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REGULARITY RESULTS FOR SOME LINEAR AND
NONLINEAR EQUATIONS
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Dedicated to the memory of Filippo Chiarenza

Abstract. The main results concern local Hölder continuity of the solutions
of classes of subelliptic equations with rough coefficients, as well as an applica-
tion to regularity results for degenerate Monge-Ampère equations. A connection
between Monge-Ampère equations and those of subelliptic type is furnished by
an n-dimensional partial Legendre transformation, which reduces the question of
regularity for Monge-Ampère equations to a similar one for quasilinear equations.

We begin by discussing some results obtained jointly with Eric Sawyer in [7] con-
cerning local Hölder continuity for weak solutions of linear equations of divergence
form with rough coefficients in a bounded domain Ω ⊂ Rn. The general form of the
equation that we consider is

(1) Lu+ lower order terms = f + T ′~g,

where
Lu = div B(x)∇u

for an n × n nonnegative semidefinite matrix B(x), x ∈ Ω, where T ′ denotes the
adjoint of a collection T of vector fields which are subunit relative to the matrix B,
i.e.,

T ′~g =
∑

i

T ′igi =
∑

i

n∑
j=1

∂j

(
αijgi

)
with  n∑

j=1

αij(x)ξj

2

≤ ξ′B(x)ξ

for each i and all ξ ∈ Rn, x ∈ Ω. Inclusion of the term T ′~g among the non-
homogeneous terms is important for applications to equations of Monge-Ampère
type. The exact form of the lower order terms is carefully discussed in [7], but here
we will not give the details for the sake of simplicity.

The matrix B(x) is always assumed to be nonnegative semidefinite. In fact, we
will allow B (and so also L) to vary relative to another fixed quadratic form ξ′Q(x)ξ
satisfying

(1) there exist positive constants C1 and C2 such that for all x ∈ Ω, ξ ∈ Rn,

C1ξ
′Q(x)ξ ≤ ξ′B(x)ξ ≤ C2ξ

′Q(x)ξ,
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(2) Q(x) is bounded and measurable in Ω,
(3) Q(x) is nonnegative semidefinite in Ω.

We seek conditions on Q which guarantee that all weak solutions u of any such
equation (1) are Hölder continuous of order α with

||u||Cα(K) ≤ C, K compact, K ⊂ Ω,

where for appropriately large q,

α = α(K;Lq data of the lower order terms; constants C1, C2 of equivalence above),

C = C(K : Lq data of f,~g and the lower order terms; constants C1, C2 above).

Here we use the notation

||u||Cα(K) = sup
x∈K

|u(x)|+ sup
x,y∈K

|u(x)− u(y)|
|x− y|α

to describe ordinary Hölder continuity with respect to Euclidean distance; variants
will be mentioned below.

We will say that such a quadratic form Q(x, ξ) = ξ′Q(x)ξ is Lq-subelliptic in Ω.
Note that if q <∞ and Q(x, ξ) is Lq-subelliptic, then it is also L∞-subelliptic since
Ω is bounded.

Our first result is one of axiomatic type in the sense that it furnishes a set of
conditions that are sufficient for Lq-subellipticity. We state the theorem first in a
rough version; more details are given after the rough statement. We say that a
function d(x, y) defined for x, y ∈ Ω is a symmetric quasimetic if there is a positive
constant κ such that for all x, y, z ∈ Ω,

(1) d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y,
(2) d(x, y) = d(y, x),
(3) d(x, y) ≤ κ[d(x, z) + d(z, y)].

