STRONG CONVERGENCE TO COMMON FIXED POINTS OF FAMILIES OF NONEXPANSIVE MAPPINGS IN BANACH SPACES

K. NAKAJO, K. SHIMOJI, AND W. TAKAHASHI

Abstract

Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable. Let $\left\{T_{n}\right\}$ and \mathcal{T} be families of nonexpansive mappings of C into itself such that $\emptyset \neq F(\mathcal{T}) \subset$ $\cap_{n=1}^{\infty} F\left(T_{n}\right)$, where $F\left(T_{n}\right)$ is the set of all fixed points of T_{n} and $F(\mathcal{T})$ is the set of all common fixed points of \mathcal{T}. We consider a sequence $\left\{x_{n}\right\}$ generated by $x \in C, x_{n}=\alpha_{n} x+\left(1-\alpha_{n}\right) T_{n} x_{n}(\forall n \in \mathbf{N})$, where $\left\{\alpha_{n}\right\} \subset(0,1)$ and then give the conditions of $\left\{\alpha_{n}\right\},\left\{T_{n}\right\}$ and \mathcal{T} under which $\left\{x_{n}\right\}$ converges strongly to a common fixed point of \mathcal{T}. We also consider a sequence $\left\{x_{n}\right\}$ generated by $x_{1}=x \in C, x_{n+1}=\alpha_{n} x+\left(1-\alpha_{n}\right) T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)(\forall n \in \mathbf{N})$, where $\left\{\alpha_{n}\right\} \subset[0,1)$ and $\left\{\beta_{n}\right\} \subset[0,1)$ and then give the conditions of $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{T_{n}\right\}$ and \mathcal{T} under which $\left\{x_{n}\right\}$ converges strongly to a common fixed point of \mathcal{T}. Using these results, we improve and extend well-known strong convergence theorems.

1. Introduction

Throughout this paper, let E be a real Banach space with norm $\|\cdot\|$ and let \mathbf{N} be the set of all positive integers. Let C be a nonempty closed convex subset of E. Then, a mapping $T: C \longrightarrow C$ is called nonexpansive if

$$
\|T x-T y\| \leq\|x-y\|(\forall x, y \in C) .
$$

Browder [4] considered a sequence $\left\{x_{n}\right\}$ as follows:

$$
\begin{equation*}
x \in C, x_{n}=\alpha_{n} x+\left(1-\alpha_{n}\right) T x_{n}(\forall n \in \mathbf{N}), \tag{1.1}
\end{equation*}
$$

where $\left\{\alpha_{n}\right\} \subset(0,1)$ and he proved the first strong convergence theorem in the framework of a Hilbert space. Shioji and Takahashi [28], and Suzuki [30] also proved strong convergence theorems of Browder's type for one-parameter nonexpansive semigroups. Recently, authors [19] obtained a theorem which generalizes the results of $[4,30]$, simultaneously. In a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable, Shioji and Takahashi [26, 28, 29] and Nakajo [17] proved strong convergence theorems of Browder's type. On the other hand, Halpern [8] considered the following process: $x_{1}=x \in C$ and

$$
\begin{equation*}
x_{n+1}=\alpha_{n} x+\left(1-\alpha_{n}\right) T x_{n}(\forall n \in \mathbf{N}), \tag{1.2}
\end{equation*}
$$

where $\left\{\alpha_{n}\right\} \subset[0,1)$. Wittmann [38] proved a strong convergence theorem of Halpern's type in the framework of a Hilbert space and then, several authors $[3,12,10,11,13,22,25]$ proved strong convergence theorems. In a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable, Shioji and

[^0]Takahashi $[24,27,28,29]$, Kamimura and Takahashi [14, 15], Shimoji and Takahashi [23], Takahashi, Tamura and Toyoda [36] and Kimura, Takahashi and Toyoda [16] and Nakajo [17] proved the strong convergence theorems of Halpern's type.

In this paper, for families $\left\{T_{n}\right\}$ and \mathcal{T} of nonexpansive mappings of C into itself such that $\emptyset \neq F(\mathcal{T}) \subset \cap_{n=1}^{\infty} F\left(T_{n}\right)$, we consider a sequence $\left\{x_{n}\right\}$ generated by $x \in C, x_{n}=\alpha_{n} x+\left(1-\alpha_{n}\right) T_{n} x_{n}(\forall n \in \mathbf{N})$, where $\left\{\alpha_{n}\right\} \subset(0,1)$ and then give the conditions of $\left\{\alpha_{n}\right\},\left\{T_{n}\right\}$ and \mathcal{T} under which $\left\{x_{n}\right\}$ converges strongly to a common fixed point of \mathcal{T}. We also consider a sequence $\left\{x_{n}\right\}$ generated by $x_{1}=$ $x \in C, x_{n+1}=\alpha_{n} x+\left(1-\alpha_{n}\right) T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)(\forall n \in \mathbf{N})$, where $\left\{\alpha_{n}\right\} \subset[0,1)$ and $\left\{\beta_{n}\right\} \subset[0,1)$ and then give the conditions of $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{T_{n}\right\}$ and \mathcal{T} under which $\left\{x_{n}\right\}$ converges strongly to a common fixed point of \mathcal{T}. Using these results, we improve and extend well-known strong convergence theorems.

2. Preliminaries

Let E be a Banach space. We write $x_{n} \rightarrow x$ to indicate that a sequence $\left\{x_{n}\right\}$ converges strongly to x. Let C be a subset of E and let $T: C \longrightarrow E$. T is called nonexpansive if $\|T x-T y\| \leq\|x-y\|$ holds for each $x, y \in C$. We denote by $F(T)$ the set of all fixed points of T. We define the modulus δ_{E} of convexity of E as follows: δ_{E} is a function of $[0,2]$ into $[0,1]$ such that $\delta_{E}(\varepsilon)=\inf \{1-\|x+y\| / 2$: $\|x\| \leq 1,\|y\| \leq 1,\|x-y\| \geq \varepsilon\}$ for every $\varepsilon \in[0,2]$. E is called uniformly convex if $\delta_{E}(\varepsilon)>0$ for each $\varepsilon>0$. E is called strictly convex if $\|x+y\| / 2<1$ for all $x, y \in E$ with $\|x\|=\|y\|=1$ and $x \neq y$. In a strictly convex Banach space E, we have that if $\|x\|=\|y\|=\|\lambda x+(1-\lambda) y\|$ for $x, y \in E$ and $\lambda \in(0,1)$, then $x=y$. It is known that a uniformly convex Banach space is strictly convex. Let C be a nonempty closed convex subset of E and let T be a nonexpansive mapping of C into itself. We know that if E is strictly convex, $F(T)$ is closed and convex. Let $G=\{g:[0, \infty) \longrightarrow[0, \infty): g(0)=0, g$: continuous, strictly increasing, convex $\}$. Xu [39] proved the following result.

Lemma 2.1. Let E be a uniformly convex Banach space. Then, for every bounded subset B of E, there exists $g_{B} \in G$ such that

$$
\begin{equation*}
\|\lambda x+(1-\lambda) y\|^{2} \leq \lambda\|x\|^{2}+(1-\lambda)\|y\|^{2}-\lambda(1-\lambda) g_{B}(\|x-y\|) \tag{2.1}
\end{equation*}
$$

for all $x, y \in B$ and $0 \leq \lambda \leq 1$.
Let E be a Banach space and let E^{*} be the dual space of E. A set-valued mapping J of E into E^{*} defined by

$$
J(x)=\left\{x^{*} \in E^{*}:\left(x, x^{*}\right)=\|x\|^{2}=\left\|x^{*}\right\|^{2}\right\}(\forall x \in E)
$$

is called the duality mapping on $E . E$ is said to be smooth provided the limit

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t} \tag{2.2}
\end{equation*}
$$

exists for every $x, y \in S(E)$, where $S(E)=\{x \in E:\|x\|=1\}$. And the norm of E is said to be uniformly Gâteaux differentiable if for each $y \in S(E),(2.2)$ is attained uniformly for $x \in S(E)$. It is known that the duality mapping $J: E \longrightarrow 2^{E^{*}}$ is single valued and norm to weak* uniformly continuous on bounded subsets of E
when E has a uniformly Gâteaux differentiable norm. The following lemma is well known; for example, see [33].

Lemma 2.2. Let E be a smooth Banach space. Then, for any $x, y \in E$,

$$
\|x\|^{2}-\|y\|^{2} \geq 2(x-y, J(y))
$$

Let μ be a continuous, linear functional on l^{∞}. We call μ a Banach limit when μ satisfies $\|\mu\|=\mu(1)=1$ and $\mu_{n}\left(a_{n+1}\right)=\mu_{n}\left(a_{n}\right)$ for all $\left\{a_{n}\right\} \in l^{\infty}$. We know that $\liminf _{n \rightarrow \infty} a_{n} \leq \mu_{n}\left(a_{n}\right) \leq \lim \sup _{n \rightarrow \infty} a_{n}$ for every $\left\{a_{n}\right\} \in l^{\infty}$; see [33]. We have the following result from [37]; see also [6] and [33].

Lemma 2.3. Let C be a convex subset of E whose norm is uniformly Gâteaux differentiable and let $z \in C$. Let $\left\{x_{n}\right\} \subset E$ be a bounded sequence and let μ be a Banach limit. Then, $\mu_{n}\left\|x_{n}-z\right\|^{2}=\min _{y \in C} \mu_{n}\left\|x_{n}-y\right\|^{2}$ if and only if $\mu_{n}(y-$ $\left.z, J\left(x_{n}-z\right)\right) \leq 0$ for all $y \in C$.

Let C be a convex subset of E and let K be a nonempty subset of C. Let P be a retraction of C onto K, that is, $P x=x$ for every $x \in K . P$ is said to be sunny if $P(P x+t(x-P x))=P x$ for each $x \in C$ and $t \geq 0$ with $P x+t(x-P x) \in C$. We know the following result; see[5, 21, 33].

Lemma 2.4. Let C be a convex subset of a smooth Banach space E and let K be a nonempty subset of C. Let P be a retraction of C onto K. Then, P is sunny and nonexpansive if and only if $(x-P x, J(y-P x)) \leq 0$ for every $x \in C$ and $y \in K$. Hence, there is at most one sunny nonexpansive retraction of C onto K.

3. Lemmas

Let E be a Banach space and let C be a subset of E. Let $\left\{T_{n}\right\}$ and \mathcal{T} be families of nonexpansive mappings of C into itself such that $\emptyset \neq F(\mathcal{T}) \subset \cap_{n=1}^{\infty} F\left(T_{n}\right)$, where $F\left(T_{n}\right)$ is the set of all fixed points of T_{n} and $F(\mathcal{T})$ is the set of all common fixed points of \mathcal{T}. Motivated by [19] and [20], we consider the following conditions of $\left\{T_{n}\right\}$ and \mathcal{T} :
(I) For each bounded sequence $\left\{z_{n}\right\} \subset C$, $\lim _{n \rightarrow \infty}\left\|z_{n}-T_{n} z_{n}\right\|=0$ implies $\lim _{n \rightarrow \infty}\left\|z_{n}-T z_{n}\right\|=0$ for every $T \in \mathcal{T}$.
(II) For every bounded sequence $\left\{z_{n}\right\} \subset C$, $\lim _{n \rightarrow \infty}\left\|z_{n+1}-T_{n} z_{n}\right\|=0$ implies $\lim _{n \rightarrow \infty}\left\|z_{n}-T_{m} z_{n}\right\|=0$ for all $m \in \mathbf{N}$.
(III) There exists $\left\{a_{n}\right\} \subset[0, \infty)$ with $\sum_{n=1}^{\infty} a_{n}<\infty$ such that for every bounded subset B of C, there exists $M_{B}>0$ such that $\left\|T_{n} x-T_{n+1} x\right\| \leq a_{n} M_{B}$ holds for all $n \in \mathbf{N}$ and $x \in B$.
We have the following results for nonexpansive mappings.
Lemma 3.1. Let C be a nonempty closed convex subset of E and let T be a nonexpansive mapping of C into itself with $F(T) \neq \emptyset$. Then, the following hold:
(i) $\left\{T_{n}\right\}$ with $T_{n}=T(\forall n \in \boldsymbol{N})$ and $\mathcal{T}=\{T\}$ satisfy the condition (I) with $\cap_{n=1}^{\infty} F\left(T_{n}\right)=F(\mathcal{T})=F(T)$;
(ii) $\left\{T_{n}\right\}$ with $T_{n}=T(\forall n \in N)$ and $\mathcal{T}=\{T\}$ satisfy the condition (III) with $a_{n}=0(\forall n \in \boldsymbol{N})$.

Lemma 3.2. Let C be a nonempty closed convex subset of a uniformly convex Banach space E and let S and T be nonexpansive mappings of C into itself such that $F(S) \cap F(T) \neq \emptyset$. Let $\left\{\gamma_{n}\right\} \subset[a, b]$ for some $a, b \in(0,1)$ with $a \leq b$. Then, the following hold:
(i) $\left\{T_{n}\right\}$ with $T_{n}=\gamma_{n} S+\left(1-\gamma_{n}\right) T(\forall n \in \boldsymbol{N})$ and $\mathcal{T}=\left\{\frac{S+T}{2}\right\}$ satisfy the condition (I) with $\cap_{n=1}^{\infty} F\left(T_{n}\right)=F(\mathcal{T})=F(S) \cap F(T)$;
(ii) $\left\{T_{n}\right\}$ with $T_{n}=\gamma_{n} S+\left(1-\gamma_{n}\right) T(\forall n \in \boldsymbol{N})$ such that $\sum_{n=1}^{\infty}\left|\gamma_{n}-\gamma_{n+1}\right|<\infty$ and $\mathcal{T}=\left\{\frac{S+T}{2}\right\}$ satisfy the conditions (I) and (III) with $a_{n}=\left|\gamma_{n}-\gamma_{n+1}\right|(\forall n \in \boldsymbol{N})$ and $\cap_{n=1}^{\infty} F\left(T_{n}\right)=F(\mathcal{T})=F(S) \cap F(T)$.

