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W 2,p-A PRIORI ESTIMATES FOR THE NEUTRAL POINCARÉ
PROBLEM∗
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To the memory of Filippo Chiarenza

Abstract. A degenerate oblique derivative problem is studied for uniformly el-
liptic operators with low regular coefficients in the framework of Sobolev’s classes
W 2,p(Ω) for arbitrary p > 1. The boundary operator is prescribed in terms of a
directional derivative with respect to the vector field ‘ that becomes tangential
to ∂Ω at the points of some non-empty subset E ⊂ ∂Ω and is directed outwards
Ω on ∂Ω \ E . Under quite general assumptions of the behaviour of ‘, we derive
a priori estimates for the W 2,p(Ω)-strong solutions for any p ∈ (1,∞).

Introduction

The lecture deals with regularity in Sobolev’s spaces W 2,p(Ω), ∀ p ∈ (1,∞), of
the strong solutions to the oblique derivative problem

(1)

{
Lu := aij(x)Diju = f(x) a.e. Ω,

Bu := ∂u/∂` = ϕ(x) on ∂Ω

where L is a uniformly elliptic operator with low regular coefficients and B is pre-
scribed in terms of a directional derivative with respect to the unit vector field
`(x) = (`1(x), . . . , `n(x)) defined on ∂Ω, n ≥ 3. Precisely, we are interested in the
Poincaré problem (1) (cf. [17, 20, 16]), that is, a situation when `(x) becomes
tangential to ∂Ω at the points of a non-empty subset E of ∂Ω.

From a mathematical point of view, (1) is not an elliptic boundary value problem.
In fact, it follows from the general PDEs theory that (1) is a regular (elliptic)
problem if and only if the Shapiro–Lopatinskij complementary condition is satisfied
which means ` must be transversal to ∂Ω when n ≥ 3 and |`| 6= 0 as n = 2. If ` is
tangent to ∂Ω then (1) is a degenerate problem and new effects occur in contrast
to the regular case. It turns out that the qualitative properties of (1) depend on
the behaviour of ` near the set of tangency E and especially on the way the normal
component γν of ` (with respect to the outward normal ν to ∂Ω) changes or no
its sign on the trajectories of ` when these cross E . The main results were obtained
by Hörmander [6], Egorov and Kondrat’ev [2], Maz’ya [8], Maz’ya and Paneah [9],
Melin and Sjöstrand [10], Paneah [15] and good surveys and details can be found in
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Popivanov and Palagachev [20] and Paneah [16]. The problem (1) has been studied
in the framework of Sobolev spaces Hs(≡ Hs,2) assuming C∞-smooth data and this
naturally involved techniques from the pseudo-differential calculus.

The simplest case arises when γ := ` · ν, even if zero on E , conserves the sign
on ∂Ω. Then E and ` are of neutral type (a terminology coming from the physical
interpretation of (1) in the theory of Brownian motion, see [20]) and (1) is a problem
of Fredholm type (cf. [2]). Assume now that γ changes the sign from “−” to “+” in
positive direction along the `-integral curves passing through the points of E . Then
` is of emergent type and E is called attracting manifold. The new effect appearing
now is that the kernel of (1) is infinite-dimensional ([6]) and to get a well-posed
problem one has to modify (1) by prescribing the values of u on E (cf. [2]). Finally,
suppose the sign of γ changes from “+” to “−” along the `-trajectories. Now ` is
of submergent type and E corresponds to a repellent manifold. The problem (1)
has infinite-dimensional cokernel ([6]) and Maz’ya and Paneah [9] were the first to
propose a relevant modification of (1) by violating the boundary condition at the
points of E . As consequence, a Fredholm problem arises, but the restriction u|∂Ω

has a finite jump at E . What is the common feature of the degenerate problems,
independently of the type of `, is that the solution “loses regularity” near the set
of tangency from the data of (1) in contrast to the non-degenerate case when any
solution gains two derivatives from f and one derivative from ϕ. Roughly speaking,
that loss of smoothness depends on the order of contact between ` and ∂Ω and is
given by the subelliptic estimates obtained for the solutions of degenerate problems
(cf. [4, 5, 6, 9]). Precisely, if ` has a contact of order k with ∂Ω then the solution
of (1) gains 2− k/(k + 1) derivatives from f and 1− k/(k + 1) derivatives from ϕ.
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(b) emergent vector field `
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(c) submergent vector field `

For what concerns the geometric structure of E , it was supposed initially to be a
submanifold of ∂Ω of codimension one. Melin and Sjöstrand [10] and Paneah [15]
were the first to study the Poincaré problem (1) in a more general situation when E
is a massive subset of ∂Ω with positive surface measure, allowing E to contain arcs
of `-trajectories of finite length. Their results were extended by Winzell ([21, 22])
to the framework of Hölder’s spaces who studied (1) assuming C1,α-smoothness of
the coefficients of L. It is worth noting that ` has automatically an infinite order
of contact with ∂Ω when E is a massive subset of the boundary.
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To deal with non-linear Poincaré problems, however, we have to dispose of precise
information on the linear problem (1) with coefficients less regular than C∞ (see
[11, 18, 19, 20]). Indeed, a priori estimates in W 2,p for solutions to (1) would imply
easily pointwise estimates for u and Du for suitable values of p > 1 through the
Sobolev imbeddings. This way, we are naturally led to consider the problem (1) in
a strong sense, that is, to searching for solutions lying in W 2,p which satisfy Lu = f
almost everywhere (a.e.) in Ω and Bu = ϕ holds in the sense of trace on ∂Ω.