Theorem 1. Let Q(x) be a bounded, measurable matrix which is nonnegative semi-
definite in a bounded domain Ω ⊂ Rn. Then the corresponding quadratic form
Q(x, ξ) is Lq-subelliptic in Ω for all sufficiently large q provided there is a symmet-
ric quasimetric d(x, y) which is measurable in each variable separately and

(1) there are positive constants ε, c, C such that

c|x− y| ≤ d(x, y) ≤ C|x− y|ε for all x, y ∈ Ω,

(2) Lebesgue measure is a doubling measure for the d-balls B(x, r) defined by

B(x, r) = {y ∈ Ω : d(x, y) < r, } x ∈ Ω, r > 0,

i.e., there is a constant C independent of x and r such that |B(x, 2r)| ≤
C|B(x, r)|,

(3) there are appropriate Sobolev and Poincaré inequalities for d-balls (see below
for details),

(4) there are appropriate approximating sequences of Lipschitz cut-off functions
for d-balls (see below for details).
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The value of q is related to the doubling assumed in condition (2) and to the
Sobolev estimate in condition (3); see below. The only d-balls for which the hy-
potheses above (as well as the more careful statements below) are required to hold
are those balls B(x, r) with x ∈ Ω and 0 < r < δ dist(x, ∂Ω) for a small, fixed choice
of δ. Although this convention will always be part of our assumptions, we will not
generally repeat it below.

In order to be more precise, we first explain what conditions (3) and (4) mean.
Following this, a description of allowable q values is given.

We will use the notation

|∇w(x)|2Q = ∇w(x) ·Q(x)∇w(x) = Q(x,∇w(x)),

and we write r(B) for the radius of a d-ball B.

The Sobolev Assumption. Suppose that there are constants σ > 1 and C > 0
such that for all d-balls B and all w ∈W 1,2

0 (B),(
1
|B|

∫
B
|w|2σdx

)1/(2σ)

≤ C r(B)
(

1
|B|

∫
B
|∇w|2Qdx

)1/2

+ C

(
1
|B|

∫
B
w2dx

)1/2

.

The Poincaré Assumption. Suppose that there is a positive constant C such
that for every d-ball B and every w ∈ W 1,2(CB) (where CB denotes the ball with
radius Cr(B) which is concentric with B),(

1
|B|

∫
B
|w − 1

|B|

∫
B
w|2dx

)1/2

≤ C r(B)
(

1
|B|

∫
CB

|∇w|2Qdx
)1/2

.

The Cutoff Assumption. Assume there exist positive constants c,N, p, Cp such
that for each d-ball B(y, r), there is a sequence {ψj}∞j=1 of Lipschitz functions sat-
isfying

(1) suppψ1 ⊂ B(y, r),
(2) ψj(x) = 1 if x ∈ B(y, cr) for each j,
(3) suppψj+1 ⊂⊂ {x : ψj(x) = 1} for each j,

(4)
(

1
|B(y,r)|

∫
B(y,r) |∇ψj(x)|pQdx

)1/p
≤ Cp

jN

r .

We will need a more quantitative version of the doubling assumption in hypothesis
(2) of Theorem 1 in order to describe the range of possible q values. The doubling
hypothesis leads in a standard way to the existence of a doubling exponent D, i.e.,
to the existence of a positive number D such that

|B(x, r)| ≤ C
(r
t

)D
|B(y, t)| whenever B(y, t) ⊂ B(x, r),

with C independent of x, y, r, t.
With these more precise versions of the hypotheses in Theorem 1, it is possible

to give a more exact description of the values of q allowed in the conclusion. If σ′

denotes the dual index of the value σ in the Sobolev Assumption (i.e., σ′ = σ/(σ−1))
and p is the exponent in the Cutoff Assumption, then the conclusion of Theorem 1
holds for any q with

q > max{2σ′, D} provided p > max{2σ′, 4}.
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In fact, the range of q values can be replaced by the generally larger range

q > max{2σ′, Q∗}, where Q∗ = lim sup
r→0

max
x∈Ω

log |B(x, r)|
log r

,

with the same restrictions on p. The number Q∗ is called the upper dimension of
the quasimetric space; of course Q∗ varies with the quasimetric d.

Remarks. (i) The Hölder constant C and exponent α in the conclusion of Theorem
1 depend also on the constants in all the assumptions above.

