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MOSCO STABILITY OF PROXIMAL MAPPINGS IN REFLEXIVE
BANACH SPACES

DAN BUTNARIU AND ELENA RESMERITA

Abstract. In this paper we establish criteria for the stability of the proximal
mapping Prox f

ϕ = (∂ϕ + ∂f)−1 associated to the proper lower semicontinuous
convex functions ϕ and f on a reflexive Banach space X. We prove that, under
certain conditions, if the convex functions ϕn converge in the sense of Mosco to
ϕ and if ξn converges strongly to ξ, then Prox f

ϕn
(ξn) converges weakly and, if f

is also totally convex, then it converges strongly to Prox f
ϕ(ξ).

1. Preliminaries

Let X be a real reflexive Banach space with the norm ‖·‖ and let X∗ be its
dual with the norm denoted ‖·‖∗. Let f : X → (−∞,+∞] be a proper, lower
semicontinuous, convex function. Then the function f∗, the Fenchel conjugate of f,
is also a proper, lower semicontinuous, convex function and f∗∗ = f (see, e.g., [12,
pp. 78-79]). We assume that f is a Legendre function in the sense given to this term
in [8, Definition 5.2]. This implies that both functions f and f∗ have domains with
nonempty interior, are differentiable on the interiors of their respective domains,

(1.1) dom∇f = int dom f = dom ∂f,

(1.2) ran∇f = dom ∇f∗ = int dom f∗,

and

(1.3) ran∇f∗ = dom ∇f = int dom f,

and also

(1.4) ∇f = (∇f∗)−1.

With the function f we associate the function W f : X∗ ×X → [0,+∞] defined
by

(1.5) W f (x∗, x) = f(x)− 〈x∗, x〉+ f∗(x∗).

The function Df : X ×X → [0,+∞] defined by

(1.6) Df (y, x) =
{

W f (∇f(x), y) if x ∈ int dom f,
+∞ otherwise,
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is the well known Bregman distance associated to f whose importance to convex
optimization was first emphasized in [11]. The function νf : int dom f×R+ → [0,∞]
given by

(1.7) νf (x, t) = inf{Df (y, x) : ‖y − x‖ = t}
is the so called modulus of total convexity of f studied in [13]. The function f is
called totally convex if νf (x, t) > 0 for any x ∈ int dom f and t > 0.

We denote by Ff the set of proper, lower semicontinuous and convex functions
ϕ : X → (−∞,+∞] which satisfy the following conditions:

(i) dom ϕ ∩ int dom f 6= ∅;
(ii) ϕf := inf {ϕ(x) : x ∈ dom ϕ ∩ dom f} > −∞.

With any ϕ ∈ Ff we associate the function Envf
ϕ : X∗ → [−∞,+∞] given by

Envf
ϕ(ξ) = inf{ϕ(x) + W f (ξ, x) : x ∈ X}.

The function envf
ϕ := Envf

ϕ ◦∇f was introduced and studied in [10]. The following
result is a direct consequence of (1.4) and of [9, Propositions 3.22 and 3.23].

Proposition 1.1. Suppose that ϕ ∈ Ff . For any ξ ∈ int dom f∗ there exists a
unique vector in X, denoted Proxf

ϕ(ξ), such that

(1.8) ϕ(Proxf
ϕ(ξ)) + W f (ξ, Proxf

ϕ(ξ)) = Envf
ϕ(ξ).

Moreover, Proxf
ϕ(ξ) ∈ dom ∂ϕ∩ int dom f and we have

(1.9) Proxf
ϕ(ξ) = [∂ (ϕ + f)]−1 (ξ) = (∂ϕ +∇f)−1 (ξ).