In the papers [4, 5] by Guan and Sawyer solvability and precise subelliptic esti-
mates have been obtained for (1) in Hs,p-spaces (≡ W s,p for integer s!). However,
[4] treats operators with C∞-coefficients and this determines the technique involved
and the results obtained, while in [5] the coefficients are C0,α-smooth, but the field
` is of finite type, that is, it has a finite order of contact with ∂Ω.

The main goal of this lecture is to derive a priori estimates in Sobolev’s classes
W 2,p(Ω) with any p ∈ (1,∞) for the solutions of the Poincaré problem (1), weak-
ening both Winzell’s assumptions on C1,α-regularity of the coefficients of L and
these of Guan and Sawyer on the finite type of `. We are dealing with the simpler
case when γ preserves its sign on ∂Ω which means the field ` is of neutral type. Of
course, the loss of smoothness mentioned, imposes some more regularity of the data
near the set E . We assume the coefficients of L to be Lipschitz continuous near E
while only continuity (and even discontinuity controlled in V MO) is allowed away
from E . Similarly, ` is a Lipschitz vector field on ∂Ω with Lipschitz continuous first
derivatives near E , and no restrictions on the order of contact with ∂Ω are required.
Regarding the tangency set E , it may have positive surface measure and is restricted
only to a sort of non-trapping condition that all trajectories of ` through the points
of E are non-closed and leave E in a finite time.

The technique adopted is based on a dynamical system approach employing the
fact that ∂u/∂` is a local strong solution, near E , to a Dirichlet-type problem with
right-hand side depending on the solution u itself. Application of the Lp-estimates
for such problems leads to the functional inequality (26) for suitable W 2,p-norms
of u on a family of subdomains which, starting away from E , evolve along the `-
trajectories and exhaust a sort of their tubular neighbourhoods. Fortunately, that
is an inequality with advanced argument and the desired W 2,p-estimate follows by
iteration with respect to the curvilinear parameter on the trajectories of `. Another
advantage of this approach is the improving-of-integrability property obtained for
the solutions of (1). Roughly speaking, it asserts that the problem (1), even if a
degenerate one, behaves as an elliptic problem for what concerns the degree p of
integrability. In other words, the second derivatives of any solution to (1) will have
the same rate of integrability as f and ϕ. We refer the reader to the paper [14] for
outgrowths of the W 2,p-a priori estimates, such as uniqueness in W 2,p(Ω), ∀ p > 1,
of the strong solutions to (1) as well as its Fredholmness.

Concluding this introduction, we should mention the article [13] where similar
results have been obtained by different technique in the particular case when the
tangency set E contains trajectories of ` with positive, but small enough lengths.
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1. Hypotheses and the Main Result

Hereafter Ω ⊂ Rn, n ≥ 3, will be a bounded domain with reasonably smooth
boundary and ν(x) =

(
ν1(x), . . . , νn(x)

)
stands for the unit outward normal to

∂Ω at x ∈ ∂Ω. Consider a unit vector field `(x) =
(
`1(x), . . . , `n(x)

)
on ∂Ω and

let `(x) = τ (x) + γ(x)ν(x), where τ : ∂Ω → Rn is the projection of `(x) on the
hyperplane tangent to ∂Ω at x ∈ ∂Ω and γ : ∂Ω → R is the inner product γ(x) :=
`(x) · ν(x). The set of zeroes of γ,

E :=
{
x ∈ ∂Ω: γ(x) = 0

}
,

is indeed the subset of ∂Ω where the field `(x) becomes tangent to it.
Fix N ⊂ Ω to be a closed neighbourhood of E in Ω. We suppose L is a uniformly

elliptic operator with measurable coefficients, satisfying

(2) λ−1|ξ|2 ≤ aij(x)ξiξj ≤ λ|ξ|2 a.a. x ∈ Ω, ∀ξ ∈ Rn, aij(x) = aji(x)

for some positive constant λ. Regarding the regularity of the data, we assume

(3)

{
aij ∈ V MO(Ω) ∩ C0,1(N ),
∂Ω ∈ C1,1, ∂Ω ∩N ∈ C2,1, `i ∈ C0,1(∂Ω) ∩ C1,1(∂Ω ∩N )

with V MO(Ω) being the Sarason class of functions of vanishing mean oscillation and
Ck,1 denotes the space of functions with Lipschitz continuous k-th order derivatives.
Let us point out that (2), (3) and the Rademacher theorem give aij ∈ L∞(Ω) ∩
W 1,∞(N ). For what concerns the boundary operator B, we assume

(4)





γ(x) = `(x)·ν(x) ≥ 0 ∀x ∈ ∂Ω, and
the arcs of the `-trajectories lying in E (which coincide with these of τ )
are all non-closed and of finite lengths.

The first assumption simply means that `(x) is either tangential to ∂Ω or is directed
outwards Ω, that is, the field ` is of neutral type on ∂Ω, while the second one is a
sort of non-trapping condition on the tangency set E . It implies that the `-integral
curves leave E in a finite time in both directions.
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Figure 1. The set of tangency E is the union E1 ∪ E2 ∪ E3 where
codim ∂ΩE1 = codim ∂ΩE2 = 1 while meas ∂ΩE3 > 0. The vector field
` is transversal to E1 and tangent to E2. Actually, E2 consists of an
arc of τ -trajectory, whereas E3 is union of such arcs.
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Throughout the text W k,p stands for the Sobolev class of functions with Lp-
summable weak derivatives up to order k ∈ N while W s,p(∂Ω) with s > 0 non-
integer and p ∈ (1,+∞), is the Sobolev space of fractional order on ∂Ω. Further,
we use the standard parameterization t 7→ ψL(t;x) for the trajectory (equivalently,
phase curve, maximal integral curve) of a given vector field L passing through a
point x, that is, ∂tψL(t;x) = L

(
ψL(t;x)

)
and ψL(0;x) = x.

