$W^{2, p}$-A PRIORI ESTIMATES FOR THE NEUTRAL POINCARÉ PROBLEM*

DIAN K. PALAGACHEV

To the memory of Filippo Chiarenza

Abstract

A degenerate oblique derivative problem is studied for uniformly elliptic operators with low regular coefficients in the framework of Sobolev's classes $W^{2, p}(\Omega)$ for arbitrary $p>1$. The boundary operator is prescribed in terms of a directional derivative with respect to the vector field $\boldsymbol{\ell}$ that becomes tangential to $\partial \Omega$ at the points of some non-empty subset $\mathcal{E} \subset \partial \Omega$ and is directed outwards Ω on $\partial \Omega \backslash \mathcal{E}$. Under quite general assumptions of the behaviour of ℓ, we derive a priori estimates for the $W^{2, p}(\Omega)$-strong solutions for any $p \in(1, \infty)$.

Introduction

The lecture deals with regularity in Sobolev's spaces $W^{2, p}(\Omega), \forall p \in(1, \infty)$, of the strong solutions to the oblique derivative problem

$$
\begin{cases}\mathcal{L} u:=a^{i j}(x) D_{i j} u=f(x) & \text { a.e. } \Omega, \tag{1}\\ \mathcal{B} u:=\partial u / \partial \ell=\varphi(x) & \text { on } \partial \Omega\end{cases}
$$

where \mathcal{L} is a uniformly elliptic operator with low regular coefficients and \mathcal{B} is prescribed in terms of a directional derivative with respect to the unit vector field $\ell(x)=\left(\ell^{1}(x), \ldots, \ell^{n}(x)\right)$ defined on $\partial \Omega, n \geq 3$. Precisely, we are interested in the Poincaré problem (1) (cf. [17, 20, 16]), that is, a situation when $\ell(x)$ becomes tangential to $\partial \Omega$ at the points of a non-empty subset \mathcal{E} of $\partial \Omega$.

From a mathematical point of view, (1) is not an elliptic boundary value problem. In fact, it follows from the general PDEs theory that (1) is a regular (elliptic) problem if and only if the Shapiro-Lopatinskij complementary condition is satisfied which means ℓ must be transversal to $\partial \Omega$ when $n \geq 3$ and $|\ell| \neq 0$ as $n=2$. If $\boldsymbol{\ell}$ is tangent to $\partial \Omega$ then (1) is a degenerate problem and new effects occur in contrast to the regular case. It turns out that the qualitative properties of (1) depend on the behaviour of $\boldsymbol{\ell}$ near the set of tangency \mathcal{E} and especially on the way the normal component $\gamma \boldsymbol{\nu}$ of $\boldsymbol{\ell}$ (with respect to the outward normal $\boldsymbol{\nu}$ to $\partial \Omega$) changes or no its sign on the trajectories of $\boldsymbol{\ell}$ when these cross \mathcal{E}. The main results were obtained by Hörmander [6], Egorov and Kondrat'ev [2], Maz'ya [8], Maz'ya and Paneah [9], Melin and Sjöstrand [10], Paneah [15] and good surveys and details can be found in

[^0]Popivanov and Palagachev [20] and Paneah [16]. The problem (1) has been studied in the framework of Sobolev spaces $H^{s}\left(\equiv H^{s, 2}\right)$ assuming C^{∞}-smooth data and this naturally involved techniques from the pseudo-differential calculus.

The simplest case arises when $\gamma:=\boldsymbol{\ell} \cdot \boldsymbol{\nu}$, even if zero on \mathcal{E}, conserves the sign on $\partial \Omega$. Then \mathcal{E} and ℓ are of neutral type (a terminology coming from the physical interpretation of (1) in the theory of Brownian motion, see [20]) and (1) is a problem of Fredholm type (cf. [2]). Assume now that γ changes the sign from "-" to "+" in positive direction along the ℓ-integral curves passing through the points of \mathcal{E}. Then $\boldsymbol{\ell}$ is of emergent type and \mathcal{E} is called attracting manifold. The new effect appearing now is that the kernel of (1) is infinite-dimensional ([6]) and to get a well-posed problem one has to modify (1) by prescribing the values of u on \mathcal{E} (cf. [2]). Finally, suppose the sign of γ changes from " + " to "-" along the $\boldsymbol{\ell}$-trajectories. Now $\boldsymbol{\ell}$ is of submergent type and \mathcal{E} corresponds to a repellent manifold. The problem (1) has infinite-dimensional cokernel ([6]) and Maz'ya and Paneah [9] were the first to propose a relevant modification of (1) by violating the boundary condition at the points of \mathcal{E}. As consequence, a Fredholm problem arises, but the restriction $\left.u\right|_{\partial \Omega}$ has a finite jump at \mathcal{E}. What is the common feature of the degenerate problems, independently of the type of ℓ, is that the solution "loses regularity" near the set of tangency from the data of (1) in contrast to the non-degenerate case when any solution gains two derivatives from f and one derivative from φ. Roughly speaking, that loss of smoothness depends on the order of contact between ℓ and $\partial \Omega$ and is given by the subelliptic estimates obtained for the solutions of degenerate problems (cf. $[4,5,6,9]$). Precisely, if ℓ has a contact of order k with $\partial \Omega$ then the solution of (1) gains $2-k /(k+1)$ derivatives from f and $1-k /(k+1)$ derivatives from φ.

(c) submergent vector field ℓ

For what concerns the geometric structure of \mathcal{E}, it was supposed initially to be a submanifold of $\partial \Omega$ of codimension one. Melin and Sjöstrand [10] and Paneah [15] were the first to study the Poincaré problem (1) in a more general situation when \mathcal{E} is a massive subset of $\partial \Omega$ with positive surface measure, allowing \mathcal{E} to contain arcs of $\boldsymbol{\ell}$-trajectories of finite length. Their results were extended by Winzell ([21, 22]) to the framework of Hölder's spaces who studied (1) assuming $C^{1, \alpha}$-smoothness of the coefficients of \mathcal{L}. It is worth noting that ℓ has automatically an infinite order of contact with $\partial \Omega$ when \mathcal{E} is a massive subset of the boundary.

To deal with non-linear Poincaré problems, however, we have to dispose of precise information on the linear problem (1) with coefficients less regular than C^{∞} (see [11, 18, 19, 20]). Indeed, a priori estimates in $W^{2, p}$ for solutions to (1) would imply easily pointwise estimates for u and $D u$ for suitable values of $p>1$ through the Sobolev imbeddings. This way, we are naturally led to consider the problem (1) in a strong sense, that is, to searching for solutions lying in $W^{2, p}$ which satisfy $\mathcal{L} u=f$ almost everywhere (a.e.) in Ω and $\mathcal{B} u=\varphi$ holds in the sense of trace on $\partial \Omega$.

In the papers $[4,5]$ by Guan and Sawyer solvability and precise subelliptic estimates have been obtained for (1) in $H^{s, p}$-spaces ($\equiv W^{s, p}$ for integer $s!$). However, [4] treats operators with C^{∞}-coefficients and this determines the technique involved and the results obtained, while in [5] the coefficients are $C^{0, \alpha}$-smooth, but the field ℓ is of finite type, that is, it has a finite order of contact with $\partial \Omega$.

The main goal of this lecture is to derive a priori estimates in Sobolev's classes $W^{2, p}(\Omega)$ with any $p \in(1, \infty)$ for the solutions of the Poincaré problem (1), weakening both Winzell's assumptions on $C^{1, \alpha}$-regularity of the coefficients of \mathcal{L} and these of Guan and Sawyer on the finite type of $\boldsymbol{\ell}$. We are dealing with the simpler case when γ preserves its sign on $\partial \Omega$ which means the field ℓ is of neutral type. Of course, the loss of smoothness mentioned, imposes some more regularity of the data near the set \mathcal{E}. We assume the coefficients of \mathcal{L} to be Lipschitz continuous near \mathcal{E} while only continuity (and even discontinuity controlled in $V M O$) is allowed away from \mathcal{E}. Similarly, $\boldsymbol{\ell}$ is a Lipschitz vector field on $\partial \Omega$ with Lipschitz continuous first derivatives near \mathcal{E}, and no restrictions on the order of contact with $\partial \Omega$ are required. Regarding the tangency set \mathcal{E}, it may have positive surface measure and is restricted only to a sort of non-trapping condition that all trajectories of $\boldsymbol{\ell}$ through the points of \mathcal{E} are non-closed and leave \mathcal{E} in a finite time.

The technique adopted is based on a dynamical system approach employing the fact that $\partial u / \partial \ell$ is a local strong solution, near \mathcal{E}, to a Dirichlet-type problem with right-hand side depending on the solution u itself. Application of the L^{p}-estimates for such problems leads to the functional inequality (26) for suitable $W^{2, p}$-norms of u on a family of subdomains which, starting away from \mathcal{E}, evolve along the $\boldsymbol{\ell}$ trajectories and exhaust a sort of their tubular neighbourhoods. Fortunately, that is an inequality with advanced argument and the desired $W^{2, p}$-estimate follows by iteration with respect to the curvilinear parameter on the trajectories of $\boldsymbol{\ell}$. Another advantage of this approach is the improving-of-integrability property obtained for the solutions of (1). Roughly speaking, it asserts that the problem (1), even if a degenerate one, behaves as an elliptic problem for what concerns the degree p of integrability. In other words, the second derivatives of any solution to (1) will have the same rate of integrability as f and φ. We refer the reader to the paper [14] for outgrowths of the $W^{2, p}$-a priori estimates, such as uniqueness in $W^{2, p}(\Omega), \forall p>1$, of the strong solutions to (1) as well as its Fredholmness.

Concluding this introduction, we should mention the article [13] where similar results have been obtained by different technique in the particular case when the tangency set \mathcal{E} contains trajectories of ℓ with positive, but small enough lengths.

