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STRONG CONVERGENCE TO COMMON FIXED POINTS OF
FAMILIES OF NONEXPANSIVE MAPPINGS IN BANACH
SPACES

K. NAKAJO, K. SHIMOJI, AND W. TAKAHASHI

ABSTRACT. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E whose norm is uniformly Gateaux differentiable. Let {77} and
T be families of nonexpansive mappings of C into itself such that § # F(7) C
Npz1 F (1), where F(Ty) is the set of all fixed points of T, and F(7) is the
set of all common fixed points of 7. We consider a sequence {x,} generated
by z € C, zn = anz + (1 — an)Thz, (Yn € N), where {a,} C (0,1) and then
give the conditions of {an}, {ITn} and 7 under which {z,} converges strongly
to a common fixed point of 7. We also consider a sequence {z,} generated by
21 =2 € C, Tpt1 = ant + (1 — an)Tn(Brnz + (1 — Br)xn) (Vn € N), where
{an} C[0,1) and {B,} C [0,1) and then give the conditions of {an}, {Bn}, {Tn}
and 7 under which {z,} converges strongly to a common fixed point of 7. Using
these results, we improve and extend well-known strong convergence theorems.

1. INTRODUCTION

Throughout this paper, let E be a real Banach space with norm || - || and let N
be the set of all positive integers. Let C' be a nonempty closed convex subset of F.
Then, a mapping 1" : C — C is called nonexpansive if

[Tz =Tyl < [lz -y (Va,y € C).
Browder [4] considered a sequence {z,} as follows:
(1.1) z€C, xp=0apr+ (1 —an)Tz, (Vn € N),

where {a,,} C (0,1) and he proved the first strong convergence theorem in the
framework of a Hilbert space. Shioji and Takahashi [28], and Suzuki [30] also proved
strong convergence theorems of Browder’s type for one-parameter nonexpansive
semigroups. Recently, authors [19] obtained a theorem which generalizes the results
of [4, 30], simultaneously. In a uniformly convex Banach space F whose norm is
uniformly Gateaux differentiable, Shioji and Takahashi [26, 28, 29] and Nakajo [17]
proved strong convergence theorems of Browder’s type. On the other hand, Halpern
[8] considered the following process: z1 =z € C and

(1.2) Tni1 = anx + (1 — o) Ty, (Vn € N),
where {a,} C [0,1). Wittmann [38] proved a strong convergence theorem of
Halpern’s type in the framework of a Hilbert space and then, several authors

[3, 12, 10, 11, 13, 22, 25] proved strong convergence theorems. In a uniformly
convex Banach space E whose norm is uniformly Gateaux differentiable, Shioji and
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Takahashi [24, 27, 28, 29], Kamimura and Takahashi [14, 15], Shimoji and Taka-
hashi [23], Takahashi, Tamura and Toyoda [36] and Kimura, Takahashi and Toyoda
[16] and Nakajo [17] proved the strong convergence theorems of Halpern’s type.

In this paper, for families {7,,} and 7 of nonexpansive mappings of C' into itself
such that 0 # F(T) c NS, F(T,), we consider a sequence {z,} generated by
z € C, zp = onr+ (1 —ay)Thz, (Yn € N), where {a,} C (0,1) and then give
the conditions of {ay,}, {T,,} and 7 under which {z,} converges strongly to a
common fixed point of 7. We also consider a sequence {z,} generated by z; =
2 €C, Tpi1 = anx+ (1 — an)Th(Bnz + (1 — Bn)xs) (Vn € N), where {a,,} C [0,1)
and {08,} C [0,1) and then give the conditions of {ay}, {fn}, {Tn} and 7 under
which {z,} converges strongly to a common fixed point of 7. Using these results,
we improve and extend well-known strong convergence theorems.

2. PRELIMINARIES

Let E be a Banach space. We write z,, — z to indicate that a sequence {z,}
converges strongly to x. Let C be a subset of £ and let T': C — E. T is called
nonexpansive if | Tz — Ty|| < ||z — y|| holds for each z,y € C. We denote by F(T)
the set of all fixed points of T. We define the modulus dg of convexity of E as
follows: 0p is a function of [0, 2] into [0, 1] such that dg(e) = inf{l — ||z + y||/2 :
|zl <1, ||yl <1, ||z —y|| > €} for every € € [0,2]. E is called uniformly convex
if 0g(e) > 0 for each ¢ > 0. FE is called strictly convex if ||z + y||/2 < 1 for all
z,y € E with ||z|| = |ly]| = 1 and = # y. In a strictly convex Banach space E, we
have that if ||z|| = ||y|]| = ||Ax + (1 — N)y|| for z,y € E and A € (0,1), then x = y.
It is known that a uniformly convex Banach space is strictly convex. Let C be a
nonempty closed convex subset of F and let T" be a nonexpansive mapping of C
into itself. We know that if F is strictly convex, F(T') is closed and convex. Let
G ={g:[0,00) — [0,00) : g(0) = 0, g : continuous, strictly increasing, convex}.
Xu [39] proved the following result.

Lemma 2.1. Let E be a uniformly convexr Banach space. Then, for every bounded
subset B of E, there exists gp € G such that

(2.1)  [Pa+ @ =Nyl < Mzl + 1= Vllyll? = A1 = Ngs(llz - yl)
forallz,ye B and 0 < A < 1.

Let E be a Banach space and let E* be the dual space of E. A set-valued mapping
J of E into E* defined by

J(z) = {z* € B*: (x,2") = ||z||* = [|2*|*} (Vz € E)
is called the duality mapping on E. F is said to be smooth provided the limit

t —_
0 et byl
t—0 t
exists for every x,y € S(E), where S(E) ={z € E : ||z|| = 1}. And the norm of £
is said to be uniformly Gateaux differentiable if for each y € S(E), (2.2) is attained
uniformly for 2 € S(E). It is known that the duality mapping J : E — 27" is

single valued and norm to weak® uniformly continuous on bounded subsets of E
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when E has a uniformly Gateaux differentiable norm. The following lemma is well
known; for example, see [33].

Lemma 2.2. Let E be a smooth Banach space. Then, for any x,y € E,
z[* = llyl* = 2(z — v, I (3))-

Let p be a continuous, linear functional on [*°. We call p a Banach limit when
w satisfies ||p|| = (1) =1 and pp(ant1) = pn(ay) for all {a,} € [*°. We know that
liminf,, o an < pn(a,) < limsup,,_, a, for every {a,} € I*°; see [33]. We have
the following result from [37]; see also [6] and [33].

Lemma 2.3. Let C be a convex subset of E whose norm is uniformly Gateauz
differentiable and let = € C. Let {x,} C E be a bounded sequence and let p be
a Banach limit. Then, uy ||z, — 2||* = mingec pnllzn — yl|? if and only if un(y —
2, J(xp —2)) <0 forally € C.

Let C be a convex subset of F and let K be a nonempty subset of C. Let P be
a retraction of C' onto K, that is, Px = x for every x € K. P is said to be sunny if
P(Pz + t(x — Pz)) = Px for each z € C and t > 0 with Px 4+ t(x — Px) € C. We
know the following result; see[5, 21, 33].

Lemma 2.4. Let C be a convex subset of a smooth Banach space EE and let K be a
nonempty subset of C'. Let P be a retraction of C' onto K. Then, P is sunny and
nonezpansive if and only if (x — Pz, J(y — Px)) < 0 for every x € C and y € K.
Hence, there is at most one sunny nonexpansive retraction of C onto K.

3. LEMMAS

Let E be a Banach space and let C' be a subset of E. Let {T,,} and 7 be families
of nonexpansive mappings of C' into itself such that () # F(7) C N F(T},), where
F(T),) is the set of all fixed points of T}, and F(7) is the set of all common fixed

points of 7. Motivated by [19] and [20], we consider the following conditions of
{T,,} and 7"

(I) For each bounded sequence {z,} C C, limy_||2n — Tnzn|| = 0 implies
limy, o [|2n — T2 || = 0 for every T' € 7.
(IT) For every bounded sequence {z,} C C, limy, o0 ||2n+1 — Thzn|| = 0 implies

lim, 00 ||2n — Tinzn|| = 0 for all m € N.