(ii) The restriction that d(x, y) ≤ C|x − y|ε can be dropped in Theorem 1 if in
the conclusion we replace the notion of Hölder continuity by d-Hölder continuity,
i.e., if in the definition of Hölder continuity we replace Euclidean distance |x − y|
by d(x, y). Note that the inequality d(x, y) ≤ C|x − y|ε for all x, y is the same as
assuming the Fefferman-Phong condition that there exist positive constants C and
ε such that

D(x, r) ⊂ B(x,Crε), x ∈ Ω, 0 < r < δ dist(x, ∂Ω),

where D(x, r) denotes the ordinary Euclidean ball with center x and radius r.
(iii) In some cases, several of the assumptions required for Theorem 1 are auto-

matically true. This happens most notably in case the matrix Q(x) is continuous
and we choose d(x, y) to be the Q-subunit metric (or control metric) δ(x, y) defined
by letting δ(x, y) be the minimum time t ≥ 0 required to connect x to y by Lipschitz
continuous curves γ(t) in Ω with(

γ′(t) · ξ
)2 ≤ ξ ·Q(γ(t))ξ

for all ξ ∈ Rn and all t. For such Q and d(x, y) = δ(x, y), it turns out that the
Cutoff Assumption holds automatically with p = ∞, and moreover, the Poincaré
Assumption implies the Sobolev Assumption for some value of σ > 1. Moreover,
the inequality δ(x, y) ≥ c|x− y| holds for some c > 0.

We state this important special case separately in the next theorem.

Theorem 2. Suppose that Q(x, ξ) is a nonnegative semidefinite continuous qua-
dratic form in Ω, and suppose that the subunit metric δ(x, y) is finite on Ω × Ω.
Denote by K(x, r) the corresponding δ-subunit balls, and let Q∗ be the upper dimen-
sion of these balls. If σ > 1, then Q(x, ξ) is Lq-subelliptic in Ω for q > max{Q∗, 2σ′}
provided:

(1) the doubling condition |K(x, 2r)| ≤ C|K(x, r)| holds,
(2) there exists ε > 0 such that the containment condition D(x, r) ⊂ K(x,Crε)

holds,
(3) the Poincaré Assumption holds with B(x, r) = K(x, r), and σ is the value

for which the Sobolev estimate holds.

We now pass from these axiomatic results to some specific examples in case the
matrix Q(x) is a diagonal matrix with the following entries on the main diagonal:

a1(x)2, . . . , an(x)2, ai(x) ≥ 0, x ∈ Ω.
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Thus the basic quadratic form becomes

Q(x, ξ) =
n∑

j=1

aj(x)2ξ2j ,

and we will be considering subelliptic equations (1) whose coefficient matrix B(x)
satisfies

C1

n∑
j=1

aj(x)2ξ2j ≤ ξ′B(x)ξ ≤ C2

n∑
j=1

aj(x)2ξ2j , x ∈ Ω, ξ ∈ Rn.

In order to verify the assumptions required in Theorem 1, we will impose restrictions
on the functions aj(x).

Definition 3. A collection of continuous vector fields Xj = aj(x) ∂
∂xj

, 1 ≤ j ≤ n,

satisfies the flag condition at a point x ∈ Ω if for each index set I with ∅ ⊂
I ⊂6= {1, 2, . . . , n}, there is j /∈ I such that for any neighborhood N of x in Ω,
aj does not vanish identically on (x + VI) ∩ N , where V∅ = {0} and VI = span
{ei : i ∈ I}, ei = (0, . . . , 0, 1, 0, . . . , 0) with 1 in the ith position.

The vector fields Xj are said to satisfy the flag condition in Ω if they satisfy the
flag condition at every point of Ω.

An equivalent formulation of the flag condition at x is that there is an increasing
sequence of vector spaces

{0} = V0 ⊂6= V1 ⊂6= ...Vj ⊂6= Vj+1 ⊂6= ...Vm = Rn,

and an increasing sequence of index sets

∅ 6= I1 ⊂6= ...Ij ⊂6= Ij+1 ⊂6= ...Im = {1, 2, ..., n},
such that Vj = span{ei : i ∈ Ij} for 1 ≤ j ≤ m, and aj does not vanish identically
on (x+ Vj) ∩N for any neighborhood N of x in Ω if i ∈ Ij+1, j ≥ 0.

