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To the memory of Filippo Chiarenza

ABSTRACT. A degenerate oblique derivative problem is studied for uniformly el-
liptic operators with low regular coefficients in the framework of Sobolev’s classes
W?2P(Q) for arbitrary p > 1. The boundary operator is prescribed in terms of a
directional derivative with respect to the vector field £ that becomes tangential
to 02 at the points of some non-empty subset £ C 92 and is directed outwards
Q on 902\ €. Under quite general assumptions of the behaviour of £, we derive
a priori estimates for the W2?(Q)-strong solutions for any p € (1, 00).

INTRODUCTION

The lecture deals with regularity in Sobolev’s spaces W2P(€), V p € (1,00), of
the strong solutions to the oblique derivative problem
(1) Lu = a"(z)Djju = f(z) ae. Q,

Bu = 0u/0t = p(x) on 0f)
where £ is a uniformly elliptic operator with low regular coefficients and B is pre-
scribed in terms of a directional derivative with respect to the unit vector field
£(x) = ((X(x),...,0%(x)) defined on O, n > 3. Precisely, we are interested in the
Poincaré problem (1) (cf. [17, 20, 16]), that is, a situation when £(x) becomes
tangential to O at the points of a non-empty subset £ of 0.

From a mathematical point of view, (1) is not an elliptic boundary value problem.
In fact, it follows from the general PDEs theory that (1) is a reqular (elliptic)
problem if and only if the Shapiro—Lopatinskij complementary condition is satisfied
which means £ must be transversal to 02 when n > 3 and |[€| # 0 as n = 2. If £ is
tangent to 0N then (1) is a degenerate problem and new effects occur in contrast
to the regular case. It turns out that the qualitative properties of (1) depend on
the behaviour of £ near the set of tangency £ and especially on the way the normal
component yv of £ (with respect to the outward normal v to 92) changes or no
its sign on the trajectories of £ when these cross £. The main results were obtained
by Hérmander [6], Egorov and Kondrat’ev [2], Maz’ya [8], Maz’ya and Paneah [9],
Melin and Sjostrand [10], Paneah [15] and good surveys and details can be found in
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Popivanov and Palagachev [20] and Paneah [16]. The problem (1) has been studied
in the framework of Sobolev spaces H*(= H*?) assuming C*°-smooth data and this
naturally involved techniques from the pseudo-differential calculus.

The simplest case arises when v := £ - v, even if zero on &, conserves the sign
on 0. Then &€ and £ are of neutral type (a terminology coming from the physical
interpretation of (1) in the theory of Brownian motion, see [20]) and (1) is a problem
of Fredholm type (cf. [2]). Assume now that 7 changes the sign from “—” to “+” in
positive direction along the £-integral curves passing through the points of £. Then
£ is of emergent type and £ is called attracting manifold. The new effect appearing
now is that the kernel of (1) is infinite-dimensional ([6]) and to get a well-posed
problem one has to modify (1) by prescribing the values of uw on £ (cf. [2]). Finally,
suppose the sign of v changes from “+” to “—” along the £-trajectories. Now £ is
of submergent type and & corresponds to a repellent manifold. The problem (1)
has infinite-dimensional cokernel ([6]) and Maz’ya and Paneah [9] were the first to
propose a relevant modification of (1) by violating the boundary condition at the
points of £. As consequence, a Fredholm problem arises, but the restriction u|sn
has a finite jump at £. What is the common feature of the degenerate problems,
independently of the type of £, is that the solution “loses regularity” near the set
of tangency from the data of (1) in contrast to the non-degenerate case when any
solution gains two derivatives from f and one derivative from . Roughly speaking,
that loss of smoothness depends on the order of contact between £ and 0f2 and is
given by the subelliptic estimates obtained for the solutions of degenerate problems
(cf. [4, 5, 6, 9]). Precisely, if £ has a contact of order k£ with 0€2 then the solution
of (1) gains 2 — k/(k + 1) derivatives from f and 1 — k/(k + 1) derivatives from .

