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STRONG CONVERGENCE TO COMMON FIXED POINTS OF
FAMILIES OF NONEXPANSIVE MAPPINGS IN BANACH

SPACES

K. NAKAJO, K. SHIMOJI, AND W. TAKAHASHI

Abstract. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E whose norm is uniformly Gâteaux differentiable. Let {Tn} and
T be families of nonexpansive mappings of C into itself such that ∅ 6= F (T ) ⊂
∩∞n=1F (Tn), where F (Tn) is the set of all fixed points of Tn and F (T ) is the
set of all common fixed points of T . We consider a sequence {xn} generated
by x ∈ C, xn = αnx + (1 − αn)Tnxn (∀n ∈ N), where {αn} ⊂ (0, 1) and then
give the conditions of {αn}, {Tn} and T under which {xn} converges strongly
to a common fixed point of T . We also consider a sequence {xn} generated by
x1 = x ∈ C, xn+1 = αnx + (1 − αn)Tn(βnx + (1 − βn)xn) (∀n ∈ N), where
{αn} ⊂ [0, 1) and {βn} ⊂ [0, 1) and then give the conditions of {αn}, {βn}, {Tn}
and T under which {xn} converges strongly to a common fixed point of T . Using
these results, we improve and extend well-known strong convergence theorems.

1. Introduction

Throughout this paper, let E be a real Banach space with norm ‖ · ‖ and let N
be the set of all positive integers. Let C be a nonempty closed convex subset of E.
Then, a mapping T : C −→ C is called nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖ (∀x, y ∈ C).

Browder [4] considered a sequence {xn} as follows:

x ∈ C, xn = αnx + (1− αn)Txn (∀n ∈ N),(1.1)

where {αn} ⊂ (0, 1) and he proved the first strong convergence theorem in the
framework of a Hilbert space. Shioji and Takahashi [28], and Suzuki [30] also proved
strong convergence theorems of Browder’s type for one-parameter nonexpansive
semigroups. Recently, authors [19] obtained a theorem which generalizes the results
of [4, 30], simultaneously. In a uniformly convex Banach space E whose norm is
uniformly Gâteaux differentiable, Shioji and Takahashi [26, 28, 29] and Nakajo [17]
proved strong convergence theorems of Browder’s type. On the other hand, Halpern
[8] considered the following process: x1 = x ∈ C and

xn+1 = αnx + (1− αn)Txn (∀n ∈ N),(1.2)

where {αn} ⊂ [0, 1). Wittmann [38] proved a strong convergence theorem of
Halpern’s type in the framework of a Hilbert space and then, several authors
[3, 12, 10, 11, 13, 22, 25] proved strong convergence theorems. In a uniformly
convex Banach space E whose norm is uniformly Gâteaux differentiable, Shioji and
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Takahashi [24, 27, 28, 29], Kamimura and Takahashi [14, 15], Shimoji and Taka-
hashi [23], Takahashi, Tamura and Toyoda [36] and Kimura, Takahashi and Toyoda
[16] and Nakajo [17] proved the strong convergence theorems of Halpern’s type.

In this paper, for families {Tn} and T of nonexpansive mappings of C into itself
such that ∅ 6= F (T ) ⊂ ∩∞n=1F (Tn), we consider a sequence {xn} generated by
x ∈ C, xn = αnx + (1 − αn)Tnxn (∀n ∈ N), where {αn} ⊂ (0, 1) and then give
the conditions of {αn}, {Tn} and T under which {xn} converges strongly to a
common fixed point of T . We also consider a sequence {xn} generated by x1 =
x ∈ C, xn+1 = αnx + (1− αn)Tn(βnx + (1− βn)xn) (∀n ∈ N), where {αn} ⊂ [0, 1)
and {βn} ⊂ [0, 1) and then give the conditions of {αn}, {βn}, {Tn} and T under
which {xn} converges strongly to a common fixed point of T . Using these results,
we improve and extend well-known strong convergence theorems.

2. Preliminaries

Let E be a Banach space. We write xn → x to indicate that a sequence {xn}
converges strongly to x. Let C be a subset of E and let T : C −→ E. T is called
nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ holds for each x, y ∈ C. We denote by F (T )
the set of all fixed points of T . We define the modulus δE of convexity of E as
follows: δE is a function of [0, 2] into [0, 1] such that δE(ε) = inf{1 − ‖x + y‖/2 :
‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x − y‖ ≥ ε} for every ε ∈ [0, 2]. E is called uniformly convex
if δE(ε) > 0 for each ε > 0. E is called strictly convex if ‖x + y‖/2 < 1 for all
x, y ∈ E with ‖x‖ = ‖y‖ = 1 and x 6= y. In a strictly convex Banach space E, we
have that if ‖x‖ = ‖y‖ = ‖λx + (1 − λ)y‖ for x, y ∈ E and λ ∈ (0, 1), then x = y.
It is known that a uniformly convex Banach space is strictly convex. Let C be a
nonempty closed convex subset of E and let T be a nonexpansive mapping of C
into itself. We know that if E is strictly convex, F (T ) is closed and convex. Let
G = {g : [0,∞) −→ [0,∞) : g(0) = 0, g : continuous, strictly increasing, convex}.
Xu [39] proved the following result.

Lemma 2.1. Let E be a uniformly convex Banach space. Then, for every bounded
subset B of E, there exists gB ∈ G such that

‖λx + (1− λ)y‖2 ≤ λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)gB(‖x− y‖)(2.1)

for all x, y ∈ B and 0 ≤ λ ≤ 1.

Let E be a Banach space and let E∗ be the dual space of E. A set-valued mapping
J of E into E∗ defined by

J(x) = {x∗ ∈ E∗ : (x, x∗) = ‖x‖2 = ‖x∗‖2} (∀x ∈ E)

is called the duality mapping on E. E is said to be smooth provided the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

(2.2)

exists for every x, y ∈ S(E), where S(E) = {x ∈ E : ‖x‖ = 1}. And the norm of E
is said to be uniformly Gâteaux differentiable if for each y ∈ S(E), (2.2) is attained
uniformly for x ∈ S(E). It is known that the duality mapping J : E −→ 2E∗ is
single valued and norm to weak∗ uniformly continuous on bounded subsets of E
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when E has a uniformly Gâteaux differentiable norm. The following lemma is well
known; for example, see [33].

Lemma 2.2. Let E be a smooth Banach space. Then, for any x, y ∈ E,

‖x‖2 − ‖y‖2 ≥ 2(x− y, J(y)).

Let µ be a continuous, linear functional on l∞. We call µ a Banach limit when
µ satisfies ‖µ‖ = µ(1) = 1 and µn(an+1) = µn(an) for all {an} ∈ l∞. We know that
lim infn→∞ an ≤ µn(an) ≤ lim supn→∞ an for every {an} ∈ l∞; see [33]. We have
the following result from [37]; see also [6] and [33].

Lemma 2.3. Let C be a convex subset of E whose norm is uniformly Gâteaux
differentiable and let z ∈ C. Let {xn} ⊂ E be a bounded sequence and let µ be
a Banach limit. Then, µn‖xn − z‖2 = miny∈C µn‖xn − y‖2 if and only if µn(y −
z, J(xn − z)) ≤ 0 for all y ∈ C.

Let C be a convex subset of E and let K be a nonempty subset of C. Let P be
a retraction of C onto K, that is, Px = x for every x ∈ K. P is said to be sunny if
P (Px + t(x− Px)) = Px for each x ∈ C and t ≥ 0 with Px + t(x− Px) ∈ C. We
know the following result; see[5, 21, 33].

Lemma 2.4. Let C be a convex subset of a smooth Banach space E and let K be a
nonempty subset of C. Let P be a retraction of C onto K. Then, P is sunny and
nonexpansive if and only if (x − Px, J(y − Px)) ≤ 0 for every x ∈ C and y ∈ K.
Hence, there is at most one sunny nonexpansive retraction of C onto K.

3. Lemmas

Let E be a Banach space and let C be a subset of E. Let {Tn} and T be families
of nonexpansive mappings of C into itself such that ∅ 6= F (T ) ⊂ ∩∞n=1F (Tn), where
F (Tn) is the set of all fixed points of Tn and F (T ) is the set of all common fixed
points of T . Motivated by [19] and [20], we consider the following conditions of
{Tn} and T :

(I) For each bounded sequence {zn} ⊂ C, limn→∞ ‖zn − Tnzn‖ = 0 implies
limn→∞ ‖zn − Tzn‖ = 0 for every T ∈ T .

(II) For every bounded sequence {zn} ⊂ C, limn→∞ ‖zn+1 − Tnzn‖ = 0 implies
limn→∞ ‖zn − Tmzn‖ = 0 for all m ∈ N.

(III) There exists {an} ⊂ [0,∞) with
∑∞

n=1 an < ∞ such that for every bounded
subset B of C, there exists MB > 0 such that ‖Tnx− Tn+1x‖ ≤ anMB holds
for all n ∈ N and x ∈ B.

We have the following results for nonexpansive mappings.