An increasing sequence {Vj}m
j=1 as above is called a flag at x. Note that flags

may vary from point to point.
While we are primarily interested in rough vector fields, it is proved in [7] that

if {aj}n
j=1 are real analytic functions, then the flag condition and the Hörmander

commutator condition are equivalent for the vector fields {aj(x)∂j}n
j=1:

Theorem 4. A collection {aj(x)∂j}n
j=1 of real analytic (diagonal) vector fields in

a domain Ω ⊂ Rn satisfies the flag condition in Ω if and only if it satisfies the
Hörmander commutator condition in Ω, i.e., if and only if at each point x ∈ Ω,
there is a positive integer p such that the linear span of the vector fields Xj = aj∂j

and their commutators up to order p,

span{Xj1 , [Xj1 , Xj2 ], [Xj1 , [Xj2 , Xj3 ]], ..., [Xj1 , [Xj2 , [...[Xjp−1 , Xjp ]...]]] : 1 ≤ ji ≤ n},
is equal to Rn.

Our main application of Theorem 1 is that for rough diagonal vector fields, the
flag condition is equivalent to L∞-subellipticity of the corresponding quadratic form,
provided the vector fields satisfy appropriate reverse Hölder conditions. In order to
describe these conditions, let a(x) be a real-valued function with a(x) ≥ 0, and let
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i ∈ {1, ....n}. We say that a(x) ∈ RH∞ in the variable xi, uniformly in the other
variables, if there is a constant C such that for all one-dimensional intervals J and
all x = (x1, ..., xn),

sup
t∈J

a(x1, ..., xi−1, t, xi+1, ...xn) ≤ C
1
|J |

∫
J
a(x1, ..., xi−1, t, xi+1, ..., xn) dt.

Theorem 5. Suppose {aj(x)}n
j=1, x ∈ Ω ⊂ Rn, satisfies aj ≥ 0, aj ∈ Lip(Ω), and

aj ∈ RH∞ in xi for all i 6= j, uniformly in the other variables. Then the quadratic
form

∑n
j=1 aj(x)2ξ2j is L∞-subelliptic in Ω if and only if {aj(x)∂j}n

j=1 satisfies the
flag condition in Ω. Moreover, if the flag condition holds in Ω, then there exists
N ≥ n depending only on the Lipschitz and RH∞ constants of the aj such that∑n

j=1 aj(x)2ξ2j is Lq-subelliptic in Ω for all q > N .

The value of N in Theorem 5 turns out to be the doubling exponent for Lebesgue
measure of the flag balls (to be defined below) associated with the vector fields {aj}.
The flag balls turn out to determine a quasimetric and a space of homogenous type
to which Theorem 1 applies. Complete details can be found in [7]. Let us now
define the flag balls associated with the aj .

We assume the vector fields {Xj}n
j=1 =

{
∂

∂x1
, a2 (x) ∂

∂x2
, ..., an (x) ∂

∂xn

}
are con-

tinuous in Ω, and that aj (x) is Lipschitz continuous in x2, ..., xn uniformly in x1,
and reverse Hölder of infinite order in each variable xi with i 6= j, uniformly in
the remaining variables. Note that we have assumed a1(x) = 1 for all x. This
assumption causes no loss of generality since our results are local and at least one
of the vector fields must be different from 0 at every point. We want to use the flag
condition to construct a family of open rectangles

B (x, r) =
n∏

j=1

(xj −Bj (x, r) , xj +Bj (x, r))

for x ∈ Ω and 0 < r < δ dist (x, ∂Ω), that are related to the vector fields {Xj}n
j=1

in the sense that there are positive constants c, C such that

(2) cBj (x, r) ≤ sup
z∈B(x,r)

raj (z) ≤ CBj (x, r) , x ∈ Ω, 0 < r < δ dist (x, ∂Ω) ,

for 1 ≤ j ≤ n. Note that (2) says that the jth sidelength 2Bj (x, r) of the rectangle
B (x, r) is comparable to r times the supremum of aj over the rectangle B (x, r).
If the aj were essentially constant, this would be the maximum distance a subunit
curve could travel in the jth direction in time r, and the rectangle B (x, r) would
be equivalent to the Fefferman-Phong control balls K (x, r). The importance of
(2) is that it provides a key link in proving that the rectangles B (x, r) lead to a
homogeneous space and a suitable subrepresentation formula, allowing verification
of the Poincaré and Sobolev estimates required by Theorem 1.