/ﬂgaﬂ

(c) submergent vector field £

For what concerns the geometric structure of £, it was supposed initially to be a
submanifold of 02 of codimension one. Melin and Sjostrand [10] and Paneah [15]
were the first to study the Poincaré problem (1) in a more general situation when &
is a massive subset of 02 with positive surface measure, allowing £ to contain arcs
of -trajectories of finite length. Their results were extended by Winzell ([21, 22])
to the framework of Holder’s spaces who studied (1) assuming C1®-smoothness of
the coefficients of L. It is worth noting that £ has automatically an infinite order
of contact with 02 when £ is a massive subset of the boundary.
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To deal with non-linear Poincaré problems, however, we have to dispose of precise
information on the linear problem (1) with coefficients less regular than C'* (see
[11, 18, 19, 20]). Indeed, a priori estimates in WP for solutions to (1) would imply
easily pointwise estimates for u and Du for suitable values of p > 1 through the
Sobolev imbeddings. This way, we are naturally led to consider the problem (1) in
a strong sense, that is, to searching for solutions lying in W?2P which satisfy Lu = f
almost everywhere (a.e.) in © and Bu = ¢ holds in the sense of trace on 0f.

In the papers [4, 5] by Guan and Sawyer solvability and precise subelliptic esti-
mates have been obtained for (1) in H*P-spaces (= W*P for integer s!). However,
[4] treats operators with C*>°-coefficients and this determines the technique involved
and the results obtained, while in [5] the coefficients are C%®-smooth, but the field
£ is of finite type, that is, it has a finite order of contact with 0f2.

The main goal of this lecture is to derive a priori estimates in Sobolev’s classes
W2P(Q) with any p € (1,00) for the solutions of the Poincaré problem (1), weak-
ening both Winzell’s assumptions on Ch®regularity of the coefficients of £ and
these of Guan and Sawyer on the finite type of £. We are dealing with the simpler
case when « preserves its sign on 02 which means the field £ is of neutral type. Of
course, the loss of smoothness mentioned, imposes some more regularity of the data
near the set £. We assume the coefficients of £ to be Lipschitz continuous near &
while only continuity (and even discontinuity controlled in VMO) is allowed away
from £. Similarly, £ is a Lipschitz vector field on 92 with Lipschitz continuous first
derivatives near £, and no restrictions on the order of contact with 9€) are required.
Regarding the tangency set £, it may have positive surface measure and is restricted
only to a sort of non-trapping condition that all trajectories of £ through the points
of £ are non-closed and leave £ in a finite time.

The technique adopted is based on a dynamical system approach employing the
fact that Ou/0¢ is a local strong solution, near £, to a Dirichlet-type problem with
right-hand side depending on the solution u itself. Application of the LP-estimates
for such problems leads to the functional inequality (26) for suitable W?2P-norms
of w on a family of subdomains which, starting away from &, evolve along the £-
trajectories and exhaust a sort of their tubular neighbourhoods. Fortunately, that
is an inequality with advanced argument and the desired W?P-estimate follows by
iteration with respect to the curvilinear parameter on the trajectories of £. Another
advantage of this approach is the improving-of-integrability property obtained for
the solutions of (1). Roughly speaking, it asserts that the problem (1), even if a
degenerate one, behaves as an elliptic problem for what concerns the degree p of
integrability. In other words, the second derivatives of any solution to (1) will have
the same rate of integrability as f and . We refer the reader to the paper [14] for
outgrowths of the W?2P-a priori estimates, such as uniqueness in W2P(Q), V p > 1,
of the strong solutions to (1) as well as its Fredholmness.

Concluding this introduction, we should mention the article [13] where similar
results have been obtained by different technique in the particular case when the
tangency set £ contains trajectories of £ with positive, but small enough lengths.
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1. HYPOTHESES AND THE MAIN RESULT

Hereafter 0 C R™, n > 3, will be a bounded domain with reasonably smooth
boundary and v(z) = (v!(z), ..., v"(z)) stands for the unit outward normal to
0 at z € Q. Consider a unit vector field £(z) = (¢*(z),...,¢"(z)) on 9Q and
let £(x) = 7(z) + v(z)v(z), where 7: 92 — R is the projection of £(z) on the
hyperplane tangent to 02 at z € 92 and : 9 — R is the inner product v(x) :=
£(x) - v(x). The set of zeroes of 7,

E:={z€dQ: y(z)=0},

is indeed the subset of 092 where the field £(x) becomes tangent to it.
Fix /' C Q to be a closed neighbourhood of £ in Q. We suppose £ is a uniformly
elliptic operator with measurable coefficients, satisfying

(2)  ATHEP <a¥(x)&€ < NEPP aa z€Q, VEER, a(x) = a’'(z)
for some positive constant A. Regarding the regularity of the data, we assume

- all € VMO(Q) N COL(N),
9N eCH, 9NN € C?, 1Fe O o0) N CHLHONN)

with VMO(Q) being the Sarason class of functions of vanishing mean oscillation and
C*1 denotes the space of functions with Lipschitz continuous k-th order derivatives.
Let us point out that (2), (3) and the Rademacher theorem give a® € L>(Q) N
Whoe(N). For what concerns the boundary operator B, we assume

v(x) =L(z)v(x) >0 Vzed, and
(4) 1 the arcs of the £-trajectories lying in £ (which coincide with these of 7)

are all non-closed and of finite lengths.