We will employ below an extension of the field ` near ∂Ω which preserves therein
its regularity and geometric properties. All the results and proofs in the sequel
work for such an arbitrary `-extension but, in order to make more evident some
geometric constructions, we prefer to introduce a special extension as follows. For
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each x ∈ Rn near ∂Ω set d(x) = dist (x, ∂Ω) and define Γ := {x ∈ Rn : d(x) ≤ d0}
with small d0 > 0. Letting Ω0 := Ω \ Γ and y(x) ∈ ∂Ω for the unique point closest
to x ∈ Γ, we have (see [3, Chapter 14]) y(x) ∈ C0,1(Γ) while y(x) ∈ C1,1 near
E . Regarding the distance function d(x) = |x − y(x)|, it is Lipschitz continuous
in Γ and inherits the regularity of ∂Ω at y(x) when considered on the parts of Γ
lying in/out Ω, but its normal derivative has a finite jump on ∂Ω. Anyway, it is a
routine to check

(
d(x)

)2 ∈ C1,1(Γ). Setting L(x) for the normalized representative
of `(y(x)) +

(
d(x)

)2
ν(y(x)) ∀x ∈ Γ, it results |L(x)| = 1, L|∂Ω = `, L|E = τ and

L ∈ C0,1(Γ) ∩ C1,1(Γ ∩N ). Moreover, the field L is strictly transversal to ∂Ω0.
As consequence of the non-trapping condition (4), the compactness of E and the

semi-continuity properties of the lengths of the τ -maximal integral curves, it is not
hard to get that (see [22, Proposition 3.1] and [20, Proposition 3.2.4]) under the
hypotheses (3) and (4), there is a finite upper bound κ0 for the arclengths of the
τ -trajectories lying in E . Moreover, each point of Γ can be reached from ∂Ω0 by an
L-integral curve of length at most κ = const > 0.

In what follows, the letter C will denote a generic constant depending on known
quantities defined by the data of (1), that is, on n, p, λ, the respective norms of the
coefficients of L and B in Ω and N , the regularity of ∂Ω and the constants κ0 and
κ.

In order to control precisely the regularity of u near the tangency set E , we have
to introduce the appropriate functional spaces. For, take an arbitrary p ∈ (1,∞)
and define the Banach spaces

Fp(Ω,N ) := {f ∈ Lp(Ω): ∂f/∂L ∈ Lp(N )}



504 D.K. PALAGACHEV

equipped with norm ‖f‖Fp(Ω,N ) := ‖f‖Lp(Ω) + ‖∂f/∂L‖Lp(N ), and

Φp(∂Ω,N ) :=
{

ϕ ∈ W 1−1/p,p(∂Ω): ϕ ∈ W 2−1/p,p(∂Ω ∩N )
}

normed by ‖ϕ‖Φp(∂Ω,N ) := ‖ϕ‖W 1−1/p,p(∂Ω) + ‖ϕ‖W 2−1/p,p(∂Ω∩N ).

Our main result asserts that the couple (L,B) improves the integrability of solu-
tions to (1) for any p in the range (1,∞) and, moreover, provides for an a priori
estimate in the Lp-Sobolev scales for any such solution.

Theorem 1. Under the hypotheses (2)–(4) let u ∈ W 2,p(Ω) be a strong solution of
the problem (1) with f ∈ Fq(Ω,N ) and ϕ ∈ Φq(∂Ω,N ) where 1 < p ≤ q < ∞.

Then u ∈ W 2,q(Ω) and there is an absolute constant C such that

(5) ‖u‖W 2,q(Ω) ≤ C
(‖u‖Lq(Ω) + ‖f‖Fq(Ω,N ) + ‖ϕ‖Φq(∂Ω,N )

)
.

Let us point out reader’s attention that the directional derivative ∂u/∂L of each
W 2,p-solution to (1) belongs to W 2,p(N ). For, ∂u/∂L ∈ W 1,p(N ) and taking the
difference quotients in (1) in the direction of L (cf. [3, Chapter 8 and Lemma 7.24])
gives that ∂u/∂L ∈ W 2,p(N ) is a strong local solution to the Dirichlet problem

(6)




L

(
∂u

∂L

)
=

∂f

∂L
+ 2aijDjL

kDkiu + aijDijL
kDku− ∂aij

∂L
Diju a.e. N ,

∂u

∂L
= ϕ on ∂Ω ∩N

where L(x) = (L1(x), . . . , Ln(x)) ∈ C1,1(N ). Therefore, once having proved u ∈
W 2,q(Ω) and the estimate (5), we have

‖∂u/∂L‖
W 2,q( eN )

≤ C ′ (‖u‖Lq(Ω) + ‖f‖Fq(Ω,N ) + ‖ϕ‖Φq(∂Ω,N )

)

for any closed neighbourhood Ñ of E in Ω, Ñ ⊂ N , by means of the Lp-theory of
uniformly elliptic equations (see [1] or [3, Chapter 9]). In other words, if a strong
solution u to (1) belongs to W 2,q(Ω) then ∂u/∂L ∈ W 2,q(N ) automatically, provided
f ∈ Fq(Ω,N ) and ϕ ∈ Φq(∂Ω,N ).

2. Proof of Theorem 1

Fix hereafter N ′ ⊂ N ′′ ⊂ N to be closed neighbourhoods of E in Ω with N ′′
so “narrow” that N ′′ ⊂ Ω \ Ω0 (see Figure 3). The next result is an immediate
consequence of γ(x) > 0 ∀x ∈ ∂Ω\N ′ and the Lp-theory of regular oblique derivative
problems for uniformly elliptic operators with V MO principal coefficients (cf. [7,
Theorem 2.3.1]).

