& \beta_1 S_1 U_{n,2} + (1-\beta_1) I. \end{array}$$

Such a mapping W_n is called the W-mapping generated by $S_n, S_{n-1}, \ldots, S_1$ and $\beta_n, \beta_{n-1}, \ldots, \beta_1$. We know that if E is strictly convex, $\bigcap_{i=1}^n F(S_i) \neq \emptyset, 0 < \beta_i < 1$ for every i = 2, 3, ..., n and $0 < \beta_1 \le 1$, then, $F(W_n) = \bigcap_{i=1}^n F(S_i)$; see [34, 35]. We also have that if E is strictly convex, $\bigcap_{n=1}^{\infty} F(S_n) \neq \emptyset$ and $0 < \beta_i \leq b < 1$ for every $i \in \mathbf{N}$ for some $b \in (0, 1)$, then, $\lim_{n \to \infty} U_{n,k}x$ exists for every $x \in C$ and $k \in \mathbf{N}$; see [23]. So, we can define a mapping W of C into itself as follows:

$$Wx = \lim_{n \to \infty} W_n x = \lim_{n \to \infty} U_{n,1} x$$

for every $x \in C$. Such a W is called the W-mapping generated by S_1, S_2, \ldots and β_1, β_2, \ldots We have that if E is strictly convex, $\bigcap_{i=1}^{\infty} F(S_i) \neq \emptyset$ and $0 < \beta_i \le b < 1$ for every $i \in \mathbf{N}$ for some $b \in (0,1)$, then, $F(W) = \bigcap_{i=1}^{\infty} F(S_i)$; see [23]. We know the following results for the W-mappings.

Lemma 3.6. Let C be a nonempty closed convex subset of a strictly convex Banach space E. Let S_1, S_2, \ldots be infinite nonexpansive mappings of C into itself with $\bigcap_{n=1}^{\infty} F(S_n) \neq \emptyset$ and let β_1, β_2, \ldots be real numbers with $0 < \beta_i \leq b < 1$ for every $i \in \mathbf{N}$ for some $b \in (0,1)$. Let W_n be the W-mapping generated by $S_n, S_{n-1}, \ldots, S_1$ and $\beta_n, \beta_{n-1}, \ldots, \beta_1$ for every $n \in \mathbf{N}$ and let W be the W-mapping generated by S_1, S_2, \ldots and β_1, β_2, \ldots Then, the following hold:

- (i) $\{T_n\}$ with $T_n = W_n$ ($\forall n \in \mathbb{N}$) and $\mathcal{T} = \{W\}$ satisfy the condition (I) with
- $\bigcap_{n=1}^{\infty} F(T_n) = F(\mathcal{T}) = \bigcap_{n=1}^{\infty} F(S_n);$ (ii) $\{T_n\}$ with $T_n = W_n$ ($\forall n \in \mathbf{N}$) and $\mathcal{T} = \{W\}$ satisfy the conditions (I) and (III) with $a_n = b^{n+1}$ ($\forall n \in \mathbf{N}$) and $\bigcap_{n=1}^{\infty} F(T_n) = F(\mathcal{T}) = \bigcap_{n=1}^{\infty} F(S_n).$

Proof. We have $\cap_{n=1}^{\infty} F(W_n) = \cap_{n=1}^{\infty} F(S_n) = F(W) \neq \emptyset$. (i). Let $z \in \bigcap_{n=1}^{\infty} \tilde{F}(S_n)$. We get

$$\begin{aligned} \|W_n x - W_{n+1} x\| &= \|\beta_1 S_1 U_{n,2} x - \beta_1 S_1 U_{n+1,2} x\| \le \beta_1 \|U_{n,2} x - U_{n+1,2} x\| \\ &= \beta_1 \|\beta_2 S_2 U_{n,3} x - \beta_2 S_2 U_{n+1,3} x\| \\ &\le \beta_1 \beta_2 \|U_{n,3} x - U_{n+1,3} x\| \\ &\le \cdots \le \beta_1 \beta_2 \dots \beta_n \beta_{n+1} \|x - S_{n+1} x\| \le b^{n+1} \{2 \|x - z\| \} \end{aligned}$$

for every $n \in \mathbf{N}$ and $x \in C$. Let $\{z_n\}$ be a bounded sequence in C such that $\lim_{n\to\infty} ||z_n - W_n z_n|| = 0$. Let $n \in \mathbf{N}$. We get

$$\begin{aligned} \|z_n - W_{n+m} z_n\| &\leq \|z_n - W_n z_n\| + \|W_n z_n - W_{n+1} z_n\| + \cdots \\ &+ \|W_{n+m-1} z_n - W_{n+m} z_n\| \\ &\leq \|z_n - W_n z_n\| + b^{n+1} \{2\|z_n - z\|\} + \cdots + b^{n+m} \{2\|z_n - z\|\} \\ &\leq \|z_n - W_n z_n\| + (b^{n+1} + \cdots + b^{n+m})M \\ &\leq \|z_n - W_n z_n\| + \frac{b^{n+1} (1 - b^m)}{1 - b}M \end{aligned}$$

for every $m \in \mathbf{N}$, where $M = \sup_{n \in \mathbf{N}} \{2 \| z_n - z \|\}$. So, we obtain

$$||z_n - Wz_n|| = \lim_{m \to \infty} ||z_n - W_{n+m}z_n|| \le ||z_n - W_nz_n|| + \frac{b^{n+1}}{1-b}M$$

for each $n \in \mathbf{N}$ which implies $\lim_{n\to\infty} ||z_n - Wz_n|| = 0$. So, (I) holds. (ii). Let $z \in \bigcap_{n=1}^{\infty} F(S_n)$. As in the proof of (i), we have

$$||W_n x - W_{n+1} x|| \le b^{n+1} 2||x - z|$$

for every $n \in \mathbf{N}$ and $x \in C$. So, for each bounded subset B of C, there exists $M_B > 2 \cdot \sup_{x \in B} ||x - z||$ such that $||T_n x - T_{n+1} x|| \le a_n M_B$ for all $n \in \mathbf{N}$ and $x \in B$, where $a_n = b^{n+1}$ ($\forall n \in \mathbf{N}$). So, (III) holds. As in the proof of (i), (I) holds. \Box

Let S be a semigroup and let B(S) be the Banach space of all bounded real valued functions on S with supremum norm. Then, for every $s \in S$ and $f \in B(S)$, we can define $l_s f \in B(S)$ by $(l_s f)(t) = f(st)$ for each $t \in S$. We also denote by l_s^* the adjoint operator of l_s . Let D be a subspace of B(S) containing constants and let μ be an element of D^* , where D^* is its topological dual. A linear functional μ is called a mean on D if $\|\mu\| = \mu(1) = 1$. Further, let D be satisfied that for each bounded sequence $\{f_n : n \in \mathbf{N}\}$ of D, the mappings $t \mapsto \inf_n f_n(t)$ and $t \mapsto \sup_n f_n(t)$ are in D. A mean μ on D is said to be monotone convergent if $\mu_t(\lim_{n\to\infty} f_n(t)) = \lim_{n\to\infty} \mu_t(f_n(t))$ for every bounded sequence $\{f_n : n \in \mathbf{N}\}$ of D such that $0 \leq f_1 \leq f_2 \leq \cdots$. We know that if μ is a monotone convergent mean on D and $\{f_n : n \in \mathbf{N}\}$ is a bounded sequence of D, then $\limsup_{n\to\infty} \mu_t(f_n(t)) \leq$ $\mu_t(\limsup_{n\to\infty} f_n(t))$. Let C be a nonempty closed convex subset of E. A family $S = \{T(s) : s \in S\}$ of mappings of C into itself is called a nonexpansive semigroup on C if it satisfies the following conditions:

- (i) T(st) = T(s)T(t) for every $s, t \in S$;
- (ii) $||T(s)x T(s)y|| \le ||x y||$ for each $s \in S$ and $x, y \in C$.

We denote by F(S) the set of all common fixed points of S, i.e., $\cap_{t \in S} F(T(t))$. Hirano, Kido and Takahashi [9] proved the following; see also [31].

Lemma 3.7. Let S be a semigroup. Let C be a nonempty closed convex subset of E and let $S = \{T(s) : s \in S\}$ be a nonexpansive semigroup on C such that for every $x \in C$, $\{T(t)x : t \in S\}$ is contained in a weakly compact convex subset of C. Let D be a subspace of B(S) such that D contains constants and the mapping $t \mapsto (T(t)x, y^*)$ is in D for each $x \in C$ and $y^* \in E^*$. Then, for any mean μ on D and $x \in C$, there exists a unique element $T_{\mu}x$ in C such that $(T_{\mu}x, x^*) = \mu_s(T(s)x, x^*)$ for every $x^* \in E^*$. And T_{μ} is a nonexpansive mapping of C into itself and $T_{\mu}x = x$ for all $x \in F(S)$.

Further, Atsushiba, Shioji and Takahashi [2] proved the following; see also [1, 29].

Lemma 3.8. Let C be a nonempty closed convex subset of a uniformly convex Banach space E. Let S be a semigroup and let $S = \{T(s) : s \in S\}$ be a nonexpansive semigroup on C such that $F(S) \neq \emptyset$. Let D be a subspace of B(S) containing constants and being invariant under l_s for every $s \in S$ and for each $x \in C$ and $x^* \in E^*$, the function $t \mapsto (T(t)x, x^*)$ is in D. Let $\{\mu_n\}$ be a sequence of means on D such that $\lim_{n\to\infty} \|\mu_n - l_s^*\mu_n\| = 0$ for all $s \in S$. Let $w \in F(S)$ and $D_r = \{y \in$ $C : \|y - w\| \leq r\}$ for r > 0. Then, $\lim_{n\to\infty} \sup_{x \in D_r} \|T_{\mu_n}x - T(t)T_{\mu_n}x\| = 0$ for every r > 0 and $t \in S$.

We have the following results for nonexpansive semigroups from Lemmas 3.7 and 3.8.

Lemma 3.9. Let C be a nonempty closed convex subset of a uniformly convex Banach space E and let S be a semigroup. Let $S = \{T(s) : s \in S\}$ be a nonexpansive semigroup on C such that $F(S) \neq \emptyset$ and let D be a subspace of B(S) containing constants and being invariant under l_s for all $s \in S$. Suppose that for every $x \in C$ and $x^* \in E^*$, the function $t \mapsto (T(t)x, x^*)$ is in D. Let $\{\mu_n\}$ be a sequence of means on D such that $\lim_{n\to\infty} \|\mu_n - l_s^*\mu_n\| = 0$ for each $s \in S$. Then, the following hold:

- (i) $\{T_n\}$ with $T_n = T_{\mu_n} \ (\forall n \in \mathbb{N})$ and $\mathcal{T} = \mathcal{S}$ satisfy the condition (I) with $\bigcap_{n=1}^{\infty} F(T_n) = F(\mathcal{T}) = F(\mathcal{S});$
- (ii) moreover, assume that the mappings $t \mapsto \sup_n f_n(t)$ and $t \mapsto \inf_n f_n(t)$ are in D for every bounded sequence $\{f_n : n \in \mathbb{N}\}$ of D and $\{\mu_n\}$ is a sequence of monotone convergent means on D. Then, $\{T_n\}$ with $T_n = T_{\mu_n}$ ($\forall n \in \mathbb{N}$) and T = S satisfy the conditions (I) and (II) with $\bigcap_{n=1}^{\infty} F(T_n) = F(T) = F(S)$.