The first assumption simply means that £(x) is either tangential to 9 or is directed
outwards €2, that is, the field £ is of neutral type on 0f), while the second one is a
sort of non-trapping condition on the tangency set £. It implies that the £-integral
curves leave £ in a finite time in both directions.

FIGURE 1. The set of tangency £ is the union & U & U E3 where
codim gn&1 = codim 5n&s = 1 while meas go&3 > 0. The vector field
£ is transversal to £ and tangent to &. Actually, & consists of an
arc of T-trajectory, whereas &3 is union of such arcs.
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Throughout the text WP stands for the Sobolev class of functions with LP-
summable weak derivatives up to order k£ € N while W*P(9€2) with s > 0 non-
integer and p € (1,+00), is the Sobolev space of fractional order on 0f). Further,
we use the standard parameterization t — 1 (¢; ) for the trajectory (equivalently,
phase curve, mazximal integral curve) of a given vector field L passing through a
point z, that is, 99 (t;x) = L9 (t;x)) and ¥ (0;2) = .

We will employ below an extension of the field £ near 02 which preserves therein
its regularity and geometric properties. All the results and proofs in the sequel
work for such an arbitrary £-extension but, in order to make more evident some
geometric constructions, we prefer to introduce a special extension as follows. For

. L(x)
£

=
7
Aago

FIGURE 2

each x € R" near 0N set d(x) = dist (z,02) and define I' := {z € R": d(x) < do}
with small dy > 0. Letting Qo := Q\ I' and y(z) € 99 for the unique point closest
to z € ', we have (see [3, Chapter 14]) y(z) € C%Y(I") while y(z) € CY! near
€. Regarding the distance function d(z) = |r — y(x)|, it is Lipschitz continuous
in I and inherits the regularity of 02 at y(z) when considered on the parts of I'
lying in/out 2, but its normal derivative has a finite jump on 9. Anyway, it is a

routine to check (d(a:))2 € CHL(). Setting L(z) for the normalized representative
of L(y(z)) + (d(m))Qv(y(x)) Vo € T, it results |L(z)| = 1, L|gpq = £, L|g = 7 and
L € ¢%YT') n CYY(" N N). Moreover, the field L is strictly transversal to 9€).

As consequence of the non-trapping condition (4), the compactness of £ and the
semi-continuity properties of the lengths of the 7-maximal integral curves, it is not
hard to get that (see [22, Proposition 3.1] and [20, Proposition 3.2.4]) under the
hypotheses (3) and (4), there is a finite upper bound kg for the arclengths of the
T-trajectories lying in €. Moreover, each point of I' can be reached from 0 by an
L-integral curve of length at most k = const > 0.

In what follows, the letter C' will denote a generic constant depending on known
quantities defined by the data of (1), that is, on n, p, A, the respective norms of the
coefficients of £ and B in Q and N, the regularity of 2 and the constants xo and
K.

In order to control precisely the regularity of u near the tangency set £, we have
to introduce the appropriate functional spaces. For, take an arbitrary p € (1, 00)
and define the Banach spaces

FPUN):={feLlP(Q): 0f/OL € LP(N)}
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equipped with norm || f|| 707 := | fllr(@) + [|0f/OL| Lr(ar), and
PO, N) = {g@ e WI=VPP(9Q): ¢ € W21/PP (90 mN)}

normed by [[@ller@0.n) = l@llwi-1/p000) + |€llw2-1pp00000)-

Our main result asserts that the couple (£, B) improves the integrability of solu-
tions to (1) for any p in the range (1,00) and, moreover, provides for an a priori
estimate in the LP-Sobolev scales for any such solution.