Proof. Since E is strictly convex, we have $\cap_{n=1}^{\infty} F\left(\gamma_{n} S+\left(1-\gamma_{n}\right) T\right)=F\left(\frac{S+T}{2}\right)=$ $F(S) \cap F(T)$.
(i). Let $\left\{z_{n}\right\}$ be a bounded sequence in C such that $\lim _{n \rightarrow \infty}\left\|z_{n}-T_{n} z_{n}\right\|=0$ and let $z \in \cap_{n=1}^{\infty} F\left(T_{n}\right)$. There exists $g \in G$ such that

$$
\begin{aligned}
\left\|z_{n}-z\right\|^{2} \leq & \left\{\left\|z_{n}-T_{n} z_{n}\right\|+\left\|T_{n} z_{n}-z\right\|\right\}^{2} \leq\left\|z_{n}-T_{n} z_{n}\right\| \cdot M+\left\|T_{n} z_{n}-z\right\|^{2} \\
\leq & \left\|z_{n}-T_{n} z_{n}\right\| \cdot M+\gamma_{n}\left\|S z_{n}-z\right\|^{2} \\
& +\left(1-\gamma_{n}\right)\left\|T z_{n}-z\right\|^{2}-\gamma_{n}\left(1-\gamma_{n}\right) g\left(\left\|S z_{n}-T z_{n}\right\|\right) \\
\leq & \left\|z_{n}-T_{n} z_{n}\right\| \cdot M+\left\|z_{n}-z\right\|^{2}-\gamma_{n}\left(1-\gamma_{n}\right) g\left(\left\|S z_{n}-T z_{n}\right\|\right)
\end{aligned}
$$

for all $n \in \mathbf{N}$, where $M=\sup _{n \in \mathbf{N}}\left\{\left\|z_{n}-T_{n} z_{n}\right\|+2\left\|z_{n}-z\right\|\right\}$. So, we get $\lim _{n \rightarrow \infty} \| S z_{n}-$ $T z_{n} \|=0$. Since
$\left\|z_{n}-S z_{n}\right\| \leq\left\|z_{n}-T_{n} z_{n}\right\|+\left\|T_{n} z_{n}-S z_{n}\right\|=\left\|z_{n}-T_{n} z_{n}\right\|+\left(1-\gamma_{n}\right)\left\|S z_{n}-T z_{n}\right\|$
for every $n \in \mathbf{N}$, we obtain $\lim _{n \rightarrow \infty}\left\|z_{n}-S z_{n}\right\|=0$ and hence, $\lim _{n \rightarrow \infty}\left\|z_{n}-T z_{n}\right\|=$ 0. Therefore, $\lim _{n \rightarrow \infty}\left\|z_{n}-\frac{S+T}{2} z_{n}\right\|=0$.
(ii). By (i), (I) holds. Let $z \in F(S) \cap F(T)$. We have

$$
\begin{aligned}
\left\|T_{n} x-T_{n+1} x\right\| & =\left\|\left\{\gamma_{n} S x+\left(1-\gamma_{n}\right) T x\right\}-\left\{\gamma_{n+1} S x+\left(1-\gamma_{n+1}\right) T x\right\}\right\| \\
& \leq\left|\gamma_{n}-\gamma_{n+1}\right| \cdot\|S x-T x\| \leq\left|\gamma_{n}-\gamma_{n+1}\right| \cdot\{2\|x-z\|\}
\end{aligned}
$$

for every $n \in \mathbf{N}$ and $x \in C$. So, for each bounded subset B of C, there exists $M_{B}>2 \cdot \sup _{x \in B}\|x-z\|$ such that $\left\|T_{n} x-T_{n+1} x\right\| \leq a_{n} M_{B}$ for all $n \in \mathbf{N}$ and $x \in B$, where $a_{n}=\left|\gamma_{n}-\gamma_{n+1}\right|(\forall n \in \mathbf{N})$. So, (III) holds.

An operator $A \subset E \times E$ is called accretive if for $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in A$, there exists $j \in J\left(x_{1}-x_{2}\right)$ such that $\left(y_{1}-y_{2}, j\right) \geq 0$, where J is the duality mapping of E. An accretive operator A is said to satisfy the range condition if $\overline{D(A)} \subset R(I+\lambda A)$ for all $\lambda>0$, where $D(A)$ is the domain of $A, R(I+\lambda A)$ is the range of $I+\lambda A$ and $\overline{D(A)}$ is the closure of $D(A)$. An accretive operator A is said to be m-accretive if $R(I+\lambda A)=E$ for every $\lambda>0$. If A is accretive, then we can define, for each $r>0$, a mapping $J_{r}: R(I+r A) \longrightarrow D(A)$ by $J_{r}=(I+r A)^{-1}$. J_{r} is called the resolvent of A. We know that J_{r} is nonexpansive for all $r>0$ and $A^{-1} 0=F\left(J_{r}\right)$ for every $r>0$. We also define the Yosida approximation A_{r} by $A_{r}=\left(I-J_{r}\right) / r$ for each $r>0$; see $[33,34]$ for more details. We have the following result for the resolvents [18].

Lemma 3.3. Let $A \subset E \times E$ be an accretive operator. Let $r, \lambda>0$ and $D(A) \subset$ $R(I+\lambda A)$. Then, $\frac{1}{\lambda}\left\|\left(I-J_{\lambda}\right) J_{r} x\right\| \leq \frac{1}{r}\left\|\left(I-J_{r}\right) x\right\|$ holds for every $x \in R(I+r A)$.

We also have the following result for the resolvents [7].
Lemma 3.4. Let $A \subset E \times E$ be an accretive operator and let $r, \lambda>0$. For each $x \in R(I+r A) \cap R(I+\lambda A),\left\|J_{\lambda} x-J_{r} x\right\| \leq \frac{|\lambda-r|}{\lambda}\left\|x-J_{\lambda} x\right\|$ holds.

We get the following results for the resolvents by Lemmas 3.3 and 3.4.
Lemma 3.5. Let C be a nonempty closed convex subset of E and let $A \subset E \times E$ be an accretive operator with $\overline{D(A)} \subset C \subset \cap_{\lambda>0} R(I+\lambda A)$ and $A^{-1} 0 \neq \emptyset$. Then, the following hold:
(i) $\left\{T_{n}\right\}$ with $T_{n}=J_{\lambda_{n}}(\forall n \in \boldsymbol{N})$ with $\left\{\lambda_{n}\right\} \subset(0, \infty)$ and $\liminf _{n \rightarrow \infty} \lambda_{n}>0$ and $\mathcal{T}=\left\{J_{1}\right\}$ satisfy the condition (I) and $\cap_{n=1}^{\infty} F\left(T_{n}\right)=F(\mathcal{T})=A^{-1} 0$;
(ii) $\left\{T_{n}\right\}$ with $T_{n}=J_{\lambda_{n}}(\forall n \in N)$ with $\left\{\lambda_{n}\right\} \subset(0, \infty), \liminf _{n \rightarrow \infty} \lambda_{n}>0$ and $\sum_{n=1}^{\infty}\left|\lambda_{n}-\lambda_{n+1}\right|<\infty$ and $\mathcal{T}=\left\{J_{1}\right\}$ satisfy the conditions (I) and (III) with $a_{n}=\left|\lambda_{n}-\lambda_{n+1}\right|(\forall n \in N)$ and $\cap_{n=1}^{\infty} F\left(T_{n}\right)=F(\mathcal{T})=A^{-1} 0$;
(iii) $\left\{T_{n}\right\}$ with $T_{n}=J_{\lambda_{n}}(\forall n \in N)$, where $\left\{\lambda_{n}\right\} \subset(0, \infty)$ and $\lim _{n \rightarrow \infty} \lambda_{n}=\infty$ and $\mathcal{T}=\left\{J_{1}\right\}$ satisfy the conditions (I) and (II) with $\cap_{n=1}^{\infty} F\left(T_{n}\right)=F(\mathcal{T})=A^{-1} 0$.
Proof. We know that J_{r} is a nonexpansive mapping of C into itself for all $r>0$ and $\cap_{n=1}^{\infty} F\left(J_{\lambda_{n}}\right)=F\left(J_{1}\right)=A^{-1} 0$; see [33].
(i). Let $\left\{z_{n}\right\}$ be a bounded sequence in C such that $\lim _{n \rightarrow \infty}\left\|z_{n}-J_{\lambda_{n}} z_{n}\right\|=0$. We have

$$
\begin{aligned}
\left\|z_{n}-J_{1} z_{n}\right\| & \leq\left\|z_{n}-J_{\lambda_{n}} z_{n}\right\|+\left\|J_{\lambda_{n}} z_{n}-J_{1} J_{\lambda_{n}} z_{n}\right\|+\left\|J_{1} J_{\lambda_{n}} z_{n}-J_{1} z_{n}\right\| \\
& \leq 2\left\|z_{n}-J_{\lambda_{n}} z_{n}\right\|+\frac{1}{\lambda_{n}}\left\|z_{n}-J_{\lambda_{n}} z_{n}\right\|
\end{aligned}
$$

for every $n \in \mathbf{N}$ by Lemma 3.3. From $\inf _{n \in \mathbf{N}} \lambda_{n}>0$, we get $\lim _{n \rightarrow \infty}\left\|z_{n}-J_{1} z_{n}\right\|=0$. So, (I) holds.
(ii). From (i), (I) holds. By Lemma 3.4, we have

$$
\left\|J_{\lambda_{n}} x-J_{\lambda_{n+1}} x\right\| \leq \frac{\left|\lambda_{n}-\lambda_{n+1}\right|}{\lambda_{n}}\left\|x-J_{\lambda_{n}} x\right\| \leq \frac{\left|\lambda_{n}-\lambda_{n+1}\right|}{c}\{2\|x-u\|\}
$$

for every $n \in \mathbf{N}$ and $x \in C$, where $u \in A^{-1} 0$ and $c=\inf _{n \in \mathbf{N}} \lambda_{n}(>0)$. So, for each bounded subset B of C, there exists $M_{B}>\frac{2}{c} \sup _{x \in B}\|x-u\|$ such that $\left\|T_{n} x-T_{n+1} x\right\| \leq a_{n} M_{B}$ for all $n \in \mathbf{N}$ and $x \in B$, where $a_{n}=\left|\lambda_{n}-\lambda_{n+1}\right|(\forall n \in \mathbf{N})$. So, (III) holds.
(iii). As in the proof of (i), (I) holds. Further, let $\left\{z_{n}\right\}$ be a bounded sequence in C such that $\lim _{n \rightarrow \infty}\left\|z_{n+1}-J_{\lambda_{n}} z_{n}\right\|=0$ and fix $m \in \mathbf{N}$. Then, by Lemma 3.3 we have

$$
\begin{aligned}
\left\|z_{n+1}-J_{\lambda_{m}} z_{n+1}\right\| \leq & \left\|z_{n+1}-J_{\lambda_{n}} z_{n}\right\|+\left\|J_{\lambda_{n}} z_{n}-J_{\lambda_{m}} J_{\lambda_{n}} z_{n}\right\| \\
& +\left\|J_{\lambda_{m}} J_{\lambda_{n}} z_{n}-J_{\lambda_{m}} z_{n+1}\right\| \\
\leq & 2\left\|z_{n+1}-J_{\lambda_{n}} z_{n}\right\|+\frac{\lambda_{m}}{\lambda_{n}}\left\|z_{n}-J_{\lambda_{n}} z_{n}\right\|
\end{aligned}
$$

and hence $\left\|z_{n+1}-J_{\lambda_{m}} z_{n+1}\right\| \rightarrow 0$. So, (II) holds.
Let C be a nonempty closed convex subset of E. Let S_{1}, S_{2}, \ldots be infinite nonexpansive mappings of C into itself and let $\beta_{1}, \beta_{2}, \ldots$ be real numbers such
that $0 \leq \beta_{i} \leq 1$ for every $i \in \mathbf{N}$. Then, for any $n \in \mathbf{N}$, Takahashi [32] (see also $[23,34,35])$ introduced a mapping W_{n} of C into itself as follows:

$$
\begin{aligned}
U_{n, n+1} & =I \\
U_{n, n} & =\beta_{n} S_{n} U_{n, n+1}+\left(1-\beta_{n}\right) I \\
U_{n, n-1} & =\beta_{n-1} S_{n-1} U_{n, n}+\left(1-\beta_{n-1}\right) I \\
\vdots & \\
U_{n, k} & =\beta_{k} S_{k} U_{n, k+1}+\left(1-\beta_{k}\right) I \\
\vdots & \\
U_{n, 2} & =\beta_{2} S_{2} U_{n, 3}+\left(1-\beta_{2}\right) I \\
W_{n}=U_{n, 1} & =\beta_{1} S_{1} U_{n, 2}+\left(1-\beta_{1}\right) I
\end{aligned}
$$

Such a mapping W_{n} is called the W-mapping generated by $S_{n}, S_{n-1}, \ldots, S_{1}$ and $\beta_{n}, \beta_{n-1}, \ldots, \beta_{1}$. We know that if E is strictly convex, $\cap_{i=1}^{n} F\left(S_{i}\right) \neq \emptyset, 0<\beta_{i}<1$ for every $i=2,3, \ldots, n$ and $0<\beta_{1} \leq 1$, then, $F\left(W_{n}\right)=\cap_{i=1}^{n} F\left(S_{i}\right)$; see $[34,35]$. We also have that if E is strictly convex, $\cap_{n=1}^{\infty} F\left(S_{n}\right) \neq \emptyset$ and $0<\beta_{i} \leq b<1$ for every $i \in \mathbf{N}$ for some $b \in(0,1)$, then, $\lim _{n \rightarrow \infty} U_{n, k} x$ exists for every $x \in C$ and $k \in \mathbf{N}$; see [23]. So, we can define a mapping W of C into itself as follows:

$$
W x=\lim _{n \rightarrow \infty} W_{n} x=\lim _{n \rightarrow \infty} U_{n, 1} x
$$

for every $x \in C$. Such a W is called the W-mapping generated by S_{1}, S_{2}, \ldots and $\beta_{1}, \beta_{2}, \ldots$ We have that if E is strictly convex, $\cap_{i=1}^{\infty} F\left(S_{i}\right) \neq \emptyset$ and $0<\beta_{i} \leq b<1$ for every $i \in \mathbf{N}$ for some $b \in(0,1)$, then, $F(W)=\cap_{i=1}^{\infty} F\left(S_{i}\right)$; see [23]. We know the following results for the W-mappings.

Lemma 3.6. Let C be a nonempty closed convex subset of a strictly convex Banach space E. Let S_{1}, S_{2}, \ldots be infinite nonexpansive mappings of C into itself with $\cap_{n=1}^{\infty} F\left(S_{n}\right) \neq \emptyset$ and let $\beta_{1}, \beta_{2}, \ldots$ be real numbers with $0<\beta_{i} \leq b<1$ for every $i \in \boldsymbol{N}$ for some $b \in(0,1)$. Let W_{n} be the W-mapping generated by $S_{n}, S_{n-1}, \ldots, S_{1}$ and $\beta_{n}, \beta_{n-1}, \ldots, \beta_{1}$ for every $n \in N$ and let W be the W-mapping generated by S_{1}, S_{2}, \ldots and $\beta_{1}, \beta_{2}, \ldots$ Then, the following hold:
(i) $\left\{T_{n}\right\}$ with $T_{n}=W_{n}(\forall n \in \boldsymbol{N})$ and $\mathcal{T}=\{W\}$ satisfy the condition (I) with $\cap_{n=1}^{\infty} F\left(T_{n}\right)=F(\mathcal{T})=\cap_{n=1}^{\infty} F\left(S_{n}\right)$;
(ii) $\left\{T_{n}\right\}$ with $T_{n}=W_{n}(\forall n \in N)$ and $\mathcal{T}=\{W\}$ satisfy the conditions (I) and (III) with $a_{n}=b^{n+1}(\forall n \in N)$ and $\cap_{n=1}^{\infty} F\left(T_{n}\right)=F(\mathcal{T})=\cap_{n=1}^{\infty} F\left(S_{n}\right)$.