1. Hypotheses and the Main Result

Hereafter $\Omega \subset \mathbb{R}^{n}, n \geq 3$, will be a bounded domain with reasonably smooth boundary and $\boldsymbol{\nu}(x)=\left(\overline{\nu^{1}}(x), \ldots, \nu^{n}(x)\right)$ stands for the unit outward normal to $\partial \Omega$ at $x \in \partial \Omega$. Consider a unit vector field $\ell(x)=\left(\ell^{1}(x), \ldots, \ell^{n}(x)\right)$ on $\partial \Omega$ and let $\boldsymbol{\ell}(x)=\boldsymbol{\tau}(x)+\gamma(x) \boldsymbol{\nu}(x)$, where $\boldsymbol{\tau}: \partial \Omega \rightarrow \mathbb{R}^{n}$ is the projection of $\boldsymbol{\ell}(x)$ on the hyperplane tangent to $\partial \Omega$ at $x \in \partial \Omega$ and $\gamma: \partial \Omega \rightarrow \mathbb{R}$ is the inner product $\gamma(x):=$ $\boldsymbol{\ell}(x) \cdot \boldsymbol{\nu}(x)$. The set of zeroes of γ,

$$
\mathcal{E}:=\{x \in \partial \Omega: \quad \gamma(x)=0\}
$$

is indeed the subset of $\partial \Omega$ where the field $\ell(x)$ becomes tangent to it.
Fix $\mathcal{N} \subset \bar{\Omega}$ to be a closed neighbourhood of \mathcal{E} in $\bar{\Omega}$. We suppose \mathcal{L} is a uniformly elliptic operator with measurable coefficients, satisfying

$$
\begin{equation*}
\lambda^{-1}|\xi|^{2} \leq a^{i j}(x) \xi_{i} \xi_{j} \leq \lambda|\xi|^{2} \quad \text { a.a. } x \in \Omega, \forall \xi \in \mathbb{R}^{n}, \quad a^{i j}(x)=a^{j i}(x) \tag{2}
\end{equation*}
$$

for some positive constant λ. Regarding the regularity of the data, we assume

$$
\left\{\begin{array}{l}
a^{i j} \in V M O(\Omega) \cap C^{0,1}(\mathcal{N}), \tag{3}\\
\partial \Omega \in C^{1,1}, \quad \partial \Omega \cap \mathcal{N} \in C^{2,1}, \quad \ell^{i} \in C^{0,1}(\partial \Omega) \cap C^{1,1}(\partial \Omega \cap \mathcal{N})
\end{array}\right.
$$

with $\operatorname{VMO}(\Omega)$ being the Sarason class of functions of vanishing mean oscillation and $C^{k, 1}$ denotes the space of functions with Lipschitz continuous k-th order derivatives. Let us point out that (2), (3) and the Rademacher theorem give $a^{i j} \in L^{\infty}(\Omega) \cap$ $W^{1, \infty}(\mathcal{N})$. For what concerns the boundary operator \mathcal{B}, we assume
(4) $\left\{\begin{array}{l}\gamma(x)=\boldsymbol{\ell}(x) \cdot \boldsymbol{\nu}(x) \geq 0 \quad \forall x \in \partial \Omega, \quad \text { and } \\ \text { the arcs of the } \boldsymbol{\ell} \text {-trajectories lying in } \mathcal{E} \text { (which coincide with these of } \boldsymbol{\tau} \text {) } \\ \text { are all non-closed and of finite lengths. }\end{array}\right.$

The first assumption simply means that $\ell(x)$ is either tangential to $\partial \Omega$ or is directed outwards Ω, that is, the field ℓ is of neutral type on $\partial \Omega$, while the second one is a sort of non-trapping condition on the tangency set \mathcal{E}. It implies that the $\boldsymbol{\ell}$-integral curves leave \mathcal{E} in a finite time in both directions.

Figure 1. The set of tangency \mathcal{E} is the union $\mathcal{E}_{1} \cup \mathcal{E}_{2} \cup \mathcal{E}_{3}$ where $\operatorname{codim}_{\partial \Omega} \mathcal{E}_{1}=\operatorname{codim}{ }_{\partial \Omega} \mathcal{E}_{2}=1$ while meas ${ }_{\partial \Omega} \mathcal{E}_{3}>0$. The vector field $\boldsymbol{\ell}$ is transversal to \mathcal{E}_{1} and tangent to \mathcal{E}_{2}. Actually, \mathcal{E}_{2} consists of an arc of $\boldsymbol{\tau}$-trajectory, whereas \mathcal{E}_{3} is union of such arcs.

Throughout the text $W^{k, p}$ stands for the Sobolev class of functions with $L^{p_{-}}$ summable weak derivatives up to order $k \in \mathbb{N}$ while $W^{s, p}(\partial \Omega)$ with $s>0$ noninteger and $p \in(1,+\infty)$, is the Sobolev space of fractional order on $\partial \Omega$. Further, we use the standard parameterization $t \mapsto \boldsymbol{\psi}_{\boldsymbol{L}}(t ; x)$ for the trajectory (equivalently, phase curve, maximal integral curve) of a given vector field \boldsymbol{L} passing through a point x, that is, $\partial_{t} \boldsymbol{\psi}_{\boldsymbol{L}}(t ; x)=\boldsymbol{L}\left(\boldsymbol{\psi}_{\boldsymbol{L}}(t ; x)\right)$ and $\boldsymbol{\psi}_{\boldsymbol{L}}(0 ; x)=x$.

We will employ below an extension of the field ℓ near $\partial \Omega$ which preserves therein its regularity and geometric properties. All the results and proofs in the sequel work for such an arbitrary ℓ-extension but, in order to make more evident some geometric constructions, we prefer to introduce a special extension as follows. For

Figure 2
each $x \in \mathbb{R}^{n}$ near $\partial \Omega$ set $d(x)=\operatorname{dist}(x, \partial \Omega)$ and define $\Gamma:=\left\{x \in \mathbb{R}^{n}: d(x) \leq d_{0}\right\}$ with small $d_{0}>0$. Letting $\Omega_{0}:=\Omega \backslash \Gamma$ and $y(x) \in \partial \Omega$ for the unique point closest to $x \in \Gamma$, we have (see [3, Chapter 14]) $y(x) \in C^{0,1}(\Gamma)$ while $y(x) \in C^{1,1}$ near \mathcal{E}. Regarding the distance function $d(x)=|x-y(x)|$, it is Lipschitz continuous in Γ and inherits the regularity of $\partial \Omega$ at $y(x)$ when considered on the parts of Γ lying in/out Ω, but its normal derivative has a finite jump on $\partial \Omega$. Anyway, it is a routine to check $(d(x))^{2} \in C^{1,1}(\Gamma)$. Setting $\boldsymbol{L}(x)$ for the normalized representative of $\boldsymbol{\ell}(y(x))+(d(x))^{2} \boldsymbol{\nu}(y(x)) \forall x \in \Gamma$, it results $|\boldsymbol{L}(x)|=1,\left.\boldsymbol{L}\right|_{\partial \Omega}=\boldsymbol{\ell},\left.\boldsymbol{L}\right|_{\mathcal{E}}=\boldsymbol{\tau}$ and $\boldsymbol{L} \in C^{0,1}(\Gamma) \cap C^{1,1}(\Gamma \cap \mathcal{N})$. Moreover, the field \boldsymbol{L} is strictly transversal to $\partial \Omega_{0}$.

As consequence of the non-trapping condition (4), the compactness of \mathcal{E} and the semi-continuity properties of the lengths of the $\boldsymbol{\tau}$-maximal integral curves, it is not hard to get that (see [22, Proposition 3.1] and [20, Proposition 3.2.4]) under the hypotheses (3) and (4), there is a finite upper bound κ_{0} for the arclengths of the $\boldsymbol{\tau}$-trajectories lying in \mathcal{E}. Moreover, each point of Γ can be reached from $\partial \Omega_{0}$ by an L-integral curve of length at most $\kappa=$ const >0.

In what follows, the letter C will denote a generic constant depending on known quantities defined by the data of (1), that is, on n, p, λ, the respective norms of the coefficients of \mathcal{L} and \mathcal{B} in Ω and \mathcal{N}, the regularity of $\partial \Omega$ and the constants κ_{0} and κ.

In order to control precisely the regularity of u near the tangency set \mathcal{E}, we have to introduce the appropriate functional spaces. For, take an arbitrary $p \in(1, \infty)$ and define the Banach spaces

$$
\mathcal{F}^{p}(\Omega, \mathcal{N}):=\left\{f \in L^{p}(\Omega): \partial f / \partial \boldsymbol{L} \in L^{p}(\mathcal{N})\right\}
$$

equipped with norm $\|f\|_{\mathcal{F}^{p}(\Omega, \mathcal{N})}:=\|f\|_{L^{p}(\Omega)}+\|\partial f / \partial \boldsymbol{L}\|_{L^{p}(\mathcal{N})}$, and

$$
\Phi^{p}(\partial \Omega, \mathcal{N}):=\left\{\varphi \in W^{1-1 / p, p}(\partial \Omega): \varphi \in W^{2-1 / p, p}(\partial \Omega \cap \mathcal{N})\right\}
$$

normed by $\|\varphi\|_{\Phi^{p}(\partial \Omega, \mathcal{N})}:=\|\varphi\|_{W^{1-1 / p, p}(\partial \Omega)}+\|\varphi\|_{W^{2-1 / p, p}(\partial \Omega \cap \mathcal{N})}$.
Our main result asserts that the couple $(\mathcal{L}, \mathcal{B})$ improves the integrability of solutions to (1) for any p in the range $(1, \infty)$ and, moreover, provides for an a priori estimate in the L^{p}-Sobolev scales for any such solution.