The function

ξ → Proxf
ϕ(ξ) : int dom f∗ → dom ∂ϕ ∩ int dom f

is called the proximal mapping relative to f associated to ϕ. It is a natural gener-
alization of a notion introduced and studied by J.-J. Moreau and R.T. Rockafellar
since the early sixties (see [22, pp. 34-37] for more information on this notion).
The function proxf

ϕ := Proxf
ϕ ◦ ∇f was termed in [9, Definition 3.16] Df -proximal

operator associated to ϕ.
Note that if C is a nonempty, closed and convex subset of X such that C ∩

int dom f 6= ∅, then its indicator function ιC belongs to Ff . Therefore, the functions

ProjfC := Proxf
ιC

: int dom f∗ → C ∩ int dom f

and
projfC := proxf

ιC
: int dom f∗ → C ∩ int dom f

are well-defined. The function projfC is the so called Bregman projection with respect
to f onto the set C, a concept originating in [11]. The function ProjfC was studied
in [1], [2], [3], [4] and in [15]. In [15] it was termed projection relative to f onto C.

In this paper we are concerned with the following question: Given the functions
ϕn, ϕ : X → [−∞,+∞], (n ∈ N) , contained in Ff , and such that the sequence of
functions {ϕn}n∈N converges in the sense of Mosco to ϕ, and given a sequence of
vectors {ξn}n∈N ⊆ int dom f∗ which converges to some vector ξ ∈ int dom f∗, does
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the sequence
{
Proxf

ϕn
(ξn)

}
n∈N converge (weakly or strongly) to Proxf

ϕ(ξ)? Recall
(see [19, Definition 1.1 and Lemma 1.10]) that the sequence of functions {ϕn}n∈N is
said to be convergent in the sense of Mosco to ϕ (and we write M-limn→∞ ϕn = ϕ)
if the following conditions are satisfied:

(M1) If {xn}n∈N is a weakly convergent sequence in X such that w-limk→∞ xn = x,
and if {ϕin}n∈N is a subsequence of {ϕn}n∈N , then lim infn→∞ ϕin(xn) ≥
ϕ(x);

(M2) For every u ∈ X there exists a sequence {un}n∈N ⊂ X such that limn→∞ un

= u and limn→∞ ϕn(un) = ϕ(u).
Also recall (cf. [19, Remark 1.4 and Lemma 1.10]) that a sequence {Kn}n∈N of
closed and convex subsets of X is called Mosco convergent to the subset K of X
(and we write M-limn→∞Kn = K) if M-lim ιKn = ιK .

The question posed above is of interest in connection with the convergence and
stability analysis of algorithms for solving variational inequalities emerging from
convex optimization problems (see [5], [6], [16], [19], and the references therein).
It is known (cf. [17, Theorems 3.1 and 4.1]) that it has positive answer when the
space X is smooth and strictly convex, f = 1

2 ‖·‖2 and the functions ϕn and ϕ
are indicator functions of closed convex sets Kn and K, respectively, such that M-
limn→∞Kn = K. In these circumstances, ProjfKn

(ξ) converges weakly to ProjfK(ξ)
and the convergence is strong provided that the norm of the space is Fréchet differ-
entiable and has the Kadeč-Klee property. It was shown in [21, Theorems 4.1 and
4.2] that, in the case of the Bregman projections, these results can be improved in
order to guarantee weak, and even strong, convergence of projfKn

(xn) to projfK(x)
when X is an arbitrary reflexive Banach space, limn→∞ xn = x and f is a lower
semicontinuous convex function satisfying certain additional conditions. An exten-
sion of some of these results occurs in [15, Section 4.6]. It shows that ProjfKn

(ξn)
converges weakly to ProjfK(ξ) whenever the function f is either coercive or totally
convex on bounded sets, M-limn→∞Kn = K and limk→∞ ξn = ξ.

Our purpose in that follows is to prove that convergence results similar to those
mentioned above still hold when, instead of projections relative to f onto closed
convex subsets of X, one considers proximal mappings Proxf

ϕn
(ξn) and Proxf

ϕ(ξ),
while M-limn→∞ ϕn = ϕ. When this happens we say that the proximal mapping
Proxf

· is stable with respect to the Mosco convergence. The main result we have
in this respect is Theorem 2.1 presented in Section 2. In Section 3 we show how
Theorem 2.1 can be used in order to obtain improved Mosco stability criteria in
various settings.