Proposition 2. Assume (2), (3) and γ(x) > 0 ∀x ∈ Ω \ E , and let u ∈ W 2,p(Ω) be
a solution to (1) with f ∈ Lq(Ω) and ϕ ∈ W 1−1/q,q(∂Ω), where 1 < p ≤ q < ∞.

Then u ∈ W 2,q(Ω \ N ′) and there is a constant such that

(7) ‖u‖W 2,q(Ω\N ′) ≤ C
(
‖u‖Lq(Ω) + ‖f‖Lq(Ω) + ‖ϕ‖W 1−1/q,q(∂Ω)

)
.
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To derive the improving-of-integrability near the tangency set E , we consider any
solution of the problem (1) for which aij , ∂aij/∂L ∈ L∞(N ) in view of (3)1 and f,

∂f/∂L ∈ Lq(N ) and ϕ ∈ W 2−1/q,q(∂Ω ∩N ) by hypotheses.

Lemma 3. Under the assumptions of Theorem 1, the solution u of (1) belongs to
u ∈ W 2,q(N ′′) and there is a constant such that

(8) ‖u‖W 2,q(N ′′) ≤ C
(‖u‖Lq(Ω) + ‖f‖Fq(Ω,N ) + ‖ϕ‖Φq(∂Ω,N )

)
.

Proof. Take an arbitrary point x0 ∈ E . According to (4), the L-trajectory through
x0 leaves E in both directions for a finite time, that is, ψL(t−;x0) ∈ N ′′ \ N ′,
ψL(t+;x0) ∈ Rn \ Ω (see Figure 3) for suitable t− < 0 < t+.
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Figure 3. Tr is the dotted set, while the double-dotted one is Pr,T .

SetH for the (n−1)-dimensional hyperplane through x0 and orthogonal to L(x0),
and define

Br(x0) := {x ∈ H : |x− x0| < r}
with r > 0 to be chosen later. It follows from the Picard inequality2 that if r is
small enough, then the flow of Br(x0) along the L-trajectories at time t−,

B′
r(x0) := ψL(t−;Br(x0)) :=

{
ψL(t−; y) : y ∈ Br(x0)

}

is entirely contained in N ′′ \ N ′ whence B′
r(x0) ∩ E = ∅. The set

Θr :=
{
ψL(t;x′) : x′ ∈ B′

r(x0), t ∈ (0, t+ − t−)
}

is an n-dimensional neighbourhood of the L-trajectory through x0 and defining

Tr := Θr ∩ Ω,

1It will be clear from the considerations given below that instead of Lipschitz continuity of the
coefficients of L in N as (3) asks, it suffices to have essentially bounded their directional derivatives
with respect to the field L.

2| L(t; x′)− L(t; x′′)| ≤ e
t‖L‖

C1(N) |x′ − x′′| for all x′, x′′ ∈ N .
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the boundary ∂Tr is composed of the “base” B′
r(x0) and the “lateral” components

∂1Tr := ∂Tr ∩ ∂Ω and ∂2Tr := (∂Tr ∩Ω) \B′
r(x0). Indeed, Tr ⊂ N ′′ if r > 0 is small

enough.
We will derive (8) in Tr after that the desired estimate will follow by covering

the compact E ⊂ ∂Ω by a finite number of sets like Tr. Our strategy is based on
a representation of u(x) in Tr by means of u(x′) with x′ = ψL(−ξ(x);x) ∈ B′

r(x0)
for some ξ(x) > 0, and the integral of ∂u/∂L along the L-trajectory joining x′ with
x. Thus the Sobolev norm of u will be expressed by the respective norm of ∂u/∂L
and that of u itself near B′

r(x0) where we dispose of (7). Concerning ∂u/∂L, it is
a local solution of Dirichlet problem near E with right-hand side depending on u.

Let µ : H → R+ be a C∞ cut-off function such that

(9) µ(y) =

{
1 y ∈ Br/2(x0),
0 y ∈ H \B3r/4(x0)

and extend it to Rn as constant on the L-trajectory through y ∈ H. The function
U(x) := µ(x)u(x) is a W 2,p(N )-solution of

(10)





LU = F (x) := µf + 2aijDjµDiu + uaijDijµ a.e. Tr,

∂U/∂L = Φ :=





µϕ on ∂1Tr,

0 near ∂2Tr,

µ∂u/∂L on B′
r(x0) ⊂ N ′′ \ N ′.

Indeed, u ∈ W 2,p(N ) implies Du ∈ Lnp/(n−p) if p < n and Du ∈ Ls ∀s > 1 when
p ≥ n, whence F ∈ Lq′(N ) with

(11) q′ :=





min
{

q,
np

n− p

}
if p < n,

q if p ≥ n.

Further, ∂F/∂L ∈ Lq′(N ′′) as consequence of (6), ∂u/∂L ∈ W 2,q(N ′′ \ N ′) by
Proposition 2 whence Φ ∈ W 2−1/q,q(∂Tr). Thus (2), (3), Tr ⊂ N ′′ and (6) give that

V (x) := ∂U/∂L

is a W 2,p(Tr)-solution of the Dirichlet problem

(12)

{
LV = ∂F/∂L + 2aijDjL

kDikU + aijDijL
kDkU − ∂aij

∂L DijU a.e. Tr,

V = Φ on ∂Tr.

