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SOLVABILITY OF A DIRICHLET PROBLEM FOR DIVERGENCE
FORM PARABOLIC EQUATION

MARIA ALESSANDRA RAGUSA

Abstract. We consider parabolic equations with discontinuous coefficients and
prove that if the known term belongs to the Morrey space Lp,λ then the first
order derivatives of the solution of an associate Dirichlet problem belong to the
same space. We also obtain local Hölder continuity for solution.

1. Introduction

In this note we are concerned with existence, uniqueness and global regularity in
H1,p,λ

0 (QT ) of the weak solution of the second order differential equation

(1.1) Lu ≡ ut −
n∑

i,j=1

(aijuxi)xj
= div f

in the cylinder QT = Ω× (−T, 0) where Ω ⊂ Rn, n ≥ 3, is a bounded open set with
sufficiently smooth boundary and T > 0.

In our treatment we assume x = (x1, . . . , xn, t) = (x′, t) ∈ Rn+1, ut = ∂u
∂t ,

∇u = ( ∂u
∂x1

, . . . , ∂u
∂xn

) the spatial gradient of u.
For reader’s convenience we recall the definition

Rn+1
+ = Rn+1 ∩

(
x′n ≥ 0

)
,

Rn+1
− = Rn+1 ∩

(
x′n ≤ 0

)
.

We also assume L to be a linear parabolic operator in divergence form whose
possibly discontinuous coefficients are taken in the space V MO at first defined by
Sarason in [13] (see Section 2 below for precise definition). This hypotheses implies
a number of good properties, for example bounded uniformly continuous functions
are in the vanishing mean oscillation class as well as functions of the Sobolev spaces
W τ,n/τ for τ ∈ ]0, 1].

Our main result is the well-posedness in H1,p,λ
0 (QT ) of the Cauchy-Dirichlet prob-

lem

(1.2)


Lu = div f QT ,

u = 0 on ∂Ω× (−T, 0)
u(x′,−T ) = 0 in Ω.
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The result has been studied in Lebesgue spaces (see [12]), now we improve it showing
that fine regularity of the right-hand side f increase the regularity of the first
derivatives of the solution.

We recall that if the coefficients aij are real bounded measurable functions ex-
istence of weak solutions of linear parabolic equations and some kind of regularity
has been studied by Kaplan in [5] and [6].

The present note generalizes, for linear second order elliptic equations, the local
regularity result obtained by Marino and Maugeri in [7], as showed in detail in
Appendix, because they obtain

u ∈ Lp
loc(−T, 0,H1,p(Ω))

while here is proved that

u ∈ Lp,λ(−T, 0,H1,p(Ω)).

We point out that in this note we answer to the question, arised when I present
during a conference the note [12] , if the space H and the Lebesgue space Lp can
be exchanged. It is true comparing our main theorem with Theorem 2.10 in [12].
In fact in the above mentioned paper it is proved that if u satisfy the parabolic
equation (1.1) for f ∈ Lp(QT ), then

u ∈ Hq
p(−T, 0, Lp(Ω)), q = 1− 1

p

and our main theorem showed that if f ∈ Lp,λ(QT ) then

u ∈ Lp,λ(−T, 0,H1,p(Ω)).

In realizing the program it is not used Nash’s techniques ([8]) because is easier
for the author to obtain interior and boundary estimates as consequence of com-
bined Morrey regularity and representation formula for the solution of (1.1) and its
derivatives expressed, similarly to [2] and [3], in terms of singular integral operators
and commutators with parabolic Calderón - Zygmund kernel (see [9]) and some less
singular operators, that are in some sense taking after Hardy’s operators.

A combination of these estimates with solvability in Lp spaces proved in [12] leads
to the well-posedness of the Cauchy - Dirichlet problem (3.4) in Morrey class.

Finally we observe that global a priori estimate and the known properties of Mor-
rey spaces for suitable p and λ (see [1]) allows us to derive global Hölder regularity
result for the solution u.