Proof. We have $\cap_{n=1}^{\infty} F\left(W_{n}\right)=\cap_{n=1}^{\infty} F\left(S_{n}\right)=F(W) \neq \emptyset$.
(i). Let $z \in \cap_{n=1}^{\infty} F\left(S_{n}\right)$. We get

$$
\begin{aligned}
\left\|W_{n} x-W_{n+1} x\right\| & =\left\|\beta_{1} S_{1} U_{n, 2} x-\beta_{1} S_{1} U_{n+1,2} x\right\| \leq \beta_{1}\left\|U_{n, 2} x-U_{n+1,2} x\right\| \\
& =\beta_{1}\left\|\beta_{2} S_{2} U_{n, 3} x-\beta_{2} S_{2} U_{n+1,3} x\right\| \\
& \leq \beta_{1} \beta_{2}\left\|U_{n, 3} x-U_{n+1,3} x\right\| \\
& \leq \cdots \leq \beta_{1} \beta_{2} \ldots \beta_{n} \beta_{n+1}\left\|x-S_{n+1} x\right\| \leq b^{n+1}\{2\|x-z\|\}
\end{aligned}
$$

for every $n \in \mathbf{N}$ and $x \in C$. Let $\left\{z_{n}\right\}$ be a bounded sequence in C such that $\lim _{n \rightarrow \infty}\left\|z_{n}-W_{n} z_{n}\right\|=0$. Let $n \in \mathbf{N}$. We get

$$
\begin{aligned}
\left\|z_{n}-W_{n+m} z_{n}\right\| \leq & \left\|z_{n}-W_{n} z_{n}\right\|+\left\|W_{n} z_{n}-W_{n+1} z_{n}\right\|+\cdots \\
& +\left\|W_{n+m-1} z_{n}-W_{n+m} z_{n}\right\| \\
\leq & \left\|z_{n}-W_{n} z_{n}\right\|+b^{n+1}\left\{2\left\|z_{n}-z\right\|\right\}+\cdots+b^{n+m}\left\{2\left\|z_{n}-z\right\|\right\} \\
\leq & \left\|z_{n}-W_{n} z_{n}\right\|+\left(b^{n+1}+\cdots+b^{n+m}\right) M \\
\leq & \left\|z_{n}-W_{n} z_{n}\right\|+\frac{b^{n+1}\left(1-b^{m}\right)}{1-b} M
\end{aligned}
$$

for every $m \in \mathbf{N}$, where $M=\sup _{n \in \mathbf{N}}\left\{2\left\|z_{n}-z\right\|\right\}$. So, we obtain

$$
\left\|z_{n}-W z_{n}\right\|=\lim _{m \rightarrow \infty}\left\|z_{n}-W_{n+m} z_{n}\right\| \leq\left\|z_{n}-W_{n} z_{n}\right\|+\frac{b^{n+1}}{1-b} M
$$

for each $n \in \mathbf{N}$ which implies $\lim _{n \rightarrow \infty}\left\|z_{n}-W z_{n}\right\|=0$. So, (I) holds.
(ii). Let $z \in \cap_{n=1}^{\infty} F\left(S_{n}\right)$. As in the proof of (i), we have

$$
\left\|W_{n} x-W_{n+1} x\right\| \leq b^{n+1} 2\|x-z\|
$$

for every $n \in \mathbf{N}$ and $x \in C$. So, for each bounded subset B of C, there exists $M_{B}>2 \cdot \sup _{x \in B}\|x-z\|$ such that $\left\|T_{n} x-T_{n+1} x\right\| \leq a_{n} M_{B}$ for all $n \in \mathbf{N}$ and $x \in B$, where $a_{n}=b^{n+1}(\forall n \in \mathbf{N})$. So, (III) holds. As in the proof of (i), (I) holds.

Let S be a semigroup and let $B(S)$ be the Banach space of all bounded real valued functions on S with supremum norm. Then, for every $s \in S$ and $f \in B(S)$, we can define $l_{s} f \in B(S)$ by $\left(l_{s} f\right)(t)=f(s t)$ for each $t \in S$. We also denote by l_{s}^{*} the adjoint operator of l_{s}. Let D be a subspace of $B(S)$ containing constants and let μ be an element of D^{*}, where D^{*} is its topological dual. A linear functional μ is called a mean on D if $\|\mu\|=\mu(1)=1$. Further, let D be satisfied that for each bounded sequence $\left\{f_{n}: n \in \mathbf{N}\right\}$ of D, the mappings $t \mapsto \inf _{n} f_{n}(t)$ and $t \mapsto \sup _{n} f_{n}(t)$ are in D. A mean μ on D is said to be monotone convergent if $\mu_{t}\left(\lim _{n \rightarrow \infty} f_{n}(t)\right)=\lim _{n \rightarrow \infty} \mu_{t}\left(f_{n}(t)\right)$ for every bounded sequence $\left\{f_{n}: n \in \mathbf{N}\right\}$ of D such that $0 \leq f_{1} \leq f_{2} \leq \cdots$. We know that if μ is a monotone convergent mean on D and $\left\{f_{n}: n \in \mathbf{N}\right\}$ is a bounded sequence of D, then $\lim \sup _{n \rightarrow \infty} \mu_{t}\left(f_{n}(t)\right) \leq$ $\mu_{t}\left(\limsup _{n \rightarrow \infty} f_{n}(t)\right)$. Let C be a nonempty closed convex subset of E. A family $\mathcal{S}=\{T(s): s \in S\}$ of mappings of C into itself is called a nonexpansive semigroup on C if it satisfies the following conditions:
(i) $T(s t)=T(s) T(t)$ for every $s, t \in S$;
(ii) $\|T(s) x-T(s) y\| \leq\|x-y\|$ for each $s \in S$ and $x, y \in C$.

We denote by $F(\mathcal{S})$ the set of all common fixed points of \mathcal{S}, i.e., $\cap_{t \in S} F(T(t))$. Hirano, Kido and Takahashi [9] proved the following; see also [31].

Lemma 3.7. Let S be a semigroup. Let C be a nonempty closed convex subset of E and let $\mathcal{S}=\{T(s): s \in S\}$ be a nonexpansive semigroup on C such that for every $x \in C,\{T(t) x: t \in S\}$ is contained in a weakly compact convex subset of C. Let D be a subspace of $B(S)$ such that D contains constants and the mapping $t \mapsto\left(T(t) x, y^{*}\right)$ is in D for each $x \in C$ and $y^{*} \in E^{*}$. Then, for any mean μ on D and $x \in C$, there exists a unique element $T_{\mu} x$ in C such that $\left(T_{\mu} x, x^{*}\right)=\mu_{s}\left(T(s) x, x^{*}\right)$
for every $x^{*} \in E^{*}$. And T_{μ} is a nonexpansive mapping of C into itself and $T_{\mu} x=x$ for all $x \in F(\mathcal{S})$.

Further, Atsushiba, Shioji and Takahashi [2] proved the following; see also [1, 29].
Lemma 3.8. Let C be a nonempty closed convex subset of a uniformly convex Banach space E. Let S be a semigroup and let $\mathcal{S}=\{T(s): s \in S\}$ be a nonexpansive semigroup on C such that $F(\mathcal{S}) \neq \emptyset$. Let D be a subspace of $B(S)$ containing constants and being invariant under l_{s} for every $s \in S$ and for each $x \in C$ and $x^{*} \in E^{*}$, the function $t \mapsto\left(T(t) x, x^{*}\right)$ is in D. Let $\left\{\mu_{n}\right\}$ be a sequence of means on D such that $\lim _{n \rightarrow \infty}\left\|\mu_{n}-l_{s}^{*} \mu_{n}\right\|=0$ for all $s \in S$. Let $w \in F(\mathcal{S})$ and $D_{r}=\{y \in$ $C:\|y-w\| \leq r\}$ for $r>0$. Then, $\lim _{n \rightarrow \infty} \sup _{x \in D_{r}}\left\|T_{\mu_{n}} x-T(t) T_{\mu_{n}} x\right\|=0$ for every $r>0$ and $t \in S$.

We have the following results for nonexpansive semigroups from Lemmas 3.7 and 3.8.

Lemma 3.9. Let C be a nonempty closed convex subset of a uniformly convex Banach space E and let S be a semigroup. Let $\mathcal{S}=\{T(s): s \in S\}$ be a nonexpansive semigroup on C such that $F(\mathcal{S}) \neq \emptyset$ and let D be a subspace of $B(S)$ containing constants and being invariant under l_{s} for all $s \in S$. Suppose that for every $x \in C$ and $x^{*} \in E^{*}$, the function $t \mapsto\left(T(t) x, x^{*}\right)$ is in D. Let $\left\{\mu_{n}\right\}$ be a sequence of means on D such that $\lim _{n \rightarrow \infty}\left\|\mu_{n}-l_{s}^{*} \mu_{n}\right\|=0$ for each $s \in S$. Then, the following hold:
(i) $\left\{T_{n}\right\}$ with $T_{n}=T_{\mu_{n}}(\forall n \in \boldsymbol{N})$ and $\mathcal{T}=\mathcal{S}$ satisfy the condition (I) with $\cap_{n=1}^{\infty} F\left(T_{n}\right)=F(\mathcal{T})=F(\mathcal{S})$;
(ii) moreover, assume that the mappings $t \mapsto \sup _{n} f_{n}(t)$ and $t \mapsto \inf _{n} f_{n}(t)$ are in D for every bounded sequence $\left\{f_{n}: n \in \boldsymbol{N}\right\}$ of D and $\left\{\mu_{n}\right\}$ is a sequence of monotone convergent means on D. Then, $\left\{T_{n}\right\}$ with $T_{n}=T_{\mu_{n}}(\forall n \in \boldsymbol{N})$ and $\mathcal{T}=\mathcal{S}$ satisfy the conditions (I) and (II) with $\cap_{n=1}^{\infty} F\left(T_{n}\right)=F(\mathcal{T})=F(\mathcal{S})$.

Proof. By Lemmas 3.7 and 3.8, we have $\cap_{n=1}^{\infty} F\left(T_{\mu_{n}}\right)=F(\mathcal{S})$.
(i). Let $\left\{z_{n}\right\}$ in C be a bounded sequence such that $\lim _{n \rightarrow \infty}\left\|z_{n}-T_{\mu_{n}} z_{n}\right\|=0$. For all $t \in S$ and $n \in \mathbf{N}$,

$$
\begin{aligned}
\left\|z_{n}-T(t) z_{n}\right\| & \leq\left\|z_{n}-T_{\mu_{n}} z_{n}\right\|+\left\|T_{\mu_{n}} z_{n}-T(t) T_{\mu_{n}} z_{n}\right\|+\left\|T(t) T_{\mu_{n}} z_{n}-T(t) z_{n}\right\| \\
& \leq 2\left\|z_{n}-T_{\mu_{n}} z_{n}\right\|+\left\|T_{\mu_{n}} z_{n}-T(t) T_{\mu_{n}} z_{n}\right\| .
\end{aligned}
$$

From Lemma 3.8, we obtain $\lim _{n \rightarrow \infty}\left\|z_{n}-T(t) z_{n}\right\|=0$ for every $t \in S$. So, (I) holds.
(ii). As in the proof of (i), (I) holds. Let $\left\{z_{n}\right\} \subset C$ be a bounded sequence such that $\lim _{n \rightarrow \infty}\left\|z_{n+1}-T_{\mu_{n}} z_{n}\right\|=0$. We have

$$
\begin{aligned}
\left\|z_{n+1}-T_{\mu_{m}} z_{n+1}\right\| \leq & \left\|z_{n+1}-T_{\mu_{n}} z_{n}\right\|+\left\|T_{\mu_{n}} z_{n}-T_{\mu_{m}} T_{\mu_{n}} z_{n}\right\| \\
& +\left\|T_{\mu_{m}} T_{\mu_{n}} z_{n}-T_{\mu_{m}} z_{n+1}\right\| \\
\leq & 2\left\|z_{n+1}-T_{\mu_{n}} z_{n}\right\|+\left\|T_{\mu_{n}} z_{n}-T_{\mu_{m}} T_{\mu_{n}} z_{n}\right\|
\end{aligned}
$$

for every $m, n \in \mathbf{N}$. Hence, for each $m \in \mathbf{N}$, we get

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left\|z_{n+1}-T_{\mu_{m}} z_{n+1}\right\|^{2} & \leq \limsup _{n \rightarrow \infty}\left\|T_{\mu_{n}} z_{n}-T_{\mu_{m}} T_{\mu_{n}} z_{n}\right\|^{2} \\
& =\limsup _{n \rightarrow \infty}\left(\mu_{m}\right)_{t}\left(T(t)\left(T_{\mu_{n}} z_{n}\right)-T_{\mu_{n}} z_{n}, x_{n}^{*}\right)
\end{aligned}
$$

$$
\leq\left(\mu_{m}\right)_{t}\left(\limsup _{n \rightarrow \infty}\left(T(t)\left(T_{\mu_{n}} z_{n}\right)-T_{\mu_{n}} z_{n}, x_{n}^{*}\right)\right) \leq 0
$$

by Lemma 3.8, where $x_{n}^{*} \in J\left(T_{\mu_{m}}\left(T_{\mu_{n}} z_{n}\right)-T_{\mu_{n}} z_{n}\right)$ for all $n \in \mathbf{N}$. Therefore, (II) holds.

We know the following results for nonexpansive mappings from Lemma 3.9; see [9].

Lemma 3.10. Let C be a nonempty closed convex subset of a uniformly convex Banach space E and let T be a nonexpansive mapping of C into itself with $F(T) \neq \emptyset$. Then, the following hold:
(i) $\left\{T_{n}\right\}$ with $T_{n}=\frac{1}{n} \sum_{i=0}^{n-1} T^{i}(\forall n \in \boldsymbol{N})$ and $\mathcal{T}=\left\{T^{i}: i=0,1,2, \ldots\right\}$ satisfy the condition (I) with $\cap_{n=1}^{\infty} F\left(T_{n}\right)=F(\mathcal{T})=F(T)$;
(ii) $\left\{T_{n}\right\}$ with $T_{n}=\frac{1}{n} \sum_{i=0}^{n-1} T^{i}(\forall n \in \boldsymbol{N})$ and $\mathcal{T}=\left\{T^{i}: i=0,1,2, \ldots\right\}$ satisfy the conditions (I) and (II) with $\cap_{n=1}^{\infty} F\left(T_{n}\right)=F(\mathcal{T})=F(T)$.

Proof. Let $S=\{0,1,2, \ldots\}, \mathcal{S}=\left\{T^{i}: i \in S\right\}, D=B(S)$ and $\mu_{n}(f)=\frac{1}{n} \sum_{i=0}^{n-1} f(i)$ for all $n \in \mathbf{N}$ and $f \in D$. We have $F(\mathcal{S})=F(T) \neq \emptyset$ and know that $\left\{\mu_{n}\right\}$ is a sequence of monotone convergent means on D with $\lim _{n \rightarrow \infty}\left\|\mu_{n}-l_{k}^{*} \mu_{n}\right\|=0$ for all $k \in S$ and $T_{\mu_{n}} x=\frac{1}{n} \sum_{i=0}^{n-1} T^{i} x$ for every $x \in C$. By Lemma 3.9, we get Lemma 3.10 .