Theorem 1. Under the hypotheses (2)-(4) let $u \in W^{2, p}(\Omega)$ be a strong solution of the problem (1) with $f \in \mathcal{F}^{q}(\Omega, \mathcal{N})$ and $\varphi \in \Phi^{q}(\partial \Omega, \mathcal{N})$ where $1<p \leq q<\infty$.

Then $u \in W^{2, q}(\Omega)$ and there is an absolute constant C such that

$$
\begin{equation*}
\|u\|_{W^{2, q}(\Omega)} \leq C\left(\|u\|_{L^{q}(\Omega)}+\|f\|_{\mathcal{F}^{q}(\Omega, \mathcal{N})}+\|\varphi\|_{\Phi^{q}(\partial \Omega, \mathcal{N})}\right) . \tag{5}
\end{equation*}
$$

Let us point out reader's attention that the directional derivative $\partial u / \partial \boldsymbol{L}$ of each $W^{2, p}$-solution to (1) belongs to $W^{2, p}(\mathcal{N})$. For, $\partial u / \partial \boldsymbol{L} \in W^{1, p}(\mathcal{N})$ and taking the difference quotients in (1) in the direction of \boldsymbol{L} (cf. [3, Chapter 8 and Lemma 7.24]) gives that $\partial u / \partial \boldsymbol{L} \in W^{2, p}(\mathcal{N})$ is a strong local solution to the Dirichlet problem
(6) $\left\{\begin{array}{l}\mathcal{L}\left(\frac{\partial u}{\partial \boldsymbol{L}}\right)=\frac{\partial f}{\partial \boldsymbol{L}}+2 a^{i j} D_{j} L^{k} D_{k i} u+a^{i j} D_{i j} L^{k} D_{k} u-\frac{\partial a^{i j}}{\partial \boldsymbol{L}} D_{i j} u \quad \text { a.e. } \mathcal{N}, \\ \frac{\partial u}{\partial \boldsymbol{L}}=\varphi \quad \text { on } \partial \Omega \cap \mathcal{N}\end{array}\right.$
where $\boldsymbol{L}(x)=\left(L^{1}(x), \ldots, L^{n}(x)\right) \in C^{1,1}(\mathcal{N})$. Therefore, once having proved $u \in$ $W^{2, q}(\Omega)$ and the estimate (5), we have

$$
\|\partial u / \partial \boldsymbol{L}\|_{W^{2, q}(\tilde{\mathcal{N}})} \leq C^{\prime}\left(\|u\|_{L^{q}(\Omega)}+\|f\|_{\mathcal{F}^{q}(\Omega, \mathcal{N})}+\|\varphi\|_{\Phi^{q}(\partial \Omega, \mathcal{N})}\right)
$$

for any closed neighbourhood $\widetilde{\mathcal{N}}$ of \mathcal{E} in $\bar{\Omega}, \widetilde{\mathcal{N}} \subset \mathcal{N}$, by means of the L^{p}-theory of uniformly elliptic equations (see [1] or [3, Chapter 9]). In other words, if a strong solution u to (1) belongs to $W^{2, q}(\Omega)$ then $\partial u / \partial \boldsymbol{L} \in W^{2, q}(\mathcal{N})$ automatically, provided $f \in \mathcal{F}^{q}(\Omega, \mathcal{N})$ and $\varphi \in \Phi^{q}(\partial \Omega, \mathcal{N})$.

2. Proof of Theorem 1

Fix hereafter $\mathcal{N}^{\prime} \subset \mathcal{N}^{\prime \prime} \subset \mathcal{N}$ to be closed neighbourhoods of \mathcal{E} in $\bar{\Omega}$ with $\mathcal{N}^{\prime \prime}$ so "narrow" that $\mathcal{N}^{\prime \prime} \subset \Omega \backslash \Omega_{0}$ (see Figure 3). The next result is an immediate consequence of $\gamma(x)>0 \forall x \in \partial \Omega \backslash \mathcal{N}^{\prime}$ and the L^{p}-theory of regular oblique derivative problems for uniformly elliptic operators with $V M O$ principal coefficients (cf. [7, Theorem 2.3.1]).

Proposition 2. Assume (2), (3) and $\gamma(x)>0 \forall x \in \Omega \backslash \mathcal{E}$, and let $u \in W^{2, p}(\Omega)$ be a solution to (1) with $f \in L^{q}(\Omega)$ and $\varphi \in W^{1-1 / q, q}(\partial \Omega)$, where $1<p \leq q<\infty$.

Then $u \in W^{2, q}\left(\Omega \backslash \mathcal{N}^{\prime}\right)$ and there is a constant such that

$$
\begin{equation*}
\|u\|_{W^{2, q}\left(\Omega \backslash \mathcal{N}^{\prime}\right)} \leq C\left(\|u\|_{L^{q}(\Omega)}+\|f\|_{L^{q}(\Omega)}+\|\varphi\|_{W^{1-1 / q, q}(\partial \Omega)}\right) . \tag{7}
\end{equation*}
$$

To derive the improving-of-integrability near the tangency set \mathcal{E}, we consider any solution of the problem (1) for which $a^{i j}, \partial a^{i j} / \partial \boldsymbol{L} \in L^{\infty}(\mathcal{N})$ in view of $(3)^{1}$ and f, $\partial f / \partial \boldsymbol{L} \in L^{q}(\mathcal{N})$ and $\varphi \in W^{2-1 / q, q}(\partial \Omega \cap \mathcal{N})$ by hypotheses.

Lemma 3. Under the assumptions of Theorem 1, the solution u of (1) belongs to $u \in W^{2, q}\left(\mathcal{N}^{\prime \prime}\right)$ and there is a constant such that

$$
\begin{equation*}
\|u\|_{W^{2, q}\left(\mathcal{N}^{\prime \prime}\right)} \leq C\left(\|u\|_{L^{q}(\Omega)}+\|f\|_{\mathcal{F}^{q}(\Omega, \mathcal{N})}+\|\varphi\|_{\Phi^{q}(\partial \Omega, \mathcal{N})}\right) \tag{8}
\end{equation*}
$$

Proof. Take an arbitrary point $x_{0} \in \mathcal{E}$. According to (4), the \boldsymbol{L}-trajectory through x_{0} leaves \mathcal{E} in both directions for a finite time, that is, $\boldsymbol{\psi}_{\boldsymbol{L}}\left(t^{-} ; x_{0}\right) \in \mathcal{N}^{\prime \prime} \backslash \mathcal{N}^{\prime}$, $\psi_{\boldsymbol{L}}\left(t^{+} ; x_{0}\right) \in \mathbb{R}^{n} \backslash \bar{\Omega}$ (see Figure 3) for suitable $t^{-}<0<t^{+}$.

Figure 3. \mathcal{T}_{r} is the dotted set, while the double-dotted one is $\mathcal{P}_{r, T}$.
Set \mathcal{H} for the $(n-1)$-dimensional hyperplane through x_{0} and orthogonal to $\boldsymbol{L}\left(x_{0}\right)$, and define

$$
B_{r}\left(x_{0}\right):=\left\{x \in \mathcal{H}: \quad\left|x-x_{0}\right|<r\right\}
$$

with $r>0$ to be chosen later. It follows from the Picard inequality ${ }^{2}$ that if r is small enough, then the flow of $B_{r}\left(x_{0}\right)$ along the \boldsymbol{L}-trajectories at time t^{-},

$$
B_{r}^{\prime}\left(x_{0}\right):=\boldsymbol{\psi}_{\boldsymbol{L}}\left(t^{-} ; B_{r}\left(x_{0}\right)\right):=\left\{\boldsymbol{\psi}_{\boldsymbol{L}}\left(t^{-} ; y\right): \quad y \in B_{r}\left(x_{0}\right)\right\}
$$

is entirely contained in $\mathcal{N}^{\prime \prime} \backslash \mathcal{N}^{\prime}$ whence $B_{r}^{\prime}\left(x_{0}\right) \cap \mathcal{E}=\emptyset$. The set

$$
\Theta_{r}:=\left\{\boldsymbol{\psi}_{\boldsymbol{L}}\left(t ; x^{\prime}\right): \quad x^{\prime} \in B_{r}^{\prime}\left(x_{0}\right), \quad t \in\left(0, t^{+}-t^{-}\right)\right\}
$$

is an n-dimensional neighbourhood of the \boldsymbol{L}-trajectory through x_{0} and defining

$$
\mathcal{T}_{r}:=\Theta_{r} \cap \Omega
$$

[^1]the boundary $\partial \mathcal{T}_{r}$ is composed of the "base" $B_{r}^{\prime}\left(x_{0}\right)$ and the "lateral" components $\partial_{1} \mathcal{T}_{r}:=\partial \mathcal{T}_{r} \cap \partial \Omega$ and $\partial_{2} \mathcal{T}_{r}:=\left(\partial \mathcal{T}_{r} \cap \Omega\right) \backslash B_{r}^{\prime}\left(x_{0}\right)$. Indeed, $\mathcal{T}_{r} \subset \mathcal{N}^{\prime \prime}$ if $r>0$ is small enough.

We will derive (8) in \mathcal{T}_{r} after that the desired estimate will follow by covering the compact $\mathcal{E} \subset \partial \Omega$ by a finite number of sets like $\overline{\mathcal{T}_{r}}$. Our strategy is based on a representation of $u(x)$ in \mathcal{T}_{r} by means of $u\left(x^{\prime}\right)$ with $x^{\prime}=\boldsymbol{\psi}_{\boldsymbol{L}}(-\xi(x) ; x) \in B_{r}^{\prime}\left(x_{0}\right)$ for some $\xi(x)>0$, and the integral of $\partial u / \partial \boldsymbol{L}$ along the \boldsymbol{L}-trajectory joining x^{\prime} with x. Thus the Sobolev norm of u will be expressed by the respective norm of $\partial u / \partial \boldsymbol{L}$ and that of u itself near $B_{r}^{\prime}\left(x_{0}\right)$ where we dispose of (7). Concerning $\partial u / \partial \boldsymbol{L}$, it is a local solution of Dirichlet problem near \mathcal{E} with right-hand side depending on u.