Lemma 3.1. Let C be a nonempty closed convex subset of E and let T be a non-
expansive mapping of C into itself with F (T ) 6= ∅. Then, the following hold:

(i) {Tn} with Tn = T (∀n ∈ N) and T = {T} satisfy the condition (I) with
∩∞n=1F (Tn) = F (T ) = F (T );

(ii) {Tn} with Tn = T (∀n ∈ N) and T = {T} satisfy the condition (III) with
an = 0 (∀n ∈ N).
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Lemma 3.2. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E and let S and T be nonexpansive mappings of C into itself such
that F (S)∩F (T ) 6= ∅. Let {γn} ⊂ [a, b] for some a, b ∈ (0, 1) with a ≤ b. Then, the
following hold:

(i) {Tn} with Tn = γnS+(1−γn)T (∀n ∈ N) and T = {S+T
2 } satisfy the condition

(I) with ∩∞n=1F (Tn) = F (T ) = F (S) ∩ F (T );
(ii) {Tn} with Tn = γnS+(1−γn)T (∀n ∈ N) such that

∑∞
n=1 |γn−γn+1| < ∞ and

T = {S+T
2 } satisfy the conditions (I) and (III) with an = |γn−γn+1| (∀n ∈ N)

and ∩∞n=1F (Tn) = F (T ) = F (S) ∩ F (T ).

Proof. Since E is strictly convex, we have ∩∞n=1F (γnS + (1 − γn)T ) = F (S+T
2 ) =

F (S) ∩ F (T ).
(i). Let {zn} be a bounded sequence in C such that limn→∞ ‖zn − Tnzn‖ = 0 and
let z ∈ ∩∞n=1F (Tn). There exists g ∈ G such that

‖zn − z‖2 ≤ {‖zn − Tnzn‖+ ‖Tnzn − z‖}2 ≤ ‖zn − Tnzn‖ ·M + ‖Tnzn − z‖2

≤ ‖zn − Tnzn‖ ·M + γn‖Szn − z‖2

+(1− γn)‖Tzn − z‖2 − γn(1− γn)g(‖Szn − Tzn‖)
≤ ‖zn − Tnzn‖ ·M + ‖zn − z‖2 − γn(1− γn)g(‖Szn − Tzn‖)

for all n ∈ N, where M = supn∈N{‖zn−Tnzn‖+2‖zn−z‖}. So, we get limn→∞ ‖Szn−
Tzn‖ = 0. Since

‖zn − Szn‖ ≤ ‖zn − Tnzn‖+ ‖Tnzn − Szn‖ = ‖zn − Tnzn‖+ (1− γn)‖Szn − Tzn‖
for every n ∈ N, we obtain limn→∞ ‖zn−Szn‖ = 0 and hence, limn→∞ ‖zn−Tzn‖ =
0. Therefore, limn→∞ ‖zn − S+T

2 zn‖ = 0.
(ii). By (i), (I) holds. Let z ∈ F (S) ∩ F (T ). We have

‖Tnx− Tn+1x‖ = ‖{γnSx + (1− γn)Tx} − {γn+1Sx + (1− γn+1)Tx}‖
≤ |γn − γn+1| · ‖Sx− Tx‖ ≤ |γn − γn+1| · {2‖x− z‖}

for every n ∈ N and x ∈ C. So, for each bounded subset B of C, there exists
MB > 2 ·supx∈B ‖x−z‖ such that ‖Tnx−Tn+1x‖ ≤ anMB for all n ∈ N and x ∈ B,
where an = |γn − γn+1| (∀n ∈ N). So, (III) holds. ¤

An operator A ⊂ E×E is called accretive if for (x1, y1), (x2, y2) ∈ A, there exists
j ∈ J(x1 − x2) such that (y1 − y2, j) ≥ 0, where J is the duality mapping of E. An
accretive operator A is said to satisfy the range condition if D(A) ⊂ R(I + λA) for
all λ > 0, where D(A) is the domain of A, R(I + λA) is the range of I + λA and
D(A) is the closure of D(A). An accretive operator A is said to be m-accretive if
R(I +λA) = E for every λ > 0. If A is accretive, then we can define, for each r > 0,
a mapping Jr : R(I + rA) −→ D(A) by Jr = (I + rA)−1. Jr is called the resolvent
of A. We know that Jr is nonexpansive for all r > 0 and A−10 = F (Jr) for every
r > 0. We also define the Yosida approximation Ar by Ar = (I − Jr)/r for each
r > 0; see [33, 34] for more details. We have the following result for the resolvents
[18].

Lemma 3.3. Let A ⊂ E × E be an accretive operator. Let r, λ > 0 and D(A) ⊂
R(I + λA). Then, 1

λ‖(I − Jλ)Jrx‖ ≤ 1
r‖(I − Jr)x‖ holds for every x ∈ R(I + rA).
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We also have the following result for the resolvents [7].

Lemma 3.4. Let A ⊂ E × E be an accretive operator and let r, λ > 0. For each
x ∈ R(I + rA) ∩R(I + λA), ‖Jλx− Jrx‖ ≤ |λ−r|

λ ‖x− Jλx‖ holds.

We get the following results for the resolvents by Lemmas 3.3 and 3.4.

Lemma 3.5. Let C be a nonempty closed convex subset of E and let A ⊂ E × E
be an accretive operator with D(A) ⊂ C ⊂ ∩λ>0R(I + λA) and A−10 6= ∅. Then,
the following hold:

(i) {Tn} with Tn = Jλn (∀n ∈ N) with {λn} ⊂ (0,∞) and lim infn→∞ λn > 0 and
T = {J1} satisfy the condition (I) and ∩∞n=1F (Tn) = F (T ) = A−10;

(ii) {Tn} with Tn = Jλn (∀n ∈ N) with {λn} ⊂ (0,∞), lim infn→∞ λn > 0 and∑∞
n=1 |λn − λn+1| < ∞ and T = {J1} satisfy the conditions (I) and (III) with

an = |λn − λn+1| (∀n ∈ N) and ∩∞n=1F (Tn) = F (T ) = A−10;
(iii) {Tn} with Tn = Jλn (∀n ∈ N), where {λn} ⊂ (0,∞) and limn→∞ λn = ∞ and

T = {J1} satisfy the conditions (I) and (II) with ∩∞n=1F (Tn) = F (T ) = A−10.

Proof. We know that Jr is a nonexpansive mapping of C into itself for all r > 0 and
∩∞n=1F (Jλn) = F (J1) = A−10; see [33].
(i). Let {zn} be a bounded sequence in C such that limn→∞ ‖zn − Jλnzn‖ = 0. We
have

‖zn − J1zn‖ ≤ ‖zn − Jλnzn‖+ ‖Jλnzn − J1Jλnzn‖+ ‖J1Jλnzn − J1zn‖
≤ 2‖zn − Jλnzn‖+

1
λn
‖zn − Jλnzn‖

for every n ∈ N by Lemma 3.3. From infn∈N λn > 0, we get limn→∞ ‖zn−J1zn‖ = 0.
So, (I) holds.
(ii). From (i), (I) holds. By Lemma 3.4, we have

‖Jλnx− Jλn+1x‖ ≤
|λn − λn+1|

λn
‖x− Jλnx‖ ≤ |λn − λn+1|

c
{2‖x− u‖}

for every n ∈ N and x ∈ C, where u ∈ A−10 and c = infn∈N λn (> 0). So,
for each bounded subset B of C, there exists MB > 2

c supx∈B ‖x − u‖ such that
‖Tnx−Tn+1x‖ ≤ anMB for all n ∈ N and x ∈ B, where an = |λn−λn+1| (∀n ∈ N).
So, (III) holds.
(iii). As in the proof of (i), (I) holds. Further, let {zn} be a bounded sequence in
C such that limn→∞ ‖zn+1 − Jλnzn‖ = 0 and fix m ∈ N. Then, by Lemma 3.3 we
have

‖zn+1 − Jλmzn+1‖ ≤ ‖zn+1 − Jλnzn‖+ ‖Jλnzn − JλmJλnzn‖
+‖JλmJλnzn − Jλmzn+1‖

≤ 2‖zn+1 − Jλnzn‖+
λm

λn
‖zn − Jλnzn‖

and hence ‖zn+1 − Jλmzn+1‖ → 0. So, (II) holds. ¤

Let C be a nonempty closed convex subset of E. Let S1, S2, . . . be infinite
nonexpansive mappings of C into itself and let β1, β2, . . . be real numbers such
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that 0 ≤ βi ≤ 1 for every i ∈ N. Then, for any n ∈ N, Takahashi [32] (see also
[23, 34, 35]) introduced a mapping Wn of C into itself as follows:

Un,n+1 = I,

Un,n = βnSnUn,n+1 + (1− βn)I,

Un,n−1 = βn−1Sn−1Un,n + (1− βn−1)I,

...
Un,k = βkSkUn,k+1 + (1− βk)I,

...
Un,2 = β2S2Un,3 + (1− β2)I,

Wn = Un,1 = β1S1Un,2 + (1− β1)I.