Lemma 3.11. Let C be a nonempty closed convex subset of a uniformly convex Banach space E and let S_{1} and S_{2} be nonexpansive mappings of C into itself with $S_{1} S_{2}=S_{2} S_{1}$ and $F\left(S_{1}\right) \cap F\left(S_{2}\right) \neq \emptyset$. Then, the following hold:
(i) $\left\{T_{n}\right\}$ with $T_{n}=\frac{2}{(n+1)(n+2)} \sum_{k=0}^{n} \sum_{i+j=k} S_{1}^{i} S_{2}^{j}(\forall n \in \boldsymbol{N})$ and $\mathcal{T}=\left\{S_{1}^{i} S_{2}^{j}\right.$: $i, j=0,1,2, \ldots\}$ satisfy the condition (I) with $\cap_{n=1}^{\infty} F\left(T_{n}\right)=F(\mathcal{T})=F\left(S_{1}\right) \cap$ $F\left(S_{2}\right)$;
(ii) $\left\{T_{n}\right\}$ with $T_{n}=\frac{2}{(n+1)(n+2)} \sum_{k=0}^{n} \sum_{i+j=k} S_{1}^{i} S_{2}^{j}(\forall n \in N)$ and $\mathcal{T}=\left\{S_{1}^{i} S_{2}^{j}\right.$: $i, j=0,1,2, \ldots\}$ satisfy the conditions (I) and (II) with $\cap_{n=1}^{\infty} F\left(T_{n}\right)=F(\mathcal{T})=$ $F\left(S_{1}\right) \cap F\left(S_{2}\right)$.

Proof. Let $S=\{0,1,2, \ldots\} \times\{0,1,2, \ldots\}, \mathcal{S}=\left\{S_{1}^{i} S_{2}^{j}:(i, j) \in S\right\}, D=B(S)$ and $\mu_{n}(f)=\frac{2}{(n+1)(n+2)} \sum_{k=0}^{n} \sum_{i+j=k} f(i, j)$ for every $n \in \mathbf{N}$ and $f \in D$. We have $F(\mathcal{S})=F\left(S_{1}\right) \cap F\left(S_{2}\right) \neq \emptyset$ and know that $\left\{\mu_{n}\right\}$ is a sequence of monotone convergent means on D with $\lim _{n \rightarrow \infty}\left\|\mu_{n}-l_{(k, m)}^{*} \mu_{n}\right\|=0$ for each $(k, m) \in S$ and $T_{\mu_{n}} x=\frac{2}{(n+1)(n+2)} \sum_{k=0}^{n} \sum_{i+j=k} S_{1}^{i} S_{2}^{j} x$ for every $x \in C$. By Lemma 3.9, we get Lemma 3.11.

Let C be a nonempty closed convex subset of E. A family $\mathcal{S}=\{T(s): 0 \leq s<$ $\infty\}$ of mappings of C into itself is called a one-parameter nonexpansive semigroup on C if it satisfies the following conditions:
(i) $T(0) x=x$ for all $x \in C$;
(ii) $T(s+t)=T(s) T(t)$ for every $s, t \geq 0$;
(iii) $\|T(s) x-T(s) y\| \leq\|x-y\|$ for each $s \geq 0$ and $x, y \in C$;
(iv) for all $x \in C, s \longmapsto T(s) x$ is continuous.

We have the following results for one-parameter nonexpansive semigroups by Lemma 3.9; see [9].
Lemma 3.12. Let C be a nonempty closed convex subset of a uniformly convex Banach space E and let $\mathcal{S}=\{T(s): 0 \leq s<\infty\}$ be a one-parameter nonexpansive semigroup on C with $F(\mathcal{S}) \neq \emptyset$. Let $\left\{t_{n}\right\} \subset(0, \infty)$ with $\lim _{n \rightarrow \infty} t_{n}=\infty$. Then, the following hold:
(i) $\left\{T_{n}\right\}$ with $T_{n} \cdot=\frac{1}{t_{n}} \int_{0}^{t_{n}} T(s) \cdot d s(\forall n \in N)$ and $\mathcal{T}=\mathcal{S}$ satisfy the condition (I) with $\cap_{n=1}^{\infty} F\left(T_{n}\right)=F(\mathcal{T})=F(\mathcal{S})$;
(ii) $\left\{T_{n}\right\}$ with $T_{n} \cdot=\frac{1}{t_{n}} \int_{0}^{t_{n}} T(s) \cdot d s(\forall n \in \boldsymbol{N})$ and $\mathcal{T}=\mathcal{S}$ satisfy the conditions (I) and (II) with $\cap_{n=1}^{\infty} F\left(T_{n}\right)=F(\mathcal{T})=F(\mathcal{S})$.

Proof. (i). Let $S=(0, \infty)$ and let D be the Banach space $C(S)$ of all bounded continuous real valued functions on S. Let $\lambda_{s}(f)=\frac{1}{s} \int_{0}^{s} f(t) d t$ for every $s>0$ and $f \in D$. We know that $\left\{\lambda_{s}\right\}$ is a net of means on D with $\lim _{s \rightarrow \infty}\left\|\lambda_{s}-l_{k}^{*} \lambda_{s}\right\|=0$ for each $k \in(0, \infty)$ and $T_{\lambda_{s}} x=\frac{1}{s} \int_{0}^{s} T(t) x d t$ for every $x \in C$. By Lemma 3.9 (i), we get Lemma 3.12 (i).
(ii). Let $S=(0, \infty)$ and let D be a set of all bounded Lebesque measurable real valued functions on S. Let $\lambda_{s}(f)=\frac{1}{s} \int_{0}^{s} f(t) d t$ for every $s>0$ and $f \in D$. We have the mappings $t \mapsto \sup _{n} f_{n}(t)$ and $t \mapsto \inf _{n} f_{n}(t)$ are in D for every bounded sequence $\left\{f_{n}: n \in \mathbf{N}\right\}$ of D. We also know that $\left\{\lambda_{s}\right\}$ is a net of monotone convergent means on D with $\lim _{s \rightarrow \infty}\left\|\lambda_{s}-l_{k}^{*} \lambda_{s}\right\|=0$ for each $k \in(0, \infty)$ and $T_{\lambda_{s}} x=\frac{1}{s} \int_{0}^{s} T(t) x d t$ for every $x \in C$. From Lemma 3.9 (ii), we get Lemma 3.12 (ii).

4. Strong convergence theorem of Browder's type

Using the method of [26] (see also [28, 29]), we get the following.
Theorem 4.1. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable. Let $\left\{T_{n}\right\}$ and \mathcal{T} be families of nonexpansive mappings of C into itself which satisfy $\emptyset \neq F(\mathcal{T}) \subset$ $\cap_{n=1}^{\infty} F\left(T_{n}\right)$ and the condition (I). Define a sequence $\left\{x_{n}\right\}$ in C as follows: $x \in C$ and

$$
x_{n}=\alpha_{n} x+\left(1-\alpha_{n}\right) T_{n} x_{n}(\forall n \in \mathbf{N}),
$$

where $\left\{\alpha_{n}\right\} \subset(0,1)$ If $\lim _{n \rightarrow \infty} \alpha_{n}=0,\left\{x_{n}\right\}$ converges strongly to $P_{F(\mathcal{T})} x$, where $P_{F(\mathcal{T})}$ is a sunny nonexpansive retraction of C onto $F(\mathcal{T})$.
Proof. Let $U_{n}=\alpha_{n} x+\left(1-\alpha_{n}\right) T_{n}$ for every $n \in \mathbf{N}$. We have $U_{n}: C \longrightarrow C$ and U_{n} is a contraction for all $n \in \mathbf{N}$ since T_{n} is nonexpansive and $0<\alpha_{n}<1$. So, for each $n \in \mathbf{N}$, there exists a unique element $x_{n} \in C$ such that $x_{n}=\alpha_{n} x+\left(1-\alpha_{n}\right) T_{n} x_{n}$. By (I), we get $F(\mathcal{T})=\cap_{n=1}^{\infty} F\left(T_{n}\right)$. Let $z \in \cap_{n=1}^{\infty} F\left(T_{n}\right)$. We obtain

$$
\begin{aligned}
\left\|x_{n}-z\right\| & =\left\|\alpha_{n}(x-z)+\left(1-\alpha_{n}\right)\left(T_{n} x_{n}-z\right)\right\| \\
& \leq \alpha_{n}\|x-z\|+\left(1-\alpha_{n}\right)\left\|T_{n} x_{n}-z\right\| \\
& \leq \alpha_{n}\|x-z\|+\left(1-\alpha_{n}\right)\left\|x_{n}-z\right\|
\end{aligned}
$$

for every $n \in \mathbf{N}$. So, we have $\left\|x_{n}-z\right\| \leq\|x-z\|$ for all $n \in \mathbf{N}$. This implies that $\left\{x_{n}\right\}$ is bounded. Further, we have that

$$
\left\|x_{n}-T_{n} x_{n}\right\|=\alpha_{n}\left\|x-T_{n} x_{n}\right\| \leq \alpha_{n}\left(\|x-z\|+\left\|T_{n} x_{n}-z\right\|\right) \leq 2 \alpha_{n}\|x-z\|
$$

for each $n \in \mathbf{N}$. From $\lim _{n \rightarrow \infty} \alpha_{n}=0$, we get

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-T_{n} x_{n}\right\|=0
$$

So, from (I), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=0 \tag{4.1}
\end{equation*}
$$

for all $T \in \mathcal{T}$. We get

$$
\begin{aligned}
& \alpha_{n}\left(x-z, J\left(x_{n}-z\right)\right) \\
& =\alpha_{n}\left(x_{n}-z, J\left(x_{n}-z\right)\right)+\left(1-\alpha_{n}\right)\left(\left(x_{n}-T_{n} x_{n}\right)-\left(z-T_{n} z\right), J\left(x_{n}-z\right)\right) \\
& =\alpha_{n}\left\|x_{n}-z\right\|^{2}+\left(1-\alpha_{n}\right)\left\{\left(x_{n}-z, J\left(x_{n}-z\right)\right)-\left(T_{n} x_{n}-T_{n} z, J\left(x_{n}-z\right)\right)\right\} \\
& \geq \alpha_{n}\left\|x_{n}-z\right\|^{2}+\left(1-\alpha_{n}\right)\left\{\left\|x_{n}-z\right\|^{2}-\left\|T_{n} x_{n}-T_{n} z\right\| \cdot\left\|x_{n}-z\right\|\right\} \geq \alpha_{n}\left\|x_{n}-z\right\|^{2}
\end{aligned}
$$

for every $n \in \mathbf{N}$. So, we obtain

$$
\begin{equation*}
\left\|x_{n}-z\right\|^{2} \leq\left(x-z, J\left(x_{n}-z\right)\right) \tag{4.2}
\end{equation*}
$$

for all $n \in \mathbf{N}$ and $z \in \cap_{n=1}^{\infty} F\left(T_{n}\right)$. We also have

$$
\begin{align*}
\left(x_{n}-x, J\left(x_{n}-z\right)\right) & =\frac{1-\alpha_{n}}{\alpha_{n}}\left(T_{n} x_{n}-x_{n}, J\left(x_{n}-z\right)\right) \\
& =\frac{1-\alpha_{n}}{\alpha_{n}}\left\{\left(T_{n} x_{n}-z, J\left(x_{n}-z\right)\right)-\left(x_{n}-z, J\left(x_{n}-z\right)\right)\right\} \\
& =\frac{1-\alpha_{n}}{\alpha_{n}}\left\{\left(T_{n} x_{n}-z, J\left(x_{n}-z\right)\right)-\left\|x_{n}-z\right\|^{2}\right\} \leq 0 \tag{4.3}
\end{align*}
$$

for each $n \in \mathbf{N}$ and $z \in \cap_{n=1}^{\infty} F\left(T_{n}\right)$. Let $\left\{x_{n_{i}}\right\}$ be a subsequence of $\left\{x_{n}\right\}$ and let μ be a Banach limit. Let g be a real valued function on C defined by $g(y)=\mu_{i}\left\|x_{n_{i}}-y\right\|^{2}$ for every $y \in C$. By [33], we know that g is continuous and convex and g satisfies $\lim _{\|y\| \rightarrow \infty} g(y)=\infty$. So, there exists $x_{0} \in C$ such that $g\left(x_{0}\right)=\inf _{y \in C} g(y)$. Let $y_{1}, y_{2} \in C$ such that $g\left(y_{1}\right)=g\left(y_{2}\right)=\inf _{y \in C} g(y)$ and suppose that $y_{1} \neq y_{2}$. Let B be a bounded subset of E containing sequences $\left\{x_{n_{i}}-y_{1}\right\}$ and $\left\{x_{n_{i}}-y_{2}\right\}$. By (2.1), there exists $g_{B} \in G$ such that

$$
\begin{aligned}
\left\|x_{n_{i}}-\frac{y_{1}+y_{2}}{2}\right\|^{2} & =\left\|\frac{1}{2}\left(x_{n_{i}}-y_{1}\right)+\frac{1}{2}\left(x_{n_{i}}-y_{2}\right)\right\|^{2} \\
& \leq \frac{1}{2}\left\|x_{n_{i}}-y_{1}\right\|^{2}+\frac{1}{2}\left\|x_{n_{i}}-y_{2}\right\|^{2}-\frac{1}{4} g_{B}\left(\left\|y_{1}-y_{2}\right\|\right)
\end{aligned}
$$

for every $i \in \mathbf{N}$ which implies

$$
g\left(\frac{y_{1}+y_{2}}{2}\right) \leq \frac{1}{2} g\left(y_{1}\right)+\frac{1}{2} g\left(y_{2}\right)-\frac{1}{4} g_{B}\left(\left\|y_{1}-y_{2}\right\|\right)<\inf _{y \in C} g(y) .
$$

This is a contradiction. So, we obtain $y_{1}=y_{2}$. Therefore, there exists a unique element y_{0} of C such that $g\left(y_{0}\right)=\inf _{y \in C} g(y)$. Suppose $y_{0} \notin F(T)$ for some $T \in \mathcal{T}$. Let B be a bounded subset of E containing sequences $\left\{x_{n_{i}}-y_{0}\right\}$ and $\left\{x_{n_{i}}-T y_{0}\right\}$.