(IIT) There exists {a,} C [0,00) with > > | a,, < oo such that for every bounded
subset B of C, there exists Mp > 0 such that |1,z — T,,+1z| < a,Mp holds
for allm € N and = € B.

We have the following results for nonexpansive mappings.

Lemma 3.1. Let C' be a nonempty closed convex subset of E and let T be a non-
expansive mapping of C into itself with F(T) # 0. Then, the following hold:
(i) {Tn} with T,, = T (Vn € N) and T = {T'} satisfy the condition (I) with
m%O:IF(Tn) = F(T) = F(T);
(ii) {T} with T,, =T (Vn € N) and T = {T} satisfy the condition (III) with
an, =0 (Vn € N).
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Lemma 3.2. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E and let S and T be nonexpansive mappings of C into itself such
that F(S)NF(T) # 0. Let {v,} C [a,b] for some a,b € (0,1) with a < b. Then, the
following hold:
(i) {Tn} with T, = v S+(1—v,)T (Vn € N) and T = {SJFTT} satisfy the condition
(1) with N0 F(T,,) = F(T) = F(S)NF(T);
(i) {Tn} with T, = S+ (1 —m)T (Vn € N) such thaty ;> |Yn—"n+1| < 00 and
T = {&FL} satisfy the conditions (1) and (I11) with an, = |, —Yn41| (Vn € N)
and N2 F(T,) = F(T) = F(S)NnF(T).

Proof. Since E is strictly convex, we have N0%, F(7,S + (1 — v)T) = F(S‘FTT) =
F(S)NF(T).

(i). Let {z,} be a bounded sequence in C' such that lim, . ||z, — Thzn|| = 0 and
let z € N9, F'(T},). There exists g € G such that

2o = 21> < {llza = Tozall + [ Tnzn — 21} < 120 = Tuzall - M + | Tozp — 2|12
< lzn = Tuznll - M + 0 ||S2n — 2|I
+(1 = )Tz = 2] = (1 = )g(1S2n — Tznll)
< lzn = Tuzall - M+ |20 = 2l” = 7(1 = 1) g (1S 20 — Tzal)

for alln € N, where M = sup,,en{l|2n—Tnzn||+2]|2n—2]|}. So, we get lim,, oo ||S2n—
T'z,|| = 0. Since

|2n = Sznll < |l2n — Tuznll + | Thzn — Szall = |20 — Toznl|l + (1 = vn)[1S20 — T2nl|

for every n € N, we obtain limy,_, ||z, — Sz, || = 0 and hence, lim, .o ||z, —T'2p|| =

0. Therefore, lim,, oo ||z, — S‘FTTan =0.
(ii). By (i), (I) holds. Let z € F(S) N F(T'). We have
[T = Tzl = [fmSz + (1 = yn)Ta} — {152 + (1 = yng1) T} ||

< = Al - 1Sz = Taf| < |y — gl - {2lle — 21}
for every n € N and = € C. So, for each bounded subset B of C, there exists
Mp > 2-sup,cp ||z — 2| such that || T,z — T\, 112|| < ap,Mp for alln € N and z € B,
where ap, = |yn — Yn+1| (Vn € N). So, (III) holds. O

An operator A C E x E is called accretive if for (z1,41), (z2,y2) € A, there exists
j € J(x1 — x2) such that (y; — ye2,7) > 0, where J is the duality mapping of E. An
accretive operator A is said to satisfy the range condition if D(A) C R(I + \A) for
all A > 0, where D(A) is the domain of A, R(I + AA) is the range of I + A and
D(A) is the closure of D(A). An accretive operator A is said to be m-accretive if
R(I+\A) = E for every A > 0. If A is accretive, then we can define, for each r > 0,
a mapping J, : R(I +rA) — D(A) by J, = (I + rA)~!. J, is called the resolvent
of A. We know that .J, is nonexpansive for all r > 0 and A~'0 = F(.J,) for every
r > 0. We also define the Yosida approximation A, by A, = (I — J,)/r for each
r > 0; see [33, 34] for more details. We have the following result for the resolvents
[18].

Lemma 3.3. Let A C E X E be an accretive operator. Let r,\ > 0 and D(A) C
R(I + MA). Then, $||(I — J\)Jyz|| < L{|(I = J.)z|| holds for every x € R(I +rA).
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We also have the following result for the resolvents [7].

Lemma 3.4. Let A C E X E be an accretive operator and let v, A > 0. For each
z € R(I+rA) N R(I + AA), | e — Joz|| < 2z — Jaa| holds.

We get the following results for the resolvents by Lemmas 3.3 and 3.4.

Lemma 3.5. Let C be a nonempty closed convexr subset of E and let A C E X E
be an accretive operator with D(A) C C C NysoR(I + AA) and A='0 # (). Then,
the following hold:

(i) {T} with T,, = Jy, (Yn € N) with {\,} C (0,00) and liminf, .o A, > 0 and
T = {1} satisfy the condition (I) and N> F(T,) = F(T) = A~'0;

(ii) {7} with T,, = Jy, (Yn € N) with {\,} C (0,00), liminf, ,.c Ay, > 0 and
Yool 1 1A = Angi]| < o0 and T = {J1} satisfy the conditions (I) and (III) with
an = |An — Ant1| (Vn € N) and N2 F(T,,) = F(T) = A~10;

(iii) {7} with T,, = Jy, (¥n € N), where {\,} C (0,00) and lim, oo A\,, = 00 and
T = {1} satisfy the conditions (I) and (II) with N> F(T;,) = F(T) = A~10.

Proof. We know that J,. is a nonexpansive mapping of C' into itself for all » > 0 and
N F(Jy,) = F(J1) = A710; see [33].

(i). Let {z,} be a bounded sequence in C such that lim, . ||z, — Jx, 20| = 0. We
have

lzn — J1znll < lzn — JAnZnH + ||J/\nzn - JlJ)\nZnH + ”JlJAnZn — J1zy]|

A

1
2||lzn = I, znll + YHZn — S, 2l
n

for every n € N by Lemma 3.3. From inf,en Ay, > 0, we get limy, .« ||2n—J12n] = 0.
So, (I) holds.
(ii). From (i), (I) holds. By Lemma 3.4, we have

|>\n _>\n+1|
o |

for every n € N and z € C, where u € A710 and ¢ = inf,en A\n (> 0). So,
for each bounded subset B of C, there exists Mp > 2sup,cp ||z — ul| such that
| Thx —Thi1z|| < ap,Mp for all n € N and = € B, where a,, = |\, — A1 (Vn € N).
So, (III) holds.

(iii). As in the proof of (i), (I) holds. Further, let {z,} be a bounded sequence in
C such that limy, oo ||2nt1 — I, 2n|| = 0 and fix m € N. Then, by Lemma 3.3 we
have

An

— )\n
s = nl < vyl < P Al

n+1

|znt+1 = D zntill < Nznsr = I 2Zall + 190020 = Iam Ian 2l
+||J)\m‘]>\nzn - J)\mzn"l‘]-H

A
< 2lzngr — a2l + )\m (|
n

and hence ||zp+1 — J,, 2nt1]] — 0. So, (II) holds. O

m

Let C' be a nonempty closed convex subset of E. Let S1,S52,... be infinite
nonexpansive mappings of C' into itself and let (1, 32,... be real numbers such
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that 0 < ; < 1 for every i € N. Then, for any n € N, Takahashi [32] (see also
[23, 34, 35]) introduced a mapping W,, of C' into itself as follows:

Un,n—l—l = I,
Un,n — ﬂnSnUnJ%H + (1 - Bn)la
Un,n—l - ﬁn—lsn—lUn,n + (1 - 6n—1)Ia

Uni = BeSeUnk+1+ (1= Be)l,

Up2 = [252Un3+ (1 — ()],
Wyo=Un1 = iS1Un2+ (1 - 1)l

Such a mapping W, is called the W-mapping generated by S,,Sn_1,...,.51 and
Bns Br-1,- .., B1. We know that if F is strictly convex, N, F(S;) #0, 0 < 8; < 1
for every i = 2,3,...,nand 0 < ; <1, then, F(W,) = NI, F(S;); see [34, 35]. We
also have that if E is strictly convex, N2, F(Sy,) # 0 and 0 < 3; < b < 1 for every
i € N for some b € (0,1), then, lim, .o U, rx exists for every x € C' and k € N;
see [23]. So, we can define a mapping W of C into itself as follows:
Wz = lim Wyx = lim Uy, 12
n—oo n—oo

for every x € C. Such a W is called the W-mapping generated by Si,Ss,... and
b1, B2, ... We have that if E is strictly convex, N5, F(S;) #0 and 0 < 3; <b < 1
for every i € N for some b € (0,1), then, F(W) = N2, F(S;); see [23]. We know
the following results for the W-mappings.