Proof. By Lemmas 3.7 and 3.8, we have $\bigcap_{n=1}^{\infty} F(T_{\mu_n}) = F(\mathcal{S})$. (i). Let $\{z_n\}$ in C be a bounded sequence such that $\lim_{n\to\infty} ||z_n - T_{\mu_n}z_n|| = 0$. For all $t \in S$ and $n \in \mathbf{N}$,

$$\begin{aligned} \|z_n - T(t)z_n\| &\leq \|z_n - T_{\mu_n}z_n\| + \|T_{\mu_n}z_n - T(t)T_{\mu_n}z_n\| + \|T(t)T_{\mu_n}z_n - T(t)z_n\| \\ &\leq 2\|z_n - T_{\mu_n}z_n\| + \|T_{\mu_n}z_n - T(t)T_{\mu_n}z_n\|. \end{aligned}$$

From Lemma 3.8, we obtain $\lim_{n\to\infty} ||z_n - T(t)z_n|| = 0$ for every $t \in S$. So, (I) holds.

(ii). As in the proof of (i), (I) holds. Let $\{z_n\} \subset C$ be a bounded sequence such that $\lim_{n\to\infty} ||z_{n+1} - T_{\mu_n} z_n|| = 0$. We have

$$\begin{aligned} \|z_{n+1} - T_{\mu_m} z_{n+1}\| &\leq \|z_{n+1} - T_{\mu_n} z_n\| + \|T_{\mu_n} z_n - T_{\mu_m} T_{\mu_n} z_n\| \\ &+ \|T_{\mu_m} T_{\mu_n} z_n - T_{\mu_m} z_{n+1}\| \\ &\leq 2\|z_{n+1} - T_{\mu_n} z_n\| + \|T_{\mu_n} z_n - T_{\mu_m} T_{\mu_n} z_n\| \end{aligned}$$

for every $m, n \in \mathbf{N}$. Hence, for each $m \in \mathbf{N}$, we get

$$\lim_{n \to \infty} \sup_{n \to \infty} \|z_{n+1} - T_{\mu_m} z_{n+1}\|^2 \leq \lim_{n \to \infty} \sup_{n \to \infty} \|T_{\mu_n} z_n - T_{\mu_m} T_{\mu_n} z_n\|^2$$
$$= \lim_{n \to \infty} \sup_{n \to \infty} (\mu_m)_t (T(t)(T_{\mu_n} z_n) - T_{\mu_n} z_n, x_n^*)$$

$$\leq (\mu_m)_t \left(\limsup_{n \to \infty} (T(t)(T_{\mu_n} z_n) - T_{\mu_n} z_n, x_n^*) \right) \leq 0$$

by Lemma 3.8, where $x_n^* \in J(T_{\mu_m}(T_{\mu_n}z_n) - T_{\mu_n}z_n)$ for all $n \in \mathbf{N}$. Therefore, (II) holds. \square

We know the following results for nonexpansive mappings from Lemma 3.9; see [9].

Lemma 3.10. Let C be a nonempty closed convex subset of a uniformly convex Banach space E and let T be a nonexpansive mapping of C into itself with $F(T) \neq \emptyset$. Then, the following hold:

- (i) $\{T_n\}$ with $T_n = \frac{1}{n} \sum_{i=0}^{n-1} T^i$ ($\forall n \in \mathbf{N}$) and $\mathcal{T} = \{T^i : i = 0, 1, 2, ...\}$ satisfy the condition (I) with $\bigcap_{n=1}^{\infty} F(T_n) = F(\mathcal{T}) = F(T)$; (ii) $\{T_n\}$ with $T_n = \frac{1}{n} \sum_{i=0}^{n-1} T^i$ ($\forall n \in \mathbf{N}$) and $\mathcal{T} = \{T^i : i = 0, 1, 2, ...\}$ satisfy the conditions (I) and (II) with $\bigcap_{n=1}^{\infty} F(T_n) = F(\mathcal{T}) = F(T)$.

Proof. Let $S = \{0, 1, 2, ...\}, S = \{T^i : i \in S\}, D = B(S) \text{ and } \mu_n(f) = \frac{1}{n} \sum_{i=0}^{n-1} f(i)$ for all $n \in \mathbb{N}$ and $f \in D$. We have $F(S) = F(T) \neq \emptyset$ and know that $\{\mu_n\}$ is a sequence of monotone convergent means on D with $\lim_{n\to\infty} \|\mu_n - l_k^*\mu_n\| = 0$ for all $k \in S$ and $T_{\mu_n} x = \frac{1}{n} \sum_{i=0}^{n-1} T^i x$ for every $x \in C$. By Lemma 3.9, we get Lemma 3.10. \square

Lemma 3.11. Let C be a nonempty closed convex subset of a uniformly convex Banach space E and let S_1 and S_2 be nonexpansive mappings of C into itself with $S_1S_2 = S_2S_1$ and $F(S_1) \cap F(S_2) \neq \emptyset$. Then, the following hold:

- (i) $\{T_n\}$ with $T_n = \frac{2}{(n+1)(n+2)} \sum_{k=0}^n \sum_{i+j=k} S_1^i S_2^j$ ($\forall n \in \mathbb{N}$) and $\mathcal{T} = \{S_1^i S_2^j : i, j = 0, 1, 2, ...\}$ satisfy the condition (I) with $\bigcap_{n=1}^{\infty} F(T_n) = F(\mathcal{T}) = F(S_1) \cap$ $F(S_2);$
- (ii) $\{T_n\}$ with $T_n = \frac{2}{(n+1)(n+2)} \sum_{k=0}^n \sum_{i+j=k} S_1^i S_2^j \ (\forall n \in \mathbf{N}) \ and \ \mathcal{T} = \{S_1^i S_2^j : (\forall n \in \mathbf{N}) \ and \ \mathcal{T} = \{S_1^i S_2^j : (\forall n \in \mathbf{N}) \ and \ \mathcal{T} = \{S_1^i S_2^j : (\forall n \in \mathbf{N}) \ and \ \mathcal{T} = \{S_1^i S_2^j : (\forall n \in \mathbf{N}) \ and \ \mathcal{T} = \{S_1^i S_2^j : (\forall n \in \mathbf{N}) \ and \ \mathcal{T} = \{S_1^i S_2^j : (\forall n \in \mathbf{N}) \ and \ \mathcal{T} = \{S_1^i S_2^j : (\forall n \in \mathbf{N}) \ and \ \mathcal{T} = \{S_1^i S_2^j : (\forall n \in \mathbf{N}) \ and \ \mathcal{T} = \{S_1^i S_2^j : (\forall n \in \mathbf{N}) \ and \ \mathcal{T} = \{S_1^i S_2^j : (\forall n \in \mathbf{N}) \ and \ \mathcal{T} = \{S_1^i S_2^j : (\forall n \in \mathbf{N}) \ and \ \mathcal{T} = \{S_1^i S_2^j : (\forall n \in \mathbf{N}) \ and \ \mathcal{T} = \{S_1^i S_2^j : (\forall n \in \mathbf{N}) \ and \ \mathcal{T} = \{S_1^i S_2^j : (\forall n \in \mathbf{N}) \ and \ \mathcal{T} = \{S_1^i S_2^j : (\forall n \in \mathbf{N}) \ and \ \mathcal{T} = \{S_1^i S_2^j : (\forall n \in \mathbf{N}) \ and \ \mathcal{T} = \{S_1^i S_2^j : (\forall n \in \mathbf{N}) \ and \ \mathcal{T} = \{S_1^i S_2^j : (\forall n \in \mathbf{N}) \ and \ \mathcal{T} = \{S_1^i S_2^j : (\forall n \in \mathbf{N}) \ and \ \mathcal{T} = \{S_1^i S_2^j : (\forall n \in \mathbf{N}) \ and \ \mathcal{T} = \{S_1^i S_2^j : (\forall n \in \mathbf{N}) \ and \ \mathcal{T} = \{S_1^i S_2^j : (\forall n \in \mathbf{N}) \ and \ \mathcal{T} = \{S_1^i S_2^j : (\forall n \in \mathbf{N}) \ and \ \mathcal{T} = \{S_1^i S_2^j : (\forall n \in \mathbf{N}) \ and \ \mathcal{T} = \{S_1^i S_2^j : (\forall n \in \mathbf{N}) \ and \ \mathcal{T} = \{S_1^i S_2^j : (\forall n \in \mathbf{N}) \ and \ \mathcal{T} = \{S_1^i S_2^j : (\forall n \in \mathbf{N}) \ and \ \mathcal{T} = \{S_1^i S_2^j : (\forall n \in \mathbf{N}) \ and \ \mathcal{T} = \{S_1^i S_2^j : (\forall n \in \mathbf{N}) \ and \ \mathcal{T} = \{S_1^i S_2^j : (\forall n \in \mathbf{N}) \ and \ \mathcal{T} = \{S_1^i S_2^j : (\forall n \in \mathbf{N}) \ and \ \mathcal{T} = \{S_1^i S_2^j : (\forall n \in \mathbf{N}) \ and \ \mathcal{T} = \{S_1^i S_2^j : (\forall n \in \mathbf{N}) \ and \ \mathcal{T} = \{S_1^i S_2^j : (\forall n \in \mathbf{N}) \ and \ \mathcal{T} = \{S_1^i S_2^j : (\forall n \in \mathbf{N}) \ and \ \mathcal{T} = \{S_1^i S_2^j : (\forall n \in \mathbf{N}) \ and \ \mathcal{T} = \{S_1^i S_2^j : (\forall n \in \mathbf{N}) \ and \ \mathcal{T} = \{S_1^i S_2^j : (\forall n \in \mathbf{N}) \ and \ \mathcal{T} = \{S_1^i S_2^j : (\forall n \in \mathbf{N}) \ and \ n \in \mathbf{N}\} \ and \ n$ $i, j = 0, 1, 2, \dots$ satisfy the conditions (I) and (II) with $\bigcap_{n=1}^{\infty} F(T_n) = F(T) =$ $F(S_1) \cap F(S_2).$

Proof. Let $S = \{0, 1, 2, ...\} \times \{0, 1, 2, ...\}, S = \{S_1^i S_2^j : (i, j) \in S\}, D = B(S)$ and $\mu_n(f) = \frac{2}{(n+1)(n+2)} \sum_{k=0}^n \sum_{i+j=k} f(i,j)$ for every $n \in \mathbf{N}$ and $f \in D$. We have $F(\mathcal{S}) = F(S_1) \cap F(S_2) \neq \emptyset$ and know that $\{\mu_n\}$ is a sequence of monotone convergent means on D with $\lim_{n\to\infty} \|\mu_n - l^*_{(k,m)}\mu_n\| = 0$ for each $(k,m) \in S$ and $T_{\mu_n}x = \frac{2}{(n+1)(n+2)} \sum_{k=0}^n \sum_{i+j=k} S_1^i S_2^j x$ for every $x \in C$. By Lemma 3.9, we get Lemma 3.11.