Now we pass from x ∈ Θr into the new variables (x′, ξ) with x′ = ψL(−ξ(x);x) ∈
B′

r(x0) and ξ : Θr → (0, t+ − t−), ξ(x) ∈ C1,1(Θr). The transform x 7→ (x′, ξ)
defines a C1,1-diffeomorphism because the field L is transversal to B′

r(x0). Moreover,
∂/∂L ≡ ∂/∂ξ, ψL(t;x′) = (x′, t) and V (x′, ξ) = ∂U(x′, ξ)/∂ξ as (x′, ξ) ∈ Tr.
Since V (x′, ξ) is an absolutely continuous function in ξ for a.a. x′ ∈ B′

r(x0)) (after
redefining it, if necessary, on a set of zero measure) we get

(13) U(x′, ξ) = U(x′, 0) +
∫ ξ

0
V (x′, t)dt for a.a. (x′, ξ) ∈ Tr,
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where the point (x′, 0) ∈ B′
r(x0) lies in N ′′ \N ′ and U(x′, 0) ∈ W 2,q there by Propo-

sition 2, the Fubini theorem and [12, Remark 2.1]. Passing to the new variables
(x′, ξ) in (12), taking the derivatives of (13) up to second order and substituting
them into the right-hand side of (12), this last reads

(14)




L′V = F1(x′, ξ) +

∫ ξ

0
D2(ξ)V (x′, t)dt a.e. Tr,

V = Φ on ∂Tr,

where L′ is the operator L in terms of (x′, ξ) = (x′1, . . . , x
′
n−1, ξ),

F1(x′, ξ) := ∂F/∂L +D1V (x′, ξ) +D′1U(x′, ξ) +D′2U(x′, 0),
(15)

D2(ξ)V (x′, t) :=
n−1∑

i,j=1

Aij(x′, ξ)Dx′ix
′
j
V (x′, t), Aij ∈ L∞,

D1, D′1, D′2 are linear differential operators with L∞-coefficients, ordD1 = ordD′1 =
1, ordD′2 = 2. The Sobolev imbedding theorem implies F1 ∈ Lq′(Tr) with q′

given by (11) as consequence of ∂F/∂L ∈ Lq′(N ′′), U(x′, 0) ∈ W 2,q(B′
r(x0)) and

U, V ∈ W 2,p(N ′′). Nevertheless the second-order operator D2(ξ) has a quite rough
characteristic form which is neither symmetric nor sign-definite, the improving-of-
integrability holds for (14) thanks to the particular structure of Tr as union of
L-trajectories through B′

r(x0). Actually, we will show that if V ∈ W 2,q′ on a sub-
set of Tr with ξ < T, then V remains a W 2,q′-function on a larger subset with
ξ < T + r for small enough r, after that the higher integrability of U will follow
from Proposition 2 and (13). For, take an arbitrary T ∈ (0, t+ − t−) and define

Pr,T :=
{
(x′, ξ) ∈ Tr : ξ < T

}
.

For a fixed r > 0,
{Pr,T

}
T≥0

is a non-decreasing family of domains exhausting Tr

and Pr,T ≡ Tr for values of T greater than the maximal exit-time

Tmax := sup
x′∈B′r(x0)

sup
{
t > 0: ψL(t;x′) ∈ Ω, x′ ∈ B′

r(x0)
}

.

Proposition 4. Let T ∈ (0, t+− t−) and consider the solution V ∈ W 2,p(Tr) of the
problem (14). Suppose V ∈ W 2,q′(Pr,T ) where q′ is given by (11).

There exists an r0 > 0 such that V ∈ W 2,q′(Pr,T+r) for all r < r0.

Proof. There are three possible cases to be distinguished.
Case A: T + 3r < Tmax. We have Pr,T ⊂ Pr,T+3r ⊂ Tr ≡ Pr,Tmax and consider the
C∞-function η : R→ [0, 1] such that

(16) η(ξ) =





1 as ξ ∈ (−∞, T + r],
strictly decreases as ξ ∈ (T + r, T + 2r),
0 as ξ ≥ T + 2r.

Setting Ṽ (x′, ξ) := η(ξ)V (x′, ξ), it follows L′Ṽ = η(L′V ) +L1V where L1 is a first-
order differential operator with L∞-coefficients depending on these of L′ and on the



508 D.K. PALAGACHEV

derivatives of η. Therefore,

L′Ṽ = ηF1 + L1V + η(ξ)
∫ ξ

0
D2(ξ)V (x′, t)dt(17)

= ηF1 + L1V +
∫ ξ

0

η(ξ)
η(t)

D2(ξ)Ṽ (x′, t)dt

because D2(ξ) is a second-order operator acting in the x′-variables only.
We set Ωr ⊂ Pr,T+3r \ Pr,T−3r for a C1,1-smooth domain containing P3r/4,T+2r \

P3r/4,T−2r and such that

r−1Ωr :=
{

(ỹ′, ξ̃) : ỹ′ = x′/r, ξ̃ = (ξ − T )/r, (x′, ξ) ∈ Ωr

}
∈ C1,1

uniformly in r. The boundary ∂Ωr consists of the “lateral” parts ∂1Ωr := ∂Ωr ∩ ∂Ω
and ∂2Ωr := ∂Ωr ∩ Ω ∩ {ξ ∈ (T − 2r, T + 2r)} ⊂ (Pr,T+2r \ Pr,T−2r

) \ (P3r/4,T+2r \
P3r/4,T−2r

)
, and of two C1,1-smooth components ∂Ω±r lying in Pr,T+3r \Pr,T+2r and

Pr,T−2r \ Pr,T−3r, respectively. The properties of µ (cf. (9)) ensure U ≡ 0, V ≡ 0,

