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RECURRENT DIMENSIONS AND DIOPHANTINE CONDITIONS
OF DISCRETE DYNAMICAL SYSTEMS

GIVEN BY CIRCLE MAPPINGS

KOICHIRO NAITO AND YOSHIHISA NAKAMURA

Abstract. In this paper we study recurrent dimensions of discrete dynamical
systems given by circle diffeomorphisms, using a renormalization method. We es-
timate the upper and the lower recurrent dimensions according to some algebraic
properties of irrational rotation numbers of the circle mappings and we show
that the gap values between the upper and the lower dimensions, which measure
unpredictability levels of orbits, take positive values if the rotation numbers have
good approximation properties by rational numbers.

1. Introduction

In this paper we study recurrent dimensions of discrete dynamical systems given
by a circle diffeomorphism f : S1 → S1. The rotation number of f is defined by

ρ(f) = lim
n→∞

f̂n(x)− x

n

where f̂ : R → R is a lift of f such that π ◦ f̂ = f ◦ π, π : R → R/Z(= S1) is a
covering map. Our purpose of this paper is to estimate the recurrent dimensions of
the discrete orbits Σx = {fn(x) : n ∈ N0} according to the algebraic properties of
ρ(f).

The following theorem by Poincaré is well known.

Theorem 1.1 (Poincaré, 1885). If f : S1 → S1 is a homeomorphism without
periodic points, then there exist a rotation Rα(x) := x+α(mod 1) and a continuous
surjective monotone map h : S1 → S1, which satisfies

h ◦ f = Rα ◦ h

and α is an irrational number and equal to the rotation number of f . Consequently,
ρ(f) is independent of x.

In the case of Theorem 1.1 we say that f is semi-conjugate to the rotation Rα

or h is a semi-conjugacy between f and Rα. Furthermore, if h is strictly monotone
(one-to-one), we say that f is conjugate to the rotation Rα or h is a conjugacy
between f and Rα.

If f is sufficiently smooth, f is conjugate to a rotation. The following theorem
was given by Denjoy.
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Theorem 1.2 (Denjoy, 1932). If f : S1 → S1 is C2-diffeomorphism without periodic
points, then f is topologically conjugate to a rotation. That is, the conjugacy h
between f and the rotation is a homeomorphism.

The regularity of the conjugacy was studied by many authors. Here we introduce
the estimate by Katznelson and Ornstein [1].

We say that g is Cm+δ-class where m ≥ 1 is an iteger and 0 ≤ δ < 1, if g is Cm

and its m-th derivative is Hölder continuous with its exponent δ.

Theorem 1.3 (Katznelson and Ornstein, 1989). Let f : S1 → S1 be a Ck-
diffeomorphism, k > 0, without periodic points and its rotation number α satisfies
the Diophantine condition for β ≥ 0:

|α− p

q
| > C

q2+β
(∗)

for all p/q ∈ Q. Then, if β +2 < k, the conjugacy h between f and the rotation Rα

is of class Ck−1−β−ε for all ε > 0.

In our previous papers ([7], [8], [9]) we introduce the gaps of recurrent dimensions,
which are differences between the upper and the lower recurrent dimensions, as the
index parameters, which measure unpredictability levels of the orbits.

In view of Theorem 1.2 and 1.3 we estimate the gaps of recurrent dimensions of
the discrete orbit Σx, given by a Ck-class function f , in the following cases.

(I) The rotation number satisfies the assumption β + 2 < k and the conjugacy h is
smooth : Cγ-class, γ ≥ 1.
(II) The rotation number satisfies 2 ≤ k ≤ β + 2 and h is a homeomorphism.

Our plan of this paper is as follows. In section 2 we introduce the classifications of
irrational numbers to parametrize the Diophantine condition (∗) and give defintions
of recurrent dimensions. In section 3 we estimate the gaps of recurrent dimensions
in the case (I) and in section 4 we treat the case (II). In section 5, introducing
a renormalization technique and showing some fractal structures of the intervals
given by the circle mapping, we prove some Lemmas, which are used to estimate
the recurrent dimensions in section 4. In section 6 (Appendix) we give some numer-
ical results on recurrent dimensions of quasi-periodic orbits given by the rotations
according to the classifications of irrational rotation numbers.