2. Mosco stability of the proximal mappings

The main result of this paper is the theorem presented below. It should be noted
that the strong coercivity condition and the uniform convexity condition occurring
at points (b) and (c) of the theorem are independent in the sense that each of these
conditions can hold without the other being satisfied (see [15, Section 4.3]).

Theorem 2.1. Let ϕ and ϕn, (n ∈ N), be functions in Ff such that M-limn→∞ ϕn

= ϕ and the sequence {ϕn}n∈N is uniformly bounded from below. Let {ξn}n∈N be a
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sequence contained in int dom f∗ and such that limn→∞ ξn = ξ ∈ int dom f∗. If at
least one of the next three conditions is satisfied:

(a) the sequence {ξn}n∈N is constant (i.e., for any n ∈ N, ξn = ξ);
(b) the function f is strongly coercive (i.e., lim‖x‖→∞ f(x)/ ‖x‖ = ∞);
(c) the function f is uniformly convex on bounded sets;

then the following limits exist and we have

(2.1) w- lim
n→∞ Proxf

ϕn
(ξn) = Proxf

ϕ(ξ)

and

(2.2) lim
n→∞ Envf

ϕn
(ξn) = Envf

ϕ(ξ).

Moreover, if the function f is totally convex, and if (2.1) and (2.2) are true, then
the convergence in (2.1) is strong, that is,

(2.3) lim
n→∞Proxf

ϕn
(ξn) = Proxf

ϕ(ξ).

We present our proof of this theorem as a sequence of lemmas. In all the lem-
mas we assume that the functions ϕ and ϕn and the sequence {ξn}n∈N satisfy the
conditions in the hypothesis of Theorem 2.1. We start with the following result.

Lemma 2.2. If the sequence {ξn}n∈N is constant, then (2.1) and (2.2) are true.

Proof of Lemma 2.2. Let u ∈ int dom f ∩dom ϕ. From (M2) we deduce that there
exists a sequence {un}n∈N in X such that

(2.4) lim
n→∞un = u and lim

n→∞ϕn(un) = ϕ(u).

Denote x̂n = Proxf
ϕn

(ξ) and x̂ = Proxf
ϕ(ξ). From (1.8) we obtain

(2.5) ϕn(x̂n) + W f (ξ, x̂n) ≤ ϕn(un) + W f (ξ, un), ∀n ∈ N.

We claim that the sequence on the right hand side in (2.5) is bounded. In order to
show that, note that the sequence {ϕn(un)}n∈N is bounded because it is convergent
(see (2.4)). Since limn→∞ un = u ∈ int dom f, it results that there exists a natural
number n0 such that, for all n ≥ n0, we have un ∈ int dom f . The function f is
lower semicontinuous and, therefore, it is continuous on int dom f (see, for instance,
[20, Proposition 3.3]). Thus, the function W f (ξ, ·) is continuous on int dom f and,
hence,

(2.6) lim
n→∞W f (ξ, un) = W f (ξ, u).

Consequently, the sequence
{
W f (ξ, un)

}
n∈N is bounded too and this proves our

claim.
Let c1 ∈ R be some upper bound of the sequence

{
ϕn(un) + W f (ξ, un)

}
n∈N . By

hypothesis, there exists a real number c2 such that ϕn(x) ≥ c2, for all x ∈ X and
n ∈ N. Consequently,

(2.7) W f (ξ, x̂n) ≤ c2 − c1, ∀n ∈ N.