We have

$$
\begin{aligned}
\| x_{n_{i}}- & \frac{T y_{0}+y_{0}}{2}\left\|^{2} \leq \frac{1}{2}\right\| x_{n_{i}}-y_{0}\left\|^{2}+\frac{1}{2}\right\| x_{n_{i}}-T y_{0} \|^{2}-\frac{1}{4} g_{B}\left(\left\|y_{0}-T y_{0}\right\|\right) \\
\leq & \frac{1}{2}\left\|x_{n_{i}}-y_{0}\right\|^{2}+\frac{1}{2}\left\{\left\|x_{n_{i}}-T x_{n_{i}}\right\|+\left\|T x_{n_{i}}-T y_{0}\right\|\right\}^{2} \\
& -\frac{1}{4} g_{B}\left(\left\|y_{0}-T y_{0}\right\|\right) \\
\leq & \frac{1}{2}\left\|x_{n_{i}}-y_{0}\right\|^{2}+\frac{1}{2}\left\{\left\|x_{n_{i}}-T x_{n_{i}}\right\|+\left\|x_{n_{i}}-y_{0}\right\|\right\}^{2} \\
& -\frac{1}{4} g_{B}\left(\left\|y_{0}-T y_{0}\right\|\right) \\
= & \frac{1}{2}\left\|x_{n_{i}}-y_{0}\right\|^{2} \\
& +\frac{1}{2}\left\{\left\|x_{n_{i}}-T x_{n_{i}}\right\|^{2}+2\left\|x_{n_{i}}-T x_{n_{i}}\right\| \cdot\left\|x_{n_{i}}-y_{0}\right\|+\left\|x_{n_{i}}-y_{0}\right\|^{2}\right\} \\
& -\frac{1}{4} g_{B}\left(\left\|y_{0}-T y_{0}\right\|\right)
\end{aligned}
$$

for some $g_{B} \in G$. This implies

$$
g\left(\frac{T y_{0}+y_{0}}{2}\right) \leq \frac{1}{2} g\left(y_{0}\right)+\frac{1}{2} g\left(y_{0}\right)-\frac{1}{4} g_{B}\left(\left\|y_{0}-T y_{0}\right\|\right)<\inf _{y \in C} g(y)
$$

by (4.1). This is a contradiction. So, we get $y_{0} \in F(\mathcal{T})$. It follows from (4.2) and Lemma 2.3 that $\mu_{i}\left\|x_{n_{i}}-y_{0}\right\|^{2} \leq \mu_{i}\left(x-y_{0}, J\left(x_{n_{i}}-y_{0}\right)\right) \leq 0$. There exists a subsequence $\left\{x_{n_{i_{j}}}\right\}$ of $\left\{x_{n_{i}}\right\}$ such that

$$
\lim _{j \rightarrow \infty}\left\|x_{n_{i_{j}}}-y_{0}\right\|=0
$$

because

$$
\lim _{j \rightarrow \infty}\left\|x_{n_{i_{j}}}-y_{0}\right\|=\liminf _{i \rightarrow \infty}\left\|x_{n_{i}}-y_{0}\right\| \leq \mu_{i}\left\|x_{n_{i}}-y_{0}\right\|^{2} \leq 0
$$

On the other hand, let $\left\{x_{n_{i}}\right\}$ and $\left\{x_{n_{j}}\right\}$ be subsequences of $\left\{x_{n}\right\}$ such that $x_{n_{i}} \rightarrow z_{1}$ and $x_{n_{j}} \rightarrow z_{2}$. Then, from (4.1) we have that for any $T \in \mathcal{T}$,

$$
\left\|z_{1}-T z_{1}\right\| \leq\left\|z_{1}-x_{n_{i}}\right\|+\left\|x_{n_{i}}-T x_{n_{i}}\right\|+\left\|T x_{n_{i}}-T z_{1}\right\| \rightarrow 0
$$

as $i \rightarrow \infty$. So, we get $z_{1} \in \cap_{n=1}^{\infty} F\left(T_{n}\right)$. Similarly, $z_{2} \in \cap_{n=1}^{\infty} F\left(T_{n}\right)$. By (4.3), we obtain $\left(x_{n_{i}}-x, J\left(x_{n_{i}}-z_{2}\right)\right) \leq 0$ for all $i \in \mathbf{N}$ and $\left(x_{n_{j}}-x, J\left(x_{n_{j}}-z_{1}\right)\right) \leq 0$ for each $j \in \mathbf{N}$. Since

$$
\begin{aligned}
\mid\left(x_{n_{i}}-x, J\left(x_{n_{i}}-z_{2}\right)\right)- & \left(z_{1}-x, J\left(z_{1}-z_{2}\right)\right) \mid \\
\leq \leq & \left|\left(x_{n_{i}}-x, J\left(x_{n_{i}}-z_{2}\right)\right)-\left(z_{1}-x, J\left(x_{n_{i}}-z_{2}\right)\right)\right| \\
& +\left|\left(z_{1}-x, J\left(x_{n_{i}}-z_{2}\right)\right)-\left(z_{1}-x, J\left(z_{1}-z_{2}\right)\right)\right| \\
\leq & \left\|x_{n_{i}}-z_{1}\right\| \cdot\left\|x_{n_{i}}-z_{2}\right\| \\
& +\left|\left(z_{1}-x, J\left(x_{n_{i}}-z_{2}\right)\right)-\left(z_{1}-x, J\left(z_{1}-z_{2}\right)\right)\right|
\end{aligned}
$$

for every $i \in \mathbf{N}$ and J is norm to weak* uniformly continuous on bounded subsets of E, we have $\left(z_{1}-x, J\left(z_{1}-z_{2}\right)\right) \leq 0$. Similarly, $\left(z_{2}-x, J\left(z_{2}-z_{1}\right)\right) \leq 0$. So, we get $\left\|z_{1}-z_{2}\right\|^{2}=\left(z_{1}-z_{2}, J\left(z_{1}-z_{2}\right)\right) \leq 0$, that is, $z_{1}=z_{2}$. Therefore, $\left\{x_{n}\right\}$ converges
strongly to some element of $\cap_{n=1}^{\infty} F\left(T_{n}\right)=F(\mathcal{T})$. Hence, we can define a mapping P of C onto $F(\mathcal{T})$ by $P x=\lim _{n \rightarrow \infty} x_{n}$ because x is an arbitrary point of C. By (4.3), we obtain $\left(P x-x, J\left(P x-z_{0}\right)\right) \leq 0$ for all $x \in C$ and $z_{0} \in F(\mathcal{T})$. So, P is a sunny nonexpansive retraction of C onto $F(\mathcal{T})$ from Lemma 2.4.

We have the following result for nonexpansive mappings by Lemma 3.1 (i) and Theorem 4.1.
Theorem 4.2. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable and let T be a nonexpansive mapping of C into itself such that $F(T) \neq \emptyset$. Let $x \in C$ and $\left\{x_{n}\right\}$ be a sequence by $x_{n}=\alpha_{n} x+\left(1-\alpha_{n}\right) T x_{n}(\forall n \in \boldsymbol{N})$, where $\left\{\alpha_{n}\right\} \subset(0,1)$ with $\lim _{n \rightarrow \infty} \alpha_{n}=0$. Then, $\left\{x_{n}\right\}$ converges strongly to $P_{F(T)} x$, where $P_{F(T)}$ is a sunny nonexpansive retraction of C onto $F(T)$.

We get the following result for convex combination of nonexpansive mappings by Lemma 3.2 (i) and Theorem 4.1.
Theorem 4.3. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable and let S and T be nonexpansive mappings of C into itself such that $F(S) \cap F(T) \neq \emptyset$. Let $x \in C$ and $\left\{x_{n}\right\}$ be a sequence by $x_{n}=\alpha_{n} x+\left(1-\alpha_{n}\right)\left(\gamma_{n} S x_{n}+\left(1-\gamma_{n}\right) T x_{n}\right)(\forall n \in \boldsymbol{N})$, where $\left\{\alpha_{n}\right\} \subset(0,1)$ with $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\left\{\gamma_{n}\right\} \subset[a, b]$ for some $a, b \in(0,1)$ with $a \leq b$. Then, $\left\{x_{n}\right\}$ converges strongly to $P_{F(S) \cap F(T)}$, where $P_{F(S) \cap F(T)}$ is a sunny nonexpansive retraction of C onto $F(S) \cap F(T)$.

We have the following result [17] for accretive operators from Lemma 3.5 (i) and Theorem 4.1.

Theorem 4.4. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable and let $A \subset E \times E$ be an accretive operator with $\overline{D(A)} \subset C \subset \cap_{\lambda>0} R(I+\lambda A)$ and $A^{-1} 0 \neq \emptyset$. Let $x \in C$ and $\left\{x_{n}\right\}$ be a sequence by $x_{n}=\alpha_{n} x+\left(1-\alpha_{n}\right) J_{\lambda_{n}} x_{n}(\forall n \in N)$, where $\left\{\lambda_{n}\right\} \subset(0, \infty)$ and $\left\{\alpha_{n}\right\} \subset(0,1)$ with $\lim _{n \rightarrow \infty} \alpha_{n}=0$. If $\liminf _{n \rightarrow \infty} \lambda_{n}>0,\left\{x_{n}\right\}$ converges strongly to $P_{A^{-1} 0} x$, where $P_{A^{-1} 0}$ is a sunny nonexpansive retraction of C onto $A^{-1} 0$.

We get the following result for the W-mappings from Lemma 3.6 (i) and Theorem 4.1.

Theorem 4.5. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable. Let S_{1}, S_{2}, \ldots be infinite nonexpansive mappings of C into itself with $F:=\cap_{n=1}^{\infty} F\left(S_{n}\right) \neq \emptyset$ and let $\beta_{1}, \beta_{2}, \ldots$ be real numbers with $0<\beta_{i} \leq b<1$ for every $i \in \boldsymbol{N}$ for some $b \in(0,1)$. Let W_{n} be the W-mapping generated by $S_{n}, S_{n-1}, \ldots, S_{1}$ and $\beta_{n}, \beta_{n-1}, \ldots, \beta_{1}$ for every $n \in N$. Let $x \in C$ and $\left\{x_{n}\right\}$ be a sequence by $x_{n}=\alpha_{n} x+\left(1-\alpha_{n}\right) W_{n} x_{n} \quad(\forall n \in$ $\boldsymbol{N})$, where $\left\{\alpha_{n}\right\} \subset(0,1)$ with $\lim _{n \rightarrow \infty} \alpha_{n}=0$. Then, $\left\{x_{n}\right\}$ converges strongly to $P_{F} x$, where P_{F} is a sunny nonexpansive retraction of C onto F.

We have the following result for nonexpansive semigroups by Lemma 3.9 (i) and Theorem 4.1.

Theorem 4.6. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable and let S be a semigroup. Let $\mathcal{S}=\{T(s): s \in S\}$ be a nonexpansive semigroup on C such that $F:=F(\mathcal{S}) \neq \emptyset$ and let D be a subspace of $B(S)$ containing constants and being invariant under l_{s} for all $s \in S$. Suppose that for every $x \in C$ and $x^{*} \in E^{*}$, the function $t \mapsto\left(T(t) x, x^{*}\right)$ is in D. Let $\left\{\mu_{n}\right\}$ be a sequence of means on D such that $\lim _{n \rightarrow \infty}\left\|\mu_{n}-l_{s}^{*} \mu_{n}\right\|=0$ for each $s \in S$. Let $x \in C$ and $\left\{x_{n}\right\}$ be a sequence by $x_{n}=\alpha_{n} x+\left(1-\alpha_{n}\right) T_{\mu_{n}} x_{n}(\forall n \in \boldsymbol{N})$, where $\left\{\alpha_{n}\right\} \subset(0,1)$ with $\lim _{n \rightarrow \infty} \alpha_{n}=0$. Then, $\left\{x_{n}\right\}$ converges strongly to $P_{F} x$, where P_{F} is a sunny nonexpansive retraction of C onto F.

We get the following results for nonexpansive mappings from Lemmas 3.10 (i) and 3.11 (i) and Theorem 4.1.

Theorem 4.7. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable and let T be a nonexpansive mapping of C into itself such that $F(T) \neq \emptyset$. Let $x \in C$ and $\left\{x_{n}\right\}$ be a sequence by $x_{n}=\alpha_{n} x+\left(1-\alpha_{n}\right) \frac{1}{n} \sum_{i=0}^{n-1} T^{i} x_{n}(\forall n \in N)$, where $\left\{\alpha_{n}\right\} \subset(0,1)$ with $\lim _{n \rightarrow \infty} \alpha_{n}=0$. Then, $\left\{x_{n}\right\}$ converges strongly to $P_{F(T)} x$, where $P_{F(T)}$ is a sunny nonexpansive retraction of C onto $F(T)$.

Theorem 4.8. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable and let S_{1} and S_{2} be nonexpansive mappings of C into itself such that $S_{1} S_{2}=S_{2} S_{1}$ and $F\left(S_{1}\right) \cap$ $F\left(S_{2}\right) \neq \emptyset$. Let $x \in C$ and $\left\{x_{n}\right\}$ be a sequence by $x_{n}=\alpha_{n} x+\left(1-\alpha_{n}\right) \frac{2}{(n+1)(n+2)}$ $\sum_{k=0}^{n} \sum_{i+j=k} S_{1}^{i} S_{2}^{j} x_{n}(\forall n \in N)$, where $\left\{\alpha_{n}\right\} \subset(0,1)$ with $\lim _{n \rightarrow \infty} \alpha_{n}=0$. Then, $\left\{x_{n}\right\}$ converges strongly to $P_{F\left(S_{1}\right) \cap F\left(S_{2}\right)} x$, where $P_{F\left(S_{1}\right) \cap F\left(S_{2}\right)}$ is a sunny nonexpansive retraction of C onto $F\left(S_{1}\right) \cap F\left(S_{2}\right)$.

We have the following result for one-parameter nonexpansive semigroups by Lemma 3.12 (i) and Theorem 4.1.

Theorem 4.9. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable and let $\mathcal{S}=\{T(s)$: $0 \leq s<\infty\}$ be a one-parameter nonexpansive semigroup on C such that $F(\mathcal{S}) \neq \emptyset$. Let $x \in C$ and $\left\{x_{n}\right\}$ be a sequence by $x_{n}=\alpha_{n} x+\left(1-\alpha_{n}\right) \frac{1}{t_{n}} \int_{0}^{t_{n}} T(s) x_{n} d s(\forall n \in \boldsymbol{N})$, where $\left\{\alpha_{n}\right\} \subset(0,1)$ with $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\left\{t_{n}\right\} \subset(0, \infty)$ with $\lim _{n \rightarrow \infty} t_{n}=\infty$. Then, $\left\{x_{n}\right\}$ converges strongly to $P_{F(\mathcal{S})} x$, where $P_{F(\mathcal{S})}$ is a sunny nonexpansive retraction of C onto $F(\mathcal{S})$.

5. Strong convergence theorem of Halpern's type

Using the method employed in [24], we get the following.
Theorem 5.1. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable and let $\left\{T_{n}\right\}$ and \mathcal{T} be families of nonexpansive mappings of C into itself which satisfy $\emptyset \neq F(\mathcal{T}) \subset$
$\cap_{n=1}^{\infty} F\left(T_{n}\right)$ and the conditions (I) and (III). Let $\left\{x_{n}\right\}$ be a sequence generated as follows: $x_{1}=x \in C$ and

$$
x_{n+1}=\alpha_{n} x+\left(1-\alpha_{n}\right) T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)(\forall n \in \boldsymbol{N}),
$$

where $\left\{\alpha_{n}\right\} \subset[0,1)$ and $\left\{\beta_{n}\right\} \subset[0,1)$ satisfy $\lim _{n \rightarrow \infty} \alpha_{n}=\lim _{n \rightarrow \infty} \beta_{n}=0$ and $\prod_{n=1}^{\infty}\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)=0$. If $\sum_{n=1}^{\infty}\left(\left|\alpha_{n}-\alpha_{n+1}\right|+\left|\beta_{n}-\beta_{n+1}\right|\right)<\infty$, then $\left\{x_{n}\right\}$ converges strongly to $P_{F(\mathcal{T})}$ x, where $P_{F(\mathcal{T})}$ is a sunny nonexpansive retraction of C onto $F(\mathcal{T})$.