Theorem 1. Under the hypotheses (2)—(4) let u € W2P(Q) be a strong solution of
the problem (1) with f € F1(Q,N) and ¢ € ®1(ON,N) where 1 < p < g < oc.
Then u € W24(Q) and there is an absolute constant C' such that

(5) lullwza) < C ([ullLa) + | flzeny + l@lloe@ony) -

Let us point out reader’s attention that the directional derivative du/OL of each
W2P-solution to (1) belongs to W2P(N). For, du/OL € W1P(N) and taking the
difference quotients in (1) in the direction of L (cf. [3, Chapter 8 and Lemma 7.24])
gives that Ou/OL € W?P(N) is a strong local solution to the Dirichlet problem

" L <gz> = g—l{i + 24" D L* Dyu + " D;; LF Dyu — %Diju a.e. N,
6
gz = on QNN

where L(x) = (L*(z),...,L"(z)) € CYY(N). Therefore, once having proved u €
W24(Q) and the estimate (5), we have

||3U/3L||W2,q(/\7) < (”UHLq(Q) + Hf”]-'q(ﬂ,/\/) + ||<P||<1>q(aQ,N))

for any closed neighbourhood N of € in Q, N C N, by means of the LP-theory of
uniformly elliptic equations (see [1] or [3, Chapter 9]). In other words, if a strong
solution u to (1) belongs to W29(Q) then du/OL € W*4(N) automatically, provided
feFIUN) and ¢ € P10, N).

2. PROOF OF THEOREM 1

Fix hereafter N7 C N” C N to be closed neighbourhoods of £ in Q with A"
so “narrow” that N C Q\ Qo (see Figure 3). The next result is an immediate
consequence of y(z) > 0Vz € 9Q\N"’ and the LP-theory of regular oblique derivative
problems for uniformly elliptic operators with VMO principal coefficients (cf. [7,
Theorem 2.3.1]).

Proposition 2. Assume (2), (3) and y(z) > 0 Vz € Q\ &, and let u € W?P(Q) be
a solution to (1) with f € L9(Q) and ¢ € W'=1/99(9Q), where 1 < p < q < oc.
Then u € W24(Q\ N) and there is a constant such that

(7) lullw2agay < € (lullzay + 1 zo@ + 19 lwi-vaaon)) -
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To derive the improving-of-integrability near the tangency set £, we consider any
solution of the problem (1) for which a¥, da% /0L € L>(N) in view of (3)! and f,
df JOL € LI(N) and ¢ € W?~1/99(9Q N N') by hypotheses.

Lemma 3. Under the assumptions of Theorem 1, the solution u of (1) belongs to
u € W24(N") and there is a constant such that

(8) lullw.aarry < C (Ilullza) + 1 lFa@ay + lelles@an) -

Proof. Take an arbitrary point zg € £. According to (4), the L-trajectory through
x leaves &€ in both directions for a finite time, that is, ¥ (t7;20) € N” \ N/,
Y (tT;20) € R\ Q (see Figure 3) for suitable t— < 0 < t.

FIGURE 3. 7, is the dotted set, while the double-dotted one is P, 7.

Set ‘H for the (n—1)-dimensional hyperplane through zy and orthogonal to L(z),
and define

B.(zg) :={x € H: |z —x0| <1}

with 7 > 0 to be chosen later. It follows from the Picard inequality? that if r is
small enough, then the flow of B,(z¢) along the L-trajectories at time ¢,

By (x0) == (t"; Br(x0)) == {¥r(t73y):  y € By(wo)}
is entirely contained in N \ N” whence BL(zo) N E = 0. The set
O, := {epp(t;2'): o' € Bl.(zo), te(0,t7 —t7)}
is an n-dimensional neighbourhood of the L-trajectory through zy and defining
7. :=0,N4Q,
1t will be clear from the considerations given below that instead of Lipschitz continuity of the

coefficients of £ in N as (3) asks, it suffices to have essentially bounded their directional derivatives
with respect to the field L.

2pp(ta') — g (B 2"7)] < et”LHC”NWm' —z"| forall ', 2" € N.
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the boundary 97, is composed of the “base” By (z9) and the “lateral” components
017, := 07, NOQ and T, := (07, N Q) \ BL.(z0). Indeed, 7, C N if r > 0 is small
enough.