2. Classification of irrational numbers

Let τ be an irrational number. In our previous papers ([6], [7], [8]) we introduce
the following classifications according to (good or bad) levels of approximation by
rational numbers.

We say that τ is an α-order Roth number if there exists α ≥ 0 such that, for
every β : β > α, there exists a constant cβ > 0, which satisfies

|τ − q

p
| ≥ cβ

p2+β

for all rational numbers q/p ∈ Q.
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Let {ni/mi} be the Diophantine approximation of τ . Then we call τ an α-order
weak Liouville number if there exists a subsequence {mkj

} ⊂ {mj}, which satisfies

|τ − nkj

mkj

| < c

m2+α
kj

, ∀j

for some constants c, α > 0.
Furthermore, we can parametrize the Diophantine condition (∗) as follows:
Let R(α) be the set of α-order Roth numbers and wL(β) the set of β-order weak

Liouville numbers. In [8] we have shown that

R(α) ⊂ R(α′), α ≤ α′, wL(β) ⊂ wL(β′), β ≥ β′,

R(α)c ⊂
⋂

β<α

wL(β), wL(β) ⊂
⋂

β>α

R(α)c,

R(0)c =
⋃

β>0

wL(β)

where the complements are considered in the set of all irrational numbers. Thus,
for each irrational number τ , there exists a constant d0, which specifies the levels
of (bad or good) approximable properties by rational numbers:

inf{α : τ is an α-order Roth number}(2.1)
= sup{β : τ is a β-order weak Liouville number} := d0.

In our previous paper ([7]) we introduced a d0-(D) condition for a pair of irrational
numbers. For a single irrational case, let us say that τ satisfies a d0-(D) condition
if (2.1) holds.

Definitions of recurrent dimensions:

Define the first ε-recurrent time by

Mε(x) = min{m ∈ N : |fm(x)− x| < ε}.
and the upper and lower recurrent dimensions by

Dx = lim sup
ε→0

log Mε(x)
− log ε

, Dx = lim inf
ε→0

log Mε(x)
− log ε

.

Then we can define the gaps of recurrent dimensions by Gx = Dx −Dx. (See [6] or
[7] for further details.)

If the gap values Gx take positive values, we cannot exactly determine or predict
the ε-recurrent time of the orbits. Thus we propose the value Gx as the parameter,
which measures the unpredictability level of the orbit.

3. Smooth conjugacy case

In this section we consider the case where the conjugacy h between the circle
map f and the rotaion is Cγ-class, γ ≥ 1. First we note that the metric in S1 is
induced by the covering (quotient) map π : R → S1 such that

|x− y| := inf
m∈Z

|x− y −m|, x, y ∈ S1
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where we use the same notation as that of usual absolute values as far as not being
confused.

Theorem 3.1. Let f : S1 → S1 be a C3-diffeomorphism without periodic points
and its rotation number α satisfies the d0-(D) condition for 0 ≤ d0 < 1. Then, for
each x ∈ S1, we have

Dx ≤
1

1 + d0
, Dx ≥ 1.

Consequently, we have

Gx ≥ 1− 1
1 + d0

.

Proof. Since the Diophantine condition (∗) in Theorem 1.3 is satisfied with β =
1 − ε0 > d0 for some sufficiently small ε0 > 0, the conjugacy h is C1+ε0−ε-class
for every ε > 0. Thus we can admit C1-conjugacy h : h ◦ f = Rα ◦ h. Since
fn(x) = h−1 ◦ Rn

α ◦ h and Lipschitz continuity conditions of h and h−1, which are
given by the Mean Value Theorem, such that

C1|x− y| ≤ |h(x)− h(y)| ≤ C2|x− y|, x, y ∈ S1 : |x− y| ≤ 1
2

for some C2 > C1 > 0, we can take an integer m :

|fn(x)− x| = |h−1 ◦Rn
α ◦ h(x)− (h−1 ◦ h)(x)|(3.1)

≤ C−1
1 |αn−m|,

|αn−m| ≤ 1
2
,

and also an integer m′ :

|fn(x)− x| = |h−1 ◦Rn
α ◦ h(x)− (h−1 ◦ h)(x)|(3.2)

≥ C−1
2 |αn−m′|,

|αn−m′| ≤ 1
2
.