Let C be a nonempty closed convex subset of E. A family $\mathcal{S} = \{T(s) : 0 \leq s < s\}$ ∞ of mappings of C into itself is called a one-parameter nonexpansive semigroup on C if it satisfies the following conditions:

- (i) T(0)x = x for all $x \in C$;
- (ii) T(s+t) = T(s)T(t) for every $s, t \ge 0$;
- (iii) $||T(s)x T(s)y|| \le ||x y||$ for each $s \ge 0$ and $x, y \in C$;
- (iv) for all $x \in C$, $s \mapsto T(s)x$ is continuous.

We have the following results for one-parameter nonexpansive semigroups by Lemma 3.9; see [9].

Lemma 3.12. Let C be a nonempty closed convex subset of a uniformly convex Banach space E and let $S = \{T(s) : 0 \le s < \infty\}$ be a one-parameter nonexpansive semigroup on C with $F(\mathcal{S}) \neq \emptyset$. Let $\{t_n\} \subset (0,\infty)$ with $\lim_{n\to\infty} t_n = \infty$. Then, the following hold:

- (i) $\{T_n\}$ with $T_n \cdot = \frac{1}{t_n} \int_0^{t_n} T(s) \cdot ds$ ($\forall n \in \mathbf{N}$) and $\mathcal{T} = \mathcal{S}$ satisfy the condition (I) with $\cap_{n=1}^{\infty} F(T_n) = F(\mathcal{T}) = F(\mathcal{S});$ (ii) $\{T_n\}$ with $T_n \cdot = \frac{1}{t_n} \int_0^{t_n} T(s) \cdot ds$ ($\forall n \in \mathbf{N}$) and $\mathcal{T} = \mathcal{S}$ satisfy the conditions (I) and (II) with $\cap_{n=1}^{\infty} F(T_n) = F(\mathcal{T}) = F(\mathcal{S}).$

Proof. (i). Let $S = (0, \infty)$ and let D be the Banach space C(S) of all bounded continuous real valued functions on S. Let $\lambda_s(f) = \frac{1}{s} \int_0^s f(t) dt$ for every s > 0 and $f \in D$. We know that $\{\lambda_s\}$ is a net of means on D with $\lim_{s\to\infty} \|\lambda_s - l_k^*\lambda_s\| = 0$ for each $k \in (0,\infty)$ and $T_{\lambda_s} x = \frac{1}{s} \int_0^s T(t) x \, dt$ for every $x \in C$. By Lemma 3.9 (i), we get Lemma 3.12 (i).

(ii). Let $S = (0, \infty)$ and let D be a set of all bounded Lebesque measurable real valued functions on S. Let $\lambda_s(f) = \frac{1}{s} \int_0^s f(t) dt$ for every s > 0 and $f \in D$. We have the mappings $t \mapsto \sup_n f_n(t)$ and $t \mapsto \inf_n f_n(t)$ are in D for every bounded sequence $\{f_n : n \in \mathbf{N}\}$ of D. We also know that $\{\lambda_s\}$ is a net of monotone convergent means on D with $\lim_{s\to\infty} \|\lambda_s - l_k^* \lambda_s\| = 0$ for each $k \in (0,\infty)$ and $T_{\lambda_s} x = \frac{1}{\epsilon} \int_0^s T(t) x \, dt$ for every $x \in C$. From Lemma 3.9 (ii), we get Lemma 3.12 (ii).

4. Strong convergence theorem of Browder's type

Using the method of [26] (see also [28, 29]), we get the following.

Theorem 4.1. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable. Let $\{T_n\}$ and \mathcal{T} be families of nonexpansive mappings of C into itself which satisfy $\emptyset \neq F(\mathcal{T}) \subset$ $\cap_{n=1}^{\infty} F(T_n)$ and the condition (I). Define a sequence $\{x_n\}$ in C as follows: $x \in C$ and

$$x_n = \alpha_n x + (1 - \alpha_n) T_n x_n \; (\forall n \in \mathbf{N}),$$

where $\{\alpha_n\} \subset (0,1)$ If $\lim_{n\to\infty} \alpha_n = 0$, $\{x_n\}$ converges strongly to $P_{F(\mathcal{T})}x$, where $P_{F(\mathcal{T})}$ is a sunny nonexpansive retraction of C onto $F(\mathcal{T})$.

Proof. Let $U_n = \alpha_n x + (1 - \alpha_n) T_n$ for every $n \in \mathbf{N}$. We have $U_n : C \longrightarrow C$ and U_n is a contraction for all $n \in \mathbf{N}$ since T_n is nonexpansive and $0 < \alpha_n < 1$. So, for each $n \in \mathbf{N}$, there exists a unique element $x_n \in C$ such that $x_n = \alpha_n x + (1 - \alpha_n) T_n x_n$. By (I), we get $F(\mathcal{T}) = \bigcap_{n=1}^{\infty} F(T_n)$. Let $z \in \bigcap_{n=1}^{\infty} F(T_n)$. We obtain

$$\begin{aligned} \|x_n - z\| &= \|\alpha_n (x - z) + (1 - \alpha_n) (T_n x_n - z)\| \\ &\leq \alpha_n \|x - z\| + (1 - \alpha_n) \|T_n x_n - z\| \\ &\leq \alpha_n \|x - z\| + (1 - \alpha_n) \|x_n - z\| \end{aligned}$$

for every $n \in \mathbf{N}$. So, we have $||x_n - z|| \leq ||x - z||$ for all $n \in \mathbf{N}$. This implies that $\{x_n\}$ is bounded. Further, we have that

$$||x_n - T_n x_n|| = \alpha_n ||x - T_n x_n|| \le \alpha_n (||x - z|| + ||T_n x_n - z||) \le 2\alpha_n ||x - z||$$

for each $n \in \mathbf{N}$. From $\lim_{n \to \infty} \alpha_n = 0$, we get

$$\lim_{n \to \infty} \|x_n - T_n x_n\| = 0.$$

So, from (I), we have

(4.1)
$$\lim_{n \to \infty} \|x_n - Tx_n\| = 0$$

for all $T \in \mathcal{T}$. We get

$$\begin{aligned} &\alpha_n(x-z, J(x_n-z)) \\ &= \alpha_n(x_n-z, J(x_n-z)) + (1-\alpha_n)((x_n-T_nx_n) - (z-T_nz), J(x_n-z)) \\ &= \alpha_n \|x_n-z\|^2 + (1-\alpha_n)\{(x_n-z, J(x_n-z)) - (T_nx_n - T_nz, J(x_n-z))\} \\ &\geq \alpha_n \|x_n-z\|^2 + (1-\alpha_n)\{\|x_n-z\|^2 - \|T_nx_n - T_nz\| \cdot \|x_n-z\|\} \geq \alpha_n \|x_n-z\|^2 \end{aligned}$$

for every $n \in \mathbf{N}$. So, we obtain

(4.2)
$$||x_n - z||^2 \le (x - z, J(x_n - z))$$

for all $n \in \mathbf{N}$ and $z \in \bigcap_{n=1}^{\infty} F(T_n)$. We also have

$$(x_n - x, J(x_n - z)) = \frac{1 - \alpha_n}{\alpha_n} (T_n x_n - x_n, J(x_n - z))$$

= $\frac{1 - \alpha_n}{\alpha_n} \{ (T_n x_n - z, J(x_n - z)) - (x_n - z, J(x_n - z)) \}$
(4.3) = $\frac{1 - \alpha_n}{\alpha_n} \{ (T_n x_n - z, J(x_n - z)) - ||x_n - z||^2 \} \le 0$

for each $n \in \mathbf{N}$ and $z \in \bigcap_{n=1}^{\infty} F(T_n)$. Let $\{x_{n_i}\}$ be a subsequence of $\{x_n\}$ and let μ be a Banach limit. Let g be a real valued function on C defined by $g(y) = \mu_i ||x_{n_i} - y||^2$ for every $y \in C$. By [33], we know that g is continuous and convex and g satisfies $\lim_{\|y\|\to\infty} g(y) = \infty$. So, there exists $x_0 \in C$ such that $g(x_0) = \inf_{y \in C} g(y)$. Let $y_1, y_2 \in C$ such that $g(y_1) = g(y_2) = \inf_{y \in C} g(y)$ and suppose that $y_1 \neq y_2$. Let Bbe a bounded subset of E containing sequences $\{x_{n_i} - y_1\}$ and $\{x_{n_i} - y_2\}$. By (2.1), there exists $g_B \in G$ such that

$$\begin{aligned} \left\| x_{n_{i}} - \frac{y_{1} + y_{2}}{2} \right\|^{2} &= \left\| \frac{1}{2} (x_{n_{i}} - y_{1}) + \frac{1}{2} (x_{n_{i}} - y_{2}) \right\|^{2} \\ &\leq \left\| \frac{1}{2} \| x_{n_{i}} - y_{1} \|^{2} + \frac{1}{2} \| x_{n_{i}} - y_{2} \|^{2} - \frac{1}{4} g_{B}(\| y_{1} - y_{2} \|) \end{aligned}$$

for every $i \in \mathbf{N}$ which implies

$$g\left(\frac{y_1+y_2}{2}\right) \le \frac{1}{2}g(y_1) + \frac{1}{2}g(y_2) - \frac{1}{4}g_B(\|y_1-y_2\|) < \inf_{y \in C}g(y).$$

This is a contradiction. So, we obtain $y_1 = y_2$. Therefore, there exists a unique element y_0 of C such that $g(y_0) = \inf_{y \in C} g(y)$. Suppose $y_0 \notin F(T)$ for some $T \in \mathcal{T}$. Let B be a bounded subset of E containing sequences $\{x_{n_i} - y_0\}$ and $\{x_{n_i} - Ty_0\}$.