2. Preliminary Tools and Representation Formula

We assume throughout the paper that Ω is an open bounded subset in Rn, n ≥ 3.

Definition 2.1. We set

H1,p,λ
0 (QT ) =

{
u ∈ H1,p

0 (QT ) : Du = (∂x1u, . . . , ∂xnu) is

such that ∂xiu and ∂tu ∈ Lp,λ(QT ),∀i = 1, . . . , n
}

.
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Let us suppose the linear parabolic operator  L having principal part

aij(x) = aji(x), ∀x ∈ QT , ∀i, j = 1, .., n

such that

∃µ > 0 : µ−1|ξ2| ≤ aij(x)ξiξj ≤ µ|ξ|2, ∀ξ ∈ Rn a. e. x ∈ QT .

Before the definition of parabolic Calderón-Zygmund kernel we set parabolic met-
ric the quantity

d(x, y) = ρ(x− y)
where

ρ(x) =

√
|x′|2 +

√
|x′|4 + 4t2

2
and the balls of radius σ and center 0 respect to metric are the ellipsoids

Eσ(0) = {x = (x′, t) ∈ Rn+1 :
|x′|2

σ2
+

t2

σ4
< 1}.

In the sequel we denote Eσ as an ellipsoid in Rn+1 of radius σ.

Definition 2.2. (see [9]). A function k is a Parabolic Calderón-Zygmund kernel
on Rn+1 with respect to the parabolic metric ρ if

(1) k is smooth on Rn+1\{0};
(2) k(rx′, r2t) = r−(n+2)k(x′, t), ∀r > 0 (homogeneity condition);

(3)
∫

ρ(x)=r
k(x)dσ(x) = 0, ∀r > 0 (cancellation property on ellipsoids).

In the following it will be useful to consider the fundamental solution of the
constant coefficient operator L0 obtained by L freezing the coefficients at a fixed
point x0 ∈ QT .

(2.1) Γ(x0, ξ) =

 1

(4π(t+T )(
n
2 )
√

det{aij(x0)}
exp

(
−
∑n

i,j=1 Aij(x0)ξiξj

4(t+T )

)
t + T > 0

0 t + T < 0

where Aij are the entries of the inverse matrix of {aij}i,j=1,...,n.
For our purposes it is fruitful to give the definition of John - Nirenberg class of

Bounded Mean Oscillation functions (see [4]) and, as subclass, the Sarason class
V MO of Vanishing Mean Oscillation functions (see [13]).

Definition 2.3. A locally integrable function f belongs to the John-Nirenberg
space BMO of functions with bounded mean oscillation if the following quantity is
finite

‖f‖∗ ≡ sup
Eσ⊂Rn+1

1
|Eσ|

∫
Eσ

|f(x)− fEσ |dx,

where
fEσ =

1
|Eσ|

∫
Eσ

f(x)dx

and Eσ is any ellipsoid in Rn+1 of radius σ.

Let us now introduce the space whom the coefficients aij belong.
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Definition 2.4. Let us set f ∈ BMO and Eσ in the class of the ellipsoids of Rn+1

having radius σ > 0 and

η(R) = sup
Eσ⊂Rn+1 σ≤R

1
|Eσ|

∫
Eσ

|f(x)− fEσ |dx

the V MO modulus of the function f.
We say that f ∈ V MO if

lim
R→0

η(R) = 0.

Let us note that replacing Rn+1 by QT we obtain the definitions of BMO(QT )
and V MO(QT ) preserving its character.

We now describe the Morrey spaces Lp,λ(QT ) whom the known term belongs.

Definition 2.5. Let 1 < p < ∞, 0 ≤ λ < n + 2. We say that a locally integrable
function f belongs to the Morrey class Lp,λ(QT ) if

‖f‖p
Lp,λ(QT )

= sup
ρ>0

x∈QT

1
ρλ

∫
QT∩Eρ(x)

|f(y)|pdy < +∞.