The algorithm we employ below actually achieves the following stronger form
of (2): there are positive constants c, C such that for every x, r with x ∈ Ω and
0 < r < δ dist (x, ∂Ω), there is a permutation {j1, j2, ..., jn} of {1, 2, ..., n} with
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j1 = 1 satisfying

cBji (x, r) ≤ sup
z:zj`

=xj`
,`≥i and |zj`

−xj` |≤Bj`
(x,r),`<i

raji (z)(3)

≤ sup
z∈B(x,r)

raji (z) ≤ CBji (x, r) ,

x ∈ Ω, 0 < r < δ dist (x, ∂Ω) and 1 ≤ i ≤ n.
Fix x, r with x ∈ Ω and 0 < r < δ dist (x, ∂Ω). Define

(4) Aj (x, r) =
∫ r

0
aj (x1 + t, x2, ..., xn) dt,

1 ≤ j ≤ n, so that A1 (x, r) = r and Aj(x, r) ≥ 0 for all j. Since we are assuming
that the aj are reverse Hölder in x1 uniformly in x2, ..., xn, it follows that

sup
z∈B(x,r)

rai (z) is essentially sup
z∈B(x,r)

Ai (z, r) ,

and this motivates the use of Ai to implement our algorithm, which we now describe.
We inductively define a rearrangement {j2, ..., jn} of {2, ..., n} and nonnegative num-
bers Bj2 (x, r) , ..., Bjn (x, r) as follows: First define

Aj2 (x, r) = max
2≤j≤n

Aj (x, r) ,

Bj2 (x, r) = Aj2 (x, r) .

Then for j 6= j2 set

Φ2
j (x, r) = max

{
Aj (z, r) : |zi − xi| ≤ χ{j2} (i)Bi (x, r) , 1 ≤ i ≤ n

}
,

and define

Φ2
j3 (x, r) = max

j 6=j2
Φ2

j (x, r) ,

Bj3 (x, r) = Φ2
j3 (x, r) .

AssumingBj2 (x, r) , ..., Bjm (x, r) have already been defined, then for j /∈ {j2, ..., jm},
set

Φm
j (x, r) = max

{
Aj (z, r) : |zi − xi| ≤ χ{j2,...,jm} (i)Bi (x, r) , 1 ≤ i ≤ n

}
,

and define

Φm
jm+1

(x, r) = max
j /∈{j2,...,jm}

Φm
j (x, r) ,

Bjm+1 (x, r) = Φm
jm+1

(x, r) .

This inductively defines Bj2 (x, r) , ..., Bjn (x, r).

Note. If we assume that the vector fields {Xi}n
i=1 satisfy the flag condition in Defi-

nition 3, then we have the important property that Bj (x, r) > 0 for 2 ≤ j ≤ n and
r > 0.

We now define open rectangles

(5) B (x, r) = (x1 − r, x1 + r)×
n∏

j=2

(xj −Bj (x, r) , xj +Bj (x, r)) ,
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for x ∈ Ω, 0 < r < δ dist (x, ∂Ω), which we refer to as ”flag balls”. Note again that
if δ is sufficiently small, then the rectangles B (x, r) are well-defined and contained
in Ω. Finally, we emphasize that the permutation {j2, ..., jn} of {2, ..., n} used to
define the flag ball B (x, r) depends on both x and r, and is analogous in spirit to
the choice of N -tuple used to compute a corresponding quasimetric in Chapter 1,
section 4 of [6].