Such a mapping Wn is called the W -mapping generated by Sn, Sn−1, . . . , S1 and
βn, βn−1, . . . , β1. We know that if E is strictly convex, ∩n

i=1F (Si) 6= ∅, 0 < βi < 1
for every i = 2, 3, . . . , n and 0 < β1 ≤ 1, then, F (Wn) = ∩n

i=1F (Si); see [34, 35]. We
also have that if E is strictly convex, ∩∞n=1F (Sn) 6= ∅ and 0 < βi ≤ b < 1 for every
i ∈ N for some b ∈ (0, 1), then, limn→∞ Un,kx exists for every x ∈ C and k ∈ N;
see [23]. So, we can define a mapping W of C into itself as follows:

Wx = lim
n→∞Wnx = lim

n→∞Un,1x

for every x ∈ C. Such a W is called the W -mapping generated by S1, S2, . . . and
β1, β2, . . . . We have that if E is strictly convex, ∩∞i=1F (Si) 6= ∅ and 0 < βi ≤ b < 1
for every i ∈ N for some b ∈ (0, 1), then, F (W ) = ∩∞i=1F (Si); see [23]. We know
the following results for the W -mappings.

Lemma 3.6. Let C be a nonempty closed convex subset of a strictly convex Banach
space E. Let S1, S2, . . . be infinite nonexpansive mappings of C into itself with
∩∞n=1F (Sn) 6= ∅ and let β1, β2, . . . be real numbers with 0 < βi ≤ b < 1 for every
i ∈ N for some b ∈ (0, 1). Let Wn be the W-mapping generated by Sn, Sn−1, . . . , S1

and βn, βn−1, . . . , β1 for every n ∈ N and let W be the W -mapping generated by
S1, S2, . . . and β1, β2, . . . . Then, the following hold:

(i) {Tn} with Tn = Wn (∀n ∈ N) and T = {W} satisfy the condition (I) with
∩∞n=1F (Tn) = F (T ) = ∩∞n=1F (Sn);

(ii) {Tn} with Tn = Wn (∀n ∈ N) and T = {W} satisfy the conditions (I) and
(III) with an = bn+1 (∀n ∈ N) and ∩∞n=1F (Tn) = F (T ) = ∩∞n=1F (Sn).

Proof. We have ∩∞n=1F (Wn) = ∩∞n=1F (Sn) = F (W ) 6= ∅.
(i). Let z ∈ ∩∞n=1F (Sn). We get

‖Wnx−Wn+1x‖ = ‖β1S1Un,2x− β1S1Un+1,2x‖ ≤ β1‖Un,2x− Un+1,2x‖
= β1‖β2S2Un,3x− β2S2Un+1,3x‖
≤ β1β2‖Un,3x− Un+1,3x‖
≤ · · · ≤ β1β2 . . . βnβn+1‖x− Sn+1x‖ ≤ bn+1{2‖x− z‖}
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for every n ∈ N and x ∈ C. Let {zn} be a bounded sequence in C such that
limn→∞ ‖zn −Wnzn‖ = 0. Let n ∈ N. We get

‖zn −Wn+mzn‖ ≤ ‖zn −Wnzn‖+ ‖Wnzn −Wn+1zn‖+ · · ·
+‖Wn+m−1zn −Wn+mzn‖

≤ ‖zn −Wnzn‖+ bn+1{2‖zn − z‖}+ · · ·+ bn+m{2‖zn − z‖}
≤ ‖zn −Wnzn‖+ (bn+1 + · · ·+ bn+m)M

≤ ‖zn −Wnzn‖+
bn+1(1− bm)

1− b
M

for every m ∈ N, where M = supn∈N{2‖zn − z‖}. So, we obtain

‖zn −Wzn‖ = lim
m→∞ ‖zn −Wn+mzn‖ ≤ ‖zn −Wnzn‖+

bn+1

1− b
M

for each n ∈ N which implies limn→∞ ‖zn −Wzn‖ = 0. So, (I) holds.
(ii). Let z ∈ ∩∞n=1F (Sn). As in the proof of (i), we have

‖Wnx−Wn+1x‖ ≤ bn+12‖x− z‖
for every n ∈ N and x ∈ C. So, for each bounded subset B of C, there exists
MB > 2 ·supx∈B ‖x−z‖ such that ‖Tnx−Tn+1x‖ ≤ anMB for all n ∈ N and x ∈ B,
where an = bn+1 (∀n ∈ N). So, (III) holds. As in the proof of (i), (I) holds. ¤

Let S be a semigroup and let B(S) be the Banach space of all bounded real
valued functions on S with supremum norm. Then, for every s ∈ S and f ∈ B(S),
we can define lsf ∈ B(S) by (lsf)(t) = f(st) for each t ∈ S. We also denote by l∗s
the adjoint operator of ls. Let D be a subspace of B(S) containing constants and
let µ be an element of D∗, where D∗ is its topological dual. A linear functional
µ is called a mean on D if ‖µ‖ = µ(1) = 1. Further, let D be satisfied that for
each bounded sequence {fn : n ∈ N} of D, the mappings t 7→ infn fn(t) and
t 7→ supn fn(t) are in D. A mean µ on D is said to be monotone convergent if
µt(limn→∞ fn(t)) = limn→∞ µt(fn(t)) for every bounded sequence {fn : n ∈ N} of
D such that 0 ≤ f1 ≤ f2 ≤ · · · . We know that if µ is a monotone convergent mean
on D and {fn : n ∈ N} is a bounded sequence of D, then lim supn→∞ µt(fn(t)) ≤
µt(lim supn→∞ fn(t)). Let C be a nonempty closed convex subset of E. A family
S = {T (s) : s ∈ S} of mappings of C into itself is called a nonexpansive semigroup
on C if it satisfies the following conditions:

(i) T (st) = T (s)T (t) for every s, t ∈ S;
(ii) ‖T (s)x− T (s)y‖ ≤ ‖x− y‖ for each s ∈ S and x, y ∈ C.

We denote by F (S) the set of all common fixed points of S, i.e., ∩t∈SF (T (t)).
Hirano, Kido and Takahashi [9] proved the following; see also [31].

Lemma 3.7. Let S be a semigroup. Let C be a nonempty closed convex subset of
E and let S = {T (s) : s ∈ S} be a nonexpansive semigroup on C such that for
every x ∈ C, {T (t)x : t ∈ S} is contained in a weakly compact convex subset of
C. Let D be a subspace of B(S) such that D contains constants and the mapping
t 7→ (T (t)x, y∗) is in D for each x ∈ C and y∗ ∈ E∗. Then, for any mean µ on D and
x ∈ C, there exists a unique element Tµx in C such that (Tµx, x∗) = µs(T (s)x, x∗)
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for every x∗ ∈ E∗. And Tµ is a nonexpansive mapping of C into itself and Tµx = x
for all x ∈ F (S).

Further, Atsushiba, Shioji and Takahashi [2] proved the following; see also [1, 29].

Lemma 3.8. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E. Let S be a semigroup and let S = {T (s) : s ∈ S} be a nonexpansive
semigroup on C such that F (S) 6= ∅. Let D be a subspace of B(S) containing
constants and being invariant under ls for every s ∈ S and for each x ∈ C and
x∗ ∈ E∗, the function t 7→ (T (t)x, x∗) is in D. Let {µn} be a sequence of means on
D such that limn→∞ ‖µn − l∗sµn‖ = 0 for all s ∈ S. Let w ∈ F (S) and Dr = {y ∈
C : ‖y − w‖ ≤ r} for r > 0. Then, limn→∞ supx∈Dr

‖Tµnx − T (t)Tµnx‖ = 0 for
every r > 0 and t ∈ S.

We have the following results for nonexpansive semigroups from Lemmas 3.7 and
3.8.

Lemma 3.9. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E and let S be a semigroup. Let S = {T (s) : s ∈ S} be a nonexpansive
semigroup on C such that F (S) 6= ∅ and let D be a subspace of B(S) containing
constants and being invariant under ls for all s ∈ S. Suppose that for every x ∈ C
and x∗ ∈ E∗, the function t 7→ (T (t)x, x∗) is in D. Let {µn} be a sequence of means
on D such that limn→∞ ‖µn − l∗sµn‖ = 0 for each s ∈ S. Then, the following hold:

(i) {Tn} with Tn = Tµn (∀n ∈ N) and T = S satisfy the condition (I) with
∩∞n=1F (Tn) = F (T ) = F (S);

(ii) moreover, assume that the mappings t 7→ supn fn(t) and t 7→ infn fn(t) are in
D for every bounded sequence {fn : n ∈ N} of D and {µn} is a sequence of
monotone convergent means on D. Then, {Tn} with Tn = Tµn (∀n ∈ N) and
T = S satisfy the conditions (I) and (II) with ∩∞n=1F (Tn) = F (T ) = F (S).

Proof. By Lemmas 3.7 and 3.8, we have ∩∞n=1F (Tµn) = F (S).
(i). Let {zn} in C be a bounded sequence such that limn→∞ ‖zn − Tµnzn‖ = 0. For
all t ∈ S and n ∈ N,

‖zn − T (t)zn‖ ≤ ‖zn − Tµnzn‖+ ‖Tµnzn − T (t)Tµnzn‖+ ‖T (t)Tµnzn − T (t)zn‖
≤ 2‖zn − Tµnzn‖+ ‖Tµnzn − T (t)Tµnzn‖.