Let us set T (x) ≡ T (x′, t; x′, t) and T (x′, t; x′′, t) = x′− 2x′n
an(x′′,t)ann(x′′, t), x′, x′′ ∈

Rn and any fixed, t ∈ R and an(x′, t) = (ain(x′, t)i=1,...,n) is the last column (row)
of the matrix {aij}i,j=1,...,n. Let us also consider k(x, ·) a variable PCZ kernel and
the following singular integral operators and commutators

Kf(x) = P.V.

∫
Rn+1

k(x, x− y)f(y)dy

and
C[a, f ] = P.V.

∫
Rn+1

k(x, x− y)[a(y)− a(x)]f(y)dy.

In addition we use in the sequel the following notation for integral operators
having nonsingular variable kernel

K̃f(x) =
∫
Rn+1

+

k(x, T (x)− y)f(y)dy

and
C̃[a, f ] =

∫
Rn+1

+

k(x, T (x)− y)[a(y)− a(x)]f(y)dy.

Let us now recall Lp,λ estimates (see [9] Theorem 3.3) based on technique con-
sisting in eigenfunctions expansion of the kernel.

Theorem 2.6. Let 1 < p < ∞, 0 < λ < n+2, f ∈  Lp(Rn+1
+ ) and a ∈ BMO(Rn+1

+ ).
There exists a constant c independent of f such that

(2.2) ||K̃f ||Lp,λ(Rn+1
+ ) ≤ c · ||f ||Lp,λ(Rn+1

+ ).

and

(2.3) ||C̃[a, f ]||Lp,λ(Rn+1
+ ) ≤ c · ||a||∗ · ||f ||Lp,λ(Rn+1

+ ).
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The same results concerning Lp,λ estimates for the operators K(f) and C[a, f ]
are considered in [14] and [10], precisely if f ∈ Lp,λ(Rn+1) then

‖Kf‖Lp,λ(Rn+1) ≤ c‖f‖Lp,λ(Rn+1),

and
‖C(a, f)‖Lp,λ(Rn+1) ≤ c‖a‖∗‖f‖Lp,λ(Rn+1).

The above estimates can be repeated substituting Rn+1 with a subset Q of Rn+1.
In addition we shall use the following result proved in [11] concerning with singular

integrals having as kernel an homogeneous function.

Theorem 2.7. Let Q be an open subset of Rn+1, 1 < p < ∞, 0 ≤ ν < n + 2 such
that ν + αp < n + 2 and k ∈ C(Rn+1 \ {0}) be an homogeneous function of degree
−α, α ∈]0, n + 2[, Then, for every f ∈ Lp,ν(Q) the operator

Tf(x) =
∫
Q

k(x− y)f(y)dy

is defined, belongs to Lq,µ(Q) where 1
p + α

n+2 = 1
q + 1, µ = νq

p and exists a constant
c > 0 independent on f such that

‖Tf‖Lq,µ(Q) ≤ c‖f‖Lp,ν(Q).

3. Interior and Boundary Estimates and Main Results

Let us consider E an arbitrary set, E ⊂⊂ QT , and

E+ = {(x1, .., xn, t) ∈ E : xn > 0, t < 0}.

Let us also introduce Θ ∈ C∞
0 (QT ) a cut-off function, 0 ≤ Θ ≤ 1, Θ(x) = 1 in Eσ

2
,

Θ(x) = 0 outside Eσ, |∇Θ| ≤ c
σ , for some Eσ ⊂⊂ QT .

If u is a solution of Lu = div f on QT with zero boundary data, we can consider
u as a solution of the equation

L(Θu) = div G + g

for G = −aijΘxiu + Θf and g = −aijΘxjuxi −Θxjf + Θtu.
Let us state the following interior and boundary representation formula as con-

sidered in [12].