Proof. We have $F(\mathcal{T})=\cap_{n=1}^{\infty} F\left(T_{n}\right)$ by (I). Let $z \in \cap_{n=1}^{\infty} F\left(T_{n}\right)$. We have $\left\|x_{n}-z\right\| \leq$ $\|x-z\|$ for every $n \in \mathbf{N}$. In fact, suppose that $\left\|x_{n}-z\right\| \leq\|x-z\|$ for some $n \in \mathbf{N}$. We get

$$
\begin{aligned}
\left\|x_{n+1}-z\right\| & =\left\|\alpha_{n}(x-z)+\left(1-\alpha_{n}\right)\left\{T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)-z\right\}\right\| \\
& \leq \alpha_{n}\|x-z\|+\left(1-\alpha_{n}\right)\left\{\beta_{n}\|x-z\|+\left(1-\beta_{n}\right)\left\|x_{n}-z\right\|\right\} \\
& \leq\|x-z\| .
\end{aligned}
$$

So, $\left\{x_{n}\right\}$ is bounded. Next, we obtain

$$
\begin{aligned}
\left\|x_{n+1}-x_{n}\right\|= & \| \alpha_{n} x+\left(1-\alpha_{n}\right) T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right) \\
& -\alpha_{n-1} x-\left(1-\alpha_{n-1}\right) T_{n-1}\left(\beta_{n-1} x+\left(1-\beta_{n-1}\right) x_{n-1}\right) \| \\
= & \|\left(\alpha_{n}-\alpha_{n-1}\right) x+\left(1-\alpha_{n}\right)\left\{T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)\right. \\
& \left.-T_{n-1}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)\right\} \\
& +\left(1-\alpha_{n}\right)\left\{T_{n-1}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)\right. \\
& \left.-T_{n-1}\left(\beta_{n-1} x+\left(1-\beta_{n-1}\right) x_{n-1}\right)\right\} \\
& +\left(\alpha_{n-1}-\alpha_{n}\right) T_{n-1}\left(\beta_{n-1} x+\left(1-\beta_{n-1}\right) x_{n-1}\right) \| \\
\leq & \left|\alpha_{n}-\alpha_{n-1}\right| \cdot\left\|x-T_{n-1}\left(\beta_{n-1} x+\left(1-\beta_{n-1}\right) x_{n-1}\right)\right\| \\
& +\left(1-\alpha_{n}\right)\left\|T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)-T_{n-1}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)\right\| \\
& +\left(1-\alpha_{n}\right)\left\|\left\{\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right\}-\left\{\beta_{n-1} x+\left(1-\beta_{n-1}\right) x_{n-1}\right\}\right\| \\
\leq & \left|\alpha_{n}-\alpha_{n-1}\right| \cdot M_{1} \\
& +\left(1-\alpha_{n}\right)\left\|T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)-T_{n-1}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)\right\| \\
& +\left(1-\alpha_{n}\right)\left\{\left|\beta_{n}-\beta_{n-1}\right| \cdot\left(\|x\|+\left\|x_{n-1}\right\|\right)+\left(1-\beta_{n}\right)\left\|x_{n}-x_{n-1}\right\|\right\}
\end{aligned}
$$

for each $n=2,3, \ldots$, where $M_{1}=\sup _{n \in \mathbf{N} \backslash\{1\}}\left\|x-T_{n-1}\left(\beta_{n-1} x+\left(1-\beta_{n-1}\right) x_{n-1}\right)\right\|$. Since a sequence $\left\{\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right\}$ is bounded, there exists $M_{2}>0$ such that

$$
\left\|T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)-T_{n-1}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)\right\| \leq a_{n-1} M_{2}
$$

for all $n=2,3, \ldots$ by (III). Therefore, we get

$$
\begin{align*}
\left\|x_{n+1}-x_{n}\right\| \leq & \left(\left|\alpha_{n}-\alpha_{n-1}\right|+\left|\beta_{n}-\beta_{n-1}\right|+a_{n-1}\right) M \tag{5.1}\\
& +\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)\left\|x_{n}-x_{n-1}\right\|
\end{align*}
$$

for every $n=2,3, \ldots$, where $M=\max \left\{M_{1}, M_{2}, \sup _{n \in \mathbf{N} \backslash\{1\}}\left\{\|x\|+\left\|x_{n-1}\right\|\right\}\right\}$. Let $m, n \in \mathbf{N}$. By (5.1), we obtain

$$
\begin{aligned}
\| & x_{n+m+1}-x_{n+m} \| \leq\left(\left|\alpha_{n+m}-\alpha_{n+m-1}\right|+\left|\beta_{n+m}-\beta_{n+m-1}\right|+a_{n+m-1}\right) M \\
\quad & +\left(1-\alpha_{n+m}\right)\left(1-\beta_{n+m}\right)\left\|x_{n+m}-x_{n+m-1}\right\| \\
\leq & \left(\left|\alpha_{n+m}-\alpha_{n+m-1}\right|+\left|\beta_{n+m}-\beta_{n+m-1}\right|+a_{n+m-1}\right) M \\
& +\left(1-\alpha_{n+m}\right)\left(1-\beta_{n+m}\right)\left\{\left(\left|\alpha_{n+m-1}-\alpha_{n+m-2}\right|\right.\right. \\
& \left.+\left|\beta_{n+m-1}-\beta_{n+m-2}\right|+a_{n+m-2}\right) M \\
\quad & \left.+\left(1-\alpha_{n+m-1}\right)\left(1-\beta_{n+m-1}\right)\left\|x_{n+m-1}-x_{n+m-2}\right\|\right\} \\
\leq & \left\{\left(\left|\alpha_{n+m}-\alpha_{n+m-1}\right|+\left|\alpha_{n+m-1}-\alpha_{n+m-2}\right|\right)\right. \\
& \left.+\left(\left|\beta_{n+m}-\beta_{n+m-1}\right|+\left|\beta_{n+m-1}-\beta_{n+m-2}\right|\right)+\left(a_{n+m-1}+a_{n+m-2}\right)\right\} M \\
& +\left(1-\alpha_{n+m}\right)\left(1-\beta_{n+m}\right)\left(1-\alpha_{n+m-1}\right)\left(1-\beta_{n+m-1}\right)\left\|x_{n+m-1}-x_{n+m-2}\right\| \\
\leq & \cdots \\
\leq & M \cdot \sum_{k=m}^{n+m-1}\left(\left|\alpha_{k+1}-\alpha_{k}\right|+\left|\beta_{k+1}-\beta_{k}\right|+a_{k}\right) \\
& +\left\|x_{m+1}-x_{m}\right\| \cdot \prod_{k=m+1}^{n+m}\left(1-\alpha_{k}\right)\left(1-\beta_{k}\right) .
\end{aligned}
$$

So, we have

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\| & =\limsup _{n \rightarrow \infty}\left\|x_{n+m+1}-x_{n+m}\right\| \\
& \leq M \cdot \sum_{k=m}^{\infty}\left(\left|\alpha_{k+1}-\alpha_{k}\right|+\left|\beta_{k+1}-\beta_{k}\right|+a_{k}\right)
\end{aligned}
$$

for each $m \in \mathbf{N}$. Therefore, we get $\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0$. Since

$$
\begin{aligned}
\left\|x_{n}-T_{n} x_{n}\right\| & \leq\left\|x_{n}-T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)\right\|+\left\|T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)-T_{n} x_{n}\right\| \\
& \leq\left\|x_{n+1}-x_{n}\right\|+\alpha_{n}\left\|x-T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)\right\|+\beta_{n}\left\|x-x_{n}\right\|
\end{aligned}
$$

for all $n \in \mathbf{N}$, we have $\lim _{n \rightarrow \infty}\left\|x_{n}-T_{n} x_{n}\right\|=0$. Let $m \in \mathbf{N}$ and take $n \in \mathbf{N}$ with $n>m$. By (III), there exists $M_{B}>0$ such that

$$
\begin{aligned}
\left\|x_{n}-T_{m} x_{n}\right\| & \leq\left\|x_{n}-T_{n} x_{n}\right\|+\left\|T_{n} x_{n}-T_{n-1} x_{n}\right\|+\cdots+\left\|T_{m+1} x_{n}-T_{m} x_{n}\right\| \\
& \leq\left\|x_{n}-T_{n} x_{n}\right\|+M_{B} \cdot \sum_{k=m}^{n-1} a_{k} .
\end{aligned}
$$

So, we get

$$
\lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty}\left\|x_{n}-T_{m} x_{n}\right\|=0 .
$$

So, let $\left\{\gamma_{m}\right\} \subset(0,1)$ such that $\lim _{m \rightarrow \infty} \gamma_{m}=0$ and $\lim \sup _{n \rightarrow \infty}\left\|x_{n}-T_{m} x_{n}\right\| \leq b \gamma_{m}^{2}$ for each $m \in \mathbf{N}$, where $b \in(0, \infty)$ with $b>\sup _{m \in \mathbf{N}}\left\{\lim \sup _{n \rightarrow \infty}\left\|x_{n}-T_{m} x_{n}\right\|\right\}$ and let $\left\{y_{m}\right\}$ be a sequence of C such that $y_{m}=\gamma_{m} x+\left(1-\gamma_{m}\right) T_{m} y_{m}$ for every $m \in \mathbf{N}$.

By Theorem 4.1, $\lim _{m \rightarrow \infty} y_{m}=z \in F(\mathcal{T})$. Let μ be a Banach limit. Since

$$
\begin{align*}
\left\|x_{n}-T_{m} y_{m}\right\|^{2} \leq & \left\|x_{n}-T_{m} x_{n}\right\|^{2}+\left\|x_{n}-y_{m}\right\|^{2} \tag{5.2}\\
& +2\left\|x_{n}-T_{m} x_{n}\right\| \cdot\left\|x_{n}-y_{m}\right\|
\end{align*}
$$

for each $n, m \in \mathbf{N}$, we have

$$
\begin{align*}
\mu_{n}\left\|x_{n}-T_{m} y_{m}\right\|^{2} \leq & \mu_{n}\left\|x_{n}-y_{m}\right\|^{2} \\
& +\limsup _{n \rightarrow \infty}\left(\left\|x_{n}-T_{m} x_{n}\right\|^{2}+2\left\|x_{n}-T_{m} x_{n}\right\| \cdot\left\|x_{n}-y_{m}\right\|\right) \tag{5.3}
\end{align*}
$$

for all $m \in \mathbf{N}$. From

$$
\left(1-\gamma_{m}\right)\left(x_{n}-T_{m} y_{m}\right)=\left(x_{n}-y_{m}\right)-\gamma_{m}\left(x_{n}-x\right)
$$

we obtain

$$
\begin{align*}
\left(1-\gamma_{m}\right)^{2}\left\|x_{n}-T_{m} y_{m}\right\|^{2} & \geq\left\|x_{n}-y_{m}\right\|^{2}-2 \gamma_{m}\left(x_{n}-x, J\left(x_{n}-y_{m}\right)\right) \\
5.4) & =\left(1-2 \gamma_{m}\right)\left\|x_{n}-y_{m}\right\|^{2}+2 \gamma_{m}\left(x-y_{m}, J\left(x_{n}-y_{m}\right)\right) \tag{5.4}
\end{align*}
$$

for every $m, n \in \mathbf{N}$. Hence, we have

$$
\begin{aligned}
& \left(1-\gamma_{m}\right)^{2} \mu_{n}\left\|x_{n}-T_{m} y_{m}\right\|^{2} \\
& \quad \geq\left(1-2 \gamma_{m}\right) \mu_{n}\left\|x_{n}-y_{m}\right\|^{2}+2 \gamma_{m} \mu_{n}\left(x-y_{m}, J\left(x_{n}-y_{m}\right)\right)
\end{aligned}
$$

for all $m \in \mathbf{N}$. By (5.3), we have

$$
\begin{array}{r}
\left(1-\gamma_{m}\right)^{2}\left\{\mu_{n}\left\|x_{n}-y_{m}\right\|^{2}+\limsup _{n \rightarrow \infty}\left(\left\|x_{n}-T_{m} x_{n}\right\|^{2}+2\left\|x_{n}-T_{m} x_{n}\right\| \cdot\left\|x_{n}-y_{m}\right\|\right)\right\} \\
\geq\left(1-2 \gamma_{m}\right) \mu_{n}\left\|x_{n}-y_{m}\right\|^{2}+2 \gamma_{m} \mu_{n}\left(x-y_{m}, J\left(x_{n}-y_{m}\right)\right)
\end{array}
$$

and hence

$$
\begin{align*}
& \frac{\gamma_{m}}{2} \mu_{n}\left\|x_{n}-y_{m}\right\|^{2} \tag{5.5}\\
& \begin{aligned}
+\frac{\left(1-\gamma_{m}\right)^{2}}{2 \gamma_{m}} \limsup _{n \rightarrow \infty}\left(\left\|x_{n}-T_{m} x_{n}\right\|^{2}+2 \| x_{n}-\right. & \left.T_{m} x_{n}\|\cdot\| x_{n}-y_{m} \|\right) \\
& \geq \mu_{n}\left(x-y_{m}, J\left(x_{n}-y_{m}\right)\right)
\end{aligned}
\end{align*}
$$

for each $m \in \mathbf{N}$. Let $\varepsilon>0$. Since E is norm to weak* uniformly continuous on bounded subsets of E and $y_{m} \rightarrow z$, there exists $m_{1} \in \mathbf{N}$ such that for every $m \geq m_{1}$,

$$
\begin{align*}
\left|\left(x-z, J\left(x_{n}-z\right)\right)-\left(x-z, J\left(x_{n}-y_{m}\right)\right)\right| & <\frac{\varepsilon}{3} \tag{5.6}\\
\left|\left(x-z, J\left(x_{n}-y_{m}\right)\right)-\left(x-y_{m}, J\left(x_{n}-y_{m}\right)\right)\right| & <\frac{\varepsilon}{3} \tag{5.7}
\end{align*}
$$

for all $n \in \mathbf{N}$. Since $\gamma_{m} \rightarrow 0$ and $\limsup _{n \rightarrow \infty}\left\|x_{n}-T_{m} x_{n}\right\| \leq b \gamma_{m}^{2}(\forall m \in \mathbf{N})$, from (5.5) there exists $m_{2} \in \mathbf{N}$ such that

$$
\mu_{n}\left(x-y_{m}, J\left(x_{n}-y_{m}\right)\right)<\frac{\varepsilon}{3}
$$

for each $m \geq m_{2}$. Hence, there exists $m_{0} \in \mathbf{N}$ such that for every $m \geq m_{0}$,

$$
\begin{aligned}
\mu_{n}\left(x-z, J\left(x_{n}-z\right)\right)= & \mu_{n}\left(x-z, J\left(x_{n}-z\right)\right)-\mu_{n}\left(x-z, J\left(x_{n}-y_{m}\right)\right) \\
& +\mu_{n}\left(x-z, J\left(x_{n}-y_{m}\right)\right)-\mu_{n}\left(x-y_{m}, J\left(x_{n}-y_{m}\right)\right) \\
& +\mu_{n}\left(x-y_{m}, J\left(x_{n}-y_{m}\right)\right) \\
< & \frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon .
\end{aligned}
$$