Ṽ ≡ 0 on Tr \ T3r/4 whence Ṽ ≡ 0 near ∂2Ωr.
For an arbitrary (x′, ξ) ∈ Ωr, the factor η(ξ)/η(t) in (17) vanishes when ξ ≥ T +2r

while η(ξ)/η(t) ≤ 1 because η decreases in (T + r, T + 2r). Moreover, |ξ − T | < 3r
for (x′, ξ) ∈ Ωr and

∫ ξ

0

η(ξ)
η(t)

D2(ξ)Ṽ (x′, t)dt =
∫ T

0

η(ξ)
η(t)

D2(ξ)Ṽ (x′, t)dt +
∫ ξ

T

η(ξ)
η(t)

D2(ξ)Ṽ (x′, t)dt

= η(ξ)
∫ T

0
D2(ξ)V (x′, t)dt +

∫ ξ

T

η(ξ)
η(t)

D2(ξ)Ṽ (x′, t)dt

by means of (15) and since η(t) = η(T ) = 1 as t ≤ T.

We get from (14) and (17) that Ṽ ∈ W 2,p(Ωr) solves the Dirichlet problem

(18)





L′Ṽ = F2(x′, ξ) +
∫ ξ

T

η(ξ)
η(t)

D2(ξ)Ṽ (x′, t)dt a.a. (x′, ξ) ∈ Ωr,

Ṽ = Φ̃ := ηΦ =





ηµϕ ∈ W 2−1/q,q on ∂1Ωr (by (10)),
0 on ∂2Ωr (by (10)),
0 on ∂Ω+

r (by (16)),
V ∈ W 2−1/q′,q′ on ∂Ω−r (since ξ < T − 2r and

V ∈ W 2,q′(Pr,T ))

where, recalling V ∈ W 2,q′(Pr,T ), we have

(19) F2(x′, ξ) := ηF1 + L1V + η(ξ)
∫ T

0
D2(ξ)V (x′, t)dt ∈ Lq′(Ωr).

We are going to prove now that Ṽ ∈ W 2,q′(Ωr) for small enough r > 0, whence it
will follow V ∈ W 2,q′(Pr,T+r) in view of (16) and V ≡ 0 near ∂2Ωr. The claim is
obvious if q′ = p because V ∈ W 2,p(Tr). Otherwise, take an arbitrary s ∈ [p, q′] and
denote by W 2,s

∗ (Ωr) the Sobolev space W 2,s(Ωr) normed with

‖u‖
W 2,s
∗ (Ωr)

:= ‖u‖Ls(Ωr) + r‖Du‖Ls(Ωr) + r2‖D2u‖Ls(Ωr).
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Define now the operator F : W 2,s
∗ (Ωr) → W 2,s

∗ (Ωr) as follows: for any w ∈ W 2,s
∗ (Ωr)

the image Fw ∈ W 2,s
∗ (Ωr) is the unique solution of the Dirichlet problem

(20)




L′(Fw) = F2 +

∫ ξ

T

η(ξ)
η(t)

D2(ξ)w(x′, t)dt ∈ Ls(Ωr) a.a. (x′, ξ) ∈ Ωr,

Fw = Φ̃ ∈ W 2−1/s,s(∂Ωr) on ∂Ωr.

We will prove that F is a contraction for small values of r. For this goal, take
arbitrary w1, w2 ∈ W 2,s

∗ (Ωr). The difference Fw1 − Fw2 solves

(21)




L′(Fw1 − Fw2) =

∫ ξ

T

η(ξ)
η(t)

D2(ξ)(w1 − w2)(x′, t)dt a.a. (x′, ξ) ∈ Ωr,

Fw1 − Fw2 = 0 on ∂Ωr.

In order to apply the Ls-a priori estimates from [1] or [3] for the solutions of (21),
we have to control the dependence on r therein. For, we recall that r−1Ωr ∈ C1,1

uniformly in r and apply a standard approach consisting of dilation of Ωr onto
r−1Ωr, reduction of the problem (21) to a new one in variables (ỹ′, ξ̃) ∈ r−1Ωr,
application of the Ls-estimates from [3, Theorem 9.17] and finally turning back to
(21) (see the Proof of Lemma 2.2, Eq. (2.12) in [12]). This way, one gets

(22) ‖Fw1 − Fw2‖W 2,s
∗ (Ωr)

≤ Cr2

∥∥∥∥
∫ ξ

T

η(ξ)
η(t)

D2(ξ)(w1 − w2)(x′, t)dt

∥∥∥∥
Ls(Ωr)

where the constant C is independent of r. Jensen’s integral inequality yields

r2

∥∥∥∥
∫ ξ

T

η(ξ)
η(t)

D2(ξ)(w1 − w2)(x′, t)dt

∥∥∥∥
Ls(Ωr)

≤ C max
(x′,ξ)∈Ωr

|ξ − T |‖w1 − w2‖W 2,s
∗ (Ωr)

and thus (22) rewrites into

‖Fw1 − Fw2‖W 2,s
∗ (Ωr)

≤ C max
(x′,ξ)∈Ωr

|ξ − T |‖w1 − w2‖W 2,s
∗ (Ωr)

.