We will derive (8) in 7, after that the desired estimate will follow by covering
the compact & C 9 by a finite number of sets like 7,. Our strategy is based on
a representation of u(x) in 7, by means of u(z’) with 2’ = ¢ (—&(z);z) € Bl.(z0)
for some £(x) > 0, and the integral of du/OL along the L-trajectory joining ' with
x. Thus the Sobolev norm of u will be expressed by the respective norm of du/0L
and that of u itself near B/ (x¢) where we dispose of (7). Concerning du/dL, it is
a local solution of Dirichlet problem near £ with right-hand side depending on .

Let p: H — RT be a C* cut-off function such that

1 y e B,(xg),
© () = j250)
0 y €M\ Bs,a(zo)
and extend it to R™ as constant on the L-trajectory through y € H. The function
U(z) = p(z)u(x) is a W2P(N)-solution of
LU = F(z) := pf + 2aY DjuDju + ua Dyjp a.e. 7,
pp on 07,
OU/OL =®:=¢0 near o7,
wou/OL on BlL(xg) C N\ N

(10)

Indeed, u € W2P(N) implies Du € L"/(n=p) if p < n and Du € L Vs > 1 when
p > n, whence F € LY (N) with

. np .
— f
(11) q = mm{q’n—p} np=n
q if p>n.

Further, F/OL € LY (N") as consequence of (6), du/dL € W2I(N" \ N') by
Proposition 2 whence ® € W2~1/949(97,). Thus (2), (3), 7, € N and (6) give that
V(z):=0U/OL

is a W?2P(7,)-solution of the Dirichlet problem

a2 LV =0F/OL+ 20" D;L¥ DU + a“ Dy LF DU — %2 DyU  ace. Ty,
V=& ondl.

Now we pass from z € O, into the new variables (2/,§) with 2’ = 9 (=§(z);z) €

Bl(xg) and &: ©, — (0,tT —t7), &(z) € CH1(O,). The transform x — (2/,¢)

defines a C''1-diffeomorphism because the field L is transversal to B’.(z¢). Moreover,

0/0L = 0/0¢, r(t;2') = (2/,t) and V(2/,§) = U (2/,€)/0¢ as (2/,§) € 7T,.

Since V (2/,&) is an absolutely continuous function in & for a.a. 2’ € Bl.(xg)) (after
redefining it, if necessary, on a set of zero measure) we get

£
(13) U(z',&) =U(2',0) +/0 V(2 ,t)dt  for a.a. (2/,€) € 7T,
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where the point (2/,0) € B..(zg) lies in N\ N’ and U(2',0) € W24 there by Propo-
sition 2, the Fubini theorem and [12, Remark 2.1]. Passing to the new variables
(2',€) in (12), taking the derivatives of (13) up to second order and substituting
them into the right-hand side of (12), this last reads

3
L'V = Fy(2,€) + /0 Do(E)V (2!, t)dt ace. Ty,

(14)
V=ao on 07,
where £ is the operator £ in terms of (z/,&) = (2),...,2,,_1,&),
15) Fy(2',€) == OF/OL + D1V («',€) + DU (2, €) + DyU (2, 0),

n—1
DoV (2 t) = Y AV ) Dy V(' t), A7 € L™,
ij=1

D1, D}, Dj are linear differential operators with L*°-coefficients, ord D; = ord D} =
1, ord D, = 2. The Sobolev imbedding theorem implies F; € L% (7,) with ¢’
given by (11) as consequence of OF/OL € LY (N"), U(z',0) € W4(B.(x)) and
U, V. € W2P(N"). Nevertheless the second-order operator D(€) has a quite rough
characteristic form which is neither symmetric nor sign-definite, the improving-of-
integrability holds for (14) thanks to the particular structure of 7, as union of
L-trajectories through B!.(z). Actually, we will show that if V € W2 on a sub-
set of 7, with ¢ < T, then V remains a W29 -function on a larger subset with
& < T + r for small enough r, after that the higher integrability of U will follow
from Proposition 2 and (13). For, take an arbitrary T € (0,t* —¢~) and define

Per:={(§eT: £<T}.

For a fixed r» > 0, {PT’T}T>O is a non-decreasing family of domains exhausting 7,
and P, = 7, for values of T greater than the mazimal exit-time
Tmax = sup sup{t>0: p(t;2') €Q, 2’ € Bl(x0)}.
z'€B.(x0)
Proposition 4. Let T € (0,tT —t~) and consider the solution V € W?P(T,) of the
problem (14). Suppose V€ W9 (P,.1) where ¢’ is given by (11).
There exists an 1o > 0 such that V € W2’q/(777»7T+r) for all r < rg.