Theorem 3.1. (Interior representation formula). Let the hypotheses of symmetry
and ellipticity for aij ∈ V MO∩L∞(Rn+1) hold and let Eσ be an arbitrary ellipsoid
contained in QT , G ∈ [C∞

0 (Eσ)]n and g ∈ C∞
0 (Eσ). Consider v = Θu ∈ C∞

0 (Eσ) as
a solution of

L(Θu) = div G + g.

Then,

(3.1) vxi(x) = (Θu)xi(x)

= P.V.

∫
Eσ

Γij(x, x− y){[ahj(x)− ahj(y)](Θu)xh
(y)−Gj(y)}dy
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+
∫

Eσ

g(y)Γi(x, x− y)dy + Gj(x)
∫
∑

n+1

Γi(x, y)ηjdσy

where ηj stands for the j-th component of the outer normal to the following surface
Σn+1 = {x ∈ Rn+1 : |x| = 1}.

Using the representation formula, it is possible to prove the following interior
estimate.

Theorem 3.2 (Interior estimate). Assume aij ∈ V MO∩L∞(Rn+1) symmetric and
uniformly elliptic, u a weak solution of (1.1) such that ∂u

∂xi
u ∈ Lp(QT ) i = 1, . . . , n,

f ∈ [Lp,λ(QT )]n, 2 < p < ∞, 0 < λ < n + 2. Then ∃σ0 > 0 and ∃c > 0 independent
on f and u such that ∀σ < σ0 we have

(3.2) ‖∇u‖Lp,λ(E σ
2

) ≤ c
(
‖u‖Lp,λ(Eσ) + ‖f‖Lp,λ(Eσ)

)
.

Theorem 3.3 (Boundary representation formula). Let us assume the above hy-
potheses about the coefficients aij , for some Eσ ⊂⊂ QT , G ∈ [C∞(E+

σ )]n and
g ∈ C∞(E+

σ ) vanish in a neighborhood of Rn+1
+ ∩ ∂Eσ.

If v is a restriction to E+
σ of some function in C∞

0 (Eσ) vanishing in {{xn =
0}×]− T, 0[} ∩ E

+
σ and satisfies the equation Lu = div G + g in E

+
σ , then

vxi = P.V.

∫
E+

σ

Γij(x, x− y) {[ahj(x)− ahj(y)]vxh
(y)−Gj(y)} dy

+ cij(x)Gj(x) +
∫

E+
σ

Γi(x, x− y)g(y)dy + Ii(x), ∀x ∈ E+
σ ,

where cij(x) =
∫
∑

n+1

Γi(x, y)ηjdσy are bounded functions arising from the interior

representation formula

Ii(x) =
∫

E+
σ

Γij(x, T (x)− y) {[ahj(x)− ahj(y)] vxh
(y)−Gj(y)} dy

−
∫

E+
σ

Γi(x, T (x)− y)g(y)dy, i = 1, . . . , n− 1

and

In(x) =
∫

E+
σ

Bh(y)Γhj(x, T (x)− y){[ahj(x)− ahj(y)]vxh
(y)−Gj(y)}dy

−
∫

E+
σ

Bh(y)Γi(x, T (x)− y)g(y)dy,

where Bh are bounded functions that have L∞ norm expressed in term of the ellip-
ticity constant µ.

Theorem 3.4 (Boundary estimate). Let aij ∈ V MO ∩ L∞(Rn+1) and in addition
symmetry and ellipticity conditions be true. Let us assume f ∈ [Lp,λ(QT )]n where
2 < p < +∞, 0 < λ < n + 2. Then there exists σ0 > 0 such that ∀σ < σ0 and for
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every u weak solution of (1.1) which vanishes on {{xn = 0}×] − T, 0[} ∩ E
+
σ such

that ∂u
∂xi

∈ Lp(QT ) i = 1, . . . , n, we have

(3.3) ‖∇u‖Lp,λ(E+
σ/2

) ≤ c
(
‖u‖Lp,λ(E+

σ ) + ‖f‖Lp,λ(QT )

)
for a suitable constant c independent on u and f.