We have max(x′,ξ)∈Ωr
|ξ − T | < 3r, C is independent of r and therefore F will be

really a contraction from W 2,s
∗ (Ωr) into itself for any s ∈ [p, q′] if r ≤ r0 with r0

under control and small enough. Fixing r = r0/2, there is a unique fixed point of
F in W 2,s

∗ (Ωr) for all s ∈ [p, q′]. However, Ṽ ∈ W 2,p(Ωr) is already a fixed point of
F since it solves (18) and therefore Ṽ ∈ W 2,q′(Ωr). It follows V ∈ W 2,q′(Pr,T+r) by
means of V ∈ W 2,q′(Pr,T ), Ṽ ≡ 0 on Tr \ T3r/4 and the properties of η(ξ).
Case B: T < Tmax ≤ T + 3r. We have Tr \ Pr,T 6= ∅, Pr,T+3r ≡ Tr now and
we do not need anymore the cut-off function η because V = ∂U/∂L ≡ 0 near
the points of ∂2Tr where ξ > T (cf. (9)). Thus, it suffices to repeat the above
arguments with η(ξ) ≡ 1 ∀ξ ∈ R and Ωr ∈ C1,1 defined as before when ξ ≤ T while
T3r/4 \ P3r/4,T ⊂

(
Ωr ∩ {ξ > T}) ⊂ Tr \ Pr,T (cf. (9)). We have anyway a problem

like (18) for V ≡ Ṽ with boundary condition

V = ∂U/∂L =





µϕ ∈ W 2−1/q,q on ∂1Ωr = ∂Ωr ∩ ∂Ω,

0 on ∂2Ωr = ∂Ωr ∩ Ω ∩ {ξ > T − 3r},
V ∈ W 2−1/q′,q′ on ∂Ω−r (by hypothesis).
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Therefore, the procedure from Case A gives V ∈ W 2,q′(Pr,T+3r).
Case C: Tmax ≤ T . We have Pr,T+r ≡ Pr,T ≡ Tr now and thus the claim. ¤
Proposition 5. Suppose r < r0 with r0 given in Proposition 4. Then the solution
V of the problem (14) lies in W 2,q(Tr) and satisfies the estimate

(23) ‖V ‖W 2,q(Tr) ≤ C
(
‖u‖Lq(Ω) + ‖f‖Fq(Ω,N ) + ‖ϕ‖Φq(∂Ω,N )

+ ‖u‖W 1,q(Tr) + ‖∂u/∂L‖W 1,q(Tr)

)
.

Proof. We note that V ∈ W 2,q ⊆ W 2,q′ near B′
r(x0) in view of B′

r(x0) ⊂ N ′′ \ N ′,
Proposition 2 and (6). Therefore, successive applications of Proposition 4 with
increasing values of T will give V ∈ W 2,q′(Tr), q′ > p. After that, in order to get
V ∈ W 2,q(Tr), it suffices to put q′ in the place of p in (11) and to repeat finitely
many times the above arguments until q′ = q.

To obtain (23), we take T ∈ (0, t+−t−) to be arbitrary, fix r = r0/2, and consider
the domains Ωr defined in the proof of Proposition 4. Let Ṽ = ηV ∈ W 2,q(Tr) solve
(18) with η given by (16) in Case A and η ≡ 1 in Case B. Since Ṽ is a fixed point
of the mapping F : W 2,q(Ωr) → W 2,q(Ωr), FṼ = Ṽ , we get

‖D2Ṽ ‖Lq(Ωr) = ‖D2(FṼ )‖Lq(Ωr) ≤ ‖D2(FṼ − F0)‖Lq(Ωr) + ‖D2(F0)‖Lq(Ωr),

while

‖D2(Fw1 − Fw2)‖Lq(Ωr) ≤ θ‖D2(w1 − w2)‖Lq(Ωr) ∀w1, w2 ∈ W 2,q(Ωr), θ < 1

because F is a contraction, (22) and the fact that D2(ξ) is a homogeneous second-
order operator (cf. (15)). This way, ‖D2(FṼ − F0)‖Lq(Ωr) ≤ θ‖D2(Ṽ − 0)‖Lq(Ωr) =
θ‖D2Ṽ ‖Lq(Ωr) and therefore

(24) ‖D2Ṽ ‖Lq(Ωr) ≤ C‖D2(F0)‖Lq(Ωr)

with F0 ∈ W 2,q(Ωr) being the unique solution of the Dirichlet problem{
L′(F0) = F2 a.e. Ωr, F0 = Φ̃ on ∂Ωr

(see (20)), for which the Lp-theory (cf. [3, Chapter 9]) gives

(25) ‖D2(F0)‖Lq(Ωr) ≤ ‖F0‖W 2,q(Ωr) ≤ C
(
‖F2‖Lq(Ωr) + ‖Φ̃‖W 2−1/q,q(∂Ωr)

)
.

Direct applications, based on (19) and (15), yield

‖F2‖Lq(Ωr) =
∥∥∥∥ηF1 + L1V + η(ξ)

∫ T

0
D2(ξ)V (x′, t)dt

∥∥∥∥
Lq(Ωr)

≤ C
(
‖∂F/∂L‖Lq(Ωr) + ‖U‖W 2,q(N ′′\N ′) + ‖U‖W 1,q(Tr) + ‖V ‖W 1,q(Tr)

+ ‖D2V ‖Lq(Pr,T )

)

≤ C
(
‖∂f/∂L‖Lq(N ) + ‖u‖W 2,q(N ′′\N ′) + ‖u‖W 1,q(Tr) + ‖∂u/∂L‖W 1,q(Tr)

+ ‖D2V ‖Lq(Pr,T )

)
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in view of (7), (10), U = µu, V = ∂U/∂L and (9). Moreover,

‖Φ̃‖W 2−1/q,q(∂Ωr) ≤ C
(
‖ϕ‖W 2−1/q,q(∂Ω∩N ) + ‖V ‖W 2,q(Pr,T )

)

≤ C
(
‖ϕ‖W 2−1/q,q(∂Ω∩N ) + ‖V ‖W 1,q(Tr) + ‖D2V ‖Lq(Pr,T )

)

≤ C
(
‖ϕ‖W 2−1/q,q(∂Ω∩N ) + ‖∂u/∂L‖W 1,q(Tr) + ‖D2V ‖Lq(Pr,T )

)

by (18) and ∂Ω−r ⊂ Pr,T . Further on, Ṽ = V on Pr,T+r, whence

‖D2V ‖Lq(Pr,T+r) ≤ ‖D2V ‖Lq(Pr,T ) + ‖D2Ṽ ‖Lq(Ωr).