Lemma 3.6. Let C be a nonempty closed convex subset of a strictly convex Banach
space E. Let S1,59,... be infinite nonexpansive mappings of C into itself with
N> F(Sy) # 0 and let 1, B2, ... be real numbers with 0 < B; < b < 1 for every
i € N for some b e (0,1). Let Wy, be the W-mapping generated by Sy, Sp—1,...,S1
and By, Bn-1,-..,01 for every n € N and let W be the W-mapping generated by
S1,59,... and B1,B2,.... Then, the following hold:
(i) {T»} with T,, = W,, (Yn € N) and T = {W} satisfy the condition (I) with
m;L.Ole(Tn) = F(T) = ﬁ?zole(Sn);
(i) {T} with T,, = Wy, (Y¥n € N) and T = {W} satisfy the conditions (I) and
(II) with a, = b"* (Vn € N) and "o, F(T,,) = F(T) = N, F(S,).

Proof. We have N°2 | F(W,,) = NS, F(S,) = F(W) # 0.
(i). Let z € N2, F(Sy,). We get
|Wha — Whiaz| = |[|6151Un 2z — 151Uns1,22|| < 51||Unox — Ung 22|
B1|B252Un 32 — $252Un 11 37|
B1532||Un 3z — Upt137||
- < B1fa. . Bubnrillz — Spazl < 02 — 2|}

IA A
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for every n € N and = € C. Let {z,} be a bounded sequence in C' such that
limy, o0 |2 — Whzn|| = 0. Let n € N. We get
[2n = Whgmznll < [l2n = Wazn| + [Whzn — Wigazn|| + -+
+HWn+m—lzn - Wn—l—man

< lzn = Wazall + 0" 20|20 = 2} + - + 6" {220 — 2]}
< lzn — Wazgl| 4+ 0" 4 40" M
bn+1 1 —pm
< lzn — Waza]l + MM
for every m € N, where M = sup,en{2||zn — 2|/} So, we obtain
n+1
[2n = Wan| = lim [z = Wpipmzal| < [l2n — Wazn|l + M

for each n € N which implies lim,, o ||z, — Wzy,|| = 0. So, (I) holds.
(ii). Let z € N2 F(Sy). As in the proof of (i), we have

[Whe — Wy 2| < b"'HQHx — 7|

for every n € N and x € C. So, for each bounded subset B of C, there exists
Mp > 2-sup,cp ||z — z|| such that || T,z —T),112| < ap,Mp for alln € N and z € B,
where a,, = b"*! (Vn € N). So, (III) holds. As in the proof of (i), (I) holds. O

Let S be a semigroup and let B(S) be the Banach space of all bounded real
valued functions on S with supremum norm. Then, for every s € S and f € B(S),
we can define I;f € B(S) by (Isf)(t) = f(st) for each t € S. We also denote by [}
the adjoint operator of l;. Let D be a subspace of B(S) containing constants and
let 1 be an element of D*, where D* is its topological dual. A linear functional
w is called a mean on D if ||u|| = pu(1) = 1. Further, let D be satisfied that for
each bounded sequence {f, : n € N} of D, the mappings ¢ — inf, f,(t) and
t +— sup,, fn(t) are in D. A mean p on D is said to be monotone convergent if
pe(imy, o0 fr(t)) = limy, o0 e (fn(t)) for every bounded sequence {f,, : n € N} of
D such that 0 < f; < fo < ---. We know that if u is a monotone convergent mean
on D and {f, : n € N} is a bounded sequence of D, then limsup,, . tu(fn(t)) <
we(limsup,,_, o fn(t)). Let C' be a nonempty closed convex subset of E. A family
S ={T(s) : s € S} of mappings of C into itself is called a nonexpansive semigroup
on C if it satisfies the following conditions:

(i) T'(st) =T (s)T(t) for every s,t € S

(ii) [[T(s)z = T(s)y| < |l — yl| for each s € S and z,y € C.
We denote by F(S) the set of all common fixed points of S, i.e., NiesF(T(t)).
Hirano, Kido and Takahashi [9] proved the following; see also [31].

Lemma 3.7. Let S be a semigroup. Let C' be a nonempty closed convex subset of
E and let S = {T'(s) : s € S} be a nonexpansive semigroup on C such that for
every x € C, {T(t)x : t € S} is contained in a weakly compact convex subset of
C. Let D be a subspace of B(S) such that D contains constants and the mapping
t— (T(t)x,y*) isin D for eachx € C andy* € E*. Then, for any mean p on D and
x € C, there exists a unique element Ty,x in C such that (T,x,x*) = ps(T(s)z, z*)
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for every x* € E*. And T, is a nonexpansive mapping of C into itself and T,x = x
for all x € F(S).

Further, Atsushiba, Shioji and Takahashi [2] proved the following; see also [1, 29].

Lemma 3.8. Let C be a nonempty closed convexr subset of a uniformly conver
Banach space E. Let S be a semigroup and let S = {T'(s) : s € S} be a nonexpansive
semigroup on C such that F(S) # 0. Let D be a subspace of B(S) containing
constants and being invariant under ls for every s € S and for each x € C and
x* € E*, the function t — (T'(t)x,z*) is in D. Let {u,} be a sequence of means on
D such that limy, e ||t — Upin|| = 0 for all s € S. Let w € F(S) and D, = {y €
C : |ly—w| <r} forr > 0. Then, limy, .o sSupgep, | Ty, — T(t) Ty, x| = 0 for
everyr >0 andt € S.

We have the following results for nonexpansive semigroups from Lemmas 3.7 and
3.8.

Lemma 3.9. Let C be a nonempty closed convexr subset of a uniformly conver
Banach space E and let S be a semigroup. Let S = {T(s) : s € S} be a nonexpansive
semigroup on C such that F(S) # () and let D be a subspace of B(S) containing
constants and being invariant under ls for all s € S. Suppose that for every x € C
and x* € E*, the function t — (T'(t)x,z*) is in D. Let {un} be a sequence of means
on D such that limy, oo ||t — Uipin|| = 0 for each s € S. Then, the following hold:

(i) {Tn} with T, = Ty, (Yn € N) and T = S satisfy the condition (1) with
m;L.Ole(Tn) = F(T) = F(S);

(ii) moreover, assume that the mappings t — sup,, fn(t) and t — inf, f,(t) are in
D for every bounded sequence {f, : n € N} of D and {u,} is a sequence of
monotone convergent means on D. Then, {T,,} with T, =T, (Yn € N) and
T = S satisfy the conditions (1) and (II) with "2, F(T,) = F(T) = F(S).

Proof. By Lemmas 3.7 and 3.8, we have N52, F(1},,) = F(S).
(i). Let {z,} in C be a bounded sequence such that lim, . ||z, — T, 2n|| = 0. For
allt e Sandn € N,
lzn =T@)znll < Non = Tupzall + | Thnzn =TT 20l + 1T ) Ty 20 = T(8) 20|

< 2z = Tyn 2l + 1 Tn 20 = T(#) T 20l
From Lemma 3.8, we obtain lim, . ||z, — T'(t)z,|| = 0 for every ¢t € S. So, (I)
holds.
(i1). As in the proof of (i), (I) holds. Let {z,} C C be a bounded sequence such
that limy, oo ||2n+1 — Ty, 20| = 0. We have

1zn1 = Ty 2ntall < Mlzns1 = a2zl + [T 20 = T T 20l
T T 20 — Tyt 2nt1 |
< 2zt = Ty 2nll + (1T, 20 — Ty T 2l

for every m,n € N. Hence, for each m € N, we get

limsup [|2n11 — T znt1]l* < limsup [Ty, 20 — Ty Do 20|
n—oo n—oo

= limsup(pm)e(T(¢) (T, 2n) — T, 2ns 23)

n—oo
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< () (1m0 5Up(T () Ty 20) = Ty 20,5 ) <0
n—oo

by Lemma 3.8, where z, € J(T},,(Ty,%n) — Ty, 2n) for all n € N. Therefore, (II)

holds. U

We know the following results for nonexpansive mappings from Lemma 3.9; see
[9].