Let {qk/pk} be the Diophantine sequence of the rotation number α of f . It follows
from d0-(D) condition that for every ε > 0 there exists a subsequence {pkj

} such
that

|αpkj
− qkj

| ≤ c

p1+d0−ε
kj

, ∀j.

Thus we have

|fpkj (x)− x| ≤ cC−1
1

p1+d0−ε
kj

:= εj .

It follows from the definition that we can estimate lower recurrent dimension

Dx = lim inf
ε→∞

log M(ε)
− log ε

= lim inf
j→∞

inf
εj+1≤ε≤εj

log M(ε)
− log ε

≤ lim inf
j→∞

log M(εj)
− log εj
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≤ lim
j→∞

log pkj

− log c + log C1 + (1 + d0 − ε) log pkj

=
1

1 + d0 − ε

for every ε > 0.
Next we show the lower estimate. Here we use the following elementary property

of the Dophantine sequence that

(3.3)
1

pk(pk+1 + pk)
< |α− qk

pk
| < 1

pkpk+1
<

1
p2

k

and

(3.4) inf
r∈N

|αn− r| ≥ |αpk − qk|

holds for every n : 1 ≤ n < pk+1. It follows from (3.2) that we have

|fn(x)− x| ≥ C−1
2 |αpk − qk| ≥ 1

2C2pk+1
:= εk

for every n : 1 ≤ n < pk+1. Thus we can estimate the upper recurrent dimension

Dx = lim sup
ε→∞

log M(ε)
− log ε

= lim sup
k→∞

sup
εk+1≤ε≤εk

log M(ε)
− log ε

≥ lim sup
k→∞

log M(εk)
− log εk

≥ lim
k→∞

log pk+1

log 2C2 + log pk+1
= 1

and from the definition of the gap values we obtain the conclusion. ¤

4. Topological conjugate case

Next we consider the case (II). f has a unique invariant probability measure µ,
defined by µ(A) = λ(h(A)) where h is the conjugacy between f and the rotation
and λ is a Lebesgue measure.

Let {qk/pk} be the Diophantine sequence of the rotation number α of f and
denote

mk(x) = |fpk(x)− x|,
αk = |pkα− qk|,

then we consider the subsets A, B of S1, defined by

A = {x ∈ S1 : lim sup
k→∞

mk(x)
αk

> 0},

B = {x ∈ S1 : lim sup
k→∞

αk

mk(x)
> 0}.
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We note that

(4.1) αk =
∫

S1

mk(x)dµ(x)

(see [3]).
We can estimate the measure of these subsets:

Lemma 4.1. Let f : S1 → S1 be a C2-diffeomorphism. Then we have

(4.2) λ(A) = λ(B) = 1.

Proof. Since f and f−1 is differentiable, it follows from the Mean Value Theorem
that

K1|x− y| ≤ |f(x)− f(y)| ≤ K2|x− y|, x, y ∈ S1 : |x− y| ≤ 1
2
,

for some K2 > K1 > 0. Thus we can easily show that

x ∈ A ⇐⇒ f(x) ∈ A,

x ∈ B ⇐⇒ f(x) ∈ B.

Since f is ergodic (cf.[3]), the invariant sets A and B have full measures or null
measures.