From Lemma 3.8, we obtain limn→∞ ‖zn − T (t)zn‖ = 0 for every t ∈ S. So, (I)
holds.
(ii). As in the proof of (i), (I) holds. Let {zn} ⊂ C be a bounded sequence such
that limn→∞ ‖zn+1 − Tµnzn‖ = 0. We have

‖zn+1 − Tµmzn+1‖ ≤ ‖zn+1 − Tµnzn‖+ ‖Tµnzn − TµmTµnzn‖
+‖TµmTµnzn − Tµmzn+1‖

≤ 2‖zn+1 − Tµnzn‖+ ‖Tµnzn − TµmTµnzn‖
for every m,n ∈ N. Hence, for each m ∈ N, we get

lim sup
n→∞

‖zn+1 − Tµmzn+1‖2 ≤ lim sup
n→∞

‖Tµnzn − TµmTµnzn‖2

= lim sup
n→∞

(µm)t(T (t)(Tµnzn)− Tµnzn, x∗n)
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≤ (µm)t

(
lim sup

n→∞
(T (t)(Tµnzn)− Tµnzn, x∗n)

)
≤ 0

by Lemma 3.8, where x∗n ∈ J(Tµm(Tµnzn) − Tµnzn) for all n ∈ N. Therefore, (II)
holds. ¤

We know the following results for nonexpansive mappings from Lemma 3.9; see
[9].

Lemma 3.10. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E and let T be a nonexpansive mapping of C into itself with F (T ) 6= ∅.
Then, the following hold:

(i) {Tn} with Tn = 1
n

∑n−1
i=0 T i (∀n ∈ N) and T = {T i : i = 0, 1, 2, . . . } satisfy

the condition (I) with ∩∞n=1F (Tn) = F (T ) = F (T );
(ii) {Tn} with Tn = 1

n

∑n−1
i=0 T i (∀n ∈ N) and T = {T i : i = 0, 1, 2, . . . } satisfy

the conditions (I) and (II) with ∩∞n=1F (Tn) = F (T ) = F (T ).

Proof. Let S = {0, 1, 2, . . . }, S = {T i : i ∈ S}, D = B(S) and µn(f) = 1
n

∑n−1
i=0 f(i)

for all n ∈ N and f ∈ D. We have F (S) = F (T ) 6= ∅ and know that {µn} is a
sequence of monotone convergent means on D with limn→∞ ‖µn− l∗kµn‖ = 0 for all
k ∈ S and Tµnx = 1

n

∑n−1
i=0 T ix for every x ∈ C. By Lemma 3.9, we get Lemma

3.10. ¤

Lemma 3.11. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E and let S1 and S2 be nonexpansive mappings of C into itself with
S1S2 = S2S1 and F (S1) ∩ F (S2) 6= ∅. Then, the following hold:

(i) {Tn} with Tn = 2
(n+1)(n+2)

∑n
k=0

∑
i+j=k Si

1S
j
2 (∀n ∈ N) and T = {Si

1S
j
2 :

i, j = 0, 1, 2, . . . } satisfy the condition (I) with ∩∞n=1F (Tn) = F (T ) = F (S1) ∩
F (S2);

(ii) {Tn} with Tn = 2
(n+1)(n+2)

∑n
k=0

∑
i+j=k Si

1S
j
2 (∀n ∈ N) and T = {Si

1S
j
2 :

i, j = 0, 1, 2, . . . } satisfy the conditions (I) and (II) with ∩∞n=1F (Tn) = F (T ) =
F (S1) ∩ F (S2).

Proof. Let S = {0, 1, 2, . . . } × {0, 1, 2, . . . }, S = {Si
1S

j
2 : (i, j) ∈ S}, D = B(S)

and µn(f) = 2
(n+1)(n+2)

∑n
k=0

∑
i+j=k f(i, j) for every n ∈ N and f ∈ D. We

have F (S) = F (S1) ∩ F (S2) 6= ∅ and know that {µn} is a sequence of monotone
convergent means on D with limn→∞ ‖µn − l∗(k,m)µn‖ = 0 for each (k, m) ∈ S and

Tµnx = 2
(n+1)(n+2)

∑n
k=0

∑
i+j=k Si

1S
j
2x for every x ∈ C. By Lemma 3.9, we get

Lemma 3.11. ¤

Let C be a nonempty closed convex subset of E. A family S = {T (s) : 0 ≤ s <
∞} of mappings of C into itself is called a one-parameter nonexpansive semigroup
on C if it satisfies the following conditions:

(i) T (0)x = x for all x ∈ C;
(ii) T (s + t) = T (s)T (t) for every s, t ≥ 0;
(iii) ‖T (s)x− T (s)y‖ ≤ ‖x− y‖ for each s ≥ 0 and x, y ∈ C;
(iv) for all x ∈ C, s 7−→ T (s)x is continuous.



20 K. NAKAJO, K. SHIMOJI, AND W. TAKAHASHI

We have the following results for one-parameter nonexpansive semigroups by
Lemma 3.9; see [9].

Lemma 3.12. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E and let S = {T (s) : 0 ≤ s < ∞} be a one-parameter nonexpansive
semigroup on C with F (S) 6= ∅. Let {tn} ⊂ (0,∞) with limn→∞ tn = ∞. Then, the
following hold:

(i) {Tn} with Tn· = 1
tn

∫ tn
0 T (s) · ds (∀n ∈ N) and T = S satisfy the condition (I)

with ∩∞n=1F (Tn) = F (T ) = F (S);
(ii) {Tn} with Tn· = 1

tn

∫ tn
0 T (s) · ds (∀n ∈ N) and T = S satisfy the conditions

(I) and (II) with ∩∞n=1F (Tn) = F (T ) = F (S).

Proof. (i). Let S = (0,∞) and let D be the Banach space C(S) of all bounded
continuous real valued functions on S. Let λs(f) = 1

s

∫ s
0 f(t) dt for every s > 0 and

f ∈ D. We know that {λs} is a net of means on D with lims→∞ ‖λs− l∗kλs‖ = 0 for
each k ∈ (0,∞) and Tλsx = 1

s

∫ s
0 T (t)x dt for every x ∈ C. By Lemma 3.9 (i), we

get Lemma 3.12 (i).
(ii). Let S = (0,∞) and let D be a set of all bounded Lebesque measurable real
valued functions on S. Let λs(f) = 1

s

∫ s
0 f(t) dt for every s > 0 and f ∈ D. We have

the mappings t 7→ supn fn(t) and t 7→ infn fn(t) are in D for every bounded sequence
{fn : n ∈ N} of D. We also know that {λs} is a net of monotone convergent means
on D with lims→∞ ‖λs− l∗kλs‖ = 0 for each k ∈ (0,∞) and Tλsx = 1

s

∫ s
0 T (t)x dt for

every x ∈ C. From Lemma 3.9 (ii), we get Lemma 3.12 (ii). ¤

4. Strong convergence theorem of Browder’s type

Using the method of [26] (see also [28, 29]), we get the following.

Theorem 4.1. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E whose norm is uniformly Gâteaux differentiable. Let {Tn} and T
be families of nonexpansive mappings of C into itself which satisfy ∅ 6= F (T ) ⊂
∩∞n=1F (Tn) and the condition (I). Define a sequence {xn} in C as follows: x ∈ C
and

xn = αnx + (1− αn)Tnxn (∀n ∈ N),
where {αn} ⊂ (0, 1) If limn→∞ αn = 0, {xn} converges strongly to PF (T )x, where
PF (T ) is a sunny nonexpansive retraction of C onto F (T ).

Proof. Let Un = αnx + (1− αn)Tn for every n ∈ N. We have Un : C −→ C and Un

is a contraction for all n ∈ N since Tn is nonexpansive and 0 < αn < 1. So, for each
n ∈ N, there exists a unique element xn ∈ C such that xn = αnx + (1 − αn)Tnxn.
By (I), we get F (T ) = ∩∞n=1F (Tn). Let z ∈ ∩∞n=1F (Tn). We obtain

‖xn − z‖ = ‖αn(x− z) + (1− αn)(Tnxn − z)‖
≤ αn‖x− z‖+ (1− αn)‖Tnxn − z‖
≤ αn‖x− z‖+ (1− αn)‖xn − z‖

for every n ∈ N. So, we have ‖xn − z‖ ≤ ‖x− z‖ for all n ∈ N. This implies that
{xn} is bounded. Further, we have that

‖xn − Tnxn‖ = αn‖x− Tnxn‖ ≤ αn(‖x− z‖+ ‖Tnxn − z‖) ≤ 2αn‖x− z‖
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for each n ∈ N. From limn→∞ αn = 0, we get

lim
n→∞ ‖xn − Tnxn‖ = 0.