Let $\mu: \mathcal{H} \rightarrow \mathbb{R}^{+}$be a C^{∞} cut-off function such that

$$
\mu(y)= \begin{cases}1 & y \in B_{r / 2}\left(x_{0}\right), \tag{9}\\ 0 & y \in \mathcal{H} \backslash B_{3 r / 4}\left(x_{0}\right)\end{cases}
$$

and extend it to \mathbb{R}^{n} as constant on the \boldsymbol{L}-trajectory through $y \in \mathcal{H}$. The function $U(x):=\mu(x) u(x)$ is a $W^{2, p}(\mathcal{N})$-solution of

$$
\left\{\begin{array}{l}
\mathcal{L} U=F(x):=\mu f+2 a^{i j} D_{j} \mu D_{i} u+u a^{i j} D_{i j} \mu \quad \text { a.e. } \mathcal{T}_{r}, \tag{10}\\
\partial U / \partial \boldsymbol{L}=\Phi:= \begin{cases}\mu \varphi & \text { on } \partial_{1} \mathcal{T}_{r}, \\
0 & \text { near } \partial_{2} \mathcal{T}_{r}, \\
\mu \partial u / \partial \boldsymbol{L} & \text { on } B_{r}^{\prime}\left(x_{0}\right) \subset \mathcal{N}^{\prime \prime} \backslash \mathcal{N}^{\prime} .\end{cases}
\end{array}\right.
$$

Indeed, $u \in W^{2, p}(\mathcal{N})$ implies $D u \in L^{n p /(n-p)}$ if $p<n$ and $D u \in L^{s} \forall s>1$ when $p \geq n$, whence $F \in L^{q^{\prime}}(\mathcal{N})$ with

$$
q^{\prime}:= \begin{cases}\min \left\{q, \frac{n p}{n-p}\right\} & \text { if } p<n \tag{11}\\ q & \text { if } p \geq n\end{cases}
$$

Further, $\partial F / \partial \boldsymbol{L} \in L^{q^{\prime}}\left(\mathcal{N}^{\prime \prime}\right)$ as consequence of (6), $\partial u / \partial \boldsymbol{L} \in W^{2, q}\left(\mathcal{N}^{\prime \prime} \backslash \mathcal{N}^{\prime}\right)$ by Proposition 2 whence $\Phi \in W^{2-1 / q, q}\left(\partial \mathcal{T}_{r}\right)$. Thus (2), (3), $\mathcal{T}_{r} \subset \mathcal{N}^{\prime \prime}$ and (6) give that

$$
V(x):=\partial U / \partial \boldsymbol{L}
$$

is a $W^{2, p}\left(\mathcal{T}_{r}\right)$-solution of the Dirichlet problem

$$
\left\{\begin{array}{l}
\mathcal{L} V=\partial F / \partial \boldsymbol{L}+2 a^{i j} D_{j} L^{k} D_{i k} U+a^{i j} D_{i j} L^{k} D_{k} U-\frac{\partial a^{i j}}{\partial \boldsymbol{L}} D_{i j} U \quad \text { a.e. } \mathcal{I}_{r} \tag{12}\\
V=\Phi \text { on } \partial \mathcal{T}_{r} .
\end{array}\right.
$$

Now we pass from $x \in \Theta_{r}$ into the new variables $\left(x^{\prime}, \xi\right)$ with $x^{\prime}=\boldsymbol{\psi}_{\boldsymbol{L}}(-\xi(x) ; x) \in$ $B_{r}^{\prime}\left(x_{0}\right)$ and $\xi: \Theta_{r} \rightarrow\left(0, t^{+}-t^{-}\right), \xi(x) \in C^{1,1}\left(\Theta_{r}\right)$. The transform $x \mapsto\left(x^{\prime}, \xi\right)$ defines a $C^{1,1}$-diffeomorphism because the field \boldsymbol{L} is transversal to $B_{r}^{\prime}\left(x_{0}\right)$. Moreover, $\partial / \partial \boldsymbol{L} \equiv \partial / \partial \xi, \boldsymbol{\psi}_{\boldsymbol{L}}\left(t ; x^{\prime}\right)=\left(x^{\prime}, t\right)$ and $V\left(x^{\prime}, \xi\right)=\partial U\left(x^{\prime}, \xi\right) / \partial \xi$ as $\left(x^{\prime}, \xi\right) \in \mathcal{T}_{r}$. Since $V\left(x^{\prime}, \xi\right)$ is an absolutely continuous function in ξ for a.a. $x^{\prime} \in B_{r}^{\prime}\left(x_{0}\right)$) (after redefining it, if necessary, on a set of zero measure) we get

$$
\begin{equation*}
U\left(x^{\prime}, \xi\right)=U\left(x^{\prime}, 0\right)+\int_{0}^{\xi} V\left(x^{\prime}, t\right) d t \quad \text { for a.a. }\left(x^{\prime}, \xi\right) \in \mathcal{T}_{r} \tag{13}
\end{equation*}
$$

where the point $\left(x^{\prime}, 0\right) \in B_{r}^{\prime}\left(x_{0}\right)$ lies in $\mathcal{N}^{\prime \prime} \backslash \mathcal{N}^{\prime}$ and $U\left(x^{\prime}, 0\right) \in W^{2, q}$ there by Proposition 2, the Fubini theorem and [12, Remark 2.1]. Passing to the new variables $\left(x^{\prime}, \xi\right)$ in (12), taking the derivatives of (13) up to second order and substituting them into the right-hand side of (12), this last reads

$$
\begin{cases}\mathcal{L}^{\prime} V=F_{1}\left(x^{\prime}, \xi\right)+\int_{0}^{\xi} \mathcal{D}_{2}(\xi) V\left(x^{\prime}, t\right) d t & \text { a.e. } \mathcal{T}_{r} \tag{14}\\ V=\Phi & \text { on } \partial \mathcal{T}_{r}\end{cases}
$$

where \mathcal{L}^{\prime} is the operator \mathcal{L} in terms of $\left(x^{\prime}, \xi\right)=\left(x_{1}^{\prime}, \ldots, x_{n-1}^{\prime}, \xi\right)$,

$$
\begin{align*}
F_{1}\left(x^{\prime}, \xi\right) & :=\partial F / \partial \boldsymbol{L}+\mathcal{D}_{1} V\left(x^{\prime}, \xi\right)+\mathcal{D}_{1}^{\prime} U\left(x^{\prime}, \xi\right)+\mathcal{D}_{2}^{\prime} U\left(x^{\prime}, 0\right), \tag{15}\\
\mathcal{D}_{2}(\xi) V\left(x^{\prime}, t\right) & :=\sum_{i, j=1}^{n-1} A^{i j}\left(x^{\prime}, \xi\right) D_{x_{i}^{\prime} x_{j}^{\prime}} V\left(x^{\prime}, t\right), \quad A^{i j} \in L^{\infty}
\end{align*}
$$

$\mathcal{D}_{1}, \mathcal{D}_{1}^{\prime}, \mathcal{D}_{2}^{\prime}$ are linear differential operators with L^{∞}-coefficients, ord $\mathcal{D}_{1}=$ ord $\mathcal{D}_{1}^{\prime}=$ 1 , ord $\mathcal{D}_{2}^{\prime}=2$. The Sobolev imbedding theorem implies $F_{1} \in L^{q^{\prime}}\left(\mathcal{T}_{r}\right)$ with q^{\prime} given by (11) as consequence of $\partial F / \partial \boldsymbol{L} \in L^{q^{\prime}}\left(\mathcal{N}^{\prime \prime}\right), U\left(x^{\prime}, 0\right) \in W^{2, q}\left(B_{r}^{\prime}\left(x_{0}\right)\right)$ and $U, V \in W^{2, p}\left(\mathcal{N}^{\prime \prime}\right)$. Nevertheless the second-order operator $\mathcal{D}_{2}(\xi)$ has a quite rough characteristic form which is neither symmetric nor sign-definite, the improving-ofintegrability holds for (14) thanks to the particular structure of \mathcal{T}_{r} as union of \boldsymbol{L}-trajectories through $B_{r}^{\prime}\left(x_{0}\right)$. Actually, we will show that if $V \in W^{2, q^{\prime}}$ on a subset of \mathcal{T}_{r} with $\xi<T$, then V remains a $W^{2, q^{\prime}}$-function on a larger subset with $\xi<T+r$ for small enough r, after that the higher integrability of U will follow from Proposition 2 and (13). For, take an arbitrary $T \in\left(0, t^{+}-t^{-}\right)$and define

$$
\mathcal{P}_{r, T}:=\left\{\left(x^{\prime}, \xi\right) \in \mathcal{T}_{r}: \quad \xi<T\right\}
$$

For a fixed $r>0,\left\{\mathcal{P}_{r, T}\right\}_{T>0}$ is a non-decreasing family of domains exhausting \mathcal{T}_{r} and $\mathcal{P}_{r, T} \equiv \mathcal{T}_{r}$ for values of T greater than the maximal exit-time

$$
T_{\max }:=\sup _{x^{\prime} \in B_{r}^{\prime}\left(x_{0}\right)} \sup \left\{t>0: \quad \boldsymbol{\psi}_{\boldsymbol{L}}\left(t ; x^{\prime}\right) \in \Omega, x^{\prime} \in B_{r}^{\prime}\left(x_{0}\right)\right\}
$$

Proposition 4. Let $T \in\left(0, t^{+}-t^{-}\right)$and consider the solution $V \in W^{2, p}\left(\mathcal{T}_{r}\right)$ of the problem (14). Suppose $V \in W^{2, q^{\prime}}\left(\mathcal{P}_{r, T}\right)$ where q^{\prime} is given by (11).