Lemma 3.10. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E and let T be a nonexpansive mapping of C into itself with F(T') # ().
Then, the following hold:
(i) {T,} with T,, = 517, 'T(Vne N) and T = {T" : i =0,1,2,...} satisfy
the condition (I) "with ﬂ 1F(T )=F(T)=F(T);
(i) {7} with T,, = 7112?’:01 T (Vn € N) and T = {T" : i =0,1,2,...} satisfy
the conditions (I) and (II) with NS F(T,,) = F(T) = F(T).
Proof. Let S ={0,1,2,...},S§ ={T" : i € S}, D = B(S) and ju,,(f) = 1 S0 £(3)

n

for all n € N and f € D. We have F(S) = F(T) # 0 and know that {u,} is a

sequence of monotone convergent means on D with lim, . ||ftn — [ pin]| = 0 for all
ke Sand T,z = 1 ) S ' Tig for every x € C. By Lemma 3.9, we get Lemma
3.10. O

Lemma 3.11. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E and let S1 and So be nonexpansive mappings of C' into itself with

S189 = 8951 and F(S1) N F(S2) # 0. Then, the following hold:

(i) {Tn} with T,, = ﬁzz 02 irj=k 5155 (Yn € N) and T = {S}S} :
i,j =0,1,2,...} satisfy the condition (1) with N2 F(T,,) = F(T) = F(S1)N
F(S2); o o

(ii) {73} with T,, = mzzzo > irj=k 5183 (Yn € N) and T = {S}S} :
i,j =0,1,2,...} satisfy the conditions (I) and (II) with NS F(T,,) = F(T) =
F(S1) N F(Sy).

Proof. Let S = {0,1,2,...} x {0,1,2,...}, S = {SiS5 : (i,j) € S}, D = B(S)
and p,(f) = mﬂﬁzo Zi+j:kf(i,j) for every n € N and f € D. We
have F(S) = F(S1) N F(S2) # 0 and know that {u,} is a sequence of monotone
convergent means on D with lim, . ||y, — l)(kk,m)“n” = 0 for each (k,m) € S and

Ty,x = mzzzo Ei—i—j:k S{ng for every x € C. By Lemma 3.9, we get
Lemma 3.11. O

Let C be a nonempty closed convex subset of E. A family S = {T'(s) : 0 < s <
oo} of mappings of C into itself is called a one-parameter nonexpansive semigroup
on (' if it satisfies the following conditions:

(i) T(0)z = x for all z € C;

(ii) T(s+t) =T(s)T(t) for every s,t > 0;

(iii) |7'(s)x —T(s)y|| < ||z — yl| for each s > 0 and =,y € C;
(iv) for all z € C, s — T'(s)x is continuous.
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We have the following results for one-parameter nonexpansive semigroups by
Lemma 3.9; see [9].

Lemma 3.12. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E and let S ={T(s) : 0 < s < oo} be a one-parameter nonexpansive
semigroup on C with F'(S) # (. Let {t,} C (0,00) with lim, . t, = co. Then, the
following hold:

(i) {T} with T,- fO” ~ds (VYn € N) and T = S satisfy the condition (I)
with N2 F (T, ) F(T) — F(S),-
(i1) {T,,} with T, = fO" - ds (Yn € N) and T = S satisfy the conditions

(I) and (II) with ﬁ > (Tn) =F(T)=F(S).

Proof. (i). Let S = (0,00) and let D be the Banach space C(S) of all bounded
continuous real valued functions on S. Let \,(f) = & fo t) dt for every s > 0 and
f € D. We know that {)\s} is a net of means on D with hms_m | As = [z As|| = O for
each k € (0,00) and Th,x = 1 [ T(t)z dt for every z € C. By Lemma 3.9 (i), w
get Lemma 3.12 (i).

(ii). Let S = (0,00) and let D be a set of all bounded Lebesque measurable real
valued functions on S. Let \,(f) = 1 fo t) dt for every s > 0 and f € D. We have
the mappings t — sup,, f(t) and t — inf, fn( ) are in D for every bounded sequence
{fn : n € N} of D. We also know that {\s} is a net of monotone convergent means
on D with lims o | As — [} As|| = 0 for each k € (0,00) and Th,z = 1 [ T(t)z dt for
every z € C. From Lemma 3.9 (ii), we get Lemma 3.12 (ii). O

4. STRONG CONVERGENCE THEOREM OF BROWDER'S TYPE
Using the method of [26] (see also [28, 29]), we get the following.

Theorem 4.1. Let C be a nonempty closed convex subset of a uniformly conver
Banach space E whose norm is uniformly Gateauz differentiable. Let {T,,} and T
be families of nonexpansive mappings of C into itself which satisfy O # F(T) C
N> F(Ty,) and the condition (I). Define a sequence {xy} in C as follows: = € C
and

Ty = anx + (1 — ap)Thx, (Yn € N),
where {an} C (0,1) If limy oo an = 0, {w,} converges strongly to Ppryw, where
Pp(1y is a sunny nonerpansive retraction of C onto F(T).

Proof. Let U,, = apz + (1 — ay,)T,, for every n € N. We have U,, : C — C and U,
is a contraction for all n € N since T;, is nonexpansive and 0 < «a,, < 1. So, for each
n € N, there exists a unique element x,, € C such that x,, = a,z + (1 — ay)Thxy,.
By (I), we get F'(T) =02, F(T,). Let z € N0, F(T,). We obtain

lew =2l = lan(e = 2) + (1 — aw)(Tozn - 2)|
< anlle — 2l + (1 — ag) [ Tuzn — 2
< aulle - 2l + (1 — )l — 2

for every n € N. So, we have ||z, — z|| < ||z — z|| for all n € N. This implies that
{z,,} is bounded. Further, we have that

lzn — Thxn|l = anllz — Tpzn|| < an(|lz — 2] + | Thzn — 2||) < 200l — 2|
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for each n € N. From lim,, . a;, = 0, we get

lim |z, — Thz,| = 0.
n—oo

So, from (I), we have

(4.1) lim ||z, — Tz,|| =0
n—oo

for all T'€ T. We get

an(z — 2, J(zy, — 2))

=ap(zy — 2, J(xn — 2)) + (1 — an)(xn — Tnxn) — (2 — Tpz), J(zn — 2))

= apllzn — 2>+ (1 — an){(zn — 2, J(2n — 2)) — (Tpitn, — Tnz, J(xn — 2))}

> agllzn — 2l* + (L= an){llen = 2I* = 1 Tozn — Toz| - e — 2I1} = anllz, — 2|
for every n € N. So, we obtain
(4.2) |2zn — 2% < (x — 2, J (2, — 2))

for all n € N and z € N0, F(T},). We also have

(xp —x, J(xp — 2)) = ! ;nan (Thxn — Tp, J(2n — 2))
zl;fwn%—aﬂ%—m—@wamﬁan
(4.3) . (T = 2w = ) = llon = 2} <0

for each n € N and z € N2, F(T,). Let {z,,} be a subsequence of {z,,} and let u be
a Banach limit. Let g be a real valued function on C defined by g(y) = pil|n, —y||?
for every y € C. By [33] , we know that g is continuous and convex and g satisfies
limy—o0 9(y) = 00. So, there exists xg € C such that g(zo) = infyec g(y). Let
y1,y2 € C such that g(y1) = g(y2) = infycc g(y) and suppose that y; # y2. Let B
be a bounded subset of E containing sequences {x,, —y1} and {x,, —y2}. By (2.1),
there exists gp € G such that