Therefore, setting ζ(T ) := ‖D2V ‖Lq(Pr,T ) and K := ‖u‖Lq(Ω) + ‖f‖Fq(Ω,N ) +
‖ϕ‖Φq(∂Ω,N ) + ‖u‖W 1,q(Tr) + ‖∂u/∂L‖W 1,q(Tr), it follows from (24), (25) and Propo-
sition 2 that

(26) ζ(T + r) ≤ C (K + ζ(T )) ∀T ∈ (0, t+ − t−).

To get (23), we let m to be the least integer such that Tmax ≤ mr and iterate (26)
in order to obtain

‖D2V ‖Lq(Tr) = ‖D2V ‖Lq(Pr,Tmax ) = ζ(Tmax) = ζ(mr) = ζ((m− 1)r + r)

≤ C
(
K + ζ((m− 1)r)

)
= C

(
K + ζ((m− 2)r + r)

)

≤ K(C + C2) + C2ζ
(
(m− 2)r

)

...

≤ K

m∑

j=1

Cj + Cmζ(0) = K

m∑

j=1

Cj

This proves (23). ¤
Remark 6. It is important to note that the constant C in Proposition 5 depends
on m through Tmax, and therefore on the point x0 ∈ E . Actually, that constant will
have the very same value for each other point of E lying on the same L-trajectory
as x0.

Moreover, if the improving-of-integrability property asserted in Propositions 4 and
5 holds on a set S ⊂ Ω then it is guaranteed, on the base of (13), on any other set
which can be reached from S along L-trajectories.

To complete the proof of Lemma 3, we select a finite set {T j
r }N

j=1 of neighbour-
hoods covering the compact E , each of the type Tr above with r = r0/2, and such
that T := closure

(⋃N
j=1 T j

r/2

)
⊂ N ′′ is a closed neighbourhood of E in Ω. It is clear

that Proposition 2 remains true with T instead of N ′ and then (7) rewrites into

(27) ‖u‖W 2,q(Ω\T ) ≤ C
(
‖u‖Lq(Ω) + ‖f‖Lq(Ω) + ‖ϕ‖W 1−1/q,q(∂Ω)

)
.

The improving-of-integrability claimed in Lemma 3 then follows from (13), Propo-
sition 5 and (27) (recall U = u on T j

r/2). Similarly, (13), (27) and (23) yield

‖u‖W 2,q(N ′′) ≤ ‖u‖W 2,q(T ) + ‖u‖W 2,q(N ′′\T )(28)
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≤ C
(‖u‖Lq(Ω) + ‖f‖Fq(Ω,N ) + ‖ϕ‖Φq(∂Ω,N )

+ ‖u‖W 1,q(N ) + ‖∂u/∂L‖W 1,q(N )

)
.

Later on, N \N ′′ ⊂ Ω \ N ′ and

‖u‖W 1,q(N ) ≤ ‖u‖W 1,q(N ′′) + ‖u‖W 1,q(N\N ′′)

≤ ε‖u‖W 2,q(N ′′) + C(ε)
(‖u‖Lq(Ω) + ‖u‖W 2,q(Ω\N ′)

)

in view of the interpolation inequality for the W 2,q(N ′′)-norms with ε > 0 under
control3. In the same manner,

‖∂u/∂L‖W 1,q(N ) ≤ ‖∂u/∂L‖W 1,q(N ′) + ‖∂u/∂L‖W 1,q(N\N ′)

≤ ε‖∂u/∂L‖W 2,q(N ′) + C(ε)
(‖∂u/∂L‖Lq(N ′) + ‖u‖W 2,q(Ω\N ′)

)
,

while

‖∂u/∂L‖W 2,q(N ′) ≤ C
(‖u‖W 2,q(N ′′) + ‖u‖Lq(Ω) + ‖f‖Fq(Ω,N ) + ‖ϕ‖Φq(∂Ω,N )

)

by means of the local a priori estimates ([3, Theorem 9.11]) for the problem (6).
A substitution of the above expressions into (28) and (7) give

‖u‖W 2,q(N ′′) ≤ C
(‖u‖Lq(Ω) + ‖f‖Fq(Ω,N ) + ‖ϕ‖Φq(∂Ω,N )

+ ε‖u‖W 2,q(N ′′) + C(ε)‖∂u/∂L‖Lq(N ′)
)

whence, choosing ε > 0 small enough, we get

‖u‖W 2,q(N ′′) ≤ C
(‖u‖Lq(Ω) + ‖f‖Fq(Ω,N ) + ‖ϕ‖Φq(∂Ω,N ) + ‖u‖W 1,q(N ′)

)
.

Similarly, another application of the interpolation inequality yields

‖u‖W 1,q(N ′) ≤ ‖u‖W 1,q(N ′′) ≤ δ‖u‖W 2,q(N ′′) + C(δ)‖u‖Lq(N ′′)

and thus

‖u‖W 2,q(N ′′) ≤ C
(‖u‖Lq(Ω) + ‖f‖Fq(Ω,N ) + ‖ϕ‖Φq(∂Ω,N )

)
.

for small δ > 0. The proof of Lemma 3 is completed. ¤
The statement of Theorem 1 follows from Proposition 2 and Lemma 3.
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