We have

$$\begin{split} \left| x_{n_{i}} - \frac{Ty_{0} + y_{0}}{2} \right\|^{2} &\leq \frac{1}{2} \| x_{n_{i}} - y_{0} \|^{2} + \frac{1}{2} \| x_{n_{i}} - Ty_{0} \|^{2} - \frac{1}{4} g_{B}(\|y_{0} - Ty_{0}\|) \\ &\leq \frac{1}{2} \| x_{n_{i}} - y_{0} \|^{2} + \frac{1}{2} \{ \| x_{n_{i}} - Tx_{n_{i}} \| + \| Tx_{n_{i}} - Ty_{0} \| \}^{2} \\ &- \frac{1}{4} g_{B}(\|y_{0} - Ty_{0}\|) \\ &\leq \frac{1}{2} \| x_{n_{i}} - y_{0} \|^{2} + \frac{1}{2} \{ \| x_{n_{i}} - Tx_{n_{i}} \| + \| x_{n_{i}} - y_{0} \| \}^{2} \\ &- \frac{1}{4} g_{B}(\|y_{0} - Ty_{0}\|) \\ &= \frac{1}{2} \| x_{n_{i}} - y_{0} \|^{2} \\ &+ \frac{1}{2} \{ \| x_{n_{i}} - Tx_{n_{i}} \|^{2} + 2 \| x_{n_{i}} - Tx_{n_{i}} \| \cdot \| x_{n_{i}} - y_{0} \| + \| x_{n_{i}} - y_{0} \|^{2} \} \\ &- \frac{1}{4} g_{B}(\|y_{0} - Ty_{0}\|) \end{split}$$

for some $g_B \in G$. This implies

$$g\left(\frac{Ty_0 + y_0}{2}\right) \le \frac{1}{2}g(y_0) + \frac{1}{2}g(y_0) - \frac{1}{4}g_B(\|y_0 - Ty_0\|) < \inf_{y \in C}g(y)$$

by (4.1). This is a contradiction. So, we get $y_0 \in F(\mathcal{T})$. It follows from (4.2) and Lemma 2.3 that $\mu_i ||x_{n_i} - y_0||^2 \leq \mu_i (x - y_0, J(x_{n_i} - y_0)) \leq 0$. There exists a subsequence $\{x_{n_i}\}$ of $\{x_{n_i}\}$ such that

$$\lim_{j \to \infty} \|x_{n_{i_j}} - y_0\| = 0$$

because

$$\lim_{j \to \infty} \|x_{n_{i_j}} - y_0\| = \liminf_{i \to \infty} \|x_{n_i} - y_0\| \le \mu_i \|x_{n_i} - y_0\|^2 \le 0.$$

On the other hand, let $\{x_{n_i}\}$ and $\{x_{n_j}\}$ be subsequences of $\{x_n\}$ such that $x_{n_i} \to z_1$ and $x_{n_j} \to z_2$. Then, from (4.1) we have that for any $T \in \mathcal{T}$,

$$||z_1 - Tz_1|| \le ||z_1 - x_{n_i}|| + ||x_{n_i} - Tx_{n_i}|| + ||Tx_{n_i} - Tz_1|| \to 0$$

as $i \to \infty$. So, we get $z_1 \in \bigcap_{n=1}^{\infty} F(T_n)$. Similarly, $z_2 \in \bigcap_{n=1}^{\infty} F(T_n)$. By (4.3), we obtain $(x_{n_i} - x, J(x_{n_i} - z_2)) \leq 0$ for all $i \in \mathbb{N}$ and $(x_{n_j} - x, J(x_{n_j} - z_1)) \leq 0$ for each $j \in \mathbb{N}$. Since

$$\begin{aligned} |(x_{n_i} - x, J(x_{n_i} - z_2)) - (z_1 - x, J(z_1 - z_2))| \\ &\leq |(x_{n_i} - x, J(x_{n_i} - z_2)) - (z_1 - x, J(x_{n_i} - z_2))| \\ &+ |(z_1 - x, J(x_{n_i} - z_2)) - (z_1 - x, J(z_1 - z_2))| \\ &\leq ||x_{n_i} - z_1|| \cdot ||x_{n_i} - z_2|| \\ &+ |(z_1 - x, J(x_{n_i} - z_2)) - (z_1 - x, J(z_1 - z_2))| \end{aligned}$$

for every $i \in \mathbf{N}$ and J is norm to weak^{*} uniformly continuous on bounded subsets of E, we have $(z_1 - x, J(z_1 - z_2)) \leq 0$. Similarly, $(z_2 - x, J(z_2 - z_1)) \leq 0$. So, we get $||z_1 - z_2||^2 = (z_1 - z_2, J(z_1 - z_2)) \leq 0$, that is, $z_1 = z_2$. Therefore, $\{x_n\}$ converges

strongly to some element of $\bigcap_{n=1}^{\infty} F(T_n) = F(\mathcal{T})$. Hence, we can define a mapping P of C onto $F(\mathcal{T})$ by $Px = \lim_{n \to \infty} x_n$ because x is an arbitrary point of C. By (4.3), we obtain $(Px - x, J(Px - z_0)) \leq 0$ for all $x \in C$ and $z_0 \in F(\mathcal{T})$. So, P is a sunny nonexpansive retraction of C onto $F(\mathcal{T})$ from Lemma 2.4.

We have the following result for nonexpansive mappings by Lemma 3.1 (i) and Theorem 4.1.

Theorem 4.2. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable and let T be a nonexpansive mapping of C into itself such that $F(T) \neq \emptyset$. Let $x \in C$ and $\{x_n\}$ be a sequence by $x_n = \alpha_n x + (1 - \alpha_n)Tx_n$ ($\forall n \in \mathbf{N}$), where $\{\alpha_n\} \subset (0, 1)$ with $\lim_{n\to\infty} \alpha_n = 0$. Then, $\{x_n\}$ converges strongly to $P_{F(T)}x$, where $P_{F(T)}$ is a sunny nonexpansive retraction of C onto F(T).

We get the following result for convex combination of nonexpansive mappings by Lemma 3.2 (i) and Theorem 4.1.

Theorem 4.3. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable and let S and T be nonexpansive mappings of C into itself such that $F(S) \cap F(T) \neq \emptyset$. Let $x \in C$ and $\{x_n\}$ be a sequence by $x_n = \alpha_n x + (1 - \alpha_n)(\gamma_n S x_n + (1 - \gamma_n)T x_n) \ (\forall n \in \mathbf{N}),$ where $\{\alpha_n\} \subset (0,1)$ with $\lim_{n\to\infty} \alpha_n = 0$ and $\{\gamma_n\} \subset [a,b]$ for some $a,b \in (0,1)$ with $a \leq b$. Then, $\{x_n\}$ converges strongly to $P_{F(S)\cap F(T)}x$, where $P_{F(S)\cap F(T)}$ is a sunny nonexpansive retraction of C onto $F(S) \cap F(T)$.

We have the following result [17] for accretive operators from Lemma 3.5 (i) and Theorem 4.1.

Theorem 4.4. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable and let $A \subset E \times E$ be an accretive operator with $\overline{D(A)} \subset C \subset \cap_{\lambda>0}R(I + \lambda A)$ and $A^{-1}0 \neq \emptyset$. Let $x \in C$ and $\{x_n\}$ be a sequence by $x_n = \alpha_n x + (1 - \alpha_n)J_{\lambda_n}x_n$ ($\forall n \in N$), where $\{\lambda_n\} \subset (0,\infty)$ and $\{\alpha_n\} \subset (0,1)$ with $\lim_{n\to\infty} \alpha_n = 0$. If $\liminf_{n\to\infty} \lambda_n > 0$, $\{x_n\}$ converges strongly to $P_{A^{-1}0}x$, where $P_{A^{-1}0}$ is a sunny nonexpansive retraction of C onto $A^{-1}0$.

We get the following result for the W-mappings from Lemma 3.6 (i) and Theorem 4.1.

Theorem 4.5. Let *C* be a nonempty closed convex subset of a uniformly convex Banach space *E* whose norm is uniformly Gâteaux differentiable. Let S_1, S_2, \ldots be infinite nonexpansive mappings of *C* into itself with $F := \bigcap_{n=1}^{\infty} F(S_n) \neq \emptyset$ and let β_1, β_2, \ldots be real numbers with $0 < \beta_i \leq b < 1$ for every $i \in \mathbb{N}$ for some $b \in (0, 1)$. Let W_n be the *W*-mapping generated by $S_n, S_{n-1}, \ldots, S_1$ and $\beta_n, \beta_{n-1}, \ldots, \beta_1$ for every $n \in \mathbb{N}$. Let $x \in C$ and $\{x_n\}$ be a sequence by $x_n = \alpha_n x + (1 - \alpha_n) W_n x_n$ ($\forall n \in \mathbb{N}$), where $\{\alpha_n\} \subset (0, 1)$ with $\lim_{n\to\infty} \alpha_n = 0$. Then, $\{x_n\}$ converges strongly to $P_F x$, where P_F is a sunny nonexpansive retraction of *C* onto *F*.

We have the following result for nonexpansive semigroups by Lemma 3.9 (i) and Theorem 4.1.

Theorem 4.6. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable and let S be a semigroup. Let $S = \{T(s) : s \in S\}$ be a nonexpansive semigroup on C such that $F := F(S) \neq \emptyset$ and let D be a subspace of B(S) containing constants and being invariant under l_s for all $s \in S$. Suppose that for every $x \in C$ and $x^* \in E^*$, the function $t \mapsto (T(t)x, x^*)$ is in D. Let $\{\mu_n\}$ be a sequence of means on D such that $\lim_{n\to\infty} \|\mu_n - l_s^*\mu_n\| = 0$ for each $s \in S$. Let $x \in C$ and $\{x_n\}$ be a sequence by $x_n = \alpha_n x + (1 - \alpha_n)T_{\mu_n}x_n \ (\forall n \in \mathbf{N})$, where $\{\alpha_n\} \subset (0, 1)$ with $\lim_{n\to\infty} \alpha_n = 0$. Then, $\{x_n\}$ converges strongly to $P_F x$, where P_F is a sunny nonexpansive retraction of C onto F.

We get the following results for nonexpansive mappings from Lemmas 3.10 (i) and 3.11 (i) and Theorem 4.1.

Theorem 4.7. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable and let T be a nonexpansive mapping of C into itself such that $F(T) \neq \emptyset$. Let $x \in C$ and $\{x_n\}$ be a sequence by $x_n = \alpha_n x + (1 - \alpha_n) \frac{1}{n} \sum_{i=0}^{n-1} T^i x_n$ ($\forall n \in \mathbf{N}$), where $\{\alpha_n\} \subset (0, 1)$ with $\lim_{n\to\infty} \alpha_n = 0$. Then, $\{x_n\}$ converges strongly to $P_{F(T)}x$, where $P_{F(T)}$ is a sunny nonexpansive retraction of C onto F(T).

Theorem 4.8. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable and let S_1 and S_2 be nonexpansive mappings of C into itself such that $S_1S_2 = S_2S_1$ and $F(S_1) \cap$ $F(S_2) \neq \emptyset$. Let $x \in C$ and $\{x_n\}$ be a sequence by $x_n = \alpha_n x + (1 - \alpha_n) \frac{2}{(n+1)(n+2)}$ $\sum_{k=0}^n \sum_{i+j=k} S_1^i S_2^j x_n \ (\forall n \in \mathbf{N}), where \{\alpha_n\} \subset (0,1) \ with \lim_{n\to\infty} \alpha_n = 0.$ Then, $\{x_n\}$ converges strongly to $P_{F(S_1)\cap F(S_2)}x$, where $P_{F(S_1)\cap F(S_2)}$ is a sunny nonexpansive retraction of C onto $F(S_1) \cap F(S_2)$.

We have the following result for one-parameter nonexpansive semigroups by Lemma 3.12 (i) and Theorem 4.1.