First we show that λ(A) > 0. Define

A0 = {x ∈ S1 : lim sup
k→∞

mk(x)
αk

> c0}

for sufficiently small c0 > 0 and assume that µ(A0) = 0, that is, µ(Ac
0) = 1. Since

Ac
0 = {x ∈ S1 : lim sup

k→∞
mk(x)

αk
≤ c0},

for x ∈ Ac
0 there exists a small constant ε0 > 0 and a large number k0 such that, if

k ≥ k0,
mk(x)

αk
≤ c0 + ε0.

It follows from (4.1) that we have a contradiction:

αk0 =
∫

Ac
0

mk0(x)dµ(x) ≤ (c0 + ε0)αk0µ(Ac
0) = (c0 + ε0)αk0 .

Thus we obtain µ(A) > µ(A0) > 0. Since h is a homeomorphism, we have λ(A) > 0.
It follows from ergodicity of f that we have λ(A) = 1.

For the set B we can show the conclusion similary as follows. Denote

B0 = {x ∈ S1 : lim sup
k→∞

αk

mk(x)
> c′0}

for some small c′0 > 0 and assume that µ(Bc
0) = 1. If x ∈ Bc

0, there exists a
sufficiently small constant ε′0 > 0 and a large number k′0 such that

αk′0 ≤ (c′0 + ε′0)mk′0(x).

Thus we have a contradiction,

αk′0 =
∫

Bc
0

mk′0(x)dµ(x) ≥ αk′0
c′0 + ε′0

,
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which gives µ(B) > µ(B0) > 0. Applying the previous argument, we can conclude
that λ(B) = 1. ¤
Remark 4.2. It is known that the circle mapping f is conjugate to an irrational
rotation if and only if its minimal invariant set (a non-empty compact invariant set
which is minimal) is equal to S1. Thus we can easily show that the invariant subsets
A,B are dense in S1.

Theorem 4.3. Let f : S1 → S1 be a C2-diffeomorphism without periodic points
and its rotation number α. Then we have

(4.3) Dx ≥ 1, a.e. x ∈ S1.

Proof. Let x ∈ A. Then there exists a constant c1 > 0 and subsequences {αkj
},

{mkj
(x)}, which satisfy

mkj
(x) ≥ c1αkj

, ∀j ≥ j1

for a sufficiently large j1. By Lemma 5.2 in the next section there exists a constant
b0 : 0 < b0 < 1 such that

(4.4) |fn(x)− x| ≥ b0mkj
(x)

holds for every n < pkj+1. It follows from the property of Diophantine sequence
that we have

αkj
≥ c2

pkj+1

for some c2 > 0. Thus, by putting

|fn(x)− x| ≥ b0c1c2

pkj+1
:= εj ,

we can estimate

Dx = lim sup
ε→∞

log M(ε)
− log ε

= lim sup
j→∞

sup
εj+1≤ε≤εj

log M(ε)
− log ε

≥ lim sup
j→∞

log M(εj)
− log εj

≥ lim
j→∞

log pkj+1

− log b0c1c2 + log pkj+1
= 1.

¤
Theorem 4.4. Let f : S1 → S1 be a C2-diffeomorphism without periodic points
and its rotation number α satisfies the d0-(D) condition for d0 > 0. Then we have

(4.5) Dx ≤
1

1 + d0
, a.e. x ∈ S1.

Consequently, we can estimate the gap values by

Gx ≥ d0

1 + d0
, a.e. x ∈ S1.
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Proof. Let x ∈ B, then there exists a constant c0 > 0 which satisfies

mk(x) ≤ c0αk, ∀k ≥ k0

for a sufficiently large k0. From the d0-(D) condition, it follows that, for each
β : 0 < β < d0, we can admit a subsequence {pkj

} and a constant cβ such that

|pkj
α− qkj

| ≤ cβ

p1+β
kj

.