+ Y2 |2 1 1 2
R T
1 1 1
< L=l + 2, — el = Sann — sl

for every ¢ € N which implies

Y1+ yz) 1 1 1 .
< Zg(ys) — - — yoll) < inf g(y).
g( 5 ) =390+ 59(2) = gen(llyn —12f)) < inf 9(y)
This is a contradiction. So, we obtain y; = yo. Therefore, there exists a unique
element yo of C such that g(yo) = infyec g(y). Suppose yo ¢ F(T) for some T € 7.
Let B be a bounded subset of E containing sequences {z,, — yo} and {z,, — Tyo}.
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We have
[t 2l fuxm 9ol + 3 Iz, — Twoll® ~ Z5(lv0 ~ o)
< S len, — w0l + 5 Lllen, — T | + 120, — Tyolly?
- igB(Hyo = Tyol|)
1

1
< Sl = woll* + S{llen, = T || + ll2n, = yoll}*

\V)

1
- ZQB(H?/O — Tyol|)
1
= 2 lzn, — ol
1
+ SAllzn, — Tz, ? + 20|20, — Ton,ll - 120, — yoll + |lZn, — voll*}
2

1
- ZQB(HIUO — Tyol|)

for some gp € G. This implies

Tyo + yo 1 1 1
9(=5 ) < 59(w) + 39(w) ~ 395(lv0 — Tuol) < inf g(y)

by (4.1). This is a contradiction. So, we get yo € F(7). It follows from (4.2)
and Lemma 2.3 that p;|lz,, — yol? < pi(z — yo, J(zn, — y0)) < 0. There exists a
subsequence {$n¢j} of {zp,} such that

lim ||zn, —woll=0
J—00 J

because
lim [, — yoll = liminf ||z, — yoll < psillzn, — yol* < 0.
J—00 J 1—00
On the other hand, let {z,,} and {z,,} be subsequences of {z,} such that ,,, — 21
and x,, — z2. Then, from (4.1) we have that for any T' € 7T,
21 = Tzl < llz1 = @[l + l#n;, = T, || + ([T, = Tz1ll = 0
as i — 00. So, we get 21 € NS, F(T),). Similarly, zo € N9, F(T},). By (4.

3), w
obtain (z,, — z, J(zn, — 22)) § 0 for all i € N and (z, — x, J(7p,; — zl)) <0 f
each j € N. Since

(2, — 2z, J (2, — 22)) — (21 — x, J (21 — 22))|
< |(zp, — x, J(zpn; — 22)) — (21 — z, J(Tp, — 22))]
+|(z1 — 2, J(Tn, — 22)) — (21 — 2, J (21 — 22))]
< lzn; = 21l - l2n, — 22|l
+|(z1 — 2, J(Tn, — 22)) — (21 — 2, J (21 — 22))]
for every ¢ € N and J is norm to weak™ uniformly continuous on bounded subsets

of E, we have (z1 —x, J(z1 — 22)) < 0. Similarly, (zo —z, J(22 — 21)) < 0. So, we get
|21 — 22||* = (21 — 22, J(21 — 22)) < 0, that is, z; = z2. Therefore, {z,,} converges
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strongly to some element of N0, F'(T,,) = F(7). Hence, we can define a mapping
P of C onto F(T) by Pxr = lim,,_,o, x,, because x is an arbitrary point of C. By
(4.3), we obtain (Px — x,J(Px — 29)) < 0 for all z € C and zy € F(7T). So, P is a
sunny nonexpansive retraction of C' onto F(7) from Lemma 2.4. g

We have the following result for nonexpansive mappings by Lemma 3.1 (i) and
Theorem 4.1.

Theorem 4.2. Let C be a nonempty closed convexr subset of a uniformly convex
Banach space E whose norm is uniformly Gateaux differentiable and let T be a
nonexpansive mapping of C into itself such that F(T) # 0. Let x € C and {x,}
be a sequence by x, = apr + (1 — ap)Tx, (Vn € N), where {a,} C (0,1) with
lim,, oo @y, = 0. Then, {x,} converges strongly to Prryx, where Ppr) is a sunny
nonexpansive retraction of C onto F(T).

We get the following result for convex combination of nonexpansive mappings by
Lemma 3.2 (i) and Theorem 4.1.

Theorem 4.3. Let C be a nonempty closed convexr subset of a uniformly convex
Banach space E whose norm is uniformly Gateaux differentiable and let S and T
be nonexpansive mappings of C into itself such that F(S)NF(T) # (0. Let x € C
and {x,} be a sequence by x, = apx + (1 — ) (WSxn + (1 — v)Txy) (Vn € N),
where {a,} C (0,1) with lim,_,oc oy, = 0 and {v,} C [a,b] for some a,b € (0,1)
with a < b. Then, {x,} converges strongly to Prs)nrr)z, where PpsynpT) 15 @
sunny nonexpansive retraction of C onto F(S)N F(T).

We have the following result [17] for accretive operators from Lemma 3.5 (i) and
Theorem 4.1.

Theorem 4.4. Let C be a nonempty closed convex subset of a uniformly conver
Banach space E whose norm is uniformly Gateaux differentiable and let A C EX E
be an accretive operator with D(A) C C' C NMysoR(I + AA) and A710 # 0. Let
x € C and {x,} be a sequence by x, = anx + (1 — ap)Jy,zn (Yn € N), where
{A\n} C (0,00) and {an} C (0,1) with limy, o0 ay = 0. If liminf,, oo Ay > 0, {z,}
converges strongly to Py-1qz, where Py-1q is a sunny nonexpansive retraction of C
onto A~10.

We get the following result for the W-mappings from Lemma 3.6 (i) and Theorem
4.1.

Theorem 4.5. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E whose norm is uniformly Gateauz differentiable. Let Sy, S2,... be
infinite nonexpansive mappings of C into itself with F := N2 F(Sy) # 0 and let
B1, B2, ... be real numbers with 0 < 3; < b < 1 for every i € N for some b € (0,1).
Let W, be the W-mapping generated by Sy, Sn—1,...,51 and By, Bn-1,--.,01 for
everyn € N. Let x € C and {z,} be a sequence by x,, = apx+ (1 — )Wy, (Vn €
N), where {an} C (0,1) with lim, oo oy, = 0. Then, {x,} converges strongly to
Prx, where Pr is a sunny nonexpansive retraction of C' onto F'.

We have the following result for nonexpansive semigroups by Lemma 3.9 (i) and
Theorem 4.1.
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Theorem 4.6. Let C be a nonempty closed convexr subset of a uniformly convex
Banach space E whose norm is uniformly Gateauzx differentiable and let S be a
semigroup. Let S = {T(s) : s € S} be a nonexpansive semigroup on C such that
F :=F(S) # 0 and let D be a subspace of B(S) containing constants and being
invariant under lg for all s € S. Suppose that for every x € C' and x* € E*, the
function t — (T (t)x,z*) is in D. Let {u,} be a sequence of means on D such that
limy oo ||t — Gptn]] = 0 for each s € S. Let x € C and {z,} be a sequence by
Ty = anx + (1 — o)1,z (Vn € N), where {o,} C (0,1) with lim, o i, = 0.
Then, {x,} converges strongly to Ppx, where Pp is a sunny nonexpansive retraction

of C onto F.

We get the following results for nonexpansive mappings from Lemmas 3.10 (i)
and 3.11 (i) and Theorem 4.1.

Theorem 4.7. Let C be a nonempty closed convexr subset of a uniformly convex
Banach space E whose norm is uniformly Gateauz differentiable and let T be a
nonexpansive mapping of C into itself such that F(T) # 0. Let x € C and {x,} be
a sequence by T, = oz + (1 —0y) % Sy Tixy, (Vo € N), where {ay,} € (0,1) with
limy, o0 p = 0. Then, {z,} converges strongly to Ppryz, where Ppery is a sunny
nonexpansive retraction of C' onto F(T').