By the Moreau-Rockafellar Theorem (see, for instance, [7, Fact 3.1]), since ξ ∈
int dom f∗, it results that f − 〈ξ, ·〉 is coercive and, therefore, its sublevel sets
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lev≤α (f − 〈ξ, ·〉) are bounded. So, the sublevel sets lev≤αW f (ξ, ·) are bounded
too. Consequently, (2.7) implies that the sequence {x̂n}n∈N is bounded as being con-
tained in lev≤αW f (ξ, ·) with α = c2−c1. Thus, there exists a subsequence {x̂in}n∈N
of {x̂n}n∈N which converges weakly to some v ∈ X. Since the function W f (ξ, ·) is
weakly lower semicontinuous we have W f (ξ, v) ≤ lim inf

n→∞ W f (ξ, x̂in) ≤ α < +∞
showing that v ∈dom W f (ξ, ·). By (M1), (2.5), the weak lower semicontinuity of
W f (ξ, ·), (2.4) and (2.6), we have

ϕ(v) + W f (ξ, v) ≤ lim inf
n→∞ ϕin(x̂in) + lim inf

n→∞ W f (ξ, x̂in)

≤ lim inf
n→∞ Envf

ϕin
(ξ) ≤ lim sup

n→∞
Envf

ϕin
(ξ)(2.8)

= ϕ(u) + W f (ξ, u).

Since u was arbitrarily chosen in int dom f , we conclude that v = x̂. Therefore, the
sequence {x̂n}n∈N has a unique weak cluster point, i.e., {x̂n}n∈N converges weakly
to x̂. This proves (2.1).

In order to prove (2.2) observe that, since {x̂n}n∈N converges weakly to v = x̂
and (M1) holds, the relations in (2.8) remain true when we write x̂n and un instead
of x̂in and uin , respectively. In particular, (2.8) is true when {un}n∈N is a sequence
in X such that limn→∞ un = x̂ and limn→∞ ϕn(un) = ϕ(x̂) (such sequences exist
by (M2)). By consequence, we deduce

Envf
ϕ(ξ) ≤ lim inf

n→∞ Envf
ϕn

(ξ) ≤ lim sup
n→∞

Envf
ϕn

(ξ) ≤ Envf
ϕ(ξ),

and this proves (2.2). ¤
Now we show that (2.1) and (2.2) still hold when the sequence {ξn}n∈N is not

necessarily constant, but condition (b) or condition (c) is satisfied.

Lemma 2.3. If one of the conditions (b) or (c) is satisfied, then (2.1) and (2.2)
are true.

Proof of Lemma 2.3. Let u ∈dom ϕ ∩ int dom f . From (M2), there exists a se-
quence {un}n∈N such that (2.4) holds. Denote

(2.9) x̂n = Proxf
ϕn

(ξn) and x̂ = Proxf
ϕ(ξ).

From the definition of Proxf
ϕn

one has

(2.10) ϕn(x̂n) + W f (ξn, x̂n) ≤ ϕn(un) + W f (ξn, un), ∀n ∈ N.

The sequence {ϕn(un)}n∈N is bounded by (2.4). Since limn→∞ un = u ∈ int dom f,
it results that for some n0 ∈ N we have un ∈ int dom f, for all n ≥ n0. The functions
f and f∗ are continuous on the interior of their respective domains. Thus, by (1.5),
we have

(2.11) lim
n→∞W f (ξn, un) = W f (ξ, u),

showing that
{
W f (ξn, un)

}
n∈N is bounded. Hence, the right hand side in (2.10) is

bounded by some real number c3. Consequently,

(2.12) W f (ξn, x̂n) ≤ c2 − c3, ∀n ∈ N.
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Assume that f is strongly coercive. Observe that

(2.13) W f (ξn, x̂n)− f∗(ξn) = f(x̂n)− 〈ξn, x̂n〉 , ∀n ∈ N.

The sequence {f∗(ξn)}n∈N is convergent and, then, bounded. So, the sequence
on the left hand side of (2.13) is bounded. Let M be a finite upper bound of it.
We claim that {x̂n}n∈N is also bounded. To prove that, suppose by contradiction
that {x̂n}n∈N is not bounded. Then, there exists a subsequence {x̂kn}n∈N such that
limn→∞ ‖x̂kn‖ = ∞. By (2.13), we have

M ≥ ‖x̂kn‖
(

f(x̂kn)
‖x̂kn‖

− ‖ξkn‖∗
)

, ∀n ∈ N,

where limn→∞ f(x̂kn)/ ‖x̂kn‖ = ∞ because f is strongly coercive. Since {‖ξkn‖∗}n∈N
is bounded, this is a contradiction. These prove that if f is strongly coercive, then
{x̂n}n∈N is bounded.