Since ε is arbitrary, we have

$$
\mu_{n}\left(x-z, J\left(x_{n}-z\right)\right) \leq 0
$$

Further, by $\left\|x_{n+1}-x_{n}\right\| \rightarrow 0$, we get

$$
\left|\left(x-z, J\left(x_{n}-z\right)\right)-\left(x-z, J\left(x_{n+1}-z\right)\right)\right| \rightarrow 0
$$

Therefore, we obtain

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left(x-z, J\left(x_{n}-z\right)\right) \leq 0 \tag{5.8}
\end{equation*}
$$

by $[24$, Proposition 2$]$. It follows from $\left\|\left\{\beta_{n} x+\left(1-\beta_{n}\right) x_{n}-z\right\}-\left(x_{n}-z\right)\right\| \rightarrow 0$ that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left(x-z, J\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}-z\right)\right) \leq 0 \tag{5.9}
\end{equation*}
$$

Since

$$
\left(1-\alpha_{n}\right)\left\{T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)-z\right\}=\left(x_{n+1}-z\right)-\alpha_{n}(x-z)
$$

and

$$
\left(1-\beta_{n}\right)\left(x_{n}-z\right)=\beta_{n} x+\left(1-\beta_{n}\right) x_{n}-z-\beta_{n}(x-z)
$$

from Lemm 2.2 we have

$$
\left(1-\alpha_{n}\right)^{2}\left\|T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)-z\right\|^{2} \geq\left\|x_{n+1}-z\right\|^{2}-2 \alpha_{n}\left(x-z, J\left(x_{n+1}-z\right)\right)
$$

and

$$
\begin{aligned}
\left(1-\beta_{n}\right)^{2}\left\|x_{n}-z\right\|^{2} \geq & \left\|\beta_{n} x+\left(1-\beta_{n}\right) x_{n}-z\right\|^{2} \\
& -2 \beta_{n}\left(x-z, J\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}-z\right)\right)
\end{aligned}
$$

for all $n \in \mathbf{N}$. Let $\varepsilon>0$. By (5.8) and (5.9), there exists $n_{0} \in \mathbf{N}$ such that

$$
2\left(x-z, J\left(x_{n}-z\right)\right)<\varepsilon
$$

and

$$
2\left(x-z, J\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}-z\right)\right)<\varepsilon
$$

for every $n \geq n_{0}$. So, we have

$$
\begin{aligned}
\left\|x_{n+1}-z\right\|^{2} \leq & \left(1-\alpha_{n}\right)^{2}\left\|T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)-z\right\|^{2}+2 \alpha_{n}\left(x-z, J\left(x_{n+1}-z\right)\right) \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|\beta_{n} x+\left(1-\beta_{n}\right) x_{n}-z\right\|^{2}+2 \alpha_{n}\left(x-z, J\left(x_{n+1}-z\right)\right) \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\{\left(1-\beta_{n}\right)^{2}\left\|x_{n}-z\right\|^{2}+2 \beta_{n}\left(x-z, J\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}-z\right)\right)\right\} \\
& +2 \alpha_{n}\left(x-z, J\left(x_{n+1}-z\right)\right) \\
\leq & \left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)\left\|x_{n}-z\right\|^{2}+\left(1-\alpha_{n}\right) \beta_{n} \varepsilon+\alpha_{n} \varepsilon \\
\leq & \left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)\left\|x_{n}-z\right\|^{2}+\left\{1-\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)\right\} \varepsilon
\end{aligned}
$$

for every $n \geq n_{0}$. Hence, we have

$$
\begin{aligned}
& \left\|x_{n+1}-z\right\|^{2} \\
& \leq\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)\left\{\left(1-\alpha_{n-1}\right)\left(1-\beta_{n-1}\right)\left\|x_{n-1}-z\right\|^{2}\right. \\
& \left.+\left(1-\left(1-\alpha_{n-1}\right)\left(1-\beta_{n-1}\right)\right) \varepsilon\right\}+\left\{1-\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)\right\} \varepsilon \\
& =\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)\left(1-\alpha_{n-1}\right)\left(1-\beta_{n-1}\right)\left\|x_{n-1}-z\right\|^{2} \\
& +\left\{1-\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)\left(1-\alpha_{n-1}\right)\left(1-\beta_{n-1}\right)\right\} \varepsilon \\
& \leq \cdots \\
& \leq\left\|x_{n_{0}}-z\right\|^{2} \cdot \prod_{k=n_{0}}^{n}\left(1-\alpha_{k}\right)\left(1-\beta_{k}\right)+\left\{1-\prod_{k=n_{0}}^{n}\left(1-\alpha_{k}\right)\left(1-\beta_{k}\right)\right\} \varepsilon
\end{aligned}
$$

for each $n \geq n_{0}$. Therefore, $\lim \sup _{n \rightarrow \infty}\left\|x_{n+1}-z\right\|^{2} \leq \varepsilon$. Since ε is arbitrary, we get $x_{n} \rightarrow z \in F(\mathcal{T})$. Hence, we can define a mapping P of C onto $F(\mathcal{T})$ by $P x=\lim _{n \rightarrow \infty} x_{n}$. From Theorem 4.1, P is a sunny nonexpansive retraction of C onto $F(\mathcal{T})$.

W remark that in Theorem 5.1, the condition (III) is replaced by the following condition: For every bounded subset B of C,

$$
\sum_{n=1}^{\infty} \sup \left\{\left\|T_{n} x-T_{n+1} x\right\|: x \in B\right\}<\infty
$$

We get the following result [24] for nonexpansive mappings by Lemma 3.1 (i) and (ii) and Theorem 5.1.

Theorem 5.2. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable and let T be a nonexpansive mapping of C into itself with $F(T) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence generated as follows: $x_{1}=x \in C$ and

$$
x_{n+1}=\alpha_{n} x+\left(1-\alpha_{n}\right) T\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)(\forall n \in N)
$$

where $\left\{\alpha_{n}\right\} \subset[0,1)$ and $\left\{\beta_{n}\right\} \subset[0,1)$ satisfy $\lim _{n \rightarrow \infty} \alpha_{n}=\lim _{n \rightarrow \infty} \beta_{n}=0$, $\prod_{n=1}^{\infty}\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)=0$ and $\sum_{n=1}^{\infty}\left(\left|\alpha_{n}-\alpha_{n+1}\right|+\left|\beta_{n}-\beta_{n+1}\right|\right)<\infty$. Then, $\left\{x_{n}\right\}$ converges strongly to $P_{F(T)} x$, where $P_{F(T)}$ is a sunny nonexpansive retraction of C onto $F(T)$.

We have the following result [16] for nonexpansive mappings by Lemma 3.2 (ii) and Theorem 5.1.

Theorem 5.3. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable and let S and T be nonexpansive mappings of C into itself with $F(S) \cap F(T) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence generated as follows: $x_{1}=x \in C$ and

$$
x_{n+1}=\alpha_{n} x+\left(1-\alpha_{n}\right)\left(\gamma_{n} S+\left(1-\gamma_{n}\right) T\right)\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)(\forall n \in \boldsymbol{N})
$$

where $\left\{\alpha_{n}\right\} \subset[0,1)$ and $\left\{\beta_{n}\right\} \subset[0,1)$ satisfy $\lim _{n \rightarrow \infty} \alpha_{n}=\lim _{n \rightarrow \infty} \beta_{n}=0$, $\prod_{n=1}^{\infty}\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)=0$ and $\sum_{n=1}^{\infty}\left(\left|\alpha_{n}-\alpha_{n+1}\right|+\left|\beta_{n}-\beta_{n+1}\right|\right)<\infty \operatorname{and}\left\{\gamma_{n}\right\} \subset[a, b]$
for some $a, b \in(0,1)$ with $a \leq b$ satisfies $\sum_{n=1}^{\infty}\left|\gamma_{n}-\gamma_{n+1}\right|<\infty$. Then, $\left\{x_{n}\right\}$ converges strongly to $P_{F(S) \cap F(T)}$ x, where $P_{F(S) \cap F(T)}$ is a sunny nonexpansive retraction of C onto $F(S) \cap F(T)$.

We have the following result [17] for accretive operators from Lemma 3.5 (ii) and Theorem 5.1.
Theorem 5.4. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable and let $A \subset E \times E$ be an accretive operator with $\overline{D(A)} \subset C \subset \cap_{\lambda>0} R(I+\lambda A)$ and $A^{-1} 0 \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence generated as follows: $x_{1}=x \in C$ and

$$
x_{n+1}=\alpha_{n} x+\left(1-\alpha_{n}\right) J_{\lambda_{n}}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)(\forall n \in \boldsymbol{N})
$$

where $\left\{\alpha_{n}\right\} \subset[0,1)$ and $\left\{\beta_{n}\right\} \subset[0,1)$ satisfy $\lim _{n \rightarrow \infty} \alpha_{n}=\lim _{n \rightarrow \infty} \beta_{n}=0$, $\prod_{n=1}^{\infty}\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)=0$ and $\sum_{n=1}^{\infty}\left(\left|\alpha_{n}-\alpha_{n+1}\right|+\left|\beta_{n}-\beta_{n+1}\right|\right)<\infty$ and $\left\{\lambda_{n}\right\} \subset$ $(0, \infty)$ satisfies $\liminf _{n \rightarrow \infty} \lambda_{n}>0$ and $\sum_{n=1}^{\infty}\left|\lambda_{n}-\lambda_{n+1}\right|<\infty$. Then, $\left\{x_{n}\right\}$ converges strongly to $P_{A^{-1} 0} x$, where $P_{A^{-1} 0}$ is a sunny nonexpansive retraction of C onto $A^{-1} 0$.

We get the following result [23] for the W-mappings by Lemma 3.6 (ii) and Theorem 5.1.

Theorem 5.5. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable. Let S_{1}, S_{2}, \ldots be infinite nonexpansive mappings of C into itself with $F:=\cap_{n=1}^{\infty} F\left(S_{n}\right) \neq \emptyset$ and let $\beta_{1}, \beta_{2}, \ldots$ be real numbers with $0<\beta_{i} \leq b<1$ for every $i \in \boldsymbol{N}$ for some $b \in(0,1)$. Let W_{n} be the W-mapping generated by $S_{n}, S_{n-1}, \ldots, S_{1}$ and $\beta_{n}, \beta_{n-1}, \ldots, \beta_{1}$ for every $n \in \boldsymbol{N}$. Let $\left\{x_{n}\right\}$ be a sequence generated as follows: $x_{1}=x \in C$ and

$$
x_{n+1}=\alpha_{n} x+\left(1-\alpha_{n}\right) W_{n}\left(\gamma_{n} x+\left(1-\gamma_{n}\right) x_{n}\right)(\forall n \in \boldsymbol{N})
$$

where $\left\{\alpha_{n}\right\} \subset[0,1)$ and $\left\{\gamma_{n}\right\} \subset[0,1)$ satisfy $\lim _{n \rightarrow \infty} \alpha_{n}=\lim _{n \rightarrow \infty} \gamma_{n}=0$, $\prod_{n=1}^{\infty}\left(1-\alpha_{n}\right)\left(1-\gamma_{n}\right)=0$ and $\sum_{n=1}^{\infty}\left(\left|\alpha_{n}-\alpha_{n+1}\right|+\left|\gamma_{n}-\gamma_{n+1}\right|\right)<\infty$. Then, $\left\{x_{n}\right\}$ converges strongly to $P_{F} x$, where P_{F} is a sunny nonexpansive retraction of C onto F.

We also have the following result.
Theorem 5.6. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable and let $\left\{T_{n}\right\}$ and \mathcal{T} be families of nonexpansive mappings of C into itself which satisfy $\emptyset \neq F(\mathcal{T}) \subset$ $\cap_{n=1}^{\infty} F\left(T_{n}\right)$ and the conditions (I) and (II). Let $\left\{x_{n}\right\}$ be a sequence generated as follows: $x_{1}=x \in C$ and

$$
x_{n+1}=\alpha_{n} x+\left(1-\alpha_{n}\right) T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)(\forall n \in N)
$$

where $\left\{\alpha_{n}\right\} \subset[0,1)$ and $\left\{\beta_{n}\right\} \subset[0,1)$ satisfy $\lim _{n \rightarrow \infty} \alpha_{n}=\lim _{n \rightarrow \infty} \beta_{n}=0$ and $\prod_{n=1}^{\infty}\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)=0$. Then, $\left\{x_{n}\right\}$ converges strongly to $P_{F(\mathcal{T})} x$, where $P_{F(\mathcal{T})}$ is a sunny nonexpansive retraction of C onto $F(\mathcal{T})$.
Proof. As in the proof of Theorem 5.1, we have $F(\mathcal{T})=\cap_{n=1}^{\infty} F\left(T_{n}\right)$ and $\left\{x_{n}\right\}$ is bounded. Since

$$
\left\|x_{n+1}-T_{n} x_{n}\right\| \leq\left\|x_{n+1}-T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)\right\|
$$

$$
\begin{aligned}
& +\left\|T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)-T_{n} x_{n}\right\| \\
\leq & \alpha_{n}\left\|x-T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)\right\|+\beta_{n}\left\|x-x_{n}\right\|
\end{aligned}
$$

for every $n \in \mathbf{N}$, we get $\lim _{n \rightarrow \infty}\left\|x_{n+1}-T_{n} x_{n}\right\|=0$. From (II), $\lim _{n \rightarrow \infty} \| x_{n}-$ $T_{m} x_{n} \|=0$ for every $m \in \mathbf{N}$. As in the proof of Theorem $5.1, x_{n} \rightarrow P_{F(\mathcal{T})} x$, where $P_{F(\mathcal{T})}$ is a sunny nonexpansive retraction of C onto $F(\mathcal{T})$. In fact, let $\left\{\gamma_{m}\right\} \subset(0,1)$ such that $\lim _{m \rightarrow \infty} \gamma_{m}=0$ and let $\left\{y_{m}\right\}$ be a sequence of C generated by $y_{m}=$ $\gamma_{m} x+\left(1-\gamma_{m}\right) T_{m} y_{m}$ for every $m \in \mathbf{N}$. By Theorem 4.1, $\lim _{m \rightarrow \infty} y_{m}=z \in F(\mathcal{T})$. From (5.2) and (5.4), we get

$$
\begin{array}{r}
\frac{\gamma_{m}}{2}\left\|x_{n}-y_{m}\right\|^{2}+\frac{\left(1-\gamma_{m}\right)^{2}}{2 \gamma_{m}}\left(\left\|x_{n}-T_{m} x_{n}\right\|^{2}+2\left\|x_{n}-T_{m} x_{n}\right\| \cdot\left\|x_{n}-y_{m}\right\|\right) \\
\geq\left(x-y_{m}, J\left(x_{n}-y_{m}\right)\right)
\end{array}
$$

for each $m, n \in \mathbf{N}$ which implies

$$
\limsup _{n \rightarrow \infty}\left(x-y_{m}, J\left(x_{n}-y_{m}\right)\right) \leq \frac{\gamma_{m}}{2} \limsup _{n \rightarrow \infty}\left\|x_{n}-y_{m}\right\|^{2}
$$

for all $m \in \mathbf{N}$. Let $\varepsilon>0$. Since $\lim _{m \rightarrow \infty} \gamma_{m}=0$, there exists $m_{3} \in \mathbf{N}$ such that for every $m \geq m_{3}$,

$$
\limsup _{n \rightarrow \infty}\left(x-y_{m}, J\left(x_{n}-y_{m}\right)\right)<\frac{\varepsilon}{3}
$$

Hence, there exists $m_{4} \in \mathbf{N}$ such that

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left(x-z, J\left(x_{n}-z\right)\right) & \leq \limsup _{n \rightarrow \infty}\left|\left(x-z, J\left(x_{n}-z\right)\right)-\left(x-z, J\left(x_{n}-y_{m}\right)\right)\right| \\
& +\limsup _{n \rightarrow \infty}\left|\left(x-z, J\left(x_{n}-y_{m}\right)\right)-\left(x-y_{m}, J\left(x_{n}-y_{m}\right)\right)\right| \\
& +\limsup _{n \rightarrow \infty}\left(x-y_{m}, J\left(x_{n}-y_{m}\right)\right) \\
& \leq \frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon
\end{aligned}
$$

for each $m \geq m_{4}$ by (5.6) and (5.7). So, we obtain (5.8) and (5.9). Therefore, $x_{n} \rightarrow P_{F(\mathcal{T})} x$.