Putting

εj :=
c0cβ

p1+β
kj

,

we note that
|fpkj (x)− x| ≤ εj ∀j ≥ j0

for a sufficiently large j0. Thus we can estimate

Dx = lim inf
ε→∞

log M(ε)
− log ε

= lim inf
j→∞

inf
εj+1≤ε≤εj

log M(ε)
− log ε

≤ lim inf
j→∞

log M(εj)
− log εj

≤ lim
j→∞

log pkj

− log c0cβ + (1 + β) log pkj

=
1

1 + β

for every β < d0.
Considering x in the set A∩B, which is also of full measure, we can estimate the

gap value Gx. ¤

5. Renormalization method

In this section, following the notations and arugment in [3]and applying some
renormalizatin techniques, we prove Lemma, which is used in the proof of Theorem
4.3.

Denote a subinterval [a, b] in [0, 1] by J . Define the space S(J) of maps g : J →
J , which satisfies the following conditions: g(a) = g(b) ∈ (a, b), there exsits a
discontinuity point c ∈ (a, b) such that g is continuous and monotone increasing on
[a, c) and (c, b], and

lim
t↑c

g(t) = b, lim
t↓c

g(t) = a.

For J = [a, b], denote J ′ := (a, c), J ′′ := (c, b), then we can admit the following
two cases:

(i) g(J ′) ⊂ J ′′, J ′ ⊂ g(J ′′),
(ii) g(J ′′) ⊂ J ′, J ′′ ⊂ g(J ′)
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The case (i): For g ∈ S(J), since g is monotone increasing on J ′, J ′′, we define

a(g) = max{k ∈ N : gi(J ′) ⊂ J ′′, ∀i = 1, ..., k}.
Then we have the ordered intervals

J ′, g(J ′), ..., ga(g)(J ′),

and ga(g)+1(J ′) ∩ J ′ 6= ∅. Furthermore, the closure of J ′ ∪ g(J ′) ∪ · · · ∪ ga(g)+1(J ′)
covers the closed interval J .

We define the first return map R(g) : K → K of g to K for an interval K ⊂ J
by

R(g)(x) = gk(x)

where k = k(x) = min{i ∈ N : gi(x) ∈ K}. Denote J(g) = J ′ ∪ ga(g)+1(J ′), then
R(g) of g to J(g) is in S(J(g)) and

R(g)(J ′′ ∩ J(g)) ⊂ J ′ = J ′ ∩ J(g),

and
R(g)|J ′ = (g|J ′′)a(g) ◦ (g|J ′), R(g)|J ′′∩J(g) = g|J ′′ .

For the case (ii) we can define the number a(g) similarly.
Now, using the circle mapping f : S1 → S1, which has no periodic points, we

inductively define the renormalization sequences of intervals {Jn} and of the return
maps {ϕn} : ϕn ∈ S(Jn) and of the numbers {an}, which determine the continued
fraction expantion for the rotation number of f .

Define J0 = [0, 1] := I, ϕ0 : J0 → J0, ϕ0 = f and denote the interioir of the right
component of J0\{c} by J ′0 and the interioir of the other component of J0\{c} by
J ′′0 and

a1 =
{

a(f) + 1 if f(J ′0) ⊂ J ′′0
1 if J ′0 ⊃ f(J ′′0 ),

J1 =
{

J(ϕ0) if f(J ′0) ⊂ J ′′0
I if J ′0 ⊃ f(J ′′0 ),

and

ϕ1 =
{ R(f) if f(J ′0) ⊂ J ′′0

f if J ′0 ⊃ f(J ′′0 ).
Now suppose that n ≥ 2 and J1, ..., Jn−1, ϕ1, ..., ϕn−1 are defined and that ϕn−1 :

Jn−1 → Jn−1 has no fixed points, then we inductively define the interval Jn, the
return map ϕn to Jn and the integer an by

Jn = J(ϕn−1), ϕn = R(ϕn−1) : Jn → Jn,

an = a(ϕn−1).

On the other hand, if ϕn−1 : Jn−1 → Jn−1 has fixed points, then we must let
an = +∞ and stop the inductive process, but, since we assume that f has no
periodic points, that is, ϕn has no fixed points, we can define each sequence infinitely.