Assume that the function f is uniformly convex on bounded sets. According
to (1.2), ξn ∈ int ran∇f for each n ∈ N. Thus, for each n ∈ N, there exists
vn ∈ int dom f such that ∇f(vn) = ξn. By (1.4), the sequence {vn}n∈N is contained
in the set

⋃
n∈N ∂f∗(ξn). Since the operator ∂f∗ is monotone, it is also locally

bounded on int dom f. So, there exists a neighborhood V of ξ such that
⋃

ζ∈V ∂f∗(ζ)
is bounded. The sequence {ξn}n∈N being convergent to ξ, there exists a positive
integer n0 such that ξn ∈ V for all n ≥ n0. Hence, for any n ≥ n0, one has vn ∈
∂f∗(ξn) ⊆ ⋃

ζ∈V ∂f∗(ζ), and this implies that the sequence {vn}n∈N is bounded.
Convex functions which are lower semicontinuous and uniformly convex on bounded
sets are totally convex on bounded sets (cf. [14, Section 4] or [15, Section 2]). Thus,
the modulus of total convexity of f over the bounded set E = {vn}n∈N , that is, the
function

νf (E, t) := inf
{

Df (y, vn) : n ∈ N, ‖y − vn‖ = t
}

,

is positive for t > 0 and has the property that

(2.14) νf (E, ct) ≥ cνf (E, t),

whenever c ≥ 1 and t ≥ 0 (cf. [15, Section 2.10]). Observe that

(2.15) νf (E, ‖x̂n − vn‖) ≤ Df (x̂n, vn) = W f (ξn, x̂n), ∀n ∈ N.

Suppose that the sequence {‖x̂n − vn‖}n∈N is unbounded. Then it has a subse-
quence, denoted {‖x̂jn − vjn‖}n∈N , such that, for all n ∈ N, we have ‖x̂jn − vjn‖ ≥ 1
and limn→∞ ‖x̂jn − vjn‖ = ∞. By (2.14), we have

νf (E, ‖x̂jn − vjn‖) ≥ ‖x̂jn − vjn‖ νf (E, 1), ∀n ∈ N,

where νf (E, 1) > 0. This and (2.15) imply

W f (ξjn , x̂jn) ≥ ‖x̂jn − vjn‖ νf (E, 1), ∀n ∈ N,

which contradicts the boundedness of the sequence
{
W f (ξn, x̂n)

}
n∈N established

above. Hence, the sequence {‖x̂n − vn‖}n∈N is bounded. Since {vn}n∈N is also
bounded, it results that {x̂n}n∈N is bounded too.

We prove next that if the sequence {x̂n}n∈N is bounded, then it converges weakly
to x̂. Since {x̂n}n∈N is bounded, it has a subsequence, denoted {x̂kn}n∈N, which
converges weakly to some v ∈ X. Observe that limn→∞ (〈ξkn , x̂kn〉 − 〈ξ, v〉) = 0.
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Therefore, since f is convex and lower semicontinuous (and, hence, weakly lower
semicontinuous) and since f∗ is continuous on the interior of its domain, we deduce

lim inf
n→∞ W f (ξkn , x̂kn) = f∗(ξ)− 〈ξ, v〉+ lim inf

n→∞ f(x̂kn)

≥ f∗(ξ)− 〈ξ, v〉+ f(v) = W f (ξ, v).

Consequently, by (M1), (1.5), (2.4), (2.10) and (2.11), we have

ϕ(v) + W f (ξ, v) ≤ lim inf
n→∞ ϕkn(x̂kn) + lim inf

n→∞ W f (ξkn , x̂kn)

≤ lim inf
n→∞ Envf

ϕkn
(ξkn) ≤ lim sup

n→∞
Envf

ϕkn
(ξkn)(2.16)

≤ lim
n→∞

[
ϕkn(ukn) + W f (ξkn , ukn)

]
= ϕ(u) + W f (ξ, u).