So, from (I), we have

lim
n→∞ ‖xn − Txn‖ = 0(4.1)

for all T ∈ T . We get

αn(x− z, J(xn − z))

= αn(xn − z, J(xn − z)) + (1− αn)((xn − Tnxn)− (z − Tnz), J(xn − z))

= αn‖xn − z‖2 + (1− αn){(xn − z, J(xn − z))− (Tnxn − Tnz, J(xn − z))}
≥ αn‖xn − z‖2 + (1− αn){‖xn − z‖2 − ‖Tnxn − Tnz‖ · ‖xn − z‖} ≥ αn‖xn − z‖2

for every n ∈ N. So, we obtain

‖xn − z‖2 ≤ (x− z, J(xn − z))(4.2)

for all n ∈ N and z ∈ ∩∞n=1F (Tn). We also have

(xn − x, J(xn − z)) =
1− αn

αn
(Tnxn − xn, J(xn − z))

=
1− αn

αn
{(Tnxn − z, J(xn − z))− (xn − z, J(xn − z))}

=
1− αn

αn
{(Tnxn − z, J(xn − z))− ‖xn − z‖2} ≤ 0(4.3)

for each n ∈ N and z ∈ ∩∞n=1F (Tn). Let {xni} be a subsequence of {xn} and let µ be
a Banach limit. Let g be a real valued function on C defined by g(y) = µi‖xni−y‖2

for every y ∈ C. By [33] , we know that g is continuous and convex and g satisfies
lim‖y‖→∞ g(y) = ∞. So, there exists x0 ∈ C such that g(x0) = infy∈C g(y). Let
y1, y2 ∈ C such that g(y1) = g(y2) = infy∈C g(y) and suppose that y1 6= y2. Let B
be a bounded subset of E containing sequences {xni −y1} and {xni −y2}. By (2.1),
there exists gB ∈ G such that

∥∥∥xni −
y1 + y2

2

∥∥∥
2

=
∥∥∥1
2
(xni − y1) +

1
2
(xni − y2)

∥∥∥
2

≤ 1
2
‖xni − y1‖2 +

1
2
‖xni − y2‖2 − 1

4
gB(‖y1 − y2‖)

for every i ∈ N which implies

g
(y1 + y2

2

)
≤ 1

2
g(y1) +

1
2
g(y2)− 1

4
gB(‖y1 − y2‖) < inf

y∈C
g(y).

This is a contradiction. So, we obtain y1 = y2. Therefore, there exists a unique
element y0 of C such that g(y0) = infy∈C g(y). Suppose y0 /∈ F (T ) for some T ∈ T .
Let B be a bounded subset of E containing sequences {xni − y0} and {xni − Ty0}.
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We have∥∥∥xni−
Ty0 + y0

2

∥∥∥
2
≤ 1

2
‖xni − y0‖2 +

1
2
‖xni − Ty0‖2 − 1

4
gB(‖y0 − Ty0‖)

≤ 1
2
‖xni − y0‖2 +

1
2
{‖xni − Txni‖+ ‖Txni − Ty0‖}2

− 1
4
gB(‖y0 − Ty0‖)

≤ 1
2
‖xni − y0‖2 +

1
2
{‖xni − Txni‖+ ‖xni − y0‖}2

− 1
4
gB(‖y0 − Ty0‖)

=
1
2
‖xni − y0‖2

+
1
2
{‖xni − Txni‖2 + 2‖xni − Txni‖ · ‖xni − y0‖+ ‖xni − y0‖2}

− 1
4
gB(‖y0 − Ty0‖)

for some gB ∈ G. This implies

g
(Ty0 + y0

2

)
≤ 1

2
g(y0) +

1
2
g(y0)− 1

4
gB(‖y0 − Ty0‖) < inf

y∈C
g(y)

by (4.1). This is a contradiction. So, we get y0 ∈ F (T ). It follows from (4.2)
and Lemma 2.3 that µi‖xni − y0‖2 ≤ µi(x − y0, J(xni − y0)) ≤ 0. There exists a
subsequence {xnij

} of {xni} such that

lim
j→∞

‖xnij
− y0‖ = 0

because

lim
j→∞

‖xnij
− y0‖ = lim inf

i→∞
‖xni − y0‖ ≤ µi‖xni − y0‖2 ≤ 0.

On the other hand, let {xni} and {xnj} be subsequences of {xn} such that xni → z1

and xnj → z2. Then, from (4.1) we have that for any T ∈ T ,

‖z1 − Tz1‖ ≤ ‖z1 − xni‖+ ‖xni − Txni‖+ ‖Txni − Tz1‖ → 0

as i → ∞. So, we get z1 ∈ ∩∞n=1F (Tn). Similarly, z2 ∈ ∩∞n=1F (Tn). By (4.3), we
obtain (xni − x, J(xni − z2)) ≤ 0 for all i ∈ N and (xnj − x, J(xnj − z1)) ≤ 0 for
each j ∈ N. Since

|(xni − x, J(xni − z2))− (z1 − x, J(z1 − z2))|
≤ |(xni − x, J(xni − z2))− (z1 − x, J(xni − z2))|

+ |(z1 − x, J(xni − z2))− (z1 − x, J(z1 − z2))|
≤ ‖xni − z1‖ · ‖xni − z2‖

+ |(z1 − x, J(xni − z2))− (z1 − x, J(z1 − z2))|
for every i ∈ N and J is norm to weak∗ uniformly continuous on bounded subsets
of E, we have (z1−x, J(z1− z2)) ≤ 0. Similarly, (z2−x, J(z2− z1)) ≤ 0. So, we get
‖z1 − z2‖2 = (z1 − z2, J(z1 − z2)) ≤ 0, that is, z1 = z2. Therefore, {xn} converges



STRONG CONVERGENCE TO COMMON FIXED POINTS 23

strongly to some element of ∩∞n=1F (Tn) = F (T ). Hence, we can define a mapping
P of C onto F (T ) by Px = limn→∞ xn because x is an arbitrary point of C. By
(4.3), we obtain (Px− x, J(Px− z0)) ≤ 0 for all x ∈ C and z0 ∈ F (T ). So, P is a
sunny nonexpansive retraction of C onto F (T ) from Lemma 2.4. ¤

We have the following result for nonexpansive mappings by Lemma 3.1 (i) and
Theorem 4.1.

Theorem 4.2. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E whose norm is uniformly Gâteaux differentiable and let T be a
nonexpansive mapping of C into itself such that F (T ) 6= ∅. Let x ∈ C and {xn}
be a sequence by xn = αnx + (1 − αn)Txn (∀n ∈ N), where {αn} ⊂ (0, 1) with
limn→∞ αn = 0. Then, {xn} converges strongly to PF (T )x, where PF (T ) is a sunny
nonexpansive retraction of C onto F (T ).

We get the following result for convex combination of nonexpansive mappings by
Lemma 3.2 (i) and Theorem 4.1.

Theorem 4.3. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E whose norm is uniformly Gâteaux differentiable and let S and T
be nonexpansive mappings of C into itself such that F (S) ∩ F (T ) 6= ∅. Let x ∈ C
and {xn} be a sequence by xn = αnx + (1 − αn)(γnSxn + (1 − γn)Txn) (∀n ∈ N),
where {αn} ⊂ (0, 1) with limn→∞ αn = 0 and {γn} ⊂ [a, b] for some a, b ∈ (0, 1)
with a ≤ b. Then, {xn} converges strongly to PF (S)∩F (T )x, where PF (S)∩F (T ) is a
sunny nonexpansive retraction of C onto F (S) ∩ F (T ).

We have the following result [17] for accretive operators from Lemma 3.5 (i) and
Theorem 4.1.

Theorem 4.4. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E whose norm is uniformly Gâteaux differentiable and let A ⊂ E×E
be an accretive operator with D(A) ⊂ C ⊂ ∩λ>0R(I + λA) and A−10 6= ∅. Let
x ∈ C and {xn} be a sequence by xn = αnx + (1 − αn)Jλnxn (∀n ∈ N), where
{λn} ⊂ (0,∞) and {αn} ⊂ (0, 1) with limn→∞ αn = 0. If lim infn→∞ λn > 0, {xn}
converges strongly to PA−10x, where PA−10 is a sunny nonexpansive retraction of C
onto A−10.

We get the following result for the W -mappings from Lemma 3.6 (i) and Theorem
4.1.

Theorem 4.5. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E whose norm is uniformly Gâteaux differentiable. Let S1, S2, . . . be
infinite nonexpansive mappings of C into itself with F := ∩∞n=1F (Sn) 6= ∅ and let
β1, β2, . . . be real numbers with 0 < βi ≤ b < 1 for every i ∈ N for some b ∈ (0, 1).
Let Wn be the W-mapping generated by Sn, Sn−1, . . . , S1 and βn, βn−1, . . . , β1 for
every n ∈ N. Let x ∈ C and {xn} be a sequence by xn = αnx+(1−αn)Wnxn (∀n ∈
N), where {αn} ⊂ (0, 1) with limn→∞ αn = 0. Then, {xn} converges strongly to
PF x, where PF is a sunny nonexpansive retraction of C onto F .

We have the following result for nonexpansive semigroups by Lemma 3.9 (i) and
Theorem 4.1.
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Theorem 4.6. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E whose norm is uniformly Gâteaux differentiable and let S be a
semigroup. Let S = {T (s) : s ∈ S} be a nonexpansive semigroup on C such that
F := F (S) 6= ∅ and let D be a subspace of B(S) containing constants and being
invariant under ls for all s ∈ S. Suppose that for every x ∈ C and x∗ ∈ E∗, the
function t 7→ (T (t)x, x∗) is in D. Let {µn} be a sequence of means on D such that
limn→∞ ‖µn − l∗sµn‖ = 0 for each s ∈ S. Let x ∈ C and {xn} be a sequence by
xn = αnx + (1 − αn)Tµnxn (∀n ∈ N), where {αn} ⊂ (0, 1) with limn→∞ αn = 0.
Then, {xn} converges strongly to PF x, where PF is a sunny nonexpansive retraction
of C onto F .