In passing, we mention that in the special case when none of the Aj(x, r) with
r > 0 vanish, it is possible to derive an analogue of Theorem 5 in which the role
played by the flag balls B(x, r) is instead played by a much simpler collection of
rectangles A(x, r) defined by

(6) A(x, r) = (x1 − r, x1 + r)×
n∏

j=2

(xj −Aj(x, r), xj +Aj(x, r)) ,

provided the following condition holds: there are positive constants C and δ such
that for j = 2, ..., n,

(7) C−1Aj(x, r) ≤ Aj(z, r) ≤ CAj(x, r), z ∈ A(x, r), x ∈ Ω, 0 < r < δdist(x, ∂Ω).

We refer to condition (7) as the noninterference condition, and we call the rectangles
A(x, r) noninterference balls. The noninterference condition (7) can be shown to be
a corollary of the following strong noninterference condition:

r

{
sup

z∈A(x,r)

∣∣∣∣∂aj

∂xi
(z)

∣∣∣∣
}
Ai(x, r) ≤ CAj(x, r), x ∈ Ω, 0 < r < δdist(x, ∂Ω),

for 2 ≤ i, j ≤ n. See [7] for details.

An application to Monge-Ampère equations.

We consider regularity of the generalized Monge-Ampère equation

(8) detD2u = k(x, u,Du), x ∈ Ω,

where D2u is the Hessian matrix of u, k is smooth (infinitely differentiable) and
nonnegative in Ω×R1×Rn, and Ω is a convex domain in Rn with smooth boundary.
For example, if k depends only on x, we have the classical Monge-Ampère equation,
while the choice

k = kn(x)
(
1 + |∇u|2

)n+2
2

corresponds to the equation of prescribed Gaussian curvature kn(x).
When k is strictly positive, the Dirichlet problem

detD2u = k in Ω, u = φ on ∂Ω

is elliptic and the solutions u are smooth up to the boundary when k and φ are
smooth (Caffarelli, Nirenberg and Spruck [2]). However, if k is permitted to vanish,
such regularity may fail spectacularly. For example, in two dimensions the function

u(x, y) =
1
18

(x2 + y2)3/2
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fails to be C3 at the origin while detD2u(x, y) = x2 + y2 is analytic and u has
analytic trace on x2 + y2 = 1.

In [4] and [5], it is shown that when k, φ and ∂Ω are smooth and k is nonnegative,
then solutions of the Dirichlet problem are in C1,1(Ω̄). Constructions in [1] and a
specific example due to Sibony reported in [3] and [5] show that this result is best
possible. On the other hand, Guan [3] showed in two dimensions that if k vanishes
of finite type in a certain way, then every C1,1 convex solution u(x, y) is smooth
provided uyy ≥ c > 0 in Ω. Note that uyy vanishes at the origin in the example
above.

In order to extend Guan’s two dimensional result to higher dimensions, [8] em-
ploys an n-dimensional analogue of the partial Legendre transform. Given u ∈ C1,1,
we consider the mapping from

x = (x1, x2, ..., xn) −→ (s, t2, ..., tn) = (s, t),

t ∈ Rn−1, given by

s = x1, t2 = ux2(x), . . . , tn = uxn(x).

Assuming that the (n− 1)× (n− 1) determinant det(uxixj )i,j≥2 6= 0, we may invert
the transformation to obtain functions vl(s, t), l = 2, . . . , n:

x1 = s, x2 = v2(s, t), . . . , xn = vn(s, t).

Following [3], the basic strategy of [8] is to determine regularity of u in Ω by studying
regularity of the functions vl in the transformed domain. It is shown in [8] that the
vector-valued function v = (vl)n

l=2 = (xl(s, t))n
l=2 is a weak solution of the divergence

form quasilinear system

Lvl ≡

{
∂2

∂s2
+

∂

∂t′
k

(
co

[
∂v

∂t′

])′
∂

∂t

}
vl = 0, 2 ≤ l ≤ n,

where
(
co

[
∂v
∂t′

])′
denotes the transposed cofactor matrix of ∂v

∂t′ . If k is positive, the
system is elliptic. A significant feature of the system in case k is allowed to vanish
is that the degeneracy of the system is incorporated solely in the function k which
appears in the coefficient matrix, assuming that det ∂t