Theorem 4.8. Let C be a nonempty closed convex subset of a uniformly conver
Banach space E whose norm is uniformly Gateauzx differentiable and let S1 and
Sy be nonexpansive mappings of C into itself such that S1S2 = S2S1 and F(S1)N

F(S3) # 0. Let x € C and {x,} be a sequence by x, = apx + (1 — an)m

Y r—o Zi+j:k S{S%xn (Vn € N), where {a,} C (0,1) with lim, . a, = 0. Then,
{xn} converges strongly to Pp(g,)nr(sy)Z, where Pps,)nr(s,) s a sunny nonerpan-
sive retraction of C' onto F(S1) N F(S2).

We have the following result for one-parameter nonexpansive semigroups by
Lemma 3.12 (i) and Theorem 4.1.

Theorem 4.9. Let C be a nonempty closed convexr subset of a uniformly convex
Banach space E whose norm is uniformly Gateaux differentiable and let S = {T'(s) :
0 < s < oo} be a one-parameter nonexpansive semigroup on C such that F(S) # 0.
Let x € C and {z,,} be a sequence by x,, = anac—i—(l—an)i Jo" T(s)znds (Vn € N),
where {an} C (0,1) with lim,, . a, = 0 and {t,} C (0,00) with lim, o t, = 0.
Then, {x,} converges strongly to Prsyx, where Pps) is a sunny nonexpansive re-
traction of C onto F(S).

5. STRONG CONVERGENCE THEOREM OF HALPERN’S TYPE

Using the method employed in [24], we get the following.

Theorem 5.1. Let C be a nonempty closed convex subset of a uniformly conver
Banach space E whose norm is uniformly Gateauz differentiable and let {T,,} and
T be families of nonexpansive mappings of C into itself which satisfy O # F(T) C
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N> F(Ty,) and the conditions (I) and (III). Let {x,} be a sequence generated as
follows: 1 =x € C' and

Tpt1 = an® + (1 — )T (Brz + (1 — Br)xy) (Yn € N),

where {ayp} C [0,1) and {Bn} C [0,1) satisfy limy, o0 vy = limy, o0 B = 0 and
[[21 (1= an)(X = Bn) = 0. If 3252 (Jam — amga| + [Bn = Bral) < o0, then {an}
converges strongly to Pp(ryx, where PpTy is a sunny nonexpansive retraction of C

onto F(T).

Proof. We have F(T) = N F(T,,) by (I). Let z € N0, F(T},). We have ||z, —z| <
|z — z|| for every n € N. In fact, suppose that ||z, — z|| < ||z — z|| for some n € N.
We get

[#n1 =2 = llan(z = 2) + (1 = ) {Tn(Bnz + (1 = Bn)zn) — 21|
< anlle =zl + (1= an){Ballz — 2l + (1 = Bo)[2n — [}
<l ==

So, {x,} is bounded. Next, we obtain

[Zn+1 — 2n| = lanz + (1 — an)Tn(Baz + (1 — Bn)zn)
—ap—12 — (1 = ap—1)Th-1(Bn—12 + (1 = Bo—1)zn—1)|
= [[(an — an-1)z + (1 — ap {Tn(Bpz + (1 — Bn)2y)
— T 1(Baz + (1 = Bn)xn)}
+ (1 = an){Tn-1(Bnr + (1 — Bn)zn)
— L1 (Bn—12 + (1 = Bp—1)@p-1)}
+ (-1 — an)Tn-1(Bn-12 + (1 = Bn-1)Tn-1)||
< lan — an—1| - [|# = Th—1(Bn12 + (1 = Bo—1)zn—1) ||
+ (1 = an) | Tn(Bnz + (1 = Bn)zn) — Tn-1(Bnz + (1 = Bu)an) ||
+ (1 = an)[{fnz + (1 = Bp)an} — {fn-12 + (1 = Bu-1)zn-11}|l
<lon — ap_1|- M
+ (1 = an)[[Tn(Bnz + (1 = Bp)an) — Tn-1(Bnz + (1 = Bn)zn) ||
+ (1= a1 — Bucal - (2]l + znll) + (1 = Bo)lln -z I}

for each n = 2,3,..., where M1 = sup,en\ (1} |z — Th—1(Bn-12+ (1 — Bn-1)Tn-1)|-
Since a sequence {f,z + (1 — (B,)zy} is bounded, there exists My > 0 such that

||Tn(ﬂn$ + (1 - Bn)mn) - T’nfl(ﬁnm + (1 - Bn)xn)H < an-1M>
for all n =2,3,... by (III). Therefore, we get

(51) ||xn+1 - JUnH < (|an - an—1| + |ﬁn - Bn—1| + an—l)M
+(1 = an)(1 = Bp)l|lzn — Tn-1]|
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for every n = 2,3,..., where M = max{Mi, Mz, sup,en q13{ /1]l + [[zn-1[}}. Let
m,n € N. By (5.1), we obtain
|Zntms1 = Tngml < (Jontm — anpm—1] + [Bntm — Batm—1] + anym-1)M
+ (1 = antm) (1 = Bosm)|Zntm — Tngpm—1]]
< (lon+m — angm—1| + |Bntm — Bntm—1| + anym—1)M
+ (1 = antm) (1 = Boam){([antm—1 — anym—2]
+ Brtm—1 = Bptm—2| + anym—2) M
+ (1 = antm—1)(1 = Botm—1) | Tn+m—1 — Tntm—2ll}
<A{(lantm — antm—1| + lan+m-—1 — antm—2|)
+ (Wn—&-m - /Bn—i-m—l‘ + ‘ﬁn—&-m—l - ﬁn+m—2’) + (an-i-m—l + an+m—2)}M
+ (1 = anpm) (1 = Bram) (1 = anpm—1)(1 = Bnm-1)|Tntm—1 — Tnim—2||

IN

+m—1
<SM- > (lawss — ol + 1Brr — Bil + ar)
k=m

n+m
Flzmpr —zmll - [ (1= ar) (1= B).
k=m+1
So, we have
lmsup [|#n+1 — apl| = limsup [Tnym+1 — Tngm|
n—oo n—oo
(o)
< M- Z(\akﬂ — ag| + |Bry1 — Brl + ax)

k=m
for each m € N. Therefore, we get lim;, . ||Zn+1 — || = 0. Since
[ = Tn(Bpz + (1 = Bn)an) | + [ Th(Bnz + (1 = Bp)an) — Tnay||
[Zn+1 — Tull + anllz — T (Bnr + (1 = Bu)zn) || + Ballz — x|

for all n € N, we have lim,,_. ||zn, — Thxn|| = 0. Let m € N and take n € N with
n > m. By (III), there exists Mp > 0 such that

|20 — Thrn| <
<

”xn - Tm$n” < ||33n - Tn«rnH + HTnl'n - Tn—1$n|| + -+ ”Tm+1$n - Tml'n”
n—1

”l’n — TnmnH + Mpg - Z ag.

k=m

IN

So, we get

lim limsup ||z, — Tinzs|| = 0.
m—0 n—oo
So, let {vm} C (0,1) such that lim,, oo Vm = 0 and limsup,,_, ., [|2n —Tinzn|| < 072,
for each m € N, where b € (0, 00) with b > sup,,cn{limsup,,_, [|Zn — Tyl } and
let {ym} be a sequence of C such that vy, = Ymx + (1 — V) Tinym for every m € N.
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By Theorem 4.1, lim, o0 Y = 2 € F(7). Let u be a Banach limit. Since
(5.2) |7 — TmymHZ < ln - manZ + llzn — ymH2

+2||zn — Tl - |20 — ymll
for each n,m € N, we have

pinllzn = Tnymll* < pinlln — Yo
(5.3) + lim sup(||z,, — mxn”2 + 2|7y — Tnnl| - (|20 — ymll)

n—oo

for all m € N. From

(1 - ’Ym)(xn - Tmym) = (xn - ym) - ’Ym($n - m),

we obtain

(1 - ’Ym)szn - mym”2 > H-Tn - ymH2 - 2’Vm(l'n -, J(xn - ym))
(5.4) = (1= 2vm)[l7n —ym||2+2'7m($_ymw]($n — Ym))

for every m,n € N. Hence, we have
(1= Ym)*tin |20 — Ty |*
>(1-2 — yml|? - —
> ( Ym) | Zn = Ymll® + 29¥mpin (T — Ym, J(Tn — Ym))
for all m € N. By (5.3), we have