We get the following results for nonexpansive mappings from Lemmas 3.10 (i)
and 3.11 (i) and Theorem 4.1.

Theorem 4.7. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E whose norm is uniformly Gâteaux differentiable and let T be a
nonexpansive mapping of C into itself such that F (T ) 6= ∅. Let x ∈ C and {xn} be
a sequence by xn = αnx+(1−αn) 1

n

∑n−1
i=0 T ixn (∀n ∈ N), where {αn} ⊂ (0, 1) with

limn→∞ αn = 0. Then, {xn} converges strongly to PF (T )x, where PF (T ) is a sunny
nonexpansive retraction of C onto F (T ).

Theorem 4.8. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E whose norm is uniformly Gâteaux differentiable and let S1 and
S2 be nonexpansive mappings of C into itself such that S1S2 = S2S1 and F (S1)∩
F (S2) 6= ∅. Let x ∈ C and {xn} be a sequence by xn = αnx + (1 − αn) 2

(n+1)(n+2)∑n
k=0

∑
i+j=k Si

1S
j
2xn (∀n ∈ N), where {αn} ⊂ (0, 1) with limn→∞ αn = 0. Then,

{xn} converges strongly to PF (S1)∩F (S2)x, where PF (S1)∩F (S2) is a sunny nonexpan-
sive retraction of C onto F (S1) ∩ F (S2).

We have the following result for one-parameter nonexpansive semigroups by
Lemma 3.12 (i) and Theorem 4.1.

Theorem 4.9. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E whose norm is uniformly Gâteaux differentiable and let S = {T (s) :
0 ≤ s < ∞} be a one-parameter nonexpansive semigroup on C such that F (S) 6= ∅.
Let x ∈ C and {xn} be a sequence by xn = αnx+(1−αn) 1

tn

∫ tn
0 T (s)xn ds (∀n ∈ N),

where {αn} ⊂ (0, 1) with limn→∞ αn = 0 and {tn} ⊂ (0,∞) with limn→∞ tn = ∞.
Then, {xn} converges strongly to PF (S)x, where PF (S) is a sunny nonexpansive re-
traction of C onto F (S).

5. Strong convergence theorem of Halpern’s type

Using the method employed in [24], we get the following.

Theorem 5.1. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E whose norm is uniformly Gâteaux differentiable and let {Tn} and
T be families of nonexpansive mappings of C into itself which satisfy ∅ 6= F (T ) ⊂
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∩∞n=1F (Tn) and the conditions (I) and (III). Let {xn} be a sequence generated as
follows: x1 = x ∈ C and

xn+1 = αnx + (1− αn)Tn(βnx + (1− βn)xn) (∀n ∈ N),

where {αn} ⊂ [0, 1) and {βn} ⊂ [0, 1) satisfy limn→∞ αn = limn→∞ βn = 0 and∏∞
n=1(1 − αn)(1 − βn) = 0. If

∑∞
n=1(|αn − αn+1| + |βn − βn+1|) < ∞, then {xn}

converges strongly to PF (T )x, where PF (T ) is a sunny nonexpansive retraction of C
onto F (T ).

Proof. We have F (T ) = ∩∞n=1F (Tn) by (I). Let z ∈ ∩∞n=1F (Tn). We have ‖xn−z‖ ≤
‖x− z‖ for every n ∈ N. In fact, suppose that ‖xn − z‖ ≤ ‖x− z‖ for some n ∈ N.
We get

‖xn+1 − z‖ = ‖αn(x− z) + (1− αn){Tn(βnx + (1− βn)xn)− z}‖
≤ αn‖x− z‖+ (1− αn){βn‖x− z‖+ (1− βn)‖xn − z‖}
≤ ‖x− z‖.

So, {xn} is bounded. Next, we obtain

‖xn+1 − xn‖ = ‖αnx + (1− αn)Tn(βnx + (1− βn)xn)

− αn−1x− (1− αn−1)Tn−1(βn−1x + (1− βn−1)xn−1)‖
= ‖(αn − αn−1)x + (1− αn){Tn(βnx + (1− βn)xn)

− Tn−1(βnx + (1− βn)xn)}
+ (1− αn){Tn−1(βnx + (1− βn)xn)

− Tn−1(βn−1x + (1− βn−1)xn−1)}
+ (αn−1 − αn)Tn−1(βn−1x + (1− βn−1)xn−1)‖

≤ |αn − αn−1| · ‖x− Tn−1(βn−1x + (1− βn−1)xn−1)‖
+ (1− αn)‖Tn(βnx + (1− βn)xn)− Tn−1(βnx + (1− βn)xn)‖
+ (1− αn)‖{βnx + (1− βn)xn} − {βn−1x + (1− βn−1)xn−1}‖

≤ |αn − αn−1| ·M1

+ (1− αn)‖Tn(βnx + (1− βn)xn)− Tn−1(βnx + (1− βn)xn)‖
+ (1− αn){|βn − βn−1| · (‖x‖+ ‖xn−1‖) + (1− βn)‖xn − xn−1‖}

for each n = 2, 3, . . . , where M1 = supn∈N\{1} ‖x−Tn−1(βn−1x + (1−βn−1)xn−1)‖.
Since a sequence {βnx + (1− βn)xn} is bounded, there exists M2 > 0 such that

‖Tn(βnx + (1− βn)xn)− Tn−1(βnx + (1− βn)xn)‖ ≤ an−1M2

for all n = 2, 3, . . . by (III). Therefore, we get

‖xn+1 − xn‖ ≤ (|αn − αn−1|+ |βn − βn−1|+ an−1)M(5.1)
+(1− αn)(1− βn)‖xn − xn−1‖
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for every n = 2, 3, . . . , where M = max{M1,M2, supn∈N\{1}{‖x‖ + ‖xn−1‖}}. Let
m,n ∈ N. By (5.1), we obtain

‖xn+m+1 − xn+m‖ ≤ (|αn+m − αn+m−1|+ |βn+m − βn+m−1|+ an+m−1)M

+ (1− αn+m)(1− βn+m)‖xn+m − xn+m−1‖
≤ (|αn+m − αn+m−1|+ |βn+m − βn+m−1|+ an+m−1)M

+ (1− αn+m)(1− βn+m){(|αn+m−1 − αn+m−2|
+ |βn+m−1 − βn+m−2|+ an+m−2)M

+ (1− αn+m−1)(1− βn+m−1)‖xn+m−1 − xn+m−2‖}
≤ {(|αn+m − αn+m−1|+ |αn+m−1 − αn+m−2|)

+ (|βn+m − βn+m−1|+ |βn+m−1 − βn+m−2|) + (an+m−1 + an+m−2)}M
+ (1− αn+m)(1− βn+m)(1− αn+m−1)(1− βn+m−1)‖xn+m−1 − xn+m−2‖

≤ · · ·

≤ M ·
n+m−1∑

k=m

(|αk+1 − αk|+ |βk+1 − βk|+ ak)

+ ‖xm+1 − xm‖ ·
n+m∏

k=m+1

(1− αk)(1− βk).

So, we have

lim sup
n→∞

‖xn+1 − xn‖ = lim sup
n→∞

‖xn+m+1 − xn+m‖

≤ M ·
∞∑

k=m

(|αk+1 − αk|+ |βk+1 − βk|+ ak)

for each m ∈ N. Therefore, we get limn→∞ ‖xn+1 − xn‖ = 0. Since

‖xn − Tnxn‖ ≤ ‖xn − Tn(βnx + (1− βn)xn)‖+ ‖Tn(βnx + (1− βn)xn)− Tnxn‖
≤ ‖xn+1 − xn‖+ αn‖x− Tn(βnx + (1− βn)xn)‖+ βn‖x− xn‖

for all n ∈ N, we have limn→∞ ‖xn − Tnxn‖ = 0. Let m ∈ N and take n ∈ N with
n > m. By (III), there exists MB > 0 such that

‖xn − Tmxn‖ ≤ ‖xn − Tnxn‖+ ‖Tnxn − Tn−1xn‖+ · · ·+ ‖Tm+1xn − Tmxn‖

≤ ‖xn − Tnxn‖+ MB ·
n−1∑

k=m

ak.

So, we get

lim
m→∞ lim sup

n→∞
‖xn − Tmxn‖ = 0.