We get the following result [14] for accretive operators by Lemma 3.5 (iii) and Theorem 5.6.

Theorem 5.7. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable and let $A \subset E \times E$ be an accretive operator with $\overline{D(A)} \subset C \subset \cap_{\lambda>0} R(I+\lambda A)$ and $A^{-1} 0 \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence generated as follows: $x_{1}=x \in C$ and

$$
x_{n+1}=\alpha_{n} x+\left(1-\alpha_{n}\right) J_{\lambda_{n}}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)(\forall n \in N)
$$

where $\left\{\alpha_{n}\right\} \subset[0,1)$ and $\left\{\beta_{n}\right\} \subset[0,1)$ satisfy $\lim _{n \rightarrow \infty} \alpha_{n}=\lim _{n \rightarrow \infty} \beta_{n}=0$ and $\prod_{n=1}^{\infty}\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)=0$ and $\left\{\lambda_{n}\right\} \subset(0, \infty)$ satisfies $\lim _{n \rightarrow \infty} \lambda_{n}=\infty$. Then, $\left\{x_{n}\right\}$ converges strongly to $P_{A^{-1} 0} x$, where $P_{A^{-1} 0}$ is a sunny nonexpansive retraction of C onto $A^{-1} 0$.

We have the following result for nonexpansive semigroups from Lemma 3.9 (ii) and Theorem 5.6.

Theorem 5.8. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable and let S be a semigroup. Let $\mathcal{S}=\{T(s): s \in S\}$ be a nonexpansive semigroup on C such that $F:=F(\mathcal{S}) \neq \emptyset$ and let D be a subspace of $B(S)$ containing constants and being invariant under l_{s} for all $s \in S$. Suppose that for every $x \in C$ and $x^{*} \in E^{*}$, the function $t \mapsto\left(T(t) x, x^{*}\right)$ is in D and the mappings $t \mapsto \sup _{n} f_{n}(t)$ and $t \mapsto \inf _{n} f_{n}(t)$ are in D for each bounded sequence $\left\{f_{n}: n \in \boldsymbol{N}\right\}$ of D. Let $\left\{\mu_{n}\right\}$ be a sequence of monotone convergent means on D such that $\lim _{n \rightarrow \infty}\left\|\mu_{n}-l_{s}^{*} \mu_{n}\right\|=0$ for each $s \in S$. Let $\left\{x_{n}\right\}$ be a sequence generated as follows: $x_{1}=x \in C$ and

$$
x_{n+1}=\alpha_{n} x+\left(1-\alpha_{n}\right) T_{\mu_{n}}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)(\forall n \in \boldsymbol{N})
$$

where $\left\{\alpha_{n}\right\} \subset[0,1)$ and $\left\{\beta_{n}\right\} \subset[0,1)$ satisfy $\lim _{n \rightarrow \infty} \alpha_{n}=\lim _{n \rightarrow \infty} \beta_{n}=0$ and $\prod_{n=1}^{\infty}\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)=0$. Then, $\left\{x_{n}\right\}$ converges strongly to $P_{F} x$, where P_{F} is a sunny nonexpansive retraction of C onto F.

We get the following results for nonexpansive mappings by Lemmas 3.10 (ii) and 3.11 (ii) and Theorem 5.6.

Theorem 5.9. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable and let T be a nonexpansive mapping of C into itself such that $F(T) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence generated as follows: $x_{1}=x \in C$ and

$$
x_{n+1}=\alpha_{n} x+\left(1-\alpha_{n}\right) \frac{1}{n} \sum_{i=0}^{n-1} T^{i}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)(\forall n \in \boldsymbol{N})
$$

where $\left\{\alpha_{n}\right\} \subset[0,1)$ and $\left\{\beta_{n}\right\} \subset[0,1)$ satisfy $\lim _{n \rightarrow \infty} \alpha_{n}=\lim _{n \rightarrow \infty} \beta_{n}=0$ and $\prod_{n=1}^{\infty}\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)=0$. Then, $\left\{x_{n}\right\}$ converges strongly to $P_{F(T)} x$, where $P_{F(T)}$ is a sunny nonexpansive retraction of C onto $F(T)$.
Theorem 5.10. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable and let S_{1} and S_{2} be nonexpansive mappings of C into itself such that $S_{1} S_{2}=S_{2} S_{1}$ and $F:=$ $F\left(S_{1}\right) \cap F\left(S_{2}\right) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence generated as follows: $x_{1}=x \in C$ and $x_{n+1}=\alpha_{n} x+\left(1-\alpha_{n}\right) \frac{2}{(n+1)(n+2)} \sum_{k=0}^{n} \sum_{i+j=k} S_{1}^{i} S_{2}^{j}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)(\forall n \in \mathbf{N})$,
where $\left\{\alpha_{n}\right\} \subset[0,1)$ and $\left\{\beta_{n}\right\} \subset[0,1)$ satisfy $\lim _{n \rightarrow \infty} \alpha_{n}=\lim _{n \rightarrow \infty} \beta_{n}=0$ and $\prod_{n=1}^{\infty}\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)=0$. Then, $\left\{x_{n}\right\}$ converges strongly to $P_{F} x$, where P_{F} is a sunny nonexpansive retraction of C onto F.

We have the following result for one-parameter nonexpansive semigroups from Lemma 3.12 (ii) and Theorem 5.6.
Theorem 5.11. Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is uniformly Gâteaux differentiable and let $\mathcal{S}=\{T(s)$: $0 \leq s<\infty\}$ be a one-parameter nonexpansive semigroup on C such that $F:=$ $F(\mathcal{S}) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence generated as follows: $x_{1}=x \in C$ and

$$
x_{n+1}=\alpha_{n} x+\left(1-\alpha_{n}\right) \frac{1}{t_{n}} \int_{0}^{t_{n}} T(s)\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right) d s(\forall n \in \boldsymbol{N})
$$

where $\left\{\alpha_{n}\right\} \subset[0,1)$ and $\left\{\beta_{n}\right\} \subset[0,1)$ satisfy $\lim _{n \rightarrow \infty} \alpha_{n}=\lim _{n \rightarrow \infty} \beta_{n}=0$ and $\prod_{n=1}^{\infty}\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)=0$ and $\left\{t_{n}\right\} \subset(0, \infty)$ with $\lim _{n \rightarrow \infty} t_{n}=\infty$. Then, $\left\{x_{n}\right\}$ converges strongly to $P_{F} x$, where P_{F} is a sunny nonexpansive retraction of C onto F.

References

[1] S. Atsushiba and W. Takahashi, Approximating common fixed points of nonexpansive semigroups by the Mann iteration process, Ann. Univ. Mariae Curie-Sklodowska 51 (1997), 1-16.
[2] S. Atsushiba, N. Shioji and W. Takahashi, Approximating common fixed points by the Mann iteration procedure in Banach spaces, J. Nonlinear Convex Anal. 1 (2000), 351-361.
[3] H. H. Bauschke, The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space, J. Math. Anal. Appl. 202 (1996), 150-159.
[4] F. E. Browder, Convergence of approximates to fixed points of nonexpansive nonlinear mappings in Banach spaces, Arch. Ration. Mech. Anal. 24 (1967), 82-90.
[5] R. E. Bruck, Jr., Nonexpansive retracts of Banach spaces, Bull. Amer. Math. Soc. 76 (1970), 384-386.
[6] R. E. Bruck and S. Reich, Accretive operators, Banach limits, and dual ergodic theorems, Bull. Acad. Polon. Sci. 29 (1981), 585-589.
[7] K. Eshita and W. Takahashi, Approximating zero points of accretive operators in general Banach spaces, to appear.
[8] B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967), 957-961.
[9] N. Hirano, K. Kido and W. Takahashi, Nonexpansive retractions and nonlinear ergodic theorems in Banach spaces, Nonlinear Anal. 12 (1988), 1269-1281.
[10] H. Iiduka and W. Takahashi, Strong convergence theorems for nonexpansive nonself-mappings and inverse-strongly-monotone mappings, J. Convex Anal. 11 (2004), 69-79.
[11] H. Iiduka and W. Takahashi, Strong and weak convergence theorems by a hybrid steepest descent method in a Hilbert space, in Nonlinear Analysis and Convex Analysis W. Takahashi and T. Tanaka (eds.), Yokohama Publishers, Yokohama, 2004, pp. 115-130.
[12] H. Iiduka and W. Takahashi, Strong convergence theorems for nonexpansive mappings and inverse-strongly-monotone mappings, Nonlinear Anal. 61 (2005), 341-350.
[13] S. Kamimura and W. Takahashi, Approximating solutions of maximal monotone operators in Hilbert spaces, J. Approx. Theory 106 (2000), 226-240.
[14] S. Kamimura and W. Takahashi, Weak and strong convergence of solutions to accretive operator inclusions and applications, Set-Valued Anal. 8 (2000), 361-374.
[15] S. Kamimura and W. Takahashi, Iterative schemes for approximating solutions of accretive operators in Banach spaces, Sci. Math. 3 (2000), 107-115.
[16] Y. Kimura, W. Takahashi and M. Toyoda, Convergence to common fixed points of a finite family of nonexpansive mappings, Arch. Math. 84 (2005), 350-363.
[17] K. Nakajo, Strong convergence to zeros of accretive operators in Banach spaces, J. Nonlinear Convex Anal. 7 (2006), 71-81.
[18] K. Nakajo, K. Shimoji and W. Takahashi, A weak convergence theorem by products of mappings in Hilbert spaces, in Nonlinear Analysis and Convex Analysis, W. Takahashi and T. Tanaka (eds.), Yokohama Publishers, Yokohama, 2004, pp. 381-390.
[19] K. Nakajo, K. Shimoji and W.Takahashi, Strong convergence theorems of Browder's type for families of nonexpansive mappings in Hilbert spaces, Int. J. Comput. Numer. Anal. Appl. 6 (2004), 173-192.
[20] K. Nakajo, K. Shimoji and W.Takahashi, Strong convergence theorems of Halpern's type for families of nonexpansive mappings in Hilbert spaces, to appear.
[21] S. Reich, Asymptotic behavior of contractions in Banach spaces, J. Math. Anal. Appl. 44 (1973), 57-70.
[22] T. Shimizu and W. Takahashi, Strong convergence to common fixed points of families of nonexpansive mappings, J. Math. Anal. Appl. 211 (1997), 71-83.
[23] K. Shimoji and W. Takahashi, Strong convergence to common fixed points of infinite nonexpansive mappings and applications, Taiwanese J. Math. 5 (2001), 387-404.
[24] N. Shioji and W. Takahashi, Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc. 125 (1997), 3641-3645.
[25] N. Shioji and W. Takahashi, Strong convergence theorems for asymptotically nonexpansive semigroups in Hilbert spaces, Nonlinear Anal. 34 (1998), 87-99.
[26] N. Shioji and W. Takahashi, Strong convergence of averaged approximants for asymptotically nonexpansive mappings in Banach spaces, J. Approx. Theory 97 (1999), 53-64.
[27] N. Shioji and W. Takahashi, A strong convergence theorem for asymptotically nonexpansive mappings in Banach spaces, Arch. Math. 72 (1999), 354-359.
[28] N. Shioji and W. Takahashi, Strong convergence theorems for continuous semigroups in Banach spaces, Math. Japonica 50 (1999), 57-66.
[29] N. Shioji and W. Takahashi, Strong convergence theorems for asymptotically nonexpansive semigroups in Banach spaces, J. Nonlinear Convex Anal. 1 (2000), 73-87.
[30] T. Suzuki, On strong convergence to common fixed points of nonexpansive semigroups in Hilbert spaces, Proc. Amer. Math. Soc. 131 (2002), 2133-2136.
[31] W. Takahashi, A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space, Proc. Amer. Math. Soc. 81 (1981), 253-256.
[32] W. Takahashi, Weak and strong convergence theorems for families of nonexpansive mappings and their applications, Ann. Univ. Mariae Curie-Sklodowska Sect. A 51 (1997), 277-292.
[33] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
[34] W. Takahashi, Convex Analysis and Approximation of Fixed Points, Yokohama Publishers, Yokohama, 2000(Japanese).
[35] W. Takahashi and K. Shimoji, Convergence theorems for nonexpansive mappings and feasibility problems, Math. Comput. Modelling 32 (2000), 1463-1471.
[36] W. Takahashi, T. Tamura and M. Toyoda, Approximation of common fixed points of a family of finite nonexpansive mappings in Banach spaces, Sci. Math. Jpn. 56 (2002), 475-480.
[37] W. Takahashi and Y. Ueda, On Reich's strong convergence theorems for resolvents of accretive operators, J. Math. Anal. Appl. 104 (1984), 546-553.
[38] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. 58 (1992), 486-491.
[39] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), 11271138.

Manuscript received February 22, 2006 revised August 30, 2006
K. Nakajo

Faculty of Engineering, Tamagawa University
Tamagawa-Gakuen, Machida-shi, Tokyo, 194-8610, Japan
E-mail address: nakajo@eng.tamagawa.ac.jp
K. Shimoji

Department of Mathematical Sciences, Faculty of Science, University of the Ryukyus
Nishihara-cho, Okinawa, 903-0213, Japan
E-mail address: shimoji@math.u-ryukyu.ac.jp
W. TAKAhashi

Department of Mathematical and Computing Sciences, Tokyo Institute of Technology
Oh-okayama, Meguro-ku, Tokyo, 152-8552, Japan
E-mail address: wataru@is.titech.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 49M05, 47H05, 47H09, 47H20.
 Key words and phrases. Strong convergence, Browder's type, Halpern's type, uniformly convex Banach space, nonexpansive mapping, accretive operator, W-mapping, nonexpansive semigroup.