Thus, if f(J ′0) ⊂ J ′′0 ,

a1 = a(f) + 1, ϕ1 = R(f),
an = a(Rn−1(f)), ϕn = Rn(f), n = 2, 3, ...
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and, if J ′0 ⊃ f(J ′′0 ),

a1 = 1, ϕ1 = f,

an = a(Rn−2(f)), ϕn = Rn−1(f), n = 2, 3, ....

Let J ′n be the interior of the left component of Jn\{c} if n is odd and of the right
component if n is even. Let J ′′n be the interior of the other component of Jn\{c}.
Then we have

J ′n = J ′′n−1 ∩ Jn, J ′′n = J ′n−1 ∩ Jn = J ′n−1

and ϕn(J ′n) ⊂ J ′′n for all n ≥ 1. Also we have ϕ1|J ′1 = f, ϕ1|J ′′1 = fa1 and

ϕn|J ′n = ϕn−1|J ′′n−1
,

ϕn|J ′′n = (ϕn−1|J ′′n−1
)a(ϕn−1) ◦ (ϕn−1|J ′n−1

).

Therefore by induction we have

ϕn|J ′n = fpn−1 , ϕn|J ′′n = fpn

where pn is defined inductively by

p0 = 1, p1 = a1,

pn+1 = an+1pn + pn−1 for n ≥ 1.

If n is even, we have

Jn = [fpn−1(c), fpn(c)], J ′n = (c, fpn(c)), J ′′n = (fpn−1(c), c)

and, if n is odd,

Jn = [fpn , fpn−1(c)], J ′n = (fpn(c), c), J ′′n = (c, fpn−1(c)).

In [3] the fractal tiling structures of these intervals were introduced. Here we show
the self-similar (fractal) structures of the tiling intervals by giving these intervals
directly and successively.

Lemma 5.1 ([3]). Under the above setting it holds for 0 ≤ j ≤ pn+1 that

(5.1) f j(c) ∈ Jn ⇐⇒ j = ipn + pn−1, i ∈ {0, ..., an+1}
and also the interval J has the fractal tiling structures such that

(5.2) J = cl[{
pn−1−1⋃

i=0

f i(J ′n)}
⋃
{

pn−1⋃

i=0

f i(J ′′n)}]

where all intervals in the union are disjoint.

Proof. We consider the case n is even, since we can show the odd case similarly.
Let us start with J ′′n = (fpn−1(c), c), J ′n = (c, fpn(c)). On the right side of J ′n the
intervals are successively preceded as follows:

(c, fpn(c)), (fpn(c), f (an−1)pn−1+pn−2(c)) = f (an−1)pn−1+pn−2(J ′′n),

(f (an−1)pn−1+pn−2(c), f (an−2)pn−1+pn−2(c)) = f (an−2)pn−1+pn−2(J ′′n), ...,
..., (f2pn−1+pn−2(c), fpn−1+pn−2)(c), (fpn−1+pn−2(c), fpn−2(c)) = fpn−2(J ′′n),

that is,

J ′′n , c, J ′n, f (an−1)pn−1+pn−2(J ′′n), f (an−2)pn−1+pn−2(J ′′n), ..., fpn−2(J ′′n)
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and we denote

J (3)
n = J ′n ∪ {fpn(c)} ∪ f (an−1)pn−1+pn−2(J ′′n) ∪ {f (an−1)pn−1+pn−2(c)}

∪f (an−2)pn−1+pn−2(J ′′n) ∪ · · · ∪ {fpn−1+pn−2(c)} ∪ fpn−2(J ′′n),

that is,
J (3)

n = (c, fpn−2(c)).
Similarly, we can consider the following intervals on the left side of J ′′n .

fpn−3(J (3)
n ), fpn−1−(an−1)pn−2(J (3)

n ), ..., fpn−1−pn−2(J (3)
n ), J ′′n

and denote

J (4)
n = fpn−3(J (3)

n ) ∪ {fpn−1−(an−1)pn−2(c)} ∪ fpn−1−(an−1)pn−2(J (3)
n )

∪ · · · ∪ {fpn−1−pn−2(c)} ∪ fpn−1−pn−2(J (3)
n ) ∪ {fpn−1(c)} ∪ J ′′n

= (fpn−3(c), c).