So, let {γm} ⊂ (0, 1) such that limm→∞ γm = 0 and lim supn→∞ ‖xn−Tmxn‖ ≤ bγ2
m

for each m ∈ N, where b ∈ (0,∞) with b > supm∈N{lim supn→∞ ‖xn−Tmxn‖} and
let {ym} be a sequence of C such that ym = γmx + (1− γm)Tmym for every m ∈ N.
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By Theorem 4.1, limm→∞ ym = z ∈ F (T ). Let µ be a Banach limit. Since

‖xn − Tmym‖2 ≤ ‖xn − Tmxn‖2 + ‖xn − ym‖2(5.2)
+2‖xn − Tmxn‖ · ‖xn − ym‖

for each n,m ∈ N, we have

µn‖xn − Tmym‖2 ≤ µn‖xn − ym‖2

+ lim sup
n→∞

(‖xn − Tmxn‖2 + 2‖xn − Tmxn‖ · ‖xn − ym‖)(5.3)

for all m ∈ N. From

(1− γm)(xn − Tmym) = (xn − ym)− γm(xn − x),

we obtain

(1− γm)2‖xn − Tmym‖2 ≥ ‖xn − ym‖2 − 2γm(xn − x, J(xn − ym))
= (1− 2γm)‖xn − ym‖2 + 2γm(x− ym, J(xn − ym))(5.4)

for every m,n ∈ N. Hence, we have

(1− γm)2µn‖xn − Tmym‖2

≥ (1− 2γm)µn‖xn − ym‖2 + 2γmµn(x− ym, J(xn − ym))

for all m ∈ N. By (5.3), we have

(1− γm)2{µn‖xn − ym‖2+ lim sup
n→∞

(‖xn − Tmxn‖2+ 2‖xn − Tmxn‖ · ‖xn − ym‖)}

≥ (1− 2γm)µn‖xn − ym‖2 + 2γmµn(x− ym, J(xn − ym))

and hence

(5.5)
γm

2
µn‖xn − ym‖2

+
(1− γm)2

2γm
lim sup

n→∞
(‖xn − Tmxn‖2 + 2‖xn − Tmxn‖ · ‖xn − ym‖)

≥ µn(x− ym, J(xn − ym))

for each m ∈ N. Let ε > 0. Since E is norm to weak∗ uniformly continuous on
bounded subsets of E and ym → z, there exists m1 ∈ N such that for every m ≥ m1,

|(x− z, J(xn − z))− (x− z, J(xn − ym))| <
ε

3
(5.6)

|(x− z, J(xn − ym))− (x− ym, J(xn − ym))| <
ε

3
(5.7)

for all n ∈ N. Since γm → 0 and lim supn→∞ ‖xn − Tmxn‖ ≤ bγ2
m (∀m ∈ N), from

(5.5) there exists m2 ∈ N such that

µn(x− ym, J(xn − ym)) <
ε

3



28 K. NAKAJO, K. SHIMOJI, AND W. TAKAHASHI

for each m ≥ m2. Hence, there exists m0 ∈ N such that for every m ≥ m0,
µn(x− z, J(xn − z)) = µn(x− z, J(xn − z))− µn(x− z, J(xn − ym))

+ µn(x− z, J(xn − ym))− µn(x− ym, J(xn − ym))

+ µn(x− ym, J(xn − ym))

<
ε

3
+

ε

3
+

ε

3
= ε.

Since ε is arbitrary, we have

µn(x− z, J(xn − z)) ≤ 0.

Further, by ‖xn+1 − xn‖ → 0, we get

|(x− z, J(xn − z))− (x− z, J(xn+1 − z))| → 0.

Therefore, we obtain

lim sup
n→∞

(x− z, J(xn − z)) ≤ 0(5.8)

by [24, Proposition 2]. It follows from ‖{βnx+(1−βn)xn− z}− (xn− z)‖ → 0 that

lim sup
n→∞

(x− z, J(βnx + (1− βn)xn − z)) ≤ 0.(5.9)

Since

(1− αn){Tn(βnx + (1− βn)xn)− z} = (xn+1 − z)− αn(x− z)

and

(1− βn)(xn − z) = βnx + (1− βn)xn − z − βn(x− z),

from Lemm 2.2 we have

(1− αn)2‖Tn(βnx + (1− βn)xn)− z‖2 ≥ ‖xn+1 − z‖2 − 2αn(x− z, J(xn+1 − z))

and

(1− βn)2‖xn − z‖2 ≥ ‖βnx + (1− βn)xn − z‖2

−2βn(x− z, J(βnx + (1− βn)xn − z))

for all n ∈ N. Let ε > 0. By (5.8) and (5.9), there exists n0 ∈ N such that

2(x− z, J(xn − z)) < ε

and

2(x− z, J(βnx + (1− βn)xn − z)) < ε

for every n ≥ n0. So, we have

‖xn+1 − z‖2 ≤ (1− αn)2‖Tn(βnx + (1− βn)xn)− z‖2 + 2αn(x− z, J(xn+1 − z))

≤ (1− αn)2‖βnx + (1− βn)xn − z‖2 + 2αn(x− z, J(xn+1 − z))

≤ (1− αn)2{(1− βn)2‖xn − z‖2+ 2βn(x− z, J(βnx + (1− βn)xn − z))}
+ 2αn(x− z, J(xn+1 − z))

≤ (1− αn)(1− βn)‖xn − z‖2 + (1− αn)βnε + αnε

≤ (1− αn)(1− βn)‖xn − z‖2 + {1− (1− αn)(1− βn)}ε
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for every n ≥ n0. Hence, we have

‖xn+1 − z‖2

≤ (1− αn)(1− βn){(1− αn−1)(1− βn−1)‖xn−1 − z‖2

+ (1− (1− αn−1)(1− βn−1))ε}+ {1− (1− αn)(1− βn)}ε
= (1− αn)(1− βn)(1− αn−1)(1− βn−1)‖xn−1 − z‖2

+ {1− (1− αn)(1− βn)(1− αn−1)(1− βn−1)}ε
≤ · · ·

≤ ‖xn0 − z‖2 ·
n∏

k=n0

(1− αk)(1− βk) +
{

1−
n∏

k=n0

(1− αk)(1− βk)
}

ε

for each n ≥ n0. Therefore, lim supn→∞ ‖xn+1 − z‖2 ≤ ε. Since ε is arbitrary,
we get xn → z ∈ F (T ). Hence, we can define a mapping P of C onto F (T ) by
Px = limn→∞ xn. From Theorem 4.1, P is a sunny nonexpansive retraction of C
onto F (T ). ¤

W remark that in Theorem 5.1, the condition (III) is replaced by the following
condition: For every bounded subset B of C,

∞∑

n=1

sup{‖Tnx− Tn+1x‖ : x ∈ B} < ∞.

We get the following result [24] for nonexpansive mappings by Lemma 3.1 (i) and
(ii) and Theorem 5.1.

Theorem 5.2. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E whose norm is uniformly Gâteaux differentiable and let T be a
nonexpansive mapping of C into itself with F (T ) 6= ∅. Let {xn} be a sequence
generated as follows: x1 = x ∈ C and

xn+1 = αnx + (1− αn)T (βnx + (1− βn)xn) (∀n ∈ N),

where {αn} ⊂ [0, 1) and {βn} ⊂ [0, 1) satisfy limn→∞ αn = limn→∞ βn = 0,∏∞
n=1(1 − αn)(1 − βn) = 0 and

∑∞
n=1(|αn − αn+1| + |βn − βn+1|) < ∞. Then,

{xn} converges strongly to PF (T )x, where PF (T ) is a sunny nonexpansive retraction
of C onto F (T ).

We have the following result [16] for nonexpansive mappings by Lemma 3.2 (ii)
and Theorem 5.1.

Theorem 5.3. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E whose norm is uniformly Gâteaux differentiable and let S and T
be nonexpansive mappings of C into itself with F (S) ∩ F (T ) 6= ∅. Let {xn} be a
sequence generated as follows: x1 = x ∈ C and

xn+1 = αnx + (1− αn)(γnS + (1− γn)T )(βnx + (1− βn)xn) (∀n ∈ N),

where {αn} ⊂ [0, 1) and {βn} ⊂ [0, 1) satisfy limn→∞ αn = limn→∞ βn = 0,∏∞
n=1(1−αn)(1−βn) = 0 and

∑∞
n=1(|αn−αn+1|+|βn−βn+1|) < ∞ and {γn} ⊂ [a, b]
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for some a, b ∈ (0, 1) with a ≤ b satisfies
∑∞

n=1 |γn − γn+1| < ∞. Then, {xn} con-
verges strongly to PF (S)∩F (T )x, where PF (S)∩F (T ) is a sunny nonexpansive retraction
of C onto F (S) ∩ F (T ).

We have the following result [17] for accretive operators from Lemma 3.5 (ii) and
Theorem 5.1.

Theorem 5.4. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E whose norm is uniformly Gâteaux differentiable and let A ⊂ E×E
be an accretive operator with D(A) ⊂ C ⊂ ∩λ>0R(I +λA) and A−10 6= ∅. Let {xn}
be a sequence generated as follows: x1 = x ∈ C and

xn+1 = αnx + (1− αn)Jλn(βnx + (1− βn)xn) (∀n ∈ N),

where {αn} ⊂ [0, 1) and {βn} ⊂ [0, 1) satisfy limn→∞ αn = limn→∞ βn = 0,∏∞
n=1(1− αn)(1− βn) = 0 and

∑∞
n=1(|αn − αn+1|+ |βn − βn+1|) < ∞ and {λn} ⊂

(0,∞) satisfies lim infn→∞ λn > 0 and
∑∞

n=1 |λn − λn+1| < ∞. Then, {xn} con-
verges strongly to PA−10x, where PA−10 is a sunny nonexpansive retraction of C
onto A−10.