(1- 'Ym)Q{Monn - ym||2+ lim sup (||, — manQ‘i‘ 2H33n - mxn” Nn — ymH)}
n—oo

> (1 - 27m),un||«73n - ymH2 + Q’Ymﬂn(x — Ym,; J(xn - ym))

and hence

Y
(5-5) ﬂﬂnnxn - ymH2

2
1—vm)? ..
+ ( 2 ) limsup(||zn, — menHQ + 2||zn — Trnnl| - |20 — Ymll)
m n—oo

> fin (T = Y, (Tn — Ym))

for each m € N. Let e > 0. Since F is norm to weak™ uniformly continuous on
bounded subsets of E and y,,, — z, there exists m; € N such that for every m > my,

(5.6) (@ =2, J(2n = 2)) = (x = 2, J (20 —ym))| <

(5'7) |('7; - % J(xn - ym)) - (33‘ — Ym, J(wn - ym))| <

WM wlMm

for all n € N. Since 7, — 0 and limsup,,_,, ||zn — Tmznl| < b¥2, (Vm € N), from
(5.5) there exists mg € N such that

P = Ymy J (T — Ym)) <

W ™
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for each m > my. Hence, there exists mg € N such that for every m > my,

pn(z — 2, J (20, — 2)) = pin(@ — 2, J(@, — 2)) — pn(z — 2, J (T, — Ym))

+ pn(x = 2, J(Tn — Ym)) — Mn(x — Ym, J (Tn — ym))
+ﬂn(x_ymw](xn _ym))

<t4t4i-¢
3 3 3 7

Since ¢ is arbitrary, we have
pn(x — 2, J(xn — 2)) <O0.
Further, by ||[zp4+1 — 2n|| — 0, we get
(x —z,J(xp — 2)) — (x — 2, J(xp+1 — 2))| — 0.

Therefore, we obtain

(5.8) limsup(z — 2z, J(z, —2)) <0
n—od
by [24, Proposition 2]. It follows from ||{G,z+ (1 —Bn)zn — 2} — (x,, — 2)|| — 0 that
(5.9) limsup(z — z, J(Bnz + (1 — Bp)x, — 2)) < 0.
Since

(1 = an{Tn(Bnx + (1 = Bn)zn) — 2} = (Tnt1 — 2) — an(z — 2)

and

(1 =Bp)(xn —2) = Bpx+ (1 = Bp)xn — 2 — Bulx — 2),
from Lemm 2.2 we have
(1= )T (B + (1= B)an) — 212 > ons1 — 2|2 = 20 — 2 I (@as1 — 2))
and

(1= B)?llen =27 = [1Bpz + (1 = Ba)zn — 2|2
=20 (x — 2z, J(Bpnx + (1 = Bp)zpn — 2))
for all n € N. Let € > 0. By (5.8) and (5.9), there exists ng € N such that
2 —2z,J(xyp —2)) <¢
and
2 — 2z, J(Brz+ (1 — Bp)an —2)) <€

for every n > ng. So, we have
[@n1 — ZH2 <(1- an)2HTn(ﬂnw + (1= Bn)an) — ZH2 + 2an(z — 2, J(Tnt1 — 2))

< (1= n)?||Bnz 4+ (1 = Bp)an — 2|12 + 200 (z — 2, J (Xpy1 — 2))

< (1= o) {(1 = Bn)?llwn — 201+ 280 (x — 2, J(Baz + (1 = Bn)an — 2))}

+ 20 (z — 2z, J(Tpy1 — 2))
< (1 =o)X = Bp)llzn — ZH2 + (1 — an)Bne + ane
< (1= an)(1 = Bp)llan — 2l + {1 = (1 — an)(1 — Ba)}e
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for every n > ng. Hence, we have

1 — 2|
< (1= an)(1 = B (1 = 1)1 = o)t — 2|1
+ (1= (1= an1)(I = Bn1))e} + {1 = (1 = an)(1 = Bn)}e
(1= an)(1 = Ba)(1 = an-1)(1 = B ||z — 2|
{1 = (1= an)(1 =) (1 = an-1)(1 = Fu-1)}e

IN

n

< Mo — 2P [T =an)( =50+ {1- [T —an)1 -5}

k=ng k=ng

for each n > ng. Therefore, limsup,,_, . [|Tnt1 — 2]|> < e. Since ¢ is arbitrary,
we get x, — z € F(T). Hence, we can define a mapping P of C' onto F(7) by

Pz = lim;, .o ©,. From Theorem 4.1, P is a sunny nonexpansive retraction of C
onto F(7T). O

W remark that in Theorem 5.1, the condition (III) is replaced by the following
condition: For every bounded subset B of C,

o0

Zsup{HTnx — Tht1z|| @ € B} < o0.

n=1
We get the following result [24] for nonexpansive mappings by Lemma 3.1 (i) and
(ii) and Theorem 5.1.

Theorem 5.2. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E whose norm is uniformly Gateauz differentiable and let T be a
nonezpansive mapping of C into itself with F(T) # 0. Let {x,} be a sequence
generated as follows: x1 =x € C' and

Tnt1 = an + (1 — a)T(Bpx + (1 — Bn)zs) (Vn € N),

where {a,} C [0,1) and {B,} C [0,1) satisfy lim, oo vy = lim, .o B, = 0,
T122, (1~ an)(1 = Ba) = 0 and Y5 (Jon — anst| + |Bn — Bagal) < co. Then,
{zn} converges strongly to PF(T)x, where PF(T) 1S a sunny nonexpansive retraction

of C onto F(T).

We have the following result [16] for nonexpansive mappings by Lemma 3.2 (ii)
and Theorem 5.1.

Theorem 5.3. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E whose norm is uniformly Gateaux differentiable and let S and T
be nonexpansive mappings of C into itself with F(S) N F(T) # 0. Let {x,} be a
sequence generated as follows: x1 = x € C and

Tpy1 = an + (1 — o) (7S + (1 = 9)T) (Bnz + (1 = Bu)zn) (Vn € N),

where {an} C [0,1) and {B,} C [0,1) satisfy lim, oo @y = limy oo B = 0
[Thei(I=an)(1=08,) = 0 and 3707 (|an —ans1|+|Bn—Bns1]) < 0o and {y} C [a,b

i



30 K. NAKAJO, K. SHIMOJI, AND W. TAKAHASHI

for some a,b € (0,1) with a < b satisfies Y o> | |7 — Yn+1] < 00. Then, {z,} con-
verges strongly to PF(S)QF(T):L‘, where PF(S)QF(T) 1S a sunny nonexpansive retraction
of C onto F(S)NF(T).

We have the following result [17] for accretive operators from Lemma 3.5 (ii) and
Theorem 5.1.

Theorem 5.4. Let C be a nonempty closed convex subset of a uniformly conver
Banach space E whose norm is uniformly Gateaux differentiable and let A C EX E
be an accretive operator with D(A) C C C MysoR(I +AA) and A7*0 # 0. Let {x,}
be a sequence generated as follows: 1 = x € C and
Tpt1 = an + (1 — ap)Ja, (Bnx + (1 — Bn)zs) (Vn € N),

where {an} C [0,1) and {B,} C [0,1) satisfy lim, oo @ = limy oo B = 0,
[ (1 —an)(1 = B,) =0 and 307 (lan — 1| + |Bn — Bpal) < 00 and {An} C
(0,00) satisfies liminf, .00 Ay > 0 and > 071 | Ay — Apg1| < 00. Then, {x,} con-
verges strongly to Pja-19x, where Py-1q¢ is a sunny nonexpansive retraction of C
onto A~10.

We get the following result [23] for the W-mappings by Lemma 3.6 (ii) and
Theorem 5.1.