There exists an $r_{0}>0$ such that $V \in W^{2, q^{\prime}}\left(\mathcal{P}_{r, T+r}\right)$ for all $r<r_{0}$.
Proof. There are three possible cases to be distinguished.
Case A: $T+3 r<T_{\max }$. We have $\mathcal{P}_{r, T} \subset \mathcal{P}_{r, T+3 r} \subset \mathcal{T}_{r} \equiv \mathcal{P}_{r, T_{\max }}$ and consider the C^{∞}-function $\eta: \mathbb{R} \rightarrow[0,1]$ such that

$$
\eta(\xi)= \begin{cases}1 & \text { as } \xi \in(-\infty, T+r] \tag{16}\\ \text { strictly decreases } & \text { as } \xi \in(T+r, T+2 r) \\ 0 & \text { as } \xi \geq T+2 r\end{cases}
$$

Setting $\widetilde{V}\left(x^{\prime}, \xi\right):=\eta(\xi) V\left(x^{\prime}, \xi\right)$, it follows $\mathcal{L}^{\prime} \widetilde{V}=\eta\left(\mathcal{L}^{\prime} V\right)+\mathcal{L}_{1} V$ where \mathcal{L}_{1} is a firstorder differential operator with L^{∞}-coefficients depending on these of \mathcal{L}^{\prime} and on the
derivatives of η. Therefore,

$$
\begin{align*}
\mathcal{L}^{\prime} \widetilde{V} & =\eta F_{1}+\mathcal{L}_{1} V+\eta(\xi) \int_{0}^{\xi} \mathcal{D}_{2}(\xi) V\left(x^{\prime}, t\right) d t \tag{17}\\
& =\eta F_{1}+\mathcal{L}_{1} V+\int_{0}^{\xi} \frac{\eta(\xi)}{\eta(t)} \mathcal{D}_{2}(\xi) \widetilde{V}\left(x^{\prime}, t\right) d t
\end{align*}
$$

because $\mathcal{D}_{2}(\xi)$ is a second-order operator acting in the x^{\prime}-variables only.
We set $\Omega_{r} \subset \mathcal{P}_{r, T+3 r} \backslash \mathcal{P}_{r, T-3 r}$ for a $C^{1,1}$-smooth domain containing $\mathcal{P}_{3 r / 4, T+2 r} \backslash$ $\mathcal{P}_{3 r / 4, T-2 r}$ and such that

$$
r^{-1} \Omega_{r}:=\left\{\left(\widetilde{y}^{\prime}, \widetilde{\xi}\right): \quad \widetilde{y}^{\prime}=x^{\prime} / r, \widetilde{\xi}=(\xi-T) / r,\left(x^{\prime}, \xi\right) \in \Omega_{r}\right\} \in C^{1,1}
$$

uniformly in r. The boundary $\partial \Omega_{r}$ consists of the "lateral" parts $\partial_{1} \Omega_{r}:=\partial \Omega_{r} \cap \partial \Omega$ and $\partial_{2} \Omega_{r}:=\partial \Omega_{r} \cap \Omega \cap\{\xi \in(T-2 r, T+2 r)\} \subset\left(\mathcal{P}_{r, T+2 r} \backslash \mathcal{P}_{r, T-2 r}\right) \backslash\left(\mathcal{P}_{3 r / 4, T+2 r} \backslash\right.$ $\left.\mathcal{P}_{3 r / 4, T-2 r}\right)$, and of two $C^{1,1}$-smooth components $\partial \Omega_{r}^{ \pm}$lying in $\mathcal{P}_{r, T+3 r} \backslash \mathcal{P}_{r, T+2 r}$ and $\mathcal{P}_{r, T-2 r} \backslash \mathcal{P}_{r, T-3 r}$, respectively. The properties of $\mu(\mathrm{cf}$. (9)) ensure $U \equiv 0, V \equiv 0$, $\widetilde{V} \equiv 0$ on $\mathcal{T}_{r} \backslash \mathcal{T}_{3 r / 4}$ whence $\widetilde{V} \equiv 0$ near $\partial_{2} \Omega_{r}$.

For an arbitrary $\left(x^{\prime}, \xi\right) \in \Omega_{r}$, the factor $\eta(\xi) / \eta(t)$ in (17) vanishes when $\xi \geq T+2 r$ while $\eta(\xi) / \eta(t) \leq 1$ because η decreases in $(T+r, T+2 r)$. Moreover, $|\xi-T|<3 r$ for $\left(x^{\prime}, \xi\right) \in \Omega_{r}$ and

$$
\begin{aligned}
\int_{0}^{\xi} \frac{\eta(\xi)}{\eta(t)} \mathcal{D}_{2}(\xi) \widetilde{V}\left(x^{\prime}, t\right) d t & =\int_{0}^{T} \frac{\eta(\xi)}{\eta(t)} \mathcal{D}_{2}(\xi) \widetilde{V}\left(x^{\prime}, t\right) d t+\int_{T}^{\xi} \frac{\eta(\xi)}{\eta(t)} \mathcal{D}_{2}(\xi) \widetilde{V}\left(x^{\prime}, t\right) d t \\
& =\eta(\xi) \int_{0}^{T} \mathcal{D}_{2}(\xi) V\left(x^{\prime}, t\right) d t+\int_{T}^{\xi} \frac{\eta(\xi)}{\eta(t)} \mathcal{D}_{2}(\xi) \widetilde{V}\left(x^{\prime}, t\right) d t
\end{aligned}
$$

by means of (15) and since $\eta(t)=\underset{\sim}{\eta}(T)=1$ as $t \leq T$.
We get from (14) and (17) that $\widetilde{V} \in W^{2, p}\left(\Omega_{r}\right)$ solves the Dirichlet problem

$$
\left\{\begin{array}{l}
\mathcal{L}^{\prime} \widetilde{V}=F_{2}\left(x^{\prime}, \xi\right)+\int_{T}^{\xi} \frac{\eta(\xi)}{\eta(t)} \mathcal{D}_{2}(\xi) \widetilde{V}\left(x^{\prime}, t\right) d t \quad \text { a.a. }\left(x^{\prime}, \xi\right) \in \Omega_{r} \tag{18}\\
\widetilde{V}=\widetilde{\Phi}:=\eta \Phi=\left\{\begin{array}{lll}
\eta \mu \varphi \in W^{2-1 / q, q} & \text { on } \partial_{1} \Omega_{r} & (\text { by }(10)) \\
0 & \text { on } \partial_{2} \Omega_{r} & (\text { by }(10)), \\
0 & \text { on } \partial \Omega_{r}^{+} & (\text {by }(16)) \\
V \in W^{2-1 / q^{\prime}, q^{\prime}} & \text { on } \partial \Omega_{r}^{-} & (\text {since } \xi<T-2 r \text { and } \\
& \left.V \in W^{2, q^{\prime}}\left(\mathcal{P}_{r, T}\right)\right)
\end{array}\right.
\end{array}\right.
$$

where, recalling $V \in W^{2, q^{\prime}}\left(\mathcal{P}_{r, T}\right)$, we have

$$
\begin{equation*}
F_{2}\left(x^{\prime}, \xi\right):=\eta F_{1}+\mathcal{L}_{1} V+\eta(\xi) \int_{0}^{T} \mathcal{D}_{2}(\xi) V\left(x^{\prime}, t\right) d t \in L^{q^{\prime}}\left(\Omega_{r}\right) \tag{19}
\end{equation*}
$$

We are going to prove now that $\widetilde{V} \in W^{2, q^{\prime}}\left(\Omega_{r}\right)$ for small enough $r>0$, whence it will follow $V \in W^{2, q^{\prime}}\left(\mathcal{P}_{r, T+r}\right)$ in view of (16) and $V \equiv 0$ near $\partial_{2} \Omega_{r}$. The claim is obvious if $q^{\prime}=p$ because $V \in W^{2, p}\left(\mathcal{T}_{r}\right)$. Otherwise, take an arbitrary $s \in\left[p, q^{\prime}\right]$ and denote by $W_{*}^{2, s}\left(\Omega_{r}\right)$ the Sobolev space $W^{2, s}\left(\Omega_{r}\right)$ normed with

$$
\|u\|_{W_{*}^{2, s}\left(\Omega_{r}\right)}:=\|u\|_{L^{s}\left(\Omega_{r}\right)}+r\|D u\|_{L^{s}\left(\Omega_{r}\right)}+r^{2}\left\|D^{2} u\right\|_{L^{s}\left(\Omega_{r}\right)} .
$$

Define now the operator $\mathfrak{F}: W_{*}^{2, s}\left(\Omega_{r}\right) \rightarrow W_{*}^{2, s}\left(\Omega_{r}\right)$ as follows: for any $w \in W_{*}^{2, s}\left(\Omega_{r}\right)$ the image $\mathfrak{F} w \in W_{*}^{2, s}\left(\Omega_{r}\right)$ is the unique solution of the Dirichlet problem

$$
\begin{cases}\mathcal{L}^{\prime}(\mathfrak{F} w)=F_{2}+\int_{T}^{\xi} \frac{\eta(\xi)}{\eta(t)} \mathcal{D}_{2}(\xi) w\left(x^{\prime}, t\right) d t \in L^{s}\left(\Omega_{r}\right) & \text { a.a. }\left(x^{\prime}, \xi\right) \in \Omega_{r} \tag{20}\\ \mathfrak{F} w=\widetilde{\Phi} \in W^{2-1 / s, s}\left(\partial \Omega_{r}\right) & \text { on } \partial \Omega_{r}\end{cases}
$$