We get the following result [23] for the W -mappings by Lemma 3.6 (ii) and
Theorem 5.1.

Theorem 5.5. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E whose norm is uniformly Gâteaux differentiable. Let S1, S2, . . . be
infinite nonexpansive mappings of C into itself with F := ∩∞n=1F (Sn) 6= ∅ and let
β1, β2, . . . be real numbers with 0 < βi ≤ b < 1 for every i ∈ N for some b ∈ (0, 1).
Let Wn be the W-mapping generated by Sn, Sn−1, . . . , S1 and βn, βn−1, . . . , β1 for
every n ∈ N. Let {xn} be a sequence generated as follows: x1 = x ∈ C and

xn+1 = αnx + (1− αn)Wn(γnx + (1− γn)xn) (∀n ∈ N),

where {αn} ⊂ [0, 1) and {γn} ⊂ [0, 1) satisfy limn→∞ αn = limn→∞ γn = 0,∏∞
n=1(1 − αn)(1 − γn) = 0 and

∑∞
n=1(|αn − αn+1| + |γn − γn+1|) < ∞. Then,

{xn} converges strongly to PF x, where PF is a sunny nonexpansive retraction of C
onto F .

We also have the following result.

Theorem 5.6. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E whose norm is uniformly Gâteaux differentiable and let {Tn} and
T be families of nonexpansive mappings of C into itself which satisfy ∅ 6= F (T ) ⊂
∩∞n=1F (Tn) and the conditions (I) and (II). Let {xn} be a sequence generated as
follows: x1 = x ∈ C and

xn+1 = αnx + (1− αn)Tn(βnx + (1− βn)xn) (∀n ∈ N),

where {αn} ⊂ [0, 1) and {βn} ⊂ [0, 1) satisfy limn→∞ αn = limn→∞ βn = 0 and∏∞
n=1(1− αn)(1− βn) = 0. Then, {xn} converges strongly to PF (T )x, where PF (T )

is a sunny nonexpansive retraction of C onto F (T ).

Proof. As in the proof of Theorem 5.1, we have F (T ) = ∩∞n=1F (Tn) and {xn} is
bounded. Since

‖xn+1 − Tnxn‖ ≤ ‖xn+1 − Tn(βnx + (1− βn)xn)‖
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+‖Tn(βnx + (1− βn)xn)− Tnxn‖
≤ αn‖x− Tn(βnx + (1− βn)xn)‖+ βn‖x− xn‖

for every n ∈ N, we get limn→∞ ‖xn+1 − Tnxn‖ = 0. From (II), limn→∞ ‖xn −
Tmxn‖ = 0 for every m ∈ N. As in the proof of Theorem 5.1, xn → PF (T )x, where
PF (T ) is a sunny nonexpansive retraction of C onto F (T ). In fact, let {γm} ⊂ (0, 1)
such that limm→∞ γm = 0 and let {ym} be a sequence of C generated by ym =
γmx + (1− γm)Tmym for every m ∈ N. By Theorem 4.1, limm→∞ ym = z ∈ F (T ).
From (5.2) and (5.4), we get

γm

2
‖xn − ym‖2 +

(1− γm)2

2γm
(‖xn − Tmxn‖2 + 2‖xn − Tmxn‖ · ‖xn − ym‖)

≥ (x− ym, J(xn − ym))

for each m,n ∈ N which implies

lim sup
n→∞

(x− ym, J(xn − ym)) ≤ γm

2
lim sup

n→∞
‖xn − ym‖2

for all m ∈ N. Let ε > 0. Since limm→∞ γm = 0, there exists m3 ∈ N such that for
every m ≥ m3,

lim sup
n→∞

(x− ym, J(xn − ym)) <
ε

3
.

Hence, there exists m4 ∈ N such that
lim sup

n→∞
(x− z, J(xn − z)) ≤ lim sup

n→∞
|(x− z, J(xn − z))− (x− z, J(xn − ym))|

+ lim sup
n→∞

|(x− z, J(xn − ym))− (x− ym, J(xn − ym))|
+ lim sup

n→∞
(x− ym, J(xn − ym))

≤ ε

3
+

ε

3
+

ε

3
= ε

for each m ≥ m4 by (5.6) and (5.7). So, we obtain (5.8) and (5.9). Therefore,
xn → PF (T )x. ¤

We get the following result [14] for accretive operators by Lemma 3.5 (iii) and
Theorem 5.6.

Theorem 5.7. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E whose norm is uniformly Gâteaux differentiable and let A ⊂ E×E
be an accretive operator with D(A) ⊂ C ⊂ ∩λ>0R(I +λA) and A−10 6= ∅. Let {xn}
be a sequence generated as follows: x1 = x ∈ C and

xn+1 = αnx + (1− αn)Jλn(βnx + (1− βn)xn) (∀n ∈ N),

where {αn} ⊂ [0, 1) and {βn} ⊂ [0, 1) satisfy limn→∞ αn = limn→∞ βn = 0 and∏∞
n=1(1 − αn)(1 − βn) = 0 and {λn} ⊂ (0,∞) satisfies limn→∞ λn = ∞. Then,

{xn} converges strongly to PA−10x, where PA−10 is a sunny nonexpansive retraction
of C onto A−10.

We have the following result for nonexpansive semigroups from Lemma 3.9 (ii)
and Theorem 5.6.
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Theorem 5.8. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E whose norm is uniformly Gâteaux differentiable and let S be a
semigroup. Let S = {T (s) : s ∈ S} be a nonexpansive semigroup on C such that
F := F (S) 6= ∅ and let D be a subspace of B(S) containing constants and being
invariant under ls for all s ∈ S. Suppose that for every x ∈ C and x∗ ∈ E∗, the
function t 7→ (T (t)x, x∗) is in D and the mappings t 7→ supn fn(t) and t 7→ infn fn(t)
are in D for each bounded sequence {fn : n ∈ N} of D. Let {µn} be a sequence
of monotone convergent means on D such that limn→∞ ‖µn − l∗sµn‖ = 0 for each
s ∈ S. Let {xn} be a sequence generated as follows: x1 = x ∈ C and

xn+1 = αnx + (1− αn)Tµn(βnx + (1− βn)xn) (∀n ∈ N),

where {αn} ⊂ [0, 1) and {βn} ⊂ [0, 1) satisfy limn→∞ αn = limn→∞ βn = 0 and∏∞
n=1(1 − αn)(1 − βn) = 0. Then, {xn} converges strongly to PF x, where PF is a

sunny nonexpansive retraction of C onto F .

We get the following results for nonexpansive mappings by Lemmas 3.10 (ii) and
3.11 (ii) and Theorem 5.6.

Theorem 5.9. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E whose norm is uniformly Gâteaux differentiable and let T be a
nonexpansive mapping of C into itself such that F (T ) 6= ∅. Let {xn} be a sequence
generated as follows: x1 = x ∈ C and

xn+1 = αnx + (1− αn)
1
n

n−1∑

i=0

T i(βnx + (1− βn)xn) (∀n ∈ N),

where {αn} ⊂ [0, 1) and {βn} ⊂ [0, 1) satisfy limn→∞ αn = limn→∞ βn = 0 and∏∞
n=1(1− αn)(1− βn) = 0. Then, {xn} converges strongly to PF (T )x, where PF (T )

is a sunny nonexpansive retraction of C onto F (T ).

Theorem 5.10. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E whose norm is uniformly Gâteaux differentiable and let S1 and
S2 be nonexpansive mappings of C into itself such that S1S2 = S2S1 and F :=
F (S1) ∩ F (S2) 6= ∅. Let {xn} be a sequence generated as follows: x1 = x ∈ C and

xn+1 = αnx + (1− αn)
2

(n + 1)(n + 2)

n∑

k=0

∑

i+j=k

Si
1S

j
2(βnx + (1− βn)xn) (∀n ∈ N),

where {αn} ⊂ [0, 1) and {βn} ⊂ [0, 1) satisfy limn→∞ αn = limn→∞ βn = 0 and∏∞
n=1(1 − αn)(1 − βn) = 0. Then, {xn} converges strongly to PF x, where PF is a

sunny nonexpansive retraction of C onto F .

We have the following result for one-parameter nonexpansive semigroups from
Lemma 3.12 (ii) and Theorem 5.6.

Theorem 5.11. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E whose norm is uniformly Gâteaux differentiable and let S = {T (s) :
0 ≤ s < ∞} be a one-parameter nonexpansive semigroup on C such that F :=
F (S) 6= ∅. Let {xn} be a sequence generated as follows: x1 = x ∈ C and

xn+1 = αnx + (1− αn)
1
tn

∫ tn

0
T (s)(βnx + (1− βn)xn) ds (∀n ∈ N),
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where {αn} ⊂ [0, 1) and {βn} ⊂ [0, 1) satisfy limn→∞ αn = limn→∞ βn = 0 and∏∞
n=1(1 − αn)(1 − βn) = 0 and {tn} ⊂ (0,∞) with limn→∞ tn = ∞. Then, {xn}

converges strongly to PF x, where PF is a sunny nonexpansive retraction of C onto
F .
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