Before we prove the above boundary estimate let us state the main result.

Theorem 3.5. Let aij ∈ V MO ∩ L∞(Rn+1) be symmetric and uniformly elliptic.
Suppose that f ∈ [Lp,λ(QT )]n where 2 < p < +∞, 0 < λ < n + 2.

Then the Cauchy-Dirichlet problem

(3.4)


Lu = div f QT ,

u = 0 on ∂Ω× (−T, 0)
u(x′,−T ) = 0 in Ω.

has a unique solution u ∈ H1,p,λ
0 (QT ).

Proof of Theorem 3.4. Let us consider the above boundary representation formula

vxi(x) = Cij [ahj , vxh
](x)−Kij(Gj)(x) + cij(x)Gj(x) + Tig(x) + Ii(x).

The first two integrals are singular and of the kind considered in [10], [14] as in [9],
the term Ti(g) is a bounded nonsingular integral. Then

(3.5) ‖∇v‖Lp,λ(E+
σ ) ≤ c

(
‖a‖∗ · ‖∇v‖Lp,λ(E+

σ ) + ‖G‖Lp,λ(E+
σ )

+‖Tg‖Lp,λ(E+
σ ) + ‖Ii‖Lp,λ(E+

σ )

)
Let us study a majorization for ‖Tg‖Lp,λ(E+

σ ). For it we are inspired by Theorem
2.6 in [11] and obtain

(3.6) ‖Tg‖Lp,λ(E+
σ ) ≤ c‖g‖Lp̃,ν(E+

σ ),

for 1
p̃ + α

n+1 = 1
p + 1; λ = ν p

p̃ , ν + αp̃ < n + 2.

Then from the definition of g

(3.7) ‖g‖Lp̃,ν(E+
σ ) ≤ ‖g‖Lp,ν(E+

σ )

≤ c ·
(
‖∇u‖Lp,ν(E+

σ ) + ‖f‖Lp,ν(E+
σ ) + ‖u‖Lp,ν(E+

σ )

)
.

We also have

(3.8) ‖G‖Lp,λ(E+
σ ) ≤ c ·

(
‖u‖Lp,λ(E+

σ ) + ‖f‖Lp,λ(E+
σ )

)
.

To majorize the term Ii using Lp,λ estimates for nonsingular integral operators K̃
and C̃ and Theorem 2.7, we have

(3.9) ‖I‖Lp,λ(E+
σ ) ≤ c ·

(
‖a‖∗ · ‖∇v‖Lp,λ(E+

σ ) + ‖G‖Lp,λ(E+
σ ) + ‖g‖Lp̃,ν(E+

σ )

)
.
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From the V MO hypothesis on the coefficients aij , (3.5), (3.6), (3.9) and let µ =
min(λ, ν + p) then µ ≤ λ, we obtain

‖∇v‖Lp,µ(E+
σ ) ≤ c ·

(
‖G‖Lp,λ(E+

σ ) + ‖g‖Lp,ν(E+
σ )

)
.

Consider (3.7) and (3.8), we have

(3.10) ‖∇v‖Lp,µ(E+
σ ) ≤ c ·

(
‖u‖Lp,λ(E+

σ ) + ‖f‖Lp,λ(QT ) + ‖∇u‖Lp,ν(QT )

)
.

It follows from the Lp result ([12]) that ∀p > 2 we have

‖∇u‖Lp(QT ) ≤ c · ‖f‖Lp(QT )

and for ν = 0 (3.10) implies

‖∇u‖Lp,µ(E+
σ
2

) ≤ ‖∇v‖Lp,µ(E+
σ ) ≤ c ·

(
‖u‖Lp,λ(QT ) + ‖f‖Lp,λ(QT )

)
.