We will prove that \mathfrak{F} is a contraction for small values of r. For this goal, take arbitrary $w_{1}, w_{2} \in W_{*}^{2, s}\left(\Omega_{r}\right)$. The difference $\mathfrak{F} w_{1}-\mathfrak{F} w_{2}$ solves

$$
\begin{cases}\mathcal{L}^{\prime}\left(\mathfrak{F} w_{1}-\mathfrak{F} w_{2}\right)=\int_{T}^{\xi} \frac{\eta(\xi)}{\eta(t)} \mathcal{D}_{2}(\xi)\left(w_{1}-w_{2}\right)\left(x^{\prime}, t\right) d t & \text { a.a. }\left(x^{\prime}, \xi\right) \in \Omega_{r} \tag{21}\\ \mathfrak{F} w_{1}-\mathfrak{F} w_{2}=0 & \text { on } \partial \Omega_{r}\end{cases}
$$

In order to apply the L^{s}-a priori estimates from [1] or [3] for the solutions of (21), we have to control the dependence on r therein. For, we recall that $r^{-1} \Omega_{r} \in C^{1,1}$ uniformly in r and apply a standard approach consisting of dilation of Ω_{r} onto $r^{-1} \Omega_{r}$, reduction of the problem (21) to a new one in variables $\left(\widetilde{y}^{\prime}, \widetilde{\xi}\right) \in r^{-1} \Omega_{r}$, application of the L^{s}-estimates from [3, Theorem 9.17] and finally turning back to (21) (see the Proof of Lemma 2.2, Eq. (2.12) in [12]). This way, one gets

$$
\begin{equation*}
\left\|\mathfrak{F} w_{1}-\mathfrak{F} w_{2}\right\|_{W_{*}^{2, s}\left(\Omega_{r}\right)} \leq C r^{2}\left\|\int_{T}^{\xi} \frac{\eta(\xi)}{\eta(t)} \mathcal{D}_{2}(\xi)\left(w_{1}-w_{2}\right)\left(x^{\prime}, t\right) d t\right\|_{L^{s}\left(\Omega_{r}\right)} \tag{22}
\end{equation*}
$$

where the constant C is independent of r. Jensen's integral inequality yields

$$
r^{2}\left\|\int_{T}^{\xi} \frac{\eta(\xi)}{\eta(t)} \mathcal{D}_{2}(\xi)\left(w_{1}-w_{2}\right)\left(x^{\prime}, t\right) d t\right\|_{L^{s}\left(\Omega_{r}\right)} \leq C \max _{\left(x^{\prime}, \xi\right) \in \Omega_{r}}|\xi-T|\left\|w_{1}-w_{2}\right\|_{W_{*}^{2, s}\left(\Omega_{r}\right)}
$$

and thus (22) rewrites into

$$
\left\|\mathfrak{F} w_{1}-\mathfrak{F} w_{2}\right\|_{W_{*}^{2, s}\left(\Omega_{r}\right)} \leq C \max _{\left(x^{\prime}, \xi\right) \in \Omega_{r}}|\xi-T|\left\|w_{1}-w_{2}\right\|_{W_{*}^{2, s}\left(\Omega_{r}\right)}
$$

We have $\max _{\left(x^{\prime}, \xi\right) \in \Omega_{r}}|\xi-T|<3 r, C$ is independent of r and therefore \mathfrak{F} will be really a contraction from $W_{*}^{2, s}\left(\Omega_{r}\right)$ into itself for any $s \in\left[p, q^{\prime}\right]$ if $r \leq r_{0}$ with r_{0} under control and small enough. Fixing $r=r_{0} / 2$, there is a unique fixed point of \mathfrak{F} in $W_{*}^{2, s}\left(\Omega_{r}\right)$ for all $s \in\left[p, q^{\prime}\right]$. However, $\widetilde{V} \in W^{2, p}\left(\Omega_{r}\right)$ is already a fixed point of \mathfrak{F} since it solves (18) and therefore $\widetilde{V} \in W^{2, q^{\prime}}\left(\Omega_{r}\right)$. It follows $V \in W^{2, q^{\prime}}\left(\mathcal{P}_{r, T+r}\right)$ by means of $V \in W^{2, q^{\prime}}\left(\mathcal{P}_{r, T}\right), \widetilde{V} \equiv 0$ on $\mathcal{T}_{r} \backslash \mathcal{T}_{3 r / 4}$ and the properties of $\eta(\xi)$.
Case B: $T<T_{\max } \leq T+3 r$. We have $\mathcal{T}_{r} \backslash \mathcal{P}_{r, T} \neq \emptyset, \mathcal{P}_{r, T+3 r} \equiv \mathcal{T}_{r}$ now and we do not need anymore the cut-off function η because $V=\partial U / \partial \boldsymbol{L} \equiv 0$ near the points of $\partial_{2} \mathcal{T}_{r}$ where $\xi>T$ (cf. (9)). Thus, it suffices to repeat the above arguments with $\eta(\xi) \equiv 1 \forall \xi \in \mathbb{R}$ and $\Omega_{r} \in C^{1,1}$ defined as before when $\xi \leq T$ while $\mathcal{T}_{3 r / 4} \backslash \mathcal{P}_{3 r / 4, T} \subset\left(\Omega_{r} \cap\{\xi>T\}\right) \subset \mathcal{T}_{r} \backslash \mathcal{P}_{r, T}$ (cf. (9)). We have anyway a problem like (18) for $V \equiv \widetilde{V}$ with boundary condition

$$
V=\partial U / \partial \boldsymbol{L}= \begin{cases}\mu \varphi \in W^{2-1 / q, q} & \text { on } \partial_{1} \Omega_{r}=\partial \Omega_{r} \cap \partial \Omega \\ 0 & \text { on } \partial_{2} \Omega_{r}=\partial \Omega_{r} \cap \Omega \cap\{\xi>T-3 r\} \\ V \in W^{2-1 / q^{\prime}, q^{\prime}} & \text { on } \partial \Omega_{r}^{-} \quad \text { (by hypothesis) }\end{cases}
$$

Therefore, the procedure from Case A gives $V \in W^{2, q^{\prime}}\left(\mathcal{P}_{r, T+3 r}\right)$.
Case C: $T_{\max } \leq T$. We have $\mathcal{P}_{r, T+r} \equiv \mathcal{P}_{r, T} \equiv \mathcal{T}_{r}$ now and thus the claim.
Proposition 5. Suppose $r<r_{0}$ with r_{0} given in Proposition 4. Then the solution V of the problem (14) lies in $W^{2, q}\left(\mathcal{T}_{r}\right)$ and satisfies the estimate

$$
\begin{align*}
\|V\|_{W^{2, q}\left(\mathcal{T}_{r}\right)} \leq C\left(\|u\|_{L^{q}(\Omega)}+\|f\|_{\mathcal{F}^{q}(\Omega, \mathcal{N})}\right. & +\|\varphi\|_{\Phi^{q}(\partial \Omega, \mathcal{N})} \tag{23}\\
& \left.+\|u\|_{W^{1, q}\left(\mathcal{T}_{r}\right)}+\|\partial u / \partial \boldsymbol{L}\|_{W^{1, q}\left(\mathcal{T}_{r}\right)}\right)
\end{align*}
$$

Proof. We note that $V \in W^{2, q} \subseteq W^{2, q^{\prime}}$ near $B_{r}^{\prime}\left(x_{0}\right)$ in view of $B_{r}^{\prime}\left(x_{0}\right) \subset \mathcal{N}^{\prime \prime} \backslash \mathcal{N}^{\prime}$, Proposition 2 and (6). Therefore, successive applications of Proposition 4 with increasing values of T will give $V \in W^{2, q^{\prime}}\left(\mathcal{T}_{r}\right), q^{\prime}>p$. After that, in order to get $V \in W^{2, q}\left(\mathcal{T}_{r}\right)$, it suffices to put q^{\prime} in the place of p in (11) and to repeat finitely many times the above arguments until $q^{\prime}=q$.

To obtain (23), we take $T \in\left(0, t^{+}-t^{-}\right)$to be arbitrary, fix $r=r_{0} / 2$, and consider the domains Ω_{r} defined in the proof of Proposition 4. Let $\widetilde{V}=\eta V \in W^{2, q}\left(\mathcal{T}_{r}\right)$ solve (18) with η given by (16) in Case A and $\eta \equiv 1$ in Case B. Since \widetilde{V} is a fixed point of the mapping \mathfrak{F} : $W^{2, q}\left(\Omega_{r}\right) \rightarrow W^{2, q}\left(\Omega_{r}\right), \mathfrak{F} \widetilde{V}=\widetilde{V}$, we get

$$
\left\|D^{2} \widetilde{V}\right\|_{L^{q}\left(\Omega_{r}\right)}=\left\|D^{2}(\mathfrak{F} \widetilde{V})\right\|_{L^{q}\left(\Omega_{r}\right)} \leq\left\|D^{2}(\mathfrak{F} \widetilde{V}-\mathfrak{F} 0)\right\|_{L^{q}\left(\Omega_{r}\right)}+\left\|D^{2}(\mathfrak{F} 0)\right\|_{L^{q}\left(\Omega_{r}\right)},
$$

while

$$
\left\|D^{2}\left(\mathfrak{F} w_{1}-\mathfrak{F} w_{2}\right)\right\|_{L^{q}\left(\Omega_{r}\right)} \leq \theta\left\|D^{2}\left(w_{1}-w_{2}\right)\right\|_{L^{q}\left(\Omega_{r}\right)} \quad \forall w_{1}, w_{2} \in W^{2, q}\left(\Omega_{r}\right), \quad \theta<1
$$

because \mathfrak{F} is a contraction, (22) and the fact that $\mathcal{D}_{2}(\xi)$ is a homogeneous secondorder operator (cf. (15)). This way, $\left\|D^{2}(\mathfrak{F} \widetilde{V}-\mathfrak{F} 0)\right\|_{L^{q}\left(\Omega_{r}\right)} \leq \theta\left\|D^{2}(\widetilde{V}-0)\right\|_{L^{q}\left(\Omega_{r}\right)}=$ $\theta\left\|D^{2} \widetilde{V}\right\|_{L^{q}\left(\Omega_{r}\right)}$ and therefore

$$
\begin{equation*}
\left\|D^{2} \widetilde{V}\right\|_{L^{q}\left(\Omega_{r}\right)} \leq C\left\|D^{2}(\mathfrak{F} 0)\right\|_{L^{q}\left(\Omega_{r}\right)} \tag{24}
\end{equation*}
$$

with $\mathfrak{F} 0 \in W^{2, q}\left(\Omega_{r}\right)$ being the unique solution of the Dirichlet problem

$$
\left\{\mathcal{L}^{\prime}(\mathfrak{F} 0)=F_{2} \quad \text { a.e. } \Omega_{r}, \quad \mathfrak{F} 0=\widetilde{\Phi} \quad \text { on } \partial \Omega_{r}\right.
$$