Theorem 4.9. Let *C* be a nonempty closed convex subset of a uniformly convex Banach space *E* whose norm is uniformly Gâteaux differentiable and let $S = \{T(s) : 0 \le s < \infty\}$ be a one-parameter nonexpansive semigroup on *C* such that $F(S) \neq \emptyset$. Let $x \in C$ and $\{x_n\}$ be a sequence by $x_n = \alpha_n x + (1 - \alpha_n) \frac{1}{t_n} \int_0^{t_n} T(s) x_n ds \ (\forall n \in \mathbb{N}),$ where $\{\alpha_n\} \subset (0, 1)$ with $\lim_{n\to\infty} \alpha_n = 0$ and $\{t_n\} \subset (0, \infty)$ with $\lim_{n\to\infty} t_n = \infty$. Then, $\{x_n\}$ converges strongly to $P_{F(S)}x$, where $P_{F(S)}$ is a sunny nonexpansive retraction of *C* onto F(S).

5. Strong convergence theorem of Halpern's type

Using the method employed in [24], we get the following.

Theorem 5.1. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable and let $\{T_n\}$ and \mathcal{T} be families of nonexpansive mappings of C into itself which satisfy $\emptyset \neq F(\mathcal{T}) \subset$ $\cap_{n=1}^{\infty} F(T_n)$ and the conditions (I) and (III). Let $\{x_n\}$ be a sequence generated as follows: $x_1 = x \in C$ and

$$x_{n+1} = \alpha_n x + (1 - \alpha_n) T_n (\beta_n x + (1 - \beta_n) x_n) \quad (\forall n \in \mathbf{N}),$$

where $\{\alpha_n\} \subset [0,1)$ and $\{\beta_n\} \subset [0,1)$ satisfy $\lim_{n\to\infty} \alpha_n = \lim_{n\to\infty} \beta_n = 0$ and $\prod_{n=1}^{\infty} (1-\alpha_n)(1-\beta_n) = 0$. If $\sum_{n=1}^{\infty} (|\alpha_n - \alpha_{n+1}| + |\beta_n - \beta_{n+1}|) < \infty$, then $\{x_n\}$ converges strongly to $P_{F(\mathcal{T})}x$, where $P_{F(\mathcal{T})}$ is a sunny nonexpansive retraction of C onto $F(\mathcal{T})$.

Proof. We have $F(\mathcal{T}) = \bigcap_{n=1}^{\infty} F(T_n)$ by (I). Let $z \in \bigcap_{n=1}^{\infty} F(T_n)$. We have $||x_n - z|| \le ||x - z||$ for every $n \in \mathbb{N}$. In fact, suppose that $||x_n - z|| \le ||x - z||$ for some $n \in \mathbb{N}$. We get

$$\begin{aligned} \|x_{n+1} - z\| &= \|\alpha_n(x - z) + (1 - \alpha_n) \{T_n(\beta_n x + (1 - \beta_n) x_n) - z\} \| \\ &\leq \alpha_n \|x - z\| + (1 - \alpha_n) \{\beta_n \|x - z\| + (1 - \beta_n) \|x_n - z\| \} \\ &\leq \|x - z\|. \end{aligned}$$

So, $\{x_n\}$ is bounded. Next, we obtain

$$\begin{split} \|x_{n+1} - x_n\| &= \|\alpha_n x + (1 - \alpha_n) T_n(\beta_n x + (1 - \beta_n) x_n) \\ &- \alpha_{n-1} x - (1 - \alpha_{n-1}) T_{n-1}(\beta_{n-1} x + (1 - \beta_{n-1}) x_{n-1})\| \\ &= \|(\alpha_n - \alpha_{n-1}) x + (1 - \alpha_n) \{T_n(\beta_n x + (1 - \beta_n) x_n) \\ &- T_{n-1}(\beta_n x + (1 - \beta_n) x_n) \} \\ &+ (1 - \alpha_n) \{T_{n-1}(\beta_n x + (1 - \beta_n) x_n) \\ &- T_{n-1}(\beta_{n-1} x + (1 - \beta_{n-1}) x_{n-1})\} \\ &+ (\alpha_{n-1} - \alpha_n) T_{n-1}(\beta_{n-1} x + (1 - \beta_{n-1}) x_{n-1})\| \\ &\leq |\alpha_n - \alpha_{n-1}| \cdot \|x - T_{n-1}(\beta_{n-1} x + (1 - \beta_{n-1}) x_{n-1})\| \\ &+ (1 - \alpha_n) \|T_n(\beta_n x + (1 - \beta_n) x_n) - T_{n-1}(\beta_n x + (1 - \beta_n) x_n)\| \\ &+ (1 - \alpha_n) \|\{\beta_n x + (1 - \beta_n) x_n\} - \{\beta_{n-1} x + (1 - \beta_{n-1}) x_{n-1}\}\| \\ &\leq |\alpha_n - \alpha_{n-1}| \cdot M_1 \\ &+ (1 - \alpha_n) \|T_n(\beta_n x + (1 - \beta_n) x_n) - T_{n-1}(\beta_n x + (1 - \beta_n) x_n)\| \\ &+ (1 - \alpha_n) \|T_n(\beta_n x + (1 - \beta_n) x_n) - T_{n-1}(\beta_n x + (1 - \beta_n) x_n)\| \\ &+ (1 - \alpha_n) \|T_n(\beta_n x + (1 - \beta_n) x_n) - T_{n-1}(\beta_n x + (1 - \beta_n) x_n)\| \\ &+ (1 - \alpha_n) \|T_n(\beta_n x + (1 - \beta_n) x_n) - T_{n-1}(\beta_n x + (1 - \beta_n) x_n)\| \\ &+ (1 - \alpha_n) \|T_n(\beta_n x + (1 - \beta_n) x_n) - T_{n-1}(\beta_n x + (1 - \beta_n) x_n)\| \\ &+ (1 - \alpha_n) \|T_n(\beta_n x + (1 - \beta_n) x_n) - T_{n-1}(\beta_n x + (1 - \beta_n) x_n)\| \\ &+ (1 - \alpha_n) \|T_n(\beta_n x + (1 - \beta_n) x_n) - T_{n-1}(\beta_n x + (1 - \beta_n) x_n)\| \\ &+ (1 - \alpha_n) \|T_n(\beta_n x - \beta_{n-1}\| \cdot (\|x\| + \|x_{n-1}\|) + (1 - \beta_n) \|x_n - x_{n-1}\| \} \end{split}$$

for each $n = 2, 3, \ldots$, where $M_1 = \sup_{n \in \mathbb{N} \setminus \{1\}} ||x - T_{n-1}(\beta_{n-1}x + (1 - \beta_{n-1})x_{n-1})||$. Since a sequence $\{\beta_n x + (1 - \beta_n)x_n\}$ is bounded, there exists $M_2 > 0$ such that

$$||T_n(\beta_n x + (1 - \beta_n)x_n) - T_{n-1}(\beta_n x + (1 - \beta_n)x_n)|| \le a_{n-1}M_2$$

for all $n = 2, 3, \ldots$ by (III). Therefore, we get

(5.1)
$$\|x_{n+1} - x_n\| \leq (|\alpha_n - \alpha_{n-1}| + |\beta_n - \beta_{n-1}| + a_{n-1})M + (1 - \alpha_n)(1 - \beta_n)\|x_n - x_{n-1}\|$$

for every $n = 2, 3, \ldots$, where $M = \max\{M_1, M_2, \sup_{n \in \mathbb{N} \setminus \{1\}} \{ \|x\| + \|x_{n-1}\| \} \}$. Let $m, n \in \mathbb{N}$. By (5.1), we obtain

$$\begin{aligned} \|x_{n+m+1} - x_{n+m}\| &\leq (|\alpha_{n+m} - \alpha_{n+m-1}| + |\beta_{n+m} - \beta_{n+m-1}| + a_{n+m-1})M \\ &+ (1 - \alpha_{n+m})(1 - \beta_{n+m})\|x_{n+m} - x_{n+m-1}\| \\ &\leq (|\alpha_{n+m} - \alpha_{n+m-1}| + |\beta_{n+m} - \beta_{n+m-1}| + a_{n+m-1})M \\ &+ (1 - \alpha_{n+m})(1 - \beta_{n+m})\{(|\alpha_{n+m-1} - \alpha_{n+m-2}| \\ &+ |\beta_{n+m-1} - \beta_{n+m-2}| + a_{n+m-2})M \\ &+ (1 - \alpha_{n+m-1})(1 - \beta_{n+m-1})\|x_{n+m-1} - x_{n+m-2}\|\} \\ &\leq \{(|\alpha_{n+m} - \alpha_{n+m-1}| + |\alpha_{n+m-1} - \alpha_{n+m-2}|) \\ &+ (|\beta_{n+m} - \beta_{n+m-1}| + |\beta_{n+m-1} - \beta_{n+m-2}|) + (a_{n+m-1} + a_{n+m-2})\}M \\ &+ (1 - \alpha_{n+m})(1 - \beta_{n+m})(1 - \alpha_{n+m-1})(1 - \beta_{n+m-1})\|x_{n+m-1} - x_{n+m-2}\| \\ &\leq \cdots \\ &\leq M \cdot \sum_{k=m}^{n+m-1} (|\alpha_{k+1} - \alpha_k| + |\beta_{k+1} - \beta_k| + a_k) \end{aligned}$$

$$+ \|x_{m+1} - x_m\| \cdot \prod_{k=m+1}^{n+m} (1 - \alpha_k)(1 - \beta_k).$$

So, we have

$$\begin{split} \limsup_{n \to \infty} \|x_{n+1} - x_n\| &= \lim_{n \to \infty} \sup_{n \to \infty} \|x_{n+m+1} - x_{n+m}\| \\ &\leq M \cdot \sum_{k=m}^{\infty} (|\alpha_{k+1} - \alpha_k| + |\beta_{k+1} - \beta_k| + a_k) \end{split}$$

for each $m \in \mathbf{N}$. Therefore, we get $\lim_{n\to\infty} ||x_{n+1} - x_n|| = 0$. Since

$$\begin{aligned} \|x_n - T_n x_n\| &\leq \|x_n - T_n (\beta_n x + (1 - \beta_n) x_n)\| + \|T_n (\beta_n x + (1 - \beta_n) x_n) - T_n x_n\| \\ &\leq \|x_{n+1} - x_n\| + \alpha_n \|x - T_n (\beta_n x + (1 - \beta_n) x_n)\| + \beta_n \|x - x_n\| \end{aligned}$$

for all $n \in \mathbf{N}$, we have $\lim_{n\to\infty} ||x_n - T_n x_n|| = 0$. Let $m \in \mathbf{N}$ and take $n \in \mathbf{N}$ with n > m. By (III), there exists $M_B > 0$ such that

$$\begin{aligned} \|x_n - T_m x_n\| &\leq \|x_n - T_n x_n\| + \|T_n x_n - T_{n-1} x_n\| + \dots + \|T_{m+1} x_n - T_m x_n\| \\ &\leq \|x_n - T_n x_n\| + M_B \cdot \sum_{k=m}^{n-1} a_k. \end{aligned}$$