Successively, we can define the sequences {J (2j)
n }, {J (2j−1)

n }, j = 2, 3, ..., n/2. Note
that p0 = 1, lims→c−0 f(s) = f(c−) = 1, then, we can enlarge the intervals succes-
sively and finally, we can cover the interval (c, 1) = (c, f(c−))

(c, 1) = (c, f(c−)) = fp0(J (n)
n ).

Put J
(0)
n = fp0(J (n)

n ), then we can put the intervals on the left side of (fp1(c), c)
successively:

fp1−(a1−1)p0(J (0)
n ), fp1−(a1−2)p0(J (0)

n ), ..., fp1−p0(J (0)
n ), (fp1(c), c).

Since p1− (a1− 1)p0 = p0 + p−1, p−1 = 0 and lims→c+0 f(s) = f(c+) = 0, we have

fp1−(a1−1)p0(J (0)
n ) = f1(J (0)

n ) = (f(c+), f2(c−)) = (0, f2(c−)).

Thus we can cover the interval (0, c). ¤

Now we can show the following lemma.

Lemma 5.2. Under the same Hypotheses as Theorem 4.3 there exists a constant
b0 : 0 < b0 < 1 such that

|f j(x)− x| ≥ b0mn(x)
holds for every j < pn+1.

Proof. For the circle mapping f and each x ∈ S1 we can construct the renormaliza-
tion sequence with c = x. We use an improved version of Denjoy’s inequality (see
Lemma 3.4 in [3]):

For a sufficiently small ε0 > 0 there exists a number n0 such that, if n ≥ n0, then

(5.3) ‖Dfpn − 1‖ ≤ ε0

holds where ‖ · ‖ denotes the usual supremum norm of the space of continuous
functions.

Following the definitions of the first return maps by the renormalization method,
we can consider the case

(5.4) fpn(an+1−1)+pn−1(c) < fpn+1(c) < c < fpn(c).
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Fix a constant b0 : 0 < b0 < 1 − 2ε0. In view of (5.1) and (5.2) it is sufficient to
show that

|fpn(an+1−1)+pn−1(c)− c| ≥ b0|fpn(c)− c|.
Assume that

(5.5) |fpn(an+1−1)+pn−1(c)− c| < b0|fpn(c)− c|.
Using the Mean Value Theorem, we can take some ξ ∈ (c, fpn(c)), which satisfies

|fpn(an+1−1)+pn−1(fpn(c))−fpn(an+1−1)+pn−1(c)| = |Dfpn(an+1−1)+pn−1(ξ)||fpn(c)−c|.
It follows from (5.3) that we can estimate

|fpn+1(c)− fpn(an+1−1)+pn−1(c)| = |Dfpn(an+1−1)+pn−1(ξ)||fpn(c)− c|
≥ (1− ε0)|fpn(c)− c|
> b0|fpn(c)− c|.

By using (5.5) we can obtain c < fpn+1(c), which contradicts (5.4). ¤

6. Appendix: numerical calculations

Since the definitions of recurrent dimensions are simple, it is easy to calculate
these dimensions numerically. Here we give some numerical results on the recurrent
dimensions of quasi-periodic orbits given by the rotation Rα(x) = x + α (mod 1).
(We treat the case of usual circle diffeomorphisms in our forthcoming paper.) By
using “Mathematica” we investigate the following cases of the rotation number α:

(1)
√

5 + 1
2

(2)
√

2 (3) [0, 2, 2, 2, 25, 2, 2] (4) [0, 2, 222
, 223

, 224
, 225

, 226
]

where the notations [·, ·, · · · ] are continued fraction expansions. The case (1) Fi-
bonacci number is [1, 1, 1, 1, · · · ], √2 = [1, 2, 2, 2, 2, · · · ] and these two numbers are
in the “constant type” irrational class or called “badly approximable” such that
d0 = 0. We choose the numbers of (3) and (4) as examples of an α-order weak
Liouville number or an α-order Roth number. Since it follows from the definitions
that the order α is given by mj+1 ' m1+α

j (see [8] for details), we can numeri-
cally calculate the values of d0 by estimating (log mj+1/ log mj)− 1 as follows: (3)
d0 = 1.39992 (4) d0 = 4.04439.