(see (20)), for which the L^{p}-theory (cf. [3, Chapter 9]) gives

$$
\begin{equation*}
\left\|D^{2}(\mathfrak{F} 0)\right\|_{L^{q}\left(\Omega_{r}\right)} \leq\|\mathfrak{F} 0\|_{W^{2, q}\left(\Omega_{r}\right)} \leq C\left(\left\|F_{2}\right\|_{L^{q}\left(\Omega_{r}\right)}+\|\widetilde{\Phi}\|_{W^{2-1 / q, q}\left(\partial \Omega_{r}\right)}\right) . \tag{25}
\end{equation*}
$$

Direct applications, based on (19) and (15), yield

$$
\begin{aligned}
\left\|F_{2}\right\|_{L^{q}\left(\Omega_{r}\right)}= & \left\|\eta F_{1}+\mathcal{L}_{1} V+\eta(\xi) \int_{0}^{T} \mathcal{D}_{2}(\xi) V\left(x^{\prime}, t\right) d t\right\|_{L^{q}\left(\Omega_{r}\right)} \\
\leq & C\left(\|\partial F / \partial \boldsymbol{L}\|_{L^{q}\left(\Omega_{r}\right)}+\|U\|_{W^{2, q}\left(\mathcal{N}^{\prime \prime} \backslash \mathcal{N}^{\prime}\right)}+\|U\|_{W^{1, q}\left(\mathcal{T}_{r}\right)}+\|V\|_{W^{1, q}\left(\mathcal{T}_{r}\right)}\right. \\
& \left.+\left\|D^{2} V\right\|_{L^{q}\left(\mathcal{P}_{r, T}\right)}\right) \\
\leq & C\left(\|\partial f / \partial \boldsymbol{L}\|_{L^{q}(\mathcal{N})}+\|u\|_{W^{2, q}\left(\mathcal{N}^{\prime \prime} \backslash \mathcal{N}^{\prime}\right)}+\|u\|_{W^{1, q}\left(\mathcal{T}_{r}\right)}+\|\partial u / \partial \boldsymbol{L}\|_{W^{1, q}\left(\mathcal{T}_{r}\right)}\right. \\
& \left.+\left\|D^{2} V\right\|_{L^{q}\left(\mathcal{P}_{r, T}\right)}\right)
\end{aligned}
$$

in view of (7), (10), $U=\mu u, V=\partial U / \partial \boldsymbol{L}$ and (9). Moreover,

$$
\begin{aligned}
\|\widetilde{\Phi}\|_{W^{2-1 / q, q}\left(\partial \Omega_{r}\right)} & \leq C\left(\|\varphi\|_{W^{2-1 / q, q}(\partial \Omega \cap \mathcal{N})}+\|V\|_{W^{2, q}\left(\mathcal{P}_{r, T}\right)}\right) \\
& \leq C\left(\|\varphi\|_{W^{2-1 / q, q}(\partial \Omega \cap \mathcal{N})}+\|V\|_{W^{1, q}\left(\mathcal{T}_{r}\right)}+\left\|D^{2} V\right\|_{L^{q}\left(\mathcal{P}_{r, T}\right)}\right) \\
& \leq C\left(\|\varphi\|_{W^{2-1 / q, q}(\partial \Omega \cap \mathcal{N})}+\|\partial u / \partial \boldsymbol{L}\|_{W^{1, q}\left(\mathcal{T}_{r}\right)}+\left\|D^{2} V\right\|_{L^{q}\left(\mathcal{P}_{r, T}\right)}\right)
\end{aligned}
$$

by (18) and $\partial \Omega_{r}^{-} \subset \mathcal{P}_{r, T}$. Further on, $\widetilde{V}=V$ on $\mathcal{P}_{r, T+r}$, whence

$$
\left\|D^{2} V\right\|_{L^{q}\left(\mathcal{P}_{r, T+r}\right)} \leq\left\|D^{2} V\right\|_{L^{q}\left(\mathcal{P}_{r, T}\right)}+\left\|D^{2} \widetilde{V}\right\|_{L^{q}\left(\Omega_{r}\right)}
$$

Therefore, setting $\zeta(T):=\left\|D^{2} V\right\|_{L^{q}\left(\mathcal{P}_{r, T}\right)}$ and $K:=\|u\|_{L^{q}(\Omega)}+\|f\|_{\mathcal{F}^{q}(\Omega, \mathcal{N})}+$ $\|\varphi\|_{\Phi^{q}(\partial \Omega, \mathcal{N})}+\|u\|_{W^{1, q}\left(\mathcal{T}_{r}\right)}+\|\partial u / \partial \boldsymbol{L}\|_{W^{1, q}\left(\mathcal{T}_{r}\right)}$, it follows from (24), (25) and Proposition 2 that

$$
\begin{equation*}
\zeta(T+r) \leq C(K+\zeta(T)) \quad \forall T \in\left(0, t^{+}-t^{-}\right) \tag{26}
\end{equation*}
$$

To get (23), we let m to be the least integer such that $T_{\max } \leq m r$ and iterate (26) in order to obtain

$$
\begin{aligned}
\left\|D^{2} V\right\|_{L^{q}\left(\mathcal{T}_{r}\right)} & =\left\|D^{2} V\right\|_{L^{q}\left(\mathcal{P}_{r, T_{\max }}\right)}=\zeta\left(T_{\max }\right)=\zeta(m r)=\zeta((m-1) r+r) \\
& \leq C(K+\zeta((m-1) r))=C(K+\zeta((m-2) r+r)) \\
& \leq K\left(C+C^{2}\right)+C^{2} \zeta((m-2) r) \\
& \vdots \\
& \leq K \sum_{j=1}^{m} C^{j}+C^{m} \zeta(0)=K \sum_{j=1}^{m} C^{j}
\end{aligned}
$$

This proves (23).
Remark 6. It is important to note that the constant C in Proposition 5 depends on m through $T_{\max }$, and therefore on the point $x_{0} \in \mathcal{E}$. Actually, that constant will have the very same value for each other point of \mathcal{E} lying on the same \boldsymbol{L}-trajectory as x_{0}.

Moreover, if the improving-of-integrability property asserted in Propositions 4 and 5 holds on a set $S \subset \bar{\Omega}$ then it is guaranteed, on the base of (13), on any other set which can be reached from S along \boldsymbol{L}-trajectories.

To complete the proof of Lemma 3, we select a finite set $\left\{\mathcal{T}_{r}^{j}\right\}_{j=1}^{N}$ of neighbourhoods covering the compact \mathcal{E}, each of the type \mathcal{T}_{r} above with $r=r_{0} / 2$, and such that $\mathcal{T}:=$ closure $\left(\bigcup_{j=1}^{N} \mathcal{T}_{r / 2}^{j}\right) \subset \mathcal{N}^{\prime \prime}$ is a closed neighbourhood of \mathcal{E} in $\bar{\Omega}$. It is clear that Proposition 2 remains true with \mathcal{T} instead of \mathcal{N}^{\prime} and then (7) rewrites into

$$
\begin{equation*}
\|u\|_{W^{2, q}(\Omega \backslash \mathcal{T})} \leq C\left(\|u\|_{L^{q}(\Omega)}+\|f\|_{L^{q}(\Omega)}+\|\varphi\|_{W^{1-1 / q, q}(\partial \Omega)}\right) \tag{27}
\end{equation*}
$$

The improving-of-integrability claimed in Lemma 3 then follows from (13), Proposition 5 and (27) (recall $U=u$ on $\mathcal{T}_{r / 2}^{j}$). Similarly, (13), (27) and (23) yield

$$
\begin{equation*}
\|u\|_{W^{2, q}\left(\mathcal{N}^{\prime \prime}\right)} \leq\|u\|_{W^{2, q}(\mathcal{T})}+\|u\|_{W^{2, q}\left(\mathcal{N}^{\prime \prime} \backslash \mathcal{T}\right)} \tag{28}
\end{equation*}
$$

$$
\begin{aligned}
\leq & C\left(\|u\|_{L^{q}(\Omega)}+\|f\|_{\mathcal{F}^{q}(\Omega, \mathcal{N})}+\|\varphi\|_{\Phi^{q}(\partial \Omega, \mathcal{N})}\right. \\
& \left.+\|u\|_{W^{1, q}(\mathcal{N})}+\|\partial u / \partial \boldsymbol{L}\|_{W^{1, q}(\mathcal{N})}\right)
\end{aligned}
$$