Theorem 5.5. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E whose norm is uniformly Gateauz differentiable. Let Sy, So,... be
infinite nonexpansive mappings of C into itself with F := N F(Sy,) # 0 and let
B1, B2, ... be real numbers with 0 < 3; < b < 1 for every i € N for some b € (0,1).
Let W, be the W-mapping generated by Sn,Sp—1,...,51 and By, Bn—1,...,01 for
every n € N. Let {z,} be a sequence generated as follows: 1 =z € C and

Tnt1 = @ + (1 — @) Wh(ymz + (1 — yn)xn) (Vn € N),
where {ayn} C [0,1) and {y,} C [0,1) satisfy lim, oo @y = limpooyn = O,
ILo (= an)(d =) = 0 and 3277 (Jan — anta| + [vn — Ynt1]) < 0o. Then,
{zn} converges strongly to Ppx, where Pp is a sunny nonexpansive retraction of C
onto F'.

We also have the following result.

Theorem 5.6. Let C' be a nonempty closed convex subset of a uniformly conver
Banach space E whose norm is uniformly Gateauz differentiable and let {T,,} and
T be families of nonexpansive mappings of C into itself which satisfy O # F(T) C
N> F(Ty,) and the conditions (I) and (II). Let {x,} be a sequence generated as
follows: 1 =z € C and
Tnt1 = @ + (1 — @) T (Bnx + (1 — Bp)zy) (Vn € N),

where {ayp} C [0,1) and {Bn} C [0,1) satisfy limy, o0 vy = limy, o0 B = 0 and
[I,2:(1 = an)(1 = Bp) = 0. Then, {x,} converges strongly to Pp(ryx, where Pp(r)
is a sunny nonexpansive retraction of C' onto F(T).

Proof. As in the proof of Theorem 5.1, we have F(7) = N2, F(T,) and {z,} is
bounded. Since

Hxn+1 - ann” < ”xn—i-l — T (Bpx 4+ (1 — ﬁn)xn)n
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H T (Bnz + (1 — Bn)wn) — Thwnl|
< apllr = Tou(Baz + (1 = Bu)xn)|l + Bullz — 24|

for every n € N, we get lim, oo || Znt1 — Thzy| = 0. From (II), lim, oo ||2n —
Ty = 0 for every m € N. As in the proof of Theorem 5.1, &, — Pp(1)z, where
Pp (1) is a sunny nonexpansive retraction of C' onto F'(7). In fact, let {y,} C (0,1)
such that limy,, o0 vm = 0 and let {y,,} be a sequence of C generated by y,, =
Ym® + (1 = Ym) Tinym for every m € N. By Theorem 4.1, limy, 00 Ym = 2 € F(7T).
From (5.2) and (5.4), we get

(1- 'Ym)2

2 (llzn — mwn||2+2”$n_ mnll - |7 — yml|)
Ym

.,
2 o =yl +

> (2 = Ym, J (X0 — Ym))
for each m,n € N which implies
. Y .
limsup(z — ym, J (T — Ym)) < 77” limsup ||z, — ym||2
n—oo n—oo

for all m € N. Let € > 0. Since lim;;,_o ¥m = 0, there exists ms € N such that for
every m > ms,

lim sup(z — ym, J (T, — Ym)) <

n—oo

Wl m

Hence, there exists m4 € N such that
limsup(z — z, J(z, — 2)) < limsup |(z — 2z, J(xp, — 2)) — (x — 2, J (Tr, — Ym))|

n—oo n—oo

+ limsup [(x — 2z, J(Xn — Ym)) — (& — Ym, J(Tn, — Ym))|

n—oo

+ limsup(z — Ym, J (T, — Ym))

n—oo
<S4t c
-3 3 3

for each m > my by (5.6) and (5.7). So, we obtain (5.8) and (5.9). Therefore,

We get the following result [14] for accretive operators by Lemma 3.5 (iii) and
Theorem 5.6.

Theorem 5.7. Let C be a nonempty closed convexr subset of a uniformly convex
Banach space E whose norm is uniformly Gateaux differentiable and let A C EX E
be an accretive operator with D(A) C C C MysoR(I +AA) and A710 # 0. Let {z,}
be a sequence generated as follows: 1 = x € C and

Tptl = QpT + (1 - an)J)\n (ﬁnw + (1 - ﬁn)xn) (VTL € Ma

where {an} C [0,1) and {B,} C [0,1) satisfy limy, ooy = limy_oo B, = 0 and
12,1 —an)(1 = Bn) =0 and {\,} C (0,00) satisfies limy_.0o Ay = 00. Then,
{zn} converges strongly to Py-1gx, where Py—1y is a sunny nonexrpansive retraction

of C onto A~10.

We have the following result for nonexpansive semigroups from Lemma 3.9 (ii)
and Theorem 5.6.
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Theorem 5.8. Let C be a nonempty closed convexr subset of a uniformly convex
Banach space E whose norm is uniformly Gateauzx differentiable and let S be a
semigroup. Let S = {T(s) : s € S} be a nonexpansive semigroup on C such that
F :=F(S) # 0 and let D be a subspace of B(S) containing constants and being
invariant under lg for all s € S. Suppose that for every x € C' and x* € E*, the
functiont — (T(t)x,z*) is in D and the mappings t — sup,, fn(t) and t — inf,, f,(t)
are in D for each bounded sequence {f, : n € N} of D. Let {u,} be a sequence
of monotone convergent means on D such that limy, o ||ftn, — Uipin|| = 0 for each
s € S. Let {xz,} be a sequence generated as follows: ©1 =z € C and

Tptl = QpT + (1 - an)Tun (ﬂnx + (1 - ﬁn)xn) (Vn € Ma

where {apn} C [0,1) and {B,} C [0,1) satisfy limy, oo ay = limy, o0 B, = 0 and
2,1 —ay)(1—B,) =0. Then, {z,} converges strongly to Ppx, where P is a
sunny nonexpansive retraction of C' onto F.

We get the following results for nonexpansive mappings by Lemmas 3.10 (ii) and
3.11 (ii) and Theorem 5.6.

Theorem 5.9. Let C be a nonempty closed convex subset of a uniformly conver
Banach space E whose norm is uniformly Gateauz differentiable and let T be a
nonexpansive mapping of C into itself such that F(T) # 0. Let {x,} be a sequence
generated as follows: xr1 = x € C and

n—1
Tpt1 = apx + (1 — an)% ZTl(ﬁnx + (1= pn)x,) (Yn € N),
=0

where {ayp} C [0,1) and {Bn} C [0,1) satisfy lim, o0 vy = limy, o0 B, = 0 and
[I,2:(1 = an)(1 = Bn) = 0. Then, {x,} converges strongly to Pp(pyx, where Pp(r)
is a sunny nonexpansive retraction of C onto F(T).

Theorem 5.10. Let C' be a nonempty closed convexr subset of a uniformly convex
Banach space E whose norm is uniformly Gateaux differentiable and let S1 and
Sy be nonexpansive mappings of C into itself such that 5152 = S251 and F =
F(S1)NF(Sy) #0. Let {x,,} be a sequence generated as follows: ©1 =z € C and

& )Z > 818 (B + (1= Bo)an) (Vn € N),

Tng1 =+ (1 — o) ————
(n+1)(n+2 =5

where {ayp} C [0,1) and {B,} C [0,1) satisfy limy, o0 y = limy, 00 By = 0 and
2,1 —a,)(1—8,) =0. Then, {z,} converges strongly to Ppx, where P is a
sunny nonexpansive retraction of C' onto F.

We have the following result for one-parameter nonexpansive semigroups from

Lemma 3.12 (ii) and Theorem 5.6.

Theorem 5.11. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E whose norm is uniformly Gateaux differentiable and let S = {T'(s) :
0 < s < oo} be a one-parameter nonexpansive semigroup on C such that F :=
F(S) #0. Let {x,} be a sequence generated as follows: ©1 = x € C and

tn
Tpi1 = apr + (1 — ozn)tl/ T(s)(Bnz + (1 — Bp)ay)ds (Vn € N),
0

n
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where {a,} C [0,1) and {B,} C [0,1) satisfy lim, o0 vy = limy, o0 B, = 0 and
[, (1 —an)( = B,) =0 and {t,} C (0,00) with lim, o0 ty, = 00. Then, {z,}
converges strongly to Prx, where Pp is a sunny nonexpansive retraction of C onto

F.
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