Proof. There are three possible cases to be distinguished.
Case A: T + 3r < Tyax. We have P.r C Prr43, C T = Py 1,,.. and consider the
C*°-function n: R — [0, 1] such that

1 as & € (—oo, T + 1],
(16) n(€) = < strictly decreases as &€ (T +7r,T + 2r),
0 as & > T+ 2r.

Setting V (/,€) := n(€)V (2, €), it follows L'V = n(L'V) + L1V where L1 is a first-
order differential operator with L>-coefficients depending on these of £’ and on the
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derivatives of 1. Therefore,

- 13
(17) Uvznﬂ+cwwm@\£zmavuwMt

¢ n(§) ’
=nk + LV —|—/ 7@2({)‘/(% ,t)dt
o n(t)
because Dy(€) is a second-order operator acting in the z/-variables only.
We set Q. C Prrysr \ Prr—sr for a Chl-smooth domain containing Ps, JaT+2r \
Ps3;/4,7—2r and such that

7“_19,,::{(37,5): g':x'/r,N &E-T)/r, (2, )EQ}ECI’I

uniformly in r. The boundary 02, consists of the “lateral” parts 9:€2,. := 0§, N OS2
and 9o, := 00, NQN{E € (T —2r,T +2r)} C (Prrsar \ Prr—2r) \ (Parjarior \
Psyjar— 2,,) and of two C'!-smooth components 9QF lying in Pr. 1430 \ Prr42r and
PTT or \ Prr—3r, respectlvely The properties of p (cf. (9)) ensure U =0, V =0,
V=0on7 \ 73,74 whence V =0 near 8:9,.

For an arbitrary (2, ) € Q,, the factor n(£)/n(t) in (17) vanishes when & > T'+2r
while 1(£)/n(t) < 1 because n decreases in (T + r,T + 2r). Moreover, | —T'| < 3r
for (2/,€) € Q, and

3 ~ T 3 ~
/0 Z(é))l)z(g)vu’,t)dt: / ”(5)92(@1/( )t + /T Zg))DQ(f)V(:r’,t)dt
3 ~
/ Do(¢ t)dt + /T ZigDQ(QV(:r’,t)dt

by means of (15) and since n(t) =n(T) =1ast <T.
We get from (14) and (17) that V € W2P(£2,) solves the Dirichlet problem

07 =rw.o+ [ MpETeon  ae (9 en,
T
(e € W21/24 on 9,Q, (by (10)),
(18) 0 on 39, (by (10)),
V=0q:=nd=1{0 on 9QF  (by (16)),
Ve w2-ldd  on 00 (since £ < T — 2r and
Ve W29 (P.7))

where, recalling V € W27 (P, ), we have
T
(19) (2, &) =nF1 + L1V + 77(5)/ Dy(V (!, t)dt € LY ().
0

We are going to prove now that Ve WQ’QI(QT) for small enough r > 0, whence it
will follow V' € W29 (P, ry,) in view of (16) and V = 0 near 9,.. The claim is
obvious if ¢’ = p because V€ W?P(T,.). Otherwise, take an arbitrary s € [p, ¢'] and
denote by W2*(£2,) the Sobolev space W25(£),) normed with

lullyyzs g,y = lullze,) +rlIDull Lo,y + 1 D?ull Lo,
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Define now the operator §: W2*(€,.) — W2*(Q,.) as follows: for any w € W2*(€,.)
the image Fw € W2*(Q,) is the unique solution of the Dirichlet problem

3
L (Fw) = F —|—/T :;Ef))l)g(ﬁ)w(x',t)dt € L*(Q,) aa. (2,6 €Q,,

Fw = e W215(9Q,) on 9Q,.

(20)

We will prove that § is a contraction for small values of r. For this goal, take
arbitrary wy, ws € WE’S(QT). The difference gw; — Fwsa solves
/ ¢ n(§) ’ /
L' (Fw1 — Fwz) = / %92(5)(101 —wa)(a',)dt  a.a. (2,€) € Uy,
T
Fwi — Fwe =0 on 0€),.