So, we get

$$\lim_{m \to \infty} \limsup_{n \to \infty} \|x_n - T_m x_n\| = 0.$$

So, let $\{\gamma_m\} \subset (0,1)$ such that $\lim_{m\to\infty} \gamma_m = 0$ and $\lim_{m\to\infty} \sup_{n\to\infty} \|x_n - T_m x_n\| \le b\gamma_m^2$ for each $m \in \mathbf{N}$, where $b \in (0,\infty)$ with $b > \sup_{m\in\mathbf{N}} \{\lim_{m\to\infty} \sup_{n\to\infty} \|x_n - T_m x_n\|\}$ and let $\{y_m\}$ be a sequence of C such that $y_m = \gamma_m x + (1 - \gamma_m)T_m y_m$ for every $m \in \mathbf{N}$. By Theorem 4.1, $\lim_{m\to\infty} y_m = z \in F(\mathcal{T})$. Let μ be a Banach limit. Since

(5.2)
$$\|x_n - T_m y_m\|^2 \leq \|x_n - T_m x_n\|^2 + \|x_n - y_m\|^2 + 2\|x_n - T_m x_n\| \cdot \|x_n - y_m\|$$

for each $n, m \in \mathbf{N}$, we have

$$\mu_n \|x_n - T_m y_m\|^2 \leq \mu_n \|x_n - y_m\|^2 + \limsup_{n \to \infty} (\|x_n - T_m x_n\|^2 + 2\|x_n - T_m x_n\| \cdot \|x_n - y_m\|)$$

for all $m \in \mathbf{N}$. From

$$(1-\gamma_m)(x_n-T_my_m)=(x_n-y_m)-\gamma_m(x_n-x),$$

we obtain

$$(1 - \gamma_m)^2 \|x_n - T_m y_m\|^2 \geq \|x_n - y_m\|^2 - 2\gamma_m (x_n - x, J(x_n - y_m))$$

(5.4)
$$= (1 - 2\gamma_m) \|x_n - y_m\|^2 + 2\gamma_m (x - y_m, J(x_n - y_m))$$

for every $m, n \in \mathbf{N}$. Hence, we have

$$(1 - \gamma_m)^2 \mu_n \|x_n - T_m y_m\|^2 \geq (1 - 2\gamma_m) \mu_n \|x_n - y_m\|^2 + 2\gamma_m \mu_n (x - y_m, J(x_n - y_m))$$

for all $m \in \mathbf{N}$. By (5.3), we have

$$(1 - \gamma_m)^2 \{ \mu_n \| x_n - y_m \|^2 + \limsup_{n \to \infty} (\| x_n - T_m x_n \|^2 + 2 \| x_n - T_m x_n \| \cdot \| x_n - y_m \|) \}$$

$$\geq (1 - 2\gamma_m) \mu_n \| x_n - y_m \|^2 + 2\gamma_m \mu_n (x - y_m, J(x_n - y_m))$$

and hence

(5.5)
$$\frac{\gamma_m}{2} \mu_n \|x_n - y_m\|^2 + \frac{(1 - \gamma_m)^2}{2\gamma_m} \limsup_{n \to \infty} (\|x_n - T_m x_n\|^2 + 2\|x_n - T_m x_n\| \cdot \|x_n - y_m\|) \ge \mu_n (x - y_m, J(x_n - y_m))$$

for each $m \in \mathbf{N}$. Let $\varepsilon > 0$. Since E is norm to weak^{*} uniformly continuous on bounded subsets of E and $y_m \to z$, there exists $m_1 \in \mathbf{N}$ such that for every $m \ge m_1$,

(5.6)
$$|(x-z,J(x_n-z)) - (x-z,J(x_n-y_m))| < \frac{\varepsilon}{3}$$

(5.7)
$$|(x-z,J(x_n-y_m))-(x-y_m,J(x_n-y_m))| < \frac{\varepsilon}{3}$$

for all $n \in \mathbf{N}$. Since $\gamma_m \to 0$ and $\limsup_{n\to\infty} \|x_n - T_m x_n\| \le b\gamma_m^2 \ (\forall m \in \mathbf{N})$, from (5.5) there exists $m_2 \in \mathbf{N}$ such that

$$\mu_n(x-y_m, J(x_n-y_m)) < \frac{\varepsilon}{3}$$

for each $m \ge m_2$. Hence, there exists $m_0 \in \mathbf{N}$ such that for every $m \ge m_0$,

$$\mu_n(x - z, J(x_n - z)) = \mu_n(x - z, J(x_n - z)) - \mu_n(x - z, J(x_n - y_m)) + \mu_n(x - z, J(x_n - y_m)) - \mu_n(x - y_m, J(x_n - y_m)) + \mu_n(x - y_m, J(x_n - y_m)) < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

Since ε is arbitrary, we have

$$\mu_n(x-z, J(x_n-z)) \le 0.$$

Further, by $||x_{n+1} - x_n|| \to 0$, we get

$$|(x-z, J(x_n-z)) - (x-z, J(x_{n+1}-z))| \to 0.$$

Therefore, we obtain

(5.8)
$$\limsup_{n \to \infty} (x - z, J(x_n - z)) \le 0$$

by [24, Proposition 2]. It follows from $\|\{\beta_n x + (1-\beta_n)x_n - z\} - (x_n - z)\| \to 0$ that

(5.9)
$$\limsup_{n \to \infty} (x - z, J(\beta_n x + (1 - \beta_n) x_n - z)) \le 0$$

Since

$$(1 - \alpha_n)\{T_n(\beta_n x + (1 - \beta_n)x_n) - z\} = (x_{n+1} - z) - \alpha_n(x - z)$$

and

$$(1-\beta_n)(x_n-z) = \beta_n x + (1-\beta_n)x_n - z - \beta_n(x-z),$$

from Lemm 2.2 we have

 $(1 - \alpha_n)^2 \|T_n(\beta_n x + (1 - \beta_n)x_n) - z\|^2 \ge \|x_{n+1} - z\|^2 - 2\alpha_n(x - z, J(x_{n+1} - z))$ and

$$(1 - \beta_n)^2 \|x_n - z\|^2 \geq \|\beta_n x + (1 - \beta_n) x_n - z\|^2 -2\beta_n (x - z, J(\beta_n x + (1 - \beta_n) x_n - z))$$

for all $n \in \mathbf{N}$. Let $\varepsilon > 0$. By (5.8) and (5.9), there exists $n_0 \in \mathbf{N}$ such that

$$2(x-z, J(x_n-z)) < \varepsilon$$

and

$$2(x-z, J(\beta_n x + (1-\beta_n)x_n - z)) < \varepsilon$$

for every $n \ge n_0$. So, we have $||x_{n+1} - z||^2 \le (1 - \alpha_n)^2 ||T_n(\beta_n x + (1 - \beta_n)x_n) - z||^2 + 2\alpha_n(x - z, J(x_{n+1} - z)))$ $\le (1 - \alpha_n)^2 ||\beta_n x + (1 - \beta_n)x_n - z||^2 + 2\alpha_n(x - z, J(x_{n+1} - z)))$ $\le (1 - \alpha_n)^2 \{(1 - \beta_n)^2 ||x_n - z||^2 + 2\beta_n(x - z, J(\beta_n x + (1 - \beta_n)x_n - z)))\}$ $+ 2\alpha_n(x - z, J(x_{n+1} - z)))$ $\le (1 - \alpha_n)(1 - \beta_n) ||x_n - z||^2 + (1 - \alpha_n)\beta_n \varepsilon + \alpha_n \varepsilon$ $\le (1 - \alpha_n)(1 - \beta_n) ||x_n - z||^2 + \{1 - (1 - \alpha_n)(1 - \beta_n)\}\varepsilon$ for every $n \ge n_0$. Hence, we have

$$\begin{aligned} \|x_{n+1} - z\|^2 \\ &\leq (1 - \alpha_n)(1 - \beta_n)\{(1 - \alpha_{n-1})(1 - \beta_{n-1})\|x_{n-1} - z\|^2 \\ &\quad + (1 - (1 - \alpha_{n-1})(1 - \beta_{n-1}))\varepsilon\} + \{1 - (1 - \alpha_n)(1 - \beta_n)\}\varepsilon \\ &= (1 - \alpha_n)(1 - \beta_n)(1 - \alpha_{n-1})(1 - \beta_{n-1})\|x_{n-1} - z\|^2 \\ &\quad + \{1 - (1 - \alpha_n)(1 - \beta_n)(1 - \alpha_{n-1})(1 - \beta_{n-1})\}\varepsilon \\ &\leq \cdots \\ &\leq \|x_{n_0} - z\|^2 \cdot \prod_{k=n_0}^n (1 - \alpha_k)(1 - \beta_k) + \{1 - \prod_{k=n_0}^n (1 - \alpha_k)(1 - \beta_k)\}\varepsilon \end{aligned}$$

for each $n \ge n_0$. Therefore, $\limsup_{n\to\infty} \|x_{n+1} - z\|^2 \le \varepsilon$. Since ε is arbitrary, we get $x_n \to z \in F(\mathcal{T})$. Hence, we can define a mapping P of C onto $F(\mathcal{T})$ by $Px = \lim_{n\to\infty} x_n$. From Theorem 4.1, P is a sunny nonexpansive retraction of C onto $F(\mathcal{T})$.

W remark that in Theorem 5.1, the condition (III) is replaced by the following condition: For every bounded subset B of C,

$$\sum_{n=1}^{\infty} \sup\{\|T_n x - T_{n+1} x\| : x \in B\} < \infty.$$

We get the following result [24] for nonexpansive mappings by Lemma 3.1 (i) and (ii) and Theorem 5.1.

Theorem 5.2. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable and let T be a nonexpansive mapping of C into itself with $F(T) \neq \emptyset$. Let $\{x_n\}$ be a sequence generated as follows: $x_1 = x \in C$ and

$$x_{n+1} = \alpha_n x + (1 - \alpha_n) T(\beta_n x + (1 - \beta_n) x_n) \quad (\forall n \in \mathbf{N}),$$

where $\{\alpha_n\} \subset [0,1)$ and $\{\beta_n\} \subset [0,1)$ satisfy $\lim_{n\to\infty} \alpha_n = \lim_{n\to\infty} \beta_n = 0$, $\prod_{n=1}^{\infty} (1-\alpha_n)(1-\beta_n) = 0$ and $\sum_{n=1}^{\infty} (|\alpha_n - \alpha_{n+1}| + |\beta_n - \beta_{n+1}|) < \infty$. Then, $\{x_n\}$ converges strongly to $P_{F(T)}x$, where $P_{F(T)}$ is a sunny nonexpansive retraction of C onto F(T).

We have the following result [16] for nonexpansive mappings by Lemma 3.2 (ii) and Theorem 5.1.