Since the upper and lower recurrent dimensions are given by

Dx = lim sup
k→∞

sup
εk+1≤ε≤εk

log M(ε)
− log ε

,

Dx = lim inf
j→∞

inf
εj+1≤ε≤εj

log M(ε)
− log ε

(the proof of these relations was given in [7]), the asymptotic behavior of the se-
quence {Dk} defined by

Dk =
log M(εk)
− log εk

is most strongly related to the gap values of recurrent dimensions. We calculate the
recurrent dimensions of the orbits given by the rotation Rα(x) as follows:
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Let
x[n] := nα (mod 1), E[n] := |x[n]− x[1]|, n = 1, ..., M1,

then, define

e[i] := c−i, c > 1,

m[i] := min{n : e[i + 1] < E[n] < e[i], n = 2, ..., M1}, i = 1, ..., M2

where we estimate the minimum values by using double loops such that “Do” and
“If” for n = 2, ..., M1 in the loop “Do” for i = 1, ..., M2, not using “Min”, but using
“Break”. Define

X[i] := − log e[i], Y [i] := log m[i],
then we apply a linear regression command “Fit” to the data list {(X[i], Y [i]) :
i = 1, ..., M2}. Then we consider the slope of the line as one kind of mean values
between upper and lower recurrent dimensions. We obtain the following results by
taking the constants as

M1 = 50000, M2 = 24 ∼ 30, c = 1.3

for each rotation number α from the case (1) to (4).

(1) α =
√

5 + 1
2

2
 4
 6
 8
 10


2


4


6


8


10


Fit: 0.284687 + 0.950747 x
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(2)
√

2

2
 4
 6
 8
 10


2


4


6


8


10


Fit: 0.348277 + 0.933742 x

(3) [0, 2, 2, 2, 25, 2, 2]

2
 4
 6
 8
 10


2


4


6


8


Fit: 1.41526 + 0.682509 x
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(4) [0, 2, 222
, 223

, 224
, 225

, 226
]

2
 4
 6
 8
 10


2


4


6


8


Fit: 2.32644 + 0.619417 x

According to the cases from (1) to (4) we can obtain the table of values d0, G0 =
d0/(1+d0), D: the slope of the line and G1: the gap value of recurrent dimensions
obtained by D where we assume that D = (D + D)/2 and D = 1, then we have
G1 = D −D = 2(1−D).

Table: Gaps of Recurrent Dimensions

Rot. num. d0 G0 D G1

(
√

5 + 1)/2 0 0 0.950747 0.0985069

√
2 0 0 0.933742 0.132516

[0, 2, 2, 2, 25, 2, 2] 1.39992 0.583319 0.682509 0.634982

[0, 2, 222
, 223

, 224
, 225

, 226
] 4.04439 0.80176 0.619417 0.761167

For the cases (1) and (2) the gap values G1 are almost equal to 0.1, which almost
matches the lower estimate G0 of the gap values given in Theorem 3.1. On the
other hand we can admit the positive gap values for the case (3) and (4). Applying



120 KOICHIRO NAITO AND YOSHIHISA NAKAMURA

Theorem 3.1, we can show that D ≥ 1 holds. Under one another considerable
assumption that D ∼ D we can estimate the gap values as follows: 0.32 ∼ for the
case (3) and 0.38 ∼ for the case (4).

We can expect that the gap values are deeply related to the variance of these
numerical values of D. In the forthcoming paper we will try further numerical anal-
ysis on the gap values of recurrent dimensions by using Linear Regression Analysis
for the case of the various diffeomorphisms.
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