(21)

In order to apply the L*-a priori estimates from [1] or [3] for the solutions of (21),
we have to control the dependence on r therein. For, we recall that r—1Q, € C1!
uniformly in r and apply a standard approach consisting of dilation of €2, onto
r~1Q,., reduction of the problem (21) to a new one in variables (/,&) € r~'Q,.,
application of the L®-estimates from [3, Theorem 9.17] and finally turning back to

(21) (see the Proof of Lemma 2.2, Eq. (2.12) in [12]). This way, one gets

¢ n(é) /
/T %Dg(f)(wl — wz)($ ,t)dt

where the constant C' is independent of r. Jensen’s integral inequality yields

6@ — wo) (2’
/Tn(t)Dz({)(wl 2)(2,t)dt

and thus (22) rewrites into

(22) IFw1 — Fwzlly2s g,y < Cr”

Lo()

2

<C max [£—T|||lwr — w2
Ls(Qr) (x’,é)GQT’ L HW* ()

[Sw1 — SwQHWE’S(QT) <C (x,rggieng 1€ — T[||lwy — wQHW*ZvS(QT)-

We have max, ¢yeq, [§ — T| < 3r, C is independent of r and therefore § will be

really a contraction from W2*(Q,) into itself for any s € [p,¢] if r < ro with rg
under control and small enough. Fixing r = ry/2, there is a unique fixed point of
F in W25(Q,) for all s € [p,¢]. However, V € W2P(Q,) is already a fixed point of
 since it solves (18) and therefore V € W24 (1,). It follows V € W24 (P.ry,) by
means of V € W9 (P,.7), V=0on7,\ T3,/4 and the properties of 7(&).
Case B: T < Tyax < T + 3r. We have 7, \ Prr # 0, Prrysr = 7, now and
we do not need anymore the cut-off function 7 because V. = 90U/IL = 0 near
the points of 027, where £ > T (cf. (9)). Thus, it suffices to repeat the above
arguments with 7(£) = 1 V€ € R and €, € C%! defined as before when ¢ < T while
T304 \ Parjar C (e N{E>T}) C T\ Prr (cf. (9)). We have anyway a problem
like (18) for V = V with boundary condition

pp € W21aa  on 9,0, = 9Q, N 9,

V=0U/OL=1<0 on 3, =900 NQAN{>T —3r},
Ve W2 144 ondQ; (by hypothesis).
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Therefore, the procedure from Case A gives V € Ww2d (Pr1r+3r)-
Case C: Tinax < T. We have P14, = P17 = 7, now and thus the claim. O

Proposition 5. Suppose r < ro with ro given in Proposition 4. Then the solution
V' of the problem (14) lies in W29(7,.) and satisfies the estimate

(23) IVllwacr <o(||uum+||f||mm+ugo||¢qm>
+ Nullwragz) + 10u/OL lwrac,) ).

Proof. We note that V € W24 C W24 near B'.(x) in view of B.(z9) C N \ N/,
Proposition 2 and (6). Therefore, successive applications of Proposition 4 with
increasing values of T will give V € W24 (7,), ¢ > p. After that, in order to get
V € W24(T,), it suffices to put ¢’ in the place of p in (11) and to repeat finitely
many times the above arguments until ¢’ = q.

To obtain (23), we take T € (0, —¢7) to be arbitrary, fix r = r9/2, and consider

the domains €2, defined in the proof of Proposition 4. Let V =nV € W24(T,) solve
(18) with 7 given by (16) in Case A and p =1 in Case B. Since V is a fixed point
of the mapping §: W24(,) — W2(Q,), FV =V, we get

ID*V s = ID*EV)lzscen) < 1D’V = 30)llsace) + ID*F0) | zecer)
while
| D2(Fw1 = Fwz) oo, < 01D (w1 = w2)llpae,) Veor, wo € W2U(Q,), 6<1

because § is a contraction, (22) and the fact that D2(&) is a homogeneous second-
order operator (cf. (15)). This way, || D2(FV — $0)| e, < 0| D2(V — 0) e,
6HD2‘7HLq(QT) and therefore

(24) 1DV Lag,) < ClID*(F0)] oo

with §0 € W?24(€,.) being the unique solution of the Dirichlet problem
{E’(%O) =F, a.e. Q,, 30=3& on 99,

(see (20)), for which the LP-theory (cf. [3, Chapter 9]) gives

(25)  ID*(30)]la(e,) < IB0llw2a(o,) < C (HFQHL'I(QT) + H‘SHWH/q,q(am)) -

Direct applications, based on (19) and (15), yield

T
1Pallzogay = HnF L0V a(e) [ DaOVE 0t

La(Qr)
< C(H‘?F/aLHLq(QT) + U lw2avnwry + 10 lwraey + 1V IIwneez)