∂x′ = det
[

∂2u
∂xi∂xj

]n

i,j=2
> 0. In

principle, this allows the use of the subelliptic regularity results discussed earlier.
Unfortunately, this system is not diagonal in the principal terms. On the other

hand, the matrix

M =
(
co

[
∂v

∂t′

])′

satisfies the divergence-free property ∂t′M = ~0′, and consequently, if we differ-
entiate the system above, we obtain that the vector-valued function p = Dv =(

∂vi
∂tj

)
2≤i≤n,1≤j≤n

, with s = t1, satisfies the divergence form quasilinear system

Lp ≡
{
∂2

∂s2
+

∂

∂t′
kM(p)

∂

∂t

}
p = f((s, t), v, p,Dp),

that is diagonal in the principal terms, and has nonhomogeneous vector term f
that is quadratic in Dp. In [8], we use the system for p to derive the following
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generalization of Guan’s result to higher dimensions. The result gives subelliptic
conditions on k which imply smoothness of convex solutions u ∈ C2,1(Ω) to the
generalized Monge-Ampère equation (8), provided u has n − 1 nonzero principal
curvatures.

Theorem 6. Let u ∈ C2,1(Ω) be a convex solution to (8) with k smooth on Ω ×
R1 ×Rn satisfying

k(x, u,Du) ≈
(
|x1|2m + ψ(x)

)
K(x, u,Du), x ∈ Ω,

where K is smooth and positive on Ω × R1 × Rn, ψ is smooth and nonnegative on
Ω, m is a positive integer, and ψ1/(2m) is Lipschitz continuous. If

(9) d = det
[

∂2u

∂xi∂xj

]n

i,j=2

> 0

at all points of Ω, then u ∈ C∞(Ω).

It is of interest to note that the conclusion of the theorem fails if (9) is replaced by
the assumption that a minor of the Hessian of size (n−2)× (n−2) is nonvanishing.
For example, the function

u(x) = (x2
1 + x2

2)
3/2 +

n∑
j=3

x2
j

2

is in C2,1(Ω) but fails to be in C3(Ω) even though (8) holds with k = 18(x2
1 + x2

2)
and

det
[

∂2u

∂xi∂xj

]n

i,j=3

= 1.

Note that for this function u, the determinant d in (9) vanishes when k = 0.
Theorem 6 applies to the equation of prescribed Gaussian curvature kn(x),

namely,

(10) det D2u = kn(x)
(
1 + |Du|2

)n+2
2 ,

with the following geometric consequence. If u is a C2,1 convex function whose graph
has smooth Gaussian curvature kn, and consequently u satisfies (10), and if kn(x) ≈
|x|2m for some m = 1, 2, . . . , then u is smooth provided kn−1(0) > 0. Here kn−1

denotes the elementary symmetric function of order n−1 of the principal curvatures
of u. In fact, in order to apply Theorem 6, it is enough to rotate coordinates so
that d(0) = kn−1(0) in (9).

Some generalizations of Theorem 6 in which the assumption u ∈ C2,1 is replaced
by a weaker assumption will appear in [9]. These results still rely on the subellip-
ticity facts from [7] discussed earlier.
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[7] E. T. Sawyer and R. L. Wheeden, Hölder continuity of weak solutions to subelliptic equations

with rough coefficients, Memoirs Amer. Math. Soc., vol. 180, no. 847 (2006).
[8] C. Rios, E. T. Sawyer and R. L. Wheeden, A higher dimensional partial Legendre transform

and regularity of degenerate Monge-Ampère equations, Advances in Math. 193 (2005), 373-415.
[9] C. Rios, E. T. Sawyer and R. L. Wheeden, Regularity of certain subelliptic Monge-Ampère

equations, to appear.

Manuscript received April 4, 2006

revised April 13, 2006

Richard L. Wheeden
Department of Mathematics, Rutgers University, Piscataway, NJ 08854

E-mail address: wheeden@math.rutgers.edu