Later on, $\mathcal{N} \backslash \mathcal{N}^{\prime \prime} \subset \Omega \backslash \mathcal{N}^{\prime}$ and

$$
\begin{aligned}
\|u\|_{W^{1, q}(\mathcal{N})} & \leq\|u\|_{W^{1, q}\left(\mathcal{N}^{\prime \prime}\right)}+\|u\|_{W^{1, q}\left(\mathcal{N} \backslash \mathcal{N}^{\prime \prime}\right)} \\
& \leq \varepsilon\|u\|_{W^{2, q}\left(\mathcal{N}^{\prime \prime}\right)}+C(\varepsilon)\left(\|u\|_{L^{q}(\Omega)}+\|u\|_{W^{2, q}\left(\Omega \backslash \mathcal{N}^{\prime}\right)}\right)
\end{aligned}
$$

in view of the interpolation inequality for the $W^{2, q}\left(\mathcal{N}^{\prime \prime}\right)$-norms with $\varepsilon>0$ under control ${ }^{3}$. In the same manner,

$$
\begin{aligned}
\|\partial u / \partial \boldsymbol{L}\|_{W^{1, q}(\mathcal{N})} & \leq\|\partial u / \partial \boldsymbol{L}\|_{W^{1, q}\left(\mathcal{N}^{\prime}\right)}+\|\partial u / \partial \boldsymbol{L}\|_{W^{1, q}\left(\mathcal{N} \backslash \mathcal{N}^{\prime}\right)} \\
& \leq \varepsilon\|\partial u / \partial \boldsymbol{L}\|_{W^{2, q}\left(\mathcal{N}^{\prime}\right)}+C(\varepsilon)\left(\|\partial u / \partial \boldsymbol{L}\|_{L^{q}\left(\mathcal{N}^{\prime}\right)}+\|u\|_{W^{2, q}\left(\Omega \backslash \mathcal{N}^{\prime}\right)}\right)
\end{aligned}
$$

while

$$
\|\partial u / \partial \boldsymbol{L}\|_{W^{2, q}\left(\mathcal{N}^{\prime}\right)} \leq C\left(\|u\|_{W^{2, q}\left(\mathcal{N}^{\prime \prime}\right)}+\|u\|_{L^{q}(\Omega)}+\|f\|_{\mathcal{F}^{q}(\Omega, \mathcal{N})}+\|\varphi\|_{\Phi^{q}(\partial \Omega, \mathcal{N})}\right)
$$

by means of the local a priori estimates ([3, Theorem 9.11]) for the problem (6).
A substitution of the above expressions into (28) and (7) give

$$
\begin{aligned}
\|u\|_{W^{2, q}\left(\mathcal{N}^{\prime \prime}\right)} \leq C\left(\|u\|_{L^{q}(\Omega)}+\|f\|_{\mathcal{F}^{q}(\Omega, \mathcal{N})}\right. & +\|\varphi\|_{\Phi^{q}(\partial \Omega, \mathcal{N})} \\
& \left.+\varepsilon\|u\|_{W^{2, q}\left(\mathcal{N}^{\prime \prime}\right)}+C(\varepsilon)\|\partial u / \partial \boldsymbol{L}\|_{L^{q}\left(\mathcal{N}^{\prime}\right)}\right)
\end{aligned}
$$

whence, choosing $\varepsilon>0$ small enough, we get

$$
\|u\|_{W^{2, q}\left(\mathcal{N}^{\prime \prime}\right)} \leq C\left(\|u\|_{L^{q}(\Omega)}+\|f\|_{\mathcal{F}^{q}(\Omega, \mathcal{N})}+\|\varphi\|_{\Phi^{q}(\partial \Omega, \mathcal{N})}+\|u\|_{W^{1, q}\left(\mathcal{N}^{\prime}\right)}\right) .
$$

Similarly, another application of the interpolation inequality yields

$$
\|u\|_{W^{1, q}\left(\mathcal{N}^{\prime}\right)} \leq\|u\|_{W^{1, q}\left(\mathcal{N}^{\prime \prime}\right)} \leq \delta\|u\|_{W^{2, q}\left(\mathcal{N}^{\prime \prime}\right)}+C(\delta)\|u\|_{L^{q}\left(\mathcal{N}^{\prime \prime}\right)}
$$

and thus

$$
\|u\|_{W^{2}, q\left(\mathcal{N}^{\prime \prime}\right)} \leq C\left(\|u\|_{L^{q}(\Omega)}+\|f\|_{\mathcal{F}^{q}(\Omega, \mathcal{N})}+\|\varphi\|_{\Phi^{q}(\partial \Omega, \mathcal{N})}\right) .
$$

for small $\delta>0$. The proof of Lemma 3 is completed.
The statement of Theorem 1 follows from Proposition 2 and Lemma 3.

References

[1] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Commun. Pure Appl. Math. 12 (1959), 623-727; II, ibid. 17 (1964) 35-92.
[2] Y.V. Egorov and V. Kondrat'ev, The oblique derivative problem, Math. USSR Sbornik 7 (1969), 139-169.
[3] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren der mathematischen Wissenschaften, Vol. 224, 2nd ed., Springer-Verlag, Berlin, 1983.
[4] P. Guan and E. Sawyer, Regularity estimates for the oblique derivative problem, Ann. Math. 137 (1993), 1-70.
[5] P. Guan and E. Sawyer, Regularity estimates for the oblique derivative problem on non-smooth domains I, Chinese Ann. Math., Ser. B 16 (1995), 1-26; II, ibid. 17 (1996), 1-34.

[^2][6] L. Hörmander, Pseudodifferential operators and non-elliptic boundary value problems, Ann. Math. 83 (1966), 129-209.
[7] A. Maugeri, D.K. Palagachev and L.G. Softova, Elliptic and Parabolic Equations with Discontinuous Coefficients, Math. Res., Vol. 109, Wiley-VCH, Berlin, 2000.
[8] V. Maz'ya, On a degenerating problem with directional derivative, Math. USSR Sbornik 16 (1972), 429-469.
[9] V. Maz'ya and B.P. Paneah, Degenerate elliptic pseudodifferential operators and oblique derivative problem, Trans. Moscow Math. Soc. 31 (1974), 247-305.
[10] A. Melin and J. Sjöstrand, Fourier integral operators with complex phase functions and parametrix for an interior boundary value problem, Commun. Partial Differ. Equations 1 (1976), 313-400.
[11] D.K. Palagachev, The tangential oblique derivative problem for second order quasilinear parabolic operators, Commun. Partial Differ. Equations 17 (1992), 867-903.
[12] D.K. Palagachev, The Poincaré problem in L^{p}-Sobolev spaces I: Codimension one degeneracy, J. Funct. Anal. 229 (2005), 121-142.
[13] D.K. Palagachev, L^{p}-regularity for Poincaré problem and applications, In: F. Giannessi and A. Maugeri (eds.) Variational Analysis and Applications, Vol. 79, Proc. 38th Workshop dedicated to the memory of Guido Stampacchia, Erice, Sicily, 20 June-1 July, 2003, Springer-Verlag, New York, 2005, pp. 773-789.
[14] D.K. Palagachev, Neutral Poincaré Problem in L^{p}-Sobolev Spaces: Regularity and Fredholmness, Int. Math. Res. Not. 2006 (2006), Article ID 87540, 31 pages.
[15] B.P. Paneah, On a problem with oblique derivative, Soviet Math. Dokl. 19 (1978), 1568-1572.
[16] B.P. Paneah, The Oblique Derivative Problem. The Poincaré Problem, Math. Topics, Vol. 17, Wiley-VCH, Berlin, 2000.
[17] H. Poincaré, Lecons de Méchanique Céleste, Tome III, Théorie de Marées, Gauthiers-Villars., Paris, 1910.
[18] P.R. Popivanov and N.D. Kutev, The tangential oblique derivative problem for nonlinear elliptic equations, Commun. Partial Differ. Equations 14 (1989), 413-428.
[19] P.R. Popivanov and N.D. Kutev, Viscosity solutions to the degenerate oblique derivative problem for fully nonlinear elliptic equations, Math. Nachr. 278 (2005), 888-903.
[20] P.R. Popivanov and D.K. Palagachev, The Degenerate Oblique Derivative Problem for Elliptic and Parabolic Equations, Math. Res., Vol. 93, Wiley-VCH (Akademie-Verlag), Berlin, 1997.
[21] B. Winzell, The oblique derivative problem I, Math. Ann. 229 (1977), 267-278.
[22] B. Winzell, A boundary value problem with an oblique derivative, Commun. Partial Differ. Equations 6 (1981), 305-328.

Manuscript received May 22, 2006
revised June 1, 2006

Dian K. Palagachev
Dipartimento di Matematica, Politecnico di Bari, Via E. Orabona, 4, 70125 Bari, Italy
E-mail address: dian@dm.uniba.it, palaga@poliba.it

[^0]: 2000 Mathematics Subject Classification. Primary: 35J25, 35R25; Secondary: 35B45, 35R05, 35H20.

 Key words and phrases. Uniformly elliptic operator, Poincaré problem, Neutral vector field, Strong solution, a priori estimates, L^{p}-Sobolev spaces.
 *This is the definitive version of a lecture delivered at the International Conference on "Recent Advances in PDEs" in memory of Filippo Chiarenza, Messina, December 15-17, 2005.

[^1]: ${ }^{1}$ It will be clear from the considerations given below that instead of Lipschitz continuity of the coefficients of \mathcal{L} in \mathcal{N} as (3) asks, it suffices to have essentially bounded their directional derivatives with respect to the field \boldsymbol{L}.
 ${ }^{2}\left|\boldsymbol{\psi}_{\boldsymbol{L}}\left(t ; x^{\prime}\right)-\boldsymbol{\psi}_{\boldsymbol{L}}\left(t ; x^{\prime \prime}\right)\right| \leq e^{t\|\boldsymbol{L}\|_{C^{1}}(\mathcal{N})}\left|x^{\prime}-x^{\prime \prime}\right|$ for all $x^{\prime}, x^{\prime \prime} \in \mathcal{N}$.

[^2]: ${ }^{3}$ This requires some minimal smoothness of $\partial \mathcal{N}^{\prime \prime}$ and it is not restrictive to take it Lipschitz continuous at the very beginning.