If λ ≤ p we get the conclusion, if λ > p we obtain

‖∇u‖Lp,p(E+
σ
2

) ≤ c ·
(
‖u‖Lp,λ(QT ) + ‖f‖Lp,λ(QT )

)
.

Using again (3.10) for ν = p we have

‖∇u‖Lp,µ1 (E+
σ
2

) ≤ c ·
(
‖u‖Lp,λ(QT ) + ‖f‖Lp,λ(QT )

)
.

where µ1 = min(λ, 2p). The improvement p is constant then in a finite number of
steps we obtain (3.3). �

Proof of Theorem 3.5. Existence and uniqueness of the solution u of the Cauchy-
Dirichlet problem (3.4) are true because are proved above interior and boundary
estimates, the estimates for ut are obtained writing ut = Lu+(aijuxi)xj and applying
Jensen’s inequality (see [9]), because of Lp,λ ⊂ Lp and for the study made in the
case Lp in [12]. �

As a consequence of Theorem 3.5 and well known properties of Morrey spaces
contained in [1] it is easy to have the following result.

Corollary 3.6. Let u be a solution of (3.4), f ∈ [Lp,λ(QT )]n. If n+2−p < λ < n+2
then, the solution u is a Hölder continuous function with exponent α = 1− n+2−λ

p .

4. Appendix

We wish to point out that the main theorem prove that ∇u ∈ Lp,λ(QT ), or
equivalently

u ∈ Lp,λ(−T, 0,H1,p(Ω)), ∀2 < p < +∞, 0 < λ < n + 2

introducing the following norm

‖u‖Lp,λ(−T,0,H1,p(Ω))

= sup
0<σ<diam QT ,X0∈QT

(
1
σλ

∫
(−T,0)∩(t0−σ2,t0)

[∫
Ω∩B(x0,σ)

|∇u|pdx
]
dt

) 1
p

.
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This result can be view, as suggested by A. Maugeri, as a generalization, only for
linear second order parabolic equations, of the study made by Marino and Maugeri
in [7] because of the authors showed that if Ω is a bounded open set of Rn and
N ∈ N,

u ∈ L2(−T, 0,H1(Ω, RN )) ∩ C0([−T, 0]; L∞(Ω, RN ))
is a solution of the second order nonlinear variational system

−
n∑

i=1

Dia
i(x, u, Du) +

∂u

∂t
= Bi(x, u, Du)

where ai(x, u, Du) and Bi(x, u, Du), i = 1, . . . , n, Du = (D1u, . . . , Dnu), are vectors
of RN defined in Λ = QT×RN×RnN , measurable in x, continuous in (u, p), ∂ai(x,u,p)

∂pj
k

,

i, j = 1, . . . , n, k = 1, . . . , N,are bounded in Ω such that ai(x, u, p) satisfy the strong
ellipticity condition and the vectors ai, Bi have a quadratic growth, then there exists
p > 2 such that ∀p ∈ (2, p)

Diu ∈ Lp
loc(Ω, RN ), i = 1, . . . , n

and holds
u ∈ Lp

loc(−T, 0,H1,p(Ω, RN )).
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[7] M. Marino, A. Maugeri Partial Hölder continuity of solutions of nonlinear parabolic systems

of second order with quadratic growth, Boll. Un. Mat. Ital. B7 (3) (1989), 397–435.
[8] J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 80

(1958), 931–954.
[9] D. Palagachev, M. A. Ragusa, L. Softova Cauchy-Dirichlet problem in Morrey spaces

for parabolic equations with Discontinuous coefficients, Boll. Un. Mat. Ital. 8 (6-B)(2003),
667–683.

[10] D. Palagachev, L. Softova Singular integral operators with mixed omogeneity in Morrey
spaces, C. R. Acad. Bulgare Sci. 54 (11)(2001), 11–16.
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