Theorem 5.3. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable and let S and T be nonexpansive mappings of C into itself with $F(S) \cap F(T) \neq \emptyset$. Let $\{x_n\}$ be a sequence generated as follows: $x_1 = x \in C$ and

$$x_{n+1} = \alpha_n x + (1 - \alpha_n)(\gamma_n S + (1 - \gamma_n)T)(\beta_n x + (1 - \beta_n)x_n) \quad (\forall n \in \mathbf{N}),$$

where $\{\alpha_n\} \subset [0,1)$ and $\{\beta_n\} \subset [0,1)$ satisfy $\lim_{n\to\infty} \alpha_n = \lim_{n\to\infty} \beta_n = 0$, $\prod_{n=1}^{\infty} (1-\alpha_n)(1-\beta_n) = 0$ and $\sum_{n=1}^{\infty} (|\alpha_n - \alpha_{n+1}| + |\beta_n - \beta_{n+1}|) < \infty$ and $\{\gamma_n\} \subset [a,b]$ for some $a, b \in (0, 1)$ with $a \leq b$ satisfies $\sum_{n=1}^{\infty} |\gamma_n - \gamma_{n+1}| < \infty$. Then, $\{x_n\}$ converges strongly to $P_{F(S) \cap F(T)}x$, where $P_{F(S) \cap F(T)}$ is a sunny nonexpansive retraction of C onto $F(S) \cap F(T)$.

We have the following result [17] for accretive operators from Lemma 3.5 (ii) and Theorem 5.1.

Theorem 5.4. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable and let $A \subset E \times E$ be an accretive operator with $\overline{D(A)} \subset C \subset \cap_{\lambda>0} R(I+\lambda A)$ and $A^{-1}0 \neq \emptyset$. Let $\{x_n\}$ be a sequence generated as follows: $x_1 = x \in C$ and

$$x_{n+1} = \alpha_n x + (1 - \alpha_n) J_{\lambda_n}(\beta_n x + (1 - \beta_n) x_n) \quad (\forall n \in \mathbf{N}),$$

where $\{\alpha_n\} \subset [0,1)$ and $\{\beta_n\} \subset [0,1)$ satisfy $\lim_{n\to\infty} \alpha_n = \lim_{n\to\infty} \beta_n = 0$, $\prod_{n=1}^{\infty} (1-\alpha_n)(1-\beta_n) = 0$ and $\sum_{n=1}^{\infty} (|\alpha_n - \alpha_{n+1}| + |\beta_n - \beta_{n+1}|) < \infty$ and $\{\lambda_n\} \subset (0,\infty)$ satisfies $\lim_{n\to\infty} \lambda_n > 0$ and $\sum_{n=1}^{\infty} |\lambda_n - \lambda_{n+1}| < \infty$. Then, $\{x_n\}$ converges strongly to $P_{A^{-1}0}x$, where $P_{A^{-1}0}$ is a sunny nonexpansive retraction of C onto $A^{-1}0$.

We get the following result [23] for the W-mappings by Lemma 3.6 (ii) and Theorem 5.1.

Theorem 5.5. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable. Let S_1, S_2, \ldots be infinite nonexpansive mappings of C into itself with $F := \bigcap_{n=1}^{\infty} F(S_n) \neq \emptyset$ and let β_1, β_2, \ldots be real numbers with $0 < \beta_i \leq b < 1$ for every $i \in \mathbf{N}$ for some $b \in (0, 1)$. Let W_n be the W-mapping generated by $S_n, S_{n-1}, \ldots, S_1$ and $\beta_n, \beta_{n-1}, \ldots, \beta_1$ for every $n \in \mathbf{N}$. Let $\{x_n\}$ be a sequence generated as follows: $x_1 = x \in C$ and

$$x_{n+1} = \alpha_n x + (1 - \alpha_n) W_n(\gamma_n x + (1 - \gamma_n) x_n) \quad (\forall n \in \mathbf{N}),$$

where $\{\alpha_n\} \subset [0,1)$ and $\{\gamma_n\} \subset [0,1)$ satisfy $\lim_{n\to\infty} \alpha_n = \lim_{n\to\infty} \gamma_n = 0$, $\prod_{n=1}^{\infty} (1-\alpha_n)(1-\gamma_n) = 0$ and $\sum_{n=1}^{\infty} (|\alpha_n - \alpha_{n+1}| + |\gamma_n - \gamma_{n+1}|) < \infty$. Then, $\{x_n\}$ converges strongly to $P_F x$, where P_F is a sunny nonexpansive retraction of Conto F.

We also have the following result.

Theorem 5.6. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable and let $\{T_n\}$ and \mathcal{T} be families of nonexpansive mappings of C into itself which satisfy $\emptyset \neq F(\mathcal{T}) \subset \bigcap_{n=1}^{\infty} F(T_n)$ and the conditions (I) and (II). Let $\{x_n\}$ be a sequence generated as follows: $x_1 = x \in C$ and

$$x_{n+1} = \alpha_n x + (1 - \alpha_n) T_n(\beta_n x + (1 - \beta_n) x_n) \quad (\forall n \in \mathbf{N}),$$

where $\{\alpha_n\} \subset [0,1)$ and $\{\beta_n\} \subset [0,1)$ satisfy $\lim_{n\to\infty} \alpha_n = \lim_{n\to\infty} \beta_n = 0$ and $\prod_{n=1}^{\infty} (1-\alpha_n)(1-\beta_n) = 0$. Then, $\{x_n\}$ converges strongly to $P_{F(\mathcal{T})}x$, where $P_{F(\mathcal{T})}$ is a sunny nonexpansive retraction of C onto $F(\mathcal{T})$.

Proof. As in the proof of Theorem 5.1, we have $F(\mathcal{T}) = \bigcap_{n=1}^{\infty} F(T_n)$ and $\{x_n\}$ is bounded. Since

 $||x_{n+1} - T_n x_n|| \leq ||x_{n+1} - T_n(\beta_n x + (1 - \beta_n) x_n)||$

$$+ \|T_n(\beta_n x + (1 - \beta_n)x_n) - T_n x_n\| \\ \leq \alpha_n \|x - T_n(\beta_n x + (1 - \beta_n)x_n)\| + \beta_n \|x - x_n\|$$

for every $n \in \mathbf{N}$, we get $\lim_{n\to\infty} ||x_{n+1} - T_n x_n|| = 0$. From (II), $\lim_{n\to\infty} ||x_n - T_m x_n|| = 0$ for every $m \in \mathbf{N}$. As in the proof of Theorem 5.1, $x_n \to P_{F(\mathcal{T})} x$, where $P_{F(\mathcal{T})}$ is a sunny nonexpansive retraction of C onto $F(\mathcal{T})$. In fact, let $\{\gamma_m\} \subset (0, 1)$ such that $\lim_{m\to\infty} \gamma_m = 0$ and let $\{y_m\}$ be a sequence of C generated by $y_m = \gamma_m x + (1 - \gamma_m) T_m y_m$ for every $m \in \mathbf{N}$. By Theorem 4.1, $\lim_{m\to\infty} y_m = z \in F(\mathcal{T})$. From (5.2) and (5.4), we get

$$\frac{\gamma_m}{2} \|x_n - y_m\|^2 + \frac{(1 - \gamma_m)^2}{2\gamma_m} (\|x_n - T_m x_n\|^2 + 2\|x_n - T_m x_n\| \cdot \|x_n - y_m\|) \\ \ge (x - y_m, J(x_n - y_m))$$

for each $m, n \in \mathbf{N}$ which implies

$$\limsup_{n \to \infty} (x - y_m, J(x_n - y_m)) \le \frac{\gamma_m}{2} \limsup_{n \to \infty} ||x_n - y_m||^2$$

for all $m \in \mathbf{N}$. Let $\varepsilon > 0$. Since $\lim_{m \to \infty} \gamma_m = 0$, there exists $m_3 \in \mathbf{N}$ such that for every $m \ge m_3$,

$$\limsup_{n \to \infty} (x - y_m, J(x_n - y_m)) < \frac{\varepsilon}{3}.$$

Hence, there exists $m_4 \in \mathbf{N}$ such that

$$\begin{split} \limsup_{n \to \infty} (x - z, J(x_n - z)) &\leq \limsup_{n \to \infty} |(x - z, J(x_n - z)) - (x - z, J(x_n - y_m))| \\ &+ \limsup_{n \to \infty} |(x - z, J(x_n - y_m)) - (x - y_m, J(x_n - y_m))| \\ &+ \limsup_{n \to \infty} (x - y_m, J(x_n - y_m)) \\ &\leq \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon \end{split}$$

for each $m \ge m_4$ by (5.6) and (5.7). So, we obtain (5.8) and (5.9). Therefore, $x_n \to P_{F(\mathcal{T})}x$.

We get the following result [14] for accretive operators by Lemma 3.5 (iii) and Theorem 5.6.

Theorem 5.7. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable and let $A \subset E \times E$ be an accretive operator with $\overline{D(A)} \subset C \subset \cap_{\lambda>0} R(I+\lambda A)$ and $A^{-1}0 \neq \emptyset$. Let $\{x_n\}$ be a sequence generated as follows: $x_1 = x \in C$ and

$$x_{n+1} = \alpha_n x + (1 - \alpha_n) J_{\lambda_n}(\beta_n x + (1 - \beta_n) x_n) \quad (\forall n \in \mathbf{N}),$$

where $\{\alpha_n\} \subset [0,1)$ and $\{\beta_n\} \subset [0,1)$ satisfy $\lim_{n\to\infty} \alpha_n = \lim_{n\to\infty} \beta_n = 0$ and $\prod_{n=1}^{\infty} (1-\alpha_n)(1-\beta_n) = 0$ and $\{\lambda_n\} \subset (0,\infty)$ satisfies $\lim_{n\to\infty} \lambda_n = \infty$. Then, $\{x_n\}$ converges strongly to $P_{A^{-1}0}x$, where $P_{A^{-1}0}$ is a sunny nonexpansive retraction of C onto $A^{-1}0$.

We have the following result for nonexpansive semigroups from Lemma 3.9 (ii) and Theorem 5.6.

Theorem 5.8. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable and let S be a semigroup. Let $S = \{T(s) : s \in S\}$ be a nonexpansive semigroup on C such that $F := F(S) \neq \emptyset$ and let D be a subspace of B(S) containing constants and being invariant under l_s for all $s \in S$. Suppose that for every $x \in C$ and $x^* \in E^*$, the function $t \mapsto (T(t)x, x^*)$ is in D and the mappings $t \mapsto \sup_n f_n(t)$ and $t \mapsto \inf_n f_n(t)$ are in D for each bounded sequence $\{f_n : n \in \mathbf{N}\}$ of D. Let $\{\mu_n\}$ be a sequence of monotone convergent means on D such that $\lim_{n\to\infty} \|\mu_n - l_s^*\mu_n\| = 0$ for each $s \in S$. Let $\{x_n\}$ be a sequence generated as follows: $x_1 = x \in C$ and

$$x_{n+1} = \alpha_n x + (1 - \alpha_n) T_{\mu_n} (\beta_n x + (1 - \beta_n) x_n) \quad (\forall n \in \mathbf{N}),$$

where $\{\alpha_n\} \subset [0,1)$ and $\{\beta_n\} \subset [0,1)$ satisfy $\lim_{n\to\infty} \alpha_n = \lim_{n\to\infty} \beta_n = 0$ and $\prod_{n=1}^{\infty} (1-\alpha_n)(1-\beta_n) = 0$. Then, $\{x_n\}$ converges strongly to $P_F x$, where P_F is a sunny nonexpansive retraction of C onto F.