Since u was arbitrarily chosen in int dom f , we conclude that v = x̂. Therefore, the
sequence {x̂n}n∈N has a unique weak cluster point, i.e., it converges weakly to x̂.

Now we prove that, if {x̂n}n∈N converges weakly to x̂, then (2.2) also holds. To
this end observe that, since {x̂n}n∈N converges weakly to x̂ = v, the relations in
(2.16) are still satisfied when we replace kn by n. In particular, this is true when
{un}n∈N is a sequence such that limn→∞ un = x̂ and limn→∞ ϕn(un) = ϕ(x̂) (such
sequences exist by (M2)). In this case, by (2.16), we obtain

Envf
ϕ(ξ) ≤ lim inf

n→∞ Envf
ϕn

(ξn) ≤ lim sup
n→∞

Envf
ϕn

(ξn)

≤ lim sup
n→∞

[
ϕn(un) + W f (ξn, un)

]
= Envf

ϕ(ξ),

and this proves (2.2). ¤

The next result completes the proof of Theorem 2.1.

Lemma 2.4. If the function f is totally convex, and if the equalities (2.1) and (2.2)
are satisfied, then the sequence

{
Proxf

ϕn
(ξn)

}
n∈N converges strongly to Proxf

ϕ(ξ),
i.e., (2.3) holds.

Proof of Lemma 2.4. Let x̂ and x̂n be given by (2.9). According to Proposition
1.1, we have that x̂ = (∇f + ∂ϕ)−1 (ξ) and this implies that there exists a vector
η ∈ ∂ϕ(x̂) such that

(2.17) ξ = ∇f(x̂) + η.

By (1.8) and (1.5), for any n ∈ N, we have

Envf
ϕn

(ξn)− Envf
ϕ(ξ) = ϕn(x̂n)− ϕ(x̂) + f(x̂n)− f(x̂)− 〈ξ, x̂n − x̂〉

− 〈ξn − ξ, x̂n − x̂〉 − 〈ξn, x̂〉+ f∗(ξn)

− f∗(ξ)− 〈ξ, x̂n − x̂〉+ 〈ξ, x̂n〉 .
Taking (2.17) into account we deduce

Envf
ϕn

(ξn)− Envf
ϕ(ξ)=ϕn(x̂n)− ϕ(x̂) + Df (x̂n, x̂)− [〈η, x̂n − x̂〉 − 〈ξn − ξ, x̂n − x̂〉]

+ [f∗(ξn)− f∗(ξ)− 〈ξ, x̂n − x̂〉]− [〈ξn, x̂〉 − 〈ξ, x̂n〉] ,(2.18)
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where the quantities between square brackets converge to zero as n → ∞ because
of (2.1), the continuity of f∗ on the interior of its domain and the assumption that
limn→∞ ξn = ξ. By (2.2), letting n →∞ in (2.18), we obtain

0 = lim
k→∞

[
ϕn(x̂n)− ϕ(x̂) + Df (x̂n, x̂)

]
= lim sup

n→∞

[
ϕn(x̂n)− ϕ(x̂) + Df (x̂n, x̂)

]

≥ lim sup
n→∞

[ϕn(x̂n)− ϕ(x̂)] ≥ lim inf
n→∞ [ϕn(x̂n)− ϕ(x̂)] ≥ 0,

where the last inequality results from (M1). This and (2.1) imply limn→∞ ϕn(x̂n) =
ϕ(x̂). Consequently,

0 ≤ lim inf
n→∞ νf (x̂, ‖x̂n − x̂‖) ≤ lim sup

n→∞
νf (x̂, ‖x̂n − x̂‖) ≤ lim

n→∞Df (x̂n, x̂) = 0.

and, hence, limn→∞ νf (x̂, ‖x̂n − x̂‖) = 0. This can not happen unless limn→∞
‖x̂n − x̂‖ = 0 because, f being totally convex, the function νf (x̂, ·) is strictly in-
creasing on [0,+∞) and has νf (x̂, 0) = 0 (cf. [13, Proposition 1.2.2]). ¤

3. Corollaries of Theorem 2.1

Theorem 2.1 (b) applies when the space X is strictly convex and smooth and
f = 1

p ‖·‖p for some p ∈ (1,+∞). In this situation we obtain the following improved
version of Theorem 3.1 of [17].