F1DV | zagr, 1)
< C(Haf/aLHL‘I(N) + |lullwzaarmary + llullwiaiz) + [[0u/OL lwa(z,)

+ 1DV o, p))
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in view of (7), (10), U = pu, V.= 0U/OL and (9). Moreover,
||(I)Hw2fl/q»q(agr) <C (HSOHW%l/qvq(anN) + HVHW“(PT,T))

< C(llellwe-1/aa@anny + 1IVIwraz) + ”DQV”LQ(PT,T))

e R

< C (lellw2-1/a9000n) + 10w/OL|lwia(z,) + !!D2V’\Lq(7>T,T)>

by (18) and 02, C P, r. Further on, V =V on Py 1+r, whence
ID*V | La(p, sy < ID*Vaep, 1) + 1D*V || Laq,)-

Therefore, setting ((T) = |DV[1up, ) and K = [ulliso) + Il 7o, +
lellea@o.n) + ||“HW1’<1(TT) + ||8u/8L||W1,q(7—T), it follows from (24), (25) and Propo-
sition 2 that

(26) (T+7r)<C(K+T) VT e (0,tr—t).

To get (23), we let m to be the least integer such that Tiax < mr and iterate (26)
in order to obtain

ID*V | Laczy = 1DV || Lagp, y0) = ¢(Timax) = ((mrr) = ¢((m = D)r +7)
< C(K + ¢((m — 1)7")) = C(K +¢((m—=2)r+ 7“))
< K(C+C?) + C*¢((m —2)r)

<SKY CI4Cm(0)=K) ¢
j=1 j=1
This proves (23). O

Remark 6. It is important to note that the constant C' in Proposition 5 depends
on m through Ti,.x, and therefore on the point xg € £. Actually, that constant will
have the very same value for each other point of £ lying on the same L-trajectory
as g.

Moreover, if the improving-of-integrability property asserted in Propositions 4 and
5 holds on a set S C Q then it is guaranteed, on the base of (13), on any other set
which can be reached from S along L-trajectories.

To complete the proof of Lemma 3, we select a finite set {ﬁj j-Vzl of neighbour-

hoods covering the compact &, each of the type 7, above with r = ry/2, and such
that 7 := closure (Uévzl ’Z;j/Q> C N is a closed neighbourhood of € in Q. It is clear
that Proposition 2 remains true with 7 instead of A and then (7) rewrites into
(27) ullw2.a\7) < C (HUHLq(Q) + 1 fllLa) + ”@\\Wl—l/mq(@ﬂ)) :

The improving-of-integrability claimed in Lemma 3 then follows from (13), Propo-
sition 5 and (27) (recall U = u on ’Z;]/Q). Similarly, (13), (27) and (23) yield

(28) lullwzanmy < llullweaery + lullw2.avng
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< C(lullagy + 1fll7e@ny + llelloa@an
+ [[ullwrony + [10u/OL]lwranry)-
Later on, N\ N"” € Q\ N/ and
lullwraary < llullwaaeny + llullwraanam)
< ellullwzany + Ce) (lull ooy + llullw2a@am)

in view of the interpolation inequality for the W24(N")-norms with ¢ > 0 under
control®. In the same manner,

0u/OL|ly1.aary < |0u/OL[ywranry + [[0u/OL||y1.aanar)
< e||0u/OL|\w2anr) + C(e) (10u/OL| Larry + lullw2a@am),

N

while
[0u/OL |\ w2anry < C(llullw2amy + 1l o) + 1fll7e@ny + ll@lloa@on)

by means of the local a priori estimates ([3, Theorem 9.11]) for the problem (6).
A substitution of the above expressions into (28) and (7) give

lullwzanrny < C(llullLay + 1 fllza@nn + llellos@an
+ ellullw2ary + C()]|0u/OL|| Lacarr))
whence, choosing € > 0 small enough, we get

[ullw2.aarmy < C(HUHLq(Q) + 1 fllFaony + llellos@on + ||U||W1¢1(N'))-

Similarly, another application of the interpolation inequality yields

lullwraary < lullwrapeny < 6llullwe.aaemy + CO)[[ullLaam
and thus

lullwzaemy < C(llullLa) + 1Lz + lellsa@ony)-
for small § > 0. The proof of Lemma 3 is completed. O

The statement of Theorem 1 follows from Proposition 2 and Lemma 3.
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