We get the following results for nonexpansive mappings by Lemmas 3.10 (ii) and 3.11 (ii) and Theorem 5.6.

Theorem 5.9. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable and let T be a nonexpansive mapping of C into itself such that $F(T) \neq \emptyset$. Let $\{x_n\}$ be a sequence generated as follows: $x_1 = x \in C$ and

$$x_{n+1} = \alpha_n x + (1 - \alpha_n) \frac{1}{n} \sum_{i=0}^{n-1} T^i (\beta_n x + (1 - \beta_n) x_n) \ (\forall n \in \mathbf{N}),$$

where $\{\alpha_n\} \subset [0,1)$ and $\{\beta_n\} \subset [0,1)$ satisfy $\lim_{n\to\infty} \alpha_n = \lim_{n\to\infty} \beta_n = 0$ and $\prod_{n=1}^{\infty} (1-\alpha_n)(1-\beta_n) = 0$. Then, $\{x_n\}$ converges strongly to $P_{F(T)}x$, where $P_{F(T)}$ is a sunny nonexpansive retraction of C onto F(T).

Theorem 5.10. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable and let S_1 and S_2 be nonexpansive mappings of C into itself such that $S_1S_2 = S_2S_1$ and F := $F(S_1) \cap F(S_2) \neq \emptyset$. Let $\{x_n\}$ be a sequence generated as follows: $x_1 = x \in C$ and

$$x_{n+1} = \alpha_n x + (1 - \alpha_n) \frac{2}{(n+1)(n+2)} \sum_{k=0}^n \sum_{i+j=k} S_1^i S_2^j (\beta_n x + (1 - \beta_n) x_n) \ (\forall n \in \mathbf{N}),$$

where $\{\alpha_n\} \subset [0,1)$ and $\{\beta_n\} \subset [0,1)$ satisfy $\lim_{n\to\infty} \alpha_n = \lim_{n\to\infty} \beta_n = 0$ and $\prod_{n=1}^{\infty} (1-\alpha_n)(1-\beta_n) = 0$. Then, $\{x_n\}$ converges strongly to $P_F x$, where P_F is a sunny nonexpansive retraction of C onto F.

We have the following result for one-parameter nonexpansive semigroups from Lemma 3.12 (ii) and Theorem 5.6.

Theorem 5.11. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable and let $S = \{T(s) : 0 \le s < \infty\}$ be a one-parameter nonexpansive semigroup on C such that $F := F(S) \neq \emptyset$. Let $\{x_n\}$ be a sequence generated as follows: $x_1 = x \in C$ and

$$x_{n+1} = \alpha_n x + (1 - \alpha_n) \frac{1}{t_n} \int_0^{t_n} T(s) (\beta_n x + (1 - \beta_n) x_n) \, ds \; (\forall n \in \mathbf{N}),$$

where $\{\alpha_n\} \subset [0,1)$ and $\{\beta_n\} \subset [0,1)$ satisfy $\lim_{n\to\infty} \alpha_n = \lim_{n\to\infty} \beta_n = 0$ and $\prod_{n=1}^{\infty} (1-\alpha_n)(1-\beta_n) = 0$ and $\{t_n\} \subset (0,\infty)$ with $\lim_{n\to\infty} t_n = \infty$. Then, $\{x_n\}$ converges strongly to $P_F x$, where P_F is a sunny nonexpansive retraction of C onto F.

References

- S. Atsushiba and W. Takahashi, Approximating common fixed points of nonexpansive semigroups by the Mann iteration process, Ann. Univ. Mariae Curie-Sklodowska 51 (1997), 1-16.
- [2] S. Atsushiba, N. Shioji and W. Takahashi, Approximating common fixed points by the Mann iteration procedure in Banach spaces, J. Nonlinear Convex Anal. 1 (2000), 351-361.
- [3] H. H. Bauschke, The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space, J. Math. Anal. Appl. 202 (1996), 150-159.
- [4] F. E. Browder, Convergence of approximates to fixed points of nonexpansive nonlinear mappings in Banach spaces, Arch. Ration. Mech. Anal. 24 (1967), 82-90.
- [5] R. E. Bruck, Jr., Nonexpansive retracts of Banach spaces, Bull. Amer. Math. Soc. 76 (1970), 384-386.
- [6] R. E. Bruck and S. Reich, Accretive operators, Banach limits, and dual ergodic theorems, Bull. Acad. Polon. Sci. 29 (1981), 585-589.
- [7] K. Eshita and W. Takahashi, Approximating zero points of accretive operators in general Banach spaces, to appear.
- [8] B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967), 957-961.
- [9] N. Hirano, K. Kido and W. Takahashi, Nonexpansive retractions and nonlinear ergodic theorems in Banach spaces, Nonlinear Anal. 12 (1988), 1269-1281.
- [10] H. Iiduka and W. Takahashi, Strong convergence theorems for nonexpansive nonself-mappings and inverse-strongly-monotone mappings, J. Convex Anal. 11 (2004), 69-79.
- [11] H. Iiduka and W. Takahashi, Strong and weak convergence theorems by a hybrid steepest descent method in a Hilbert space, in Nonlinear Analysis and Convex Analysis W. Takahashi and T. Tanaka (eds.), Yokohama Publishers, Yokohama, 2004, pp. 115-130.
- [12] H. Iiduka and W. Takahashi, Strong convergence theorems for nonexpansive mappings and inverse-strongly-monotone mappings, Nonlinear Anal. 61 (2005), 341-350.
- [13] S. Kamimura and W. Takahashi, Approximating solutions of maximal monotone operators in Hilbert spaces, J. Approx. Theory 106 (2000), 226-240.
- [14] S. Kamimura and W. Takahashi, Weak and strong convergence of solutions to accretive operator inclusions and applications, Set-Valued Anal. 8 (2000), 361-374.
- [15] S. Kamimura and W. Takahashi, Iterative schemes for approximating solutions of accretive operators in Banach spaces, Sci. Math. 3 (2000), 107-115.
- [16] Y. Kimura, W. Takahashi and M. Toyoda, Convergence to common fixed points of a finite family of nonexpansive mappings, Arch. Math. 84 (2005), 350-363.
- [17] K. Nakajo, Strong convergence to zeros of accretive operators in Banach spaces, J. Nonlinear Convex Anal. 7 (2006), 71-81.
- [18] K. Nakajo, K. Shimoji and W. Takahashi, A weak convergence theorem by products of mappings in Hilbert spaces, in Nonlinear Analysis and Convex Analysis, W. Takahashi and T. Tanaka (eds.), Yokohama Publishers, Yokohama, 2004, pp. 381-390.
- [19] K. Nakajo, K. Shimoji and W.Takahashi, Strong convergence theorems of Browder's type for families of nonexpansive mappings in Hilbert spaces, Int. J. Comput. Numer. Anal. Appl. 6 (2004), 173-192.
- [20] K. Nakajo, K. Shimoji and W.Takahashi, Strong convergence theorems of Halpern's type for families of nonexpansive mappings in Hilbert spaces, to appear.
- [21] S. Reich, Asymptotic behavior of contractions in Banach spaces, J. Math. Anal. Appl. 44 (1973), 57-70.
- [22] T. Shimizu and W. Takahashi, Strong convergence to common fixed points of families of nonexpansive mappings, J. Math. Anal. Appl. 211 (1997), 71-83.

- [23] K. Shimoji and W. Takahashi, Strong convergence to common fixed points of infinite nonexpansive mappings and applications, Taiwanese J. Math. 5 (2001), 387-404.
- [24] N. Shioji and W. Takahashi, Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc. 125 (1997), 3641-3645.
- [25] N. Shioji and W. Takahashi, Strong convergence theorems for asymptotically nonexpansive semigroups in Hilbert spaces, Nonlinear Anal. 34 (1998), 87-99.
- [26] N. Shioji and W. Takahashi, Strong convergence of averaged approximants for asymptotically nonexpansive mappings in Banach spaces, J. Approx. Theory 97 (1999), 53-64.
- [27] N. Shioji and W. Takahashi, A strong convergence theorem for asymptotically nonexpansive mappings in Banach spaces, Arch. Math. 72 (1999), 354-359.
- [28] N. Shioji and W. Takahashi, Strong convergence theorems for continuous semigroups in Banach spaces, Math. Japonica 50 (1999), 57-66.
- [29] N. Shioji and W. Takahashi, Strong convergence theorems for asymptotically nonexpansive semigroups in Banach spaces, J. Nonlinear Convex Anal. 1 (2000), 73-87.
- [30] T. Suzuki, On strong convergence to common fixed points of nonexpansive semigroups in Hilbert spaces, Proc. Amer. Math. Soc. 131 (2002), 2133-2136.
- [31] W. Takahashi, A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space, Proc. Amer. Math. Soc. 81 (1981), 253-256.
- [32] W. Takahashi, Weak and strong convergence theorems for families of nonexpansive mappings and their applications, Ann. Univ. Mariae Curie-Sklodowska Sect. A 51 (1997), 277-292.
- [33] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
- [34] W. Takahashi, Convex Analysis and Approximation of Fixed Points, Yokohama Publishers, Yokohama, 2000(Japanese).
- [35] W. Takahashi and K. Shimoji, Convergence theorems for nonexpansive mappings and feasibility problems, Math. Comput. Modelling 32 (2000), 1463-1471.
- [36] W. Takahashi, T. Tamura and M. Toyoda, Approximation of common fixed points of a family of finite nonexpansive mappings in Banach spaces, Sci. Math. Jpn. 56 (2002), 475-480.
- [37] W. Takahashi and Y. Ueda, On Reich's strong convergence theorems for resolvents of accretive operators, J. Math. Anal. Appl. 104 (1984), 546-553.
- [38] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. 58 (1992), 486-491.
- [39] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), 1127-1138.

Manuscript received February 22, 2006 revised August 30, 2006

K. Nakajo

Faculty of Engineering, Tamagawa University

Tamagawa-Gakuen, Machida-shi, Tokyo, 194-8610, Japan

E-mail address: nakajo@eng.tamagawa.ac.jp

К. Ѕнімојі

Department of Mathematical Sciences, Faculty of Science, University of the Ryukyus Nishihara-cho, Okinawa, 903-0213, Japan

E-mail address: shimoji@math.u-ryukyu.ac.jp

W. TAKAHASHI

Department of Mathematical and Computing Sciences, Tokyo Institute of Technology Oh-okayama, Meguro-ku, Tokyo, 152-8552, Japan

E-mail address: wataru@is.titech.ac.jp