Corollary 3.1. If the space X is strictly convex and smooth, if f := 1
p ‖·‖p for

some p ∈ (1,+∞), and if ϕ, ϕn : X → (−∞,+∞], (n ∈ N), are proper, lower
semicontinuous, convex functions such that M-limn→∞ ϕn = ϕ and such that the
sequence {ϕn}n∈N is uniformly bounded from below, then the equalities (2.1) and
(2.2) hold for any convergent sequence {ξn}n∈N ⊂ X such that limk→∞ ξn = ξ.

Recall that the Banach space X is called E-space if it is reflexive, strictly convex
and has the Kadeč-Klee property. It was shown in [21] (see also [15, Section 3.2])
that X is an E-space if and only if the function ‖·‖p is totally convex for some
p ∈ (1,+∞). These facts and Theorem 2.1(b) lead us to the following result which
improves Theorem 4.1 of [17]:

Corollary 3.2. If X is a smooth E-space and if f := 1
p ‖·‖p for some p ∈ (1,+∞),

and if ϕ, ϕn : X → (−∞,+∞], (n ∈ N), are proper, lower semicontinuous, convex
functions such that M-limn→∞ ϕn = ϕ and such that the sequence {ϕn}n∈N is uni-
formly bounded from below, then the sequence

{
Proxf

ϕn
(ξn)

}
n∈N converges strongly

to Proxf
ϕ(ξ) for any convergent sequence {ξn}n∈N ⊂ X such that limk→∞ ξn = ξ.

Theorem 2.1 also allows us to improve upon a result concerning the stability of
relative projections presented in [15, Theorem 4.5].

Corollary 3.3. If f is a lower semicontinuous, convex, Legendre function in the
reflexive Banach space X and if K and Kn, (n ∈ N), are closed convex subsets of X
which intersect int domf and such that M-limn→∞Kn = K, then for any sequence
{ξn}n∈N ⊂ int domf∗ such that limk→∞ ξn = ξ ∈ int dom f∗ we have

(3.1) w- lim
n→∞ProjfKn

(ξn) = ProjfK(ξ)
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and
lim

n→∞Envf
Kn

(ξn) = Envf
K(ξ),

whenever one of the conditions (a), (b) or (c) of Theorem 2.1 is satisfied. Moreover,
if (c) is satisfied, or one of the conditions (a) or (b) in Theorem 2.1 is satisfied and
f is also totally convex, then the convergence in (3.1) is strong.

If the lower semicontinuous, convex, Legendre function f is Fréchet differentiable,
then its gradient ∇f is continuous on int dom f (cf. [20, p. 20]). Therefore,
applying Theorem 2.1 to the sequence ξn = ∇f(xn) when limn→∞ xn = x one can
deduce the following improvement of Theorems 4.1 and 4.2 of [21].

Corollary 3.4. If f is a lower semicontinuous, convex, Fréchet differentiable,
Legendre function and if K and Kn, (n ∈ N), are closed convex subsets of X
which intersect int domf and such that M-limn→∞Kn = K, then for any sequence
{xn}n∈N ⊂ int dom f such that limn→∞ xn = x ∈ int dom f we have

(3.2) w- lim
n→∞projfKn

(xn) = projfK(x)

and
lim

n→∞ envf
Kn

(xn) = envf
K(x),

whenever one of the conditions (a) or (b) of Theorem 2.1 is satisfied. Moreover, if
(c) is satisfied, or one of the conditions (a) or (b) of Theorem 2.1 is satisfied and
f is also totally convex, then the convergence in (3.2